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Abstract: State estimation techniques are used for improving the quality of measured signals
and for reconstructing unmeasured quantities. In chemical reaction systems, nonlinear estima-
tors are often used to improve the quality of estimated concentrations. These nonlinear esti-
mators, which include the extended Kalman filter, the receding-horizon nonlinear Kalman filter
and the moving-horizon estimator, use a state-space representation in terms of concentrations.
An alternative to the representation of chemical reaction systems in terms of concentrations
consists in representing these systems in terms of extents. This paper formulates the state
estimation problem in terms of extents, which allows imposing additional shape constraints
on the sign, monotonicity and concavity/convexity properties of extents. The addition of shape
constraints often leads to significantly improved state estimates. A simulated example illustrates
the formulation of the state estimation problem in terms of concentrations and extents, and the

use of shape constraints.
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1. INTRODUCTION

Many processes in the (bio-)chemical industry utilize
chemical reactions to convert feed materials into inter-
mediate or final products. The quality of these products
depends on the quality of the data used for monitoring,
control and optimization. Measurements made during the
course of a reaction are often limited in number and
usually corrupted with noise. The field of state estimation
focuses on both improving the accuracy of the measured
signals and reconstructing unmeasured signals by enforc-
ing their consistency with a given process model (Simon,
2006). For the static case, state estimation is referred to
as data reconciliation (Narasimhan and Jordache, 1999).

The models of chemical reaction systems are most often
derived from first principles and written as differential-
algebraic equations (DAE), with concentrations, temper-
atures, pressures and possibly other quantities as state
variables. These equations are nonlinear and highly cou-
pled, since each state variable is influenced by multiple
rate processes such as reactions, mass transfers, and flows.
An alternative representation of reaction systems in terms
of “vessel extents” has been proposed by Amrhein et al.
(2010) and reformulated by Rodrigues et al. (2015). Vessel
extents are to open reactors (reactors with inlet and outlet
streams) what batch extents are to batch reactors. In the
extent formulation, each state variable is influenced by a
single rate process, which considerably simplifies the anal-
ysis. In turn, the original states (concentrations) can be
represented as linear combinations of these vessel extents.

Several state estimators are available for nonlinear dy-
namic systems. Among these estimators, the most com-
monly used is probably the extended Kalman filter (EKF)
(Jazwinski, 1970). EKF is recursive by nature and thus can
easily be implemented in real time. The major drawback
of EKF lies in its inability to handle bounds and algebraic
constraints, which are common in the representation of
chemical reaction systems. The moving-horizon estimator
(MHE) constitutes an alternative that can handle con-
straints on the estimated states (Rao et al., 2001, 2003).
A constrained optimization problem is formulated at each
sampling time using a time window of past measurements.
This allows incorporating shape constraints (such as sign,
monotonicity and concavity/convexity) in the estimation
problem for the given window. The drawback of the MHE
method is the need to solve differential equations within
the optimization loop, which can become a computational
issue for real-time estimation.

The receding-horizon nonlinear Kalman filter (RNK) is an-
other nonlinear state estimator. It is based on the predic-
tion and update steps of the Kalman filter (Rengaswamy
et al., 2013). In the update step, an optimization problem
is solved using a time window of past measurements. The
RNK method differs from the MHE methods in the sense
that the optimization problem does not require solving
differential equations, which considerably reduces the com-
putational burden.

This paper formulates the state estimation problem in
terms of vessel extents, which allows exploiting additional
shape constraints associated with the extents. In certain
cases, the shapes are known a priori, while for other cases,



a data-driven approach can be used to formulate appropri-
ate constraints. The objective of the paper is to compare
state estimation in the (original) concentration domain
with state estimation in terms of extents, in particular the
advantage that results from being able to use additional
shape constraints. Since the objective is not to compare
the performance of various nonlinear estimators, the RNK
method is chosen here for its computational simplicity.

This paper is organized as follows. Section 2 briefly reviews
the representation of chemical reaction systems in terms
of both numbers of moles and vessel extents. In Section
3, the shape properties of extents are discussed. Section 4
formulates the RNK in terms concentrations and extents.
In Section 5, the performance of these two estimator
formulations are compared via a case study, while Section
6 concludes the paper.

2. SYSTEM REPRESENTATION

In this section, chemical reaction systems are first modeled
in terms of numbers of moles and then in terms of extents.

2.1 Numbers of moles

Consider a homogeneous reaction system involving S
species, R independent reactions, p inlet streams, and one
outlet stream. A dynamic model in terms of the numbers
of moles can be written as

n(t) =N"r,(t) + W,,u,,(t) —w(t)n(t), n(0) =ng, (1)

where n is the S-dimensional vector of numbers of moles,
r, := Vr with V the volume and r the R-dimensional
vector of reaction rates, u,, is the p-dimensional vector
of inlet mass flowrates, w := *24+ is the inverse residence
time with the mass m and the outlet mass flowrate u,,.,
N is the R x S stoichiometric matrix, W,,, = M_ W,
is the S x p matrix of inlet compositions, with M,, the
S-dimensional diagonal matrix of molecular weights and
W, = [wl - -wP] with W/, the S-dimensional vector
of weight fractions of the jth inlet flow, and ny is the
S-dimensional vector of initial conditions. Note that the
mass m can be computed from the numbers of moles
n as m(t) = 1M, n(t) or through integration of the
continuity equation upon knowledge of the inlet and outlet
streams: 1(t) = 1,0, (t) — w,u(t), m(0) = my.

The concentrations are computed from the numbers of
moles as c(t) = 2 and the reaction rates r(t) are

V(1)
typically nonlinear functions of c(t).

The S-dimensional representation given in Eq. (1) often
contains redundancies, as the system evolves in time only
due to the R independent reactions, the p independent
inlets and the outlet stream. Hence, for a reactor with
outlet, there exists ¢ := .S — (R + p + 1) invariants, which
are identically equal to zero, such that,

P*n(t) = 0, (2)
where the S x ¢ matrix P describes the ¢-dimensional null
space of the matrix [N*T W,, ng], and PT is the pseudo-
inverse of P. The invariant relationships given in Eq. (2)
can be used to rewrite Eq. (1) in terms of d := R+ p +

1 independent species. The dynamic model can then be
rewritten as:

1y (t) = N{ro(t) + Wip 1 (t) — w(t)n (),
nsy(t) = —P2 P;r n (t),

ni(0) =np1 (3a)
(3b)

where n; is the d-dimensional vector of independent
species, nsy the g-dimensional vector of dependent species,
N; is the R x d subset of the stoichiometric matrix,
W,,.1 the d x p subset of inlet compositions, ng; the d-
dimensional vector of initial conditions, Ps is the ¢ x ¢
subset of P corresponding to the dependent species and
P the d x ¢ subset of P corresponding to the independent
species. Note that the set of independent species are chosen
such that rank of the matrix [NT W, 1 ng1] = d.

2.2 Vessel extents

The reaction system (3a) can be expressed in terms of ves-
sel extents by using the linear transformation (Rodrigues
et al., 2015) !
-1
X(t) = Tl n; (t) = [:N-FlF Win,l Il()l} n; (t) (4)

The transformed system reads:

x,.(t) =1, (t) —w(t)x,(t), x,(0) =0r (5a)
Xin (1) = Wi (1) — w(t) x4 (), X (0) =0, (5b)
T (t) = —w(t) z,.(t), z..(0)=1, (5¢c)
with the reconstruction equations:
n(t) = NTx,.(t) + W, 1%, (t) + no1 z,.(t) (6a)
ny(t) = N3 x,(t) + W,, 2X,,,(t) + no2 x,.(t). (6b)

The vessel extent of reaction x,. ;(t) expresses the amount
of material produced or consumed by the ith reaction that
is still in the reactor at time ¢, the negative term on the
right-hand side accounting for what has left the reactor.
Similarly, the vessel extent of inlet expresses the amount
of material loaded by the jth inlet that is still in the
reactor at time ¢. Finally, z,.(¢) indicates the fraction of
the initial conditions that is still in the reactor at time ¢.
The various extents can be grouped in the extent vector

x =[x xI, ;)" Note that Eqs (6a) and (6b) can be
written together as:
n(t) = N"x,.(t) + W,,x,,,(t) + ng x,.(t). (7)

3. STATE CONSTRAINTS

Constraints on state estimates can be formulated based on
either the numbers of moles or the extents. Furthermore,
these constraints are either known a priori because they
are generally valid or they can be inferred from measured
data. Section 3.1 introduces constraints on the numbers
of moles and on the extents based on prior knowledge.
Section 3.2 introduces a procedure for estimating shape
constraints on the numbers of moles and on the extents
based on measurements.

1 The (S x S)-dimensional transformation matrix in Rodrigues et al.
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(2015) reads T := [NT W, ng P] . Here T is a submatrix of
dimension d X d.



3.1 Constraints based on prior knowledge
Concentrations

The numbers of moles of all species are nonnegative at
all sampling times,

n(th)ZOS, Vh:O,l,...,H. (8)

Since the numbers of moles are affected by various rate
processes, it is difficult to impose generally valid shape
constraints except for few special cases:

e If a species in a batch reactor appears only as reactant
(product) in one or more irreversible reactions, then
the corresponding number of moles is monotonically
decreasing (increasing).

e If a species in a semi-batch reactor appears only
as reactant (product) in one or more irreversible
reactions and is not added via an inlet stream, then
the corresponding number of moles is monotonically
decreasing (increasing).

FExtents

In the extent domain, the constraints (8) can be enforced
at all sampling times ¢, (Vh =0,1,...,H) as:

N*x,(th) + W, x,,,(tn) + no z;.(tn) > 0g. 9)

Furthermore, since each extent expresses the effect of a
single rate process, it is possible in certain cases to impose
additional constraints on their time evolution. The shape
constraints that one can impose a priori on vessel extents
are described next, first for reactors without outlet and
then for reactors with outlet.

Batch and semi-batch reactors

Without outlet (w = 0), the model (5) reduces to:
% () = 1o () x.(0) =0z  (10a)
X, () = u,, (1) X, (0) = 0y, (10b)
and x;.(t) = 1, for which we can propose the following
properties.

Lemma 1: (Extents of inlet) The extents of inlet are:

(a) nonnegative monotonically increasing functions,
(b) convex (concave) if the corresponding inlet flowrates
are monotonically increasing (decreasing)? .

Proof: The proof of (a) follows from

thi1
o (b 1) = %o () + / w, (t)dt

123
Yh=0,1,... H—1,
and the fact that u,,(t) > 0, on ¢ € [to, ty].

(11)

To prove convexity in (b), consider the three time points

th < tpt1 < tpy2 onthe interval [tg, t5]. From (11) and the

fact that the inlet flowrates are monotonically increasing,

it follows that

Xin (th+2) — Xin (th+1)
tht2 — tht

Xin (th+1) — Xin (th)
th+1 — th

> W (tht1) >

)

2 In practice, it is required to know the monotonic behavior of the
inlet flowrates or reaction rates but not their exact numerical values.

which gives the convexity property (Boyd and Vanden-
berghe, 2004),
Xin (th+2) — Xin (th-‘rl) Xin (th+1) — Xin (th)
thio — tht1 tht1 —th
Similar arguments are used to prove concavity. O

>

Lemma 2: (Extents of irreversible reactions) The extents
of irreversible reactions are:

(a) nonnegative monotonically increasing functions,
(b) concave (convex) if the corresponding reaction rates
are monotonically decreasing (increasing).

Proof: The proof of (a) follows from

x, (ths1) :xr(th)—l—/ bt

th
Vh=01,. . H-1,
and the fact that r,(t) > Or on t € [to, tH].

To prove concavity in (b), consider the three time points
th < tp41 < tpyo on the interval [to, tg]. From (13) and the
fact that the reaction rates are monotonically decreasing,
it follows that

X (thy2) — X (thi1)
thi2 = thyt
which gives the concavity property,
Xr(thy2) — X0 (thet) - X (thy1) — Xp(th)
tht2 — tht - thy1 — U '
Similar arguments are used to prove convexity. O

(13)

X (thy1) — X (th)
th+1 — th

<ry(thtr) <

3

Reactors with outlet

In the presence of an outlet, the monotonicity and con-
vexity/concavity properties of the extents of inlet and
reaction no longer hold. There remains the nonnegative
properties of x;,(t), and of x,.(t) for irreversible reactions.
In addition, the following property holds for the extent of
initial conditions.

Lemma 3: (Extent of initial conditions) The extent of ini-
tial conditions is a mnonnegative monotonically decreasing
function.

Proof: The solution to Eq. (5¢) is z,.(t) = e fo’w(t)dt. It
follows that x,,(t) cannot be negative and, from w(t) > 0,
that it is monotonically decreasing. O

3.2 Constraints based on measurements

In certain cases, generic shape constraints cannot be
guaranteed, but are nevertheless present in (at least part
of) the data. For example, it is common to observe extents
of reaction with an inflection point, where the extents
change from a convex to a concave shape or conversely.

The procedure for identifying shape constraints on the
basis of measurements is presented in the context of
the extent domain, but it can also be applied in the
concentration domain. The procedure is as follows:

(1) Using Eq. (5) and noting that r, is a function of x,
express the first and second time derivatives of the
extents analytically in terms of x, u,, and w.

(2) Select a time window .7 of size N.



(3) Compute the extents x(¢5,) = T1ny(t,) in the time
window .7 from the measured numbers of moles
n(ty)3.

(4) Estimate the first and second derivatives of each
extent using the analytical expressions in Step (1),
that is, Z;(t,) and Z;(tp), i=1,...,d, t, € 7.

(5) Design shape constraints based on the sign of the
estimated second derivatives:

o if 7;(ty) > 0, Vi, € 7, then Z;(t) is convex on
7, and stop the procedure;

o if 7;(ty) <0, V), € .7, then Z;(t) is concave on
7, and stop the procedure;

e if Z;(t;) changes sign on the time window .7,
reduce the size of the time window and go back
to Step (2); however, if N is already small with
regard to the window size that is necessary to
handle measurement noise, no convex/concave
shape can be imposed and proceed to Step (6)
to investigate the existence of monotonicity con-
straints.

(6) Design shape constraints based on the sign of the
estimated first derivatives:

o if 7;(ty) > 0, Vt), € 7, then #;(t) is monotoni-
cally increasing on .7, and stop the procedure;

o if Z;(ty) < 0, Vi, € 7, Z;(t) is monotonically
decreasing on .7, and stop the procedure;

e in case Z;(t5) changes sign on the time window
Z, there are no observable shape constraints;
however, the nonnegative properties of X,,(t),
Zic(t), and of x,.(t) for irreversible reactions re-
main valid.

4. STATE ESTIMATION

In this section, the state estimation problem is formulated
for an RNK filter. The formulation is given for the general
case of a reactor with outlet. For state estimation in a
stochastic framework, it is necessary to extend the system
representations given in Section 2 with a measurement
equation and both process and measurement noises.

For the system representation in (3a), one has:
1 () = N1y (t) + Win 1uin () — w(®)na (t) + wna (1),

ni(0) =np1 (15a)

14

¥(t) = {_Pz Pﬂ n1(6) + w, (1) (15b)

The S-dimensional measurement vector y contains the
measured numbers of moles. The term w, represents
Gaussian white measurement noise of covariance Q,. The
term w,,; is a Gaussian random variable with zero-mean
and constant variance-covariance matrix Q,;. For the
system (5), one can write:

%o () = ro(t) — wt) %, (8) + wr(t), x.(0) =0x (16a

)

Xin(t) = Win(t) — w(t) Xin(t) + Win(t), x;n(0) =0, (16b)
Zic(t) = —w(t) T (t) + wic(t), z:(0) =1 (16¢)
y(t) = N7 xp(t) + WinXin () + nozic(t) + wy(t). (16d)

The terms w,., w,, and w,. are Gaussian random variables
with zero-mean and constant variance-covariance Q,., Q,,,,
and ¢;., respectively.

3

The extents can also be computed using the data reconciliation
procedure described by Srinivasan et al. (2015).

In the next section, the RNK filter equations are developed
for the formulation in terms of extents. The corresponding
equations in terms of numbers of moles can be written
similarly.

4.1 Receding-horizon nonlinear Kalman filter

For the ease of notation, the right-hand sides of Egs.
(16a)—(16¢) are defined as f.(-), £,.(-) and f..(-) and are
aggregated to the d-dimensional vector f(+); similarly, the
block-diagonal covariance matrix Q. is formed:

X fT() QT 0 0
x= |Xin | ,f2() = |fin()| ;Qa=| 0 Qin 0 17)
Tic fzc() 0 0 qic

The RNK filter implements the prediction and update
steps over a time window. These steps are briefly discussed
next.

Prediction step

Given the state vector x(¢p|ty), one computes the a priori
estimate X(tp41lth), ..., X(thrn|tn) for the time window
7 of length N using the state evolution described by
Eqgs (16a)-(16¢). This prediction step is also referred to as
‘open-loop’ estimation. Let the (Nd)-dimensional vector
X 7|1, concatenate all these predicted states, i.e. x 7, =

[x(th-‘rl |th)T7 e 7x(th+N|th)T]T'

An a priori estimate of the covariance matrix P |, of
dimension (Nd x Nd) is given by

P(th+1th+2)\th P(th+1‘h+N)\th
Pltpirtny)lty Pepialty " Pl ot )ity

Pty = . . ) . ,

P‘h+1\fh

Plthprtnyn)lty Pipinltn

where the diagonal elements represent the variances of the
predicted states and the off-diagonal elements represent
the covariance between predicted states. The elements
of the matrix Pz, are estimated from P(tp[ts) using

the following iterative relationships (Rengaswamy et al.,
2013):

_ T
Pth+N|th, = Ath+N71Pth,+N—1‘t}zAtthN,l +Qq

_ T
P(tthN—l)(tthN)‘th = P(th,+N—1)(th+N71)‘th Ath+N—1 :

The recursion is initialized using
— T
Pth+1|th, = AthPth\thAth + Qa,

where A;, = exp{%x wtty 6y} 15 the linearization matrix
of the differential equations (16a)—(16c¢).

Update step

Given the N measured outputs yo := [y(th+1)T, cee
y(th+N)T]T, the update step of RNK is formulated as a
constrained optimization problem, whose solution is the a
posteriori state estimate Xz, . = [x(th+1|th+1)T, ce
x(th+N|th+N)T] " With the introduction of the quantities
a = X7,y — X7, and B = yg — 1, (Xﬂ\th)a the
update step can be formulated as the following constrained
optimization problem:



: Tp—1 TM—1
Jmin P, ot 8Q, 8
[th4+N

s.t. h(X9|th+N) <0,
XT|thsin = ONd s
where h(-) denotes the m applicable shape constraints.

The a posteriori covariance matrix P g, . 1s computed
as follows (Rengaswamy et al., 2013):

Kz, v =P711,C711,(Ca, P, CTy\th, +Qu1) " (18)

Prityn =0-Kgzu, v Cot, ) Pa,, (19)

where C s, is the linearized measurement equation ob-
tained at x 7, . At the end of this prediction-update step,
the scheme is repeated for the next time window of length
N, that is, from t},42 to tp4+n+1. Note that, in the absence
of constraints, the RNK filter reduces to the EKF filter.

5. SIMULATED CASE STUDY

This section uses a simulated example and the RNK filter
to compare the performance of constrained state estima-
tion in terms of numbers of moles and in terms of extents.

Reaction system

Consider the following two-reaction system,
Rl: A+B—C
R2: A+C—D

ri =Fkicacn
ro = kocacco.

The reaction system is simulated in a fed-batch reactor
with k; = 0.5 and ko = 0.3, both in units L mol~! min~!,
V=1L, nag = 5 mol, and ngy = nce = 0 mol. Species
B is fed to the reactor with an inlet flowrate of 5 g min=?!.
Species A, B and D are chosen as the independent species.
The numbers of moles of species C' are obtained using the
invariant relation obtained from Eq. (2):

nc(t) =nao +nco + 2711)0 - nA(t) - QHD(t).
The numbers of moles of species A, B and D are assumed
to be measured every minute for 50 minutes. The simu-

lated numbers of moles are corrupted with Gaussian white
noise with the variance matrix,

0.0806 0 0
Q,=| 0 00106 0
0 0  0.0553

The flowrate and the volume are assumed to be perfectly
known.

RNK filter in terms of numbers of moles

The differential equations in terms of numbers of moles
are written as:

nA(t) = —sna®) np(t) - A ne(t) +wa 4 (22a)
A5(t) = — s na(®) nB () + Wi puin(t) +wn 5 (22b)
Ap(t) = $25na(t) ne(t) +wn o, (22¢)
with the (incorrect) parameter values k; = 0.75 and

ko = 0.5. The process noise vector wy,; is assumed to be
zero-mean with the variance matrix,

01 0 0
Q.i=| 0 0025 0 .
0 0 0.025

The following constraints are known from prior knowledge:

e n4(t) is monotonically decreasing,
e np(t) is monotonically increasing.

Furthermore, concave and convex constraints on all inde-
pendent species are obtained from measurements using a
window size N = 10.

RNK filter in terms of extents

The differential equations in terms of extents read:

:.B’rlyl(t) = Vk(lt) (nAO - -'Er',l(t) - -'Er',2(t)) (winmin (t) - wr,l(t)) + W, |

(23a)
bp2(t) = 1225 (na0 — 21 (t) = 2 (1)) (2r,1 () = 2r2() +wa,

(23b)
Tin(t) = win(t) + way,. (23c)

The process noise vector w, is zero-mean and has the
covariance matrix,

0.125 0.025 0
Q. = l0.025 0.025 0] .
0 0 e

Since the flowrate is perfectly known, e is theoretically
zero, but it is set to 107° for numerical reasons. The
non-zero part of Q, is computed from Q,; using the
transformation (4).

The following constraints are known from the reaction
system and the operating conditions:

e 1, 1(t) is concave,
e 1, 5(t) is monotonically increasing,
e z,,(t) is monotonically increasing.

Furthermore, concave and convex constraints on x, »(t)
and x;,(t) are obtained from measurements using the
window size N = 10.

Results and Discussion

First, the performance of the two state estimators is com-
pared using only constraints based on prior knowledge.
Table 1 compares the sum of the squared errors for the
estimation of the numbers of moles* without and with
shape constraints, the shape constraints being based ex-
clusively on prior knowledege. Clearly, the addition of
shape constraints improves the estimates. Furthermore,
the performance is better via x than via n, which can be
attributed to the fact that more constraints can be placed
on x than on n.

A similar comparison is done for shape constraints de-
termined from both prior knowledge and measurements.
Table 2 compares the sum of the squared errors for the
estimation of the numbers of moles without and with shape
constraints. The performance of both estimators is im-
proved by the addition of shape constraints obtained from

4 Since the formulation in terms of extents gives extent estimates,
the numbers of moles are reconstructed using Eq. (7).



. Unconstrained RNK estimation
Species - - -
via n via n via x
A 0.96 0.44 0.10
B 0.19 0.13 0.06
C 1.98 0.63 0.27
D 0.52 0.21 0.12

Table 1. Sum of the squared errors for the es-
timation of the numbers of moles without and
with shape constraints. The RNK estimator is
formulated both in terms of numbers of moles
(n) and in terms of extents (x), with con-
straints based exclusively on prior knowledge.

measurements. Fig. 1 shows the corresponding simulated,
measured, and estimated numbers of moles of A and D for
the formulation of the state estimation problem in terms
of extents.
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Fig. 1. True (- -), measured (o ) and estimated (x) number
of moles of A and D. The RNK filter is formulated in
terms of extents, with constraints based on both prior
knowledge and measurements.

. Unconstrained RNK estimation
Species - - -
via n via n via x
A 0.96 0.27 0.06
B 0.19 0.07 0.04
C 1.98 0.37 0.26
D 0.52 0.13 0.10

Table 2. Sum of squared errors for the uncon-

strained and constrained estimated numbers

of moles using an RNK filter formulated in

terms of numbers of moles (n) and extents (x),

with constraints from both prior knowledge
and measurements.

The improvement between Tables 1 and 2 is more pro-
nounced in the case of the formulation via the numbers
of moles since more measurement-based constraints are
added, or, in other words, fewer constraints were available
from prior knowledge. The effectiveness of measurement-
based constraints depends on the quality of the measured

data since the procedure relies on the computation of
first and second derivatives of noisy measurements. At the
limit, when the noise is too large, it might be impossible
to apply shape constraints via measurements, and only the
constraints from prior knowledge remain valid.

6. CONCLUSION

This paper has compared the formulation of the state esti-
mation problem in terms of numbers of moles and extents.
The addition of shape constraints to the state estimation
problem has shown to greatly improve the precision of the
estimated states. It was also shown that the formulation
using extents allows defining additional shape constraints
compared to the formulation in terms of the original num-
bers of moles. A procedure for identifying these shape
constraints from measurements has also been introduced.
The effectiveness of these measurement-based constraints
increases when only a few constraints are available from
prior knowledge and the measurement noise is low.

Future work will focus on the combined problem of pa-
rameter and state estimation using shape constraints and
the extent-based formulation. While this paper has pro-
vided detailed conditions about the existence of shape con-
straints for reactors without outlet, the conditions under
which shape constraints can be applied to reactors with
outlet are widely unknown. Also, it would be useful to
develop a procedure for identifying shape constraints for
reversible reactions.
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