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Abstract

Ferritic/martensitic steels are candidate materials for fusion reactor structural components, liquid
metal containers of spallation neutron sources, and accelerator driven systems, with good radiation
resistance and thermo-mechanical properties. However, embrittlement resulting from the combined
effects of radiation induced displacement damage (measured in dpa = displacement per atom) and
transmutation products, especially helium gas, is one of the key issues.

Four different steels were selected for mechanical and microstructural studies to understand the
mechanisms of embrittlement induced by the combined effects of displacement damage and helium
after irradiation in SINQ, the Swiss spallation source. The irradiations conditions were in the range:
10.7 — 20.4 dpa with 850-1750 appm He at 160-300 °C. The evolution of the mechanical properties
after irradiation was investigated by tensile and hardness tests. Radiation-induced defect clusters
and helium bubbles were quantified by transmission electron microscopy (TEM). Emphasis was put
on the deformation mechanisms under the different observed fracture mode, (ductile, quasi-
cleavage and intergranular), whose occurrence depends on the irradiation conditions (dpa, He
content and irradiation temperature).

The tensile stress-strain curves and the scanning electron microscopy images of fracture surfaces
showed distinct fracture mechanisms under different irradiation and test conditions. The tensile
tests showed a yielding stress increase and loss of ductility of irradiated specimens. Hardness was
measured on the specimens before tensile testing. The hardness results demonstrated an increasing
trend with irradiation dose and helium content.

TEM observations were done for all irradiated fractured specimens. Small defect clusters were
observed in the 12.3 dpa specimen, but large defect clusters with loop-shape were very few. In the
specimens of 17.2, 17.7 and 20.4 dpa, many large dislocation loops were detected besides small
clusters. In addition, helium bubbles were observed in all specimens. The average size of defect
clusters increased from 4.2 nm to 11.8 nm with dose increasing from 12.3 dpa to 20.4 dpa, whereas
the number density did not change significantly. Meanwhile, the average size of visible helium
bubbles increased from 1.03 nm to 1.93 nm. The microstructures in deformed area of irradiated
specimens were observed and defect free channels with {110} and {112} slip planes were found in
some specimens, indicating plastic flow localization. The average width of the channels is about 100
nm.

Regarding the brittle samples, the TEM-lamella were extracted directly below intergranular fracture
surfaces or cleavage surfaces by focused ion beam. Strikingly, deformation twinning was observed as
the main feature in three irradiated specimens at high dose. Only twins with {112} planes were
observed in all of these samples. The average thickness of twins is about 34 nm. Twins started from
a fracture surface became gradually thinner with distance away from the fracture surface and
stopped in the matrix finally. Features such as twin-precipitates interaction, twin-grain boundary
and/or lath boundary interaction were observed. Twinning bands were seen to be arrested by grain
boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of
defect free channels, inside twins small defect-clusters, dislocation loops and dense small helium
bubbles were observed.

Key words: ferritic/martensitic steels, spallation irradiation, defect clusters, helium bubbles,
embrittlement, micro-cracks, deformation mechanism, defect-free channeling, deformation
twinning.






Résumé

Les aciers ferritiques/martensitiques (F/M) sont des matériaux candidats pour des composants
structuraux de réacteurs a fusion, les cuves des sources de spallation a métal liquide and les
systemes nucléaires controlés par accélérateur, grace a leur bonne résistance aux irradiations et
propriétés thermo-mécaniques. Cependant, la fragilisation de ces aciers résultant des effets
combinés des dégats d'irradiation (mesuré en dpa = displacement per atom) sur la microstructure et
de I'accumulation de produits de transmutation, notamment de I'hélium, est un des points critiques.

Quatre aciers différents ont été sélectionnés pour des études mécaniques et microstructurales dans
le but de mieux cerner les mécanismes de fragilisation induits par les effets combinés des dégats
d'irradiation et d'hélium, apres irradiation dans SINQ, la source de spallation suisse. Les conditions
d'irradiation couvrent le domaine: 10.7 - 20.4 dpa avec 850 -1750 appm He entre 160 et 300 °C.
L'évolution des propriétés mécaniques aprés irradiation a été étudiée par des essais de traction et
de dureté. Les dégats d'irradiation et les bulles d'hélium ont été quantifiés par microscopie
électronique a transmission (MET). L'accent a été mis sur les mécanismes de déformation sous
différents mode de fracture, a savoir ductile, quasi-clivage et intergranulaire, dont I'occurrence
dépend des conditions d'irradiation (dpa, contenu d'hélium and température d'irradiation).

Les courbes contrainte-déformation et les images correspondantes de microscopie a balayage des
surfaces de fracture ont montré des mécanismes distincts de fracture sous diverses conditions
d'irradiations et de tests. Les essais de tractions ont clairement indiqué une augmentation de la
limite d'élasticité et une diminution de la ductilité des échantillons irradiés. La dureté a été mesurée
sur les échantillons de traction avant les essais de traction. Les résultats de dureté ont démontré une
claire augmentation avec la dose d'irradiation and le contenu en hélium dans les échantillons.

Des observations par MET ont été réalisées sur tous les échantillons fracturés dans I'état irradié. Des
petits clusters de défauts ont été observés dans I'échantillon a 12.3 dpa, alors que les grands clusters
en forme de boucle n'étaient pas nombreux. Dans les échantillons a 17.2, 17.7 and 20.4 dpa, de
nombreuses boucles ont été détectées a coté des petits clusters. Le diametre moyen des clusters de
défauts augmente de 4.2 nm a 11.8 nm lorsque la dose augmente de 12.3 dpa a 20.4 dpa, alors que
la densité ne change pas significativement. Dans le méme temps, le diameétre des bulles d'hélium
visibles augmente de 1.03 a 1.93 nm. Les microstructures des zones déformées d'échantillons
irradiés ont été observées et des canaux libres de défauts avec des plans plan de glissement{110} et
{112} ont été trouvés dans certains échantillons, indiquant une localisation de la déformation
plastique. La largeur moyenne des canaux est de I'ordre de 100 nm.

En ce qui concerne les échantillons fracturés en mode fragile, des échantillons ont été extraits par
faisceau d'ions focalisés, soit sous les surfaces de fracture intergranulaire, soit sous les surfaces de
clivage. Etonnamment, de la déformation par maclage a été observée dans trois échantillons irradiés
a forte dose. Seules des macles sur les planes {112} ont été observées dans tous ces échantillons.
L'épaisseur moyenne des macles est d'environ 34 nm. Les macles sont initiées pres des surfaces de
fractures et deviennent plus fines avec la distance et s'arrétent finalement dans la matrice. Des traits
caractéristiques tels que l'intéraction macle-précipité, macle-joint de grains et macle/joint de lattes
ont été observés. Des macles ont aussi été observées étre arrétées aux joints de grains, mais
pénétrant les joints de lattes. Contrairement aux canaux libres de défauts, de petits clusters et des
petites boucles de dislocation ainsi que de denses petites bulles d'hélium résident dans les macles.

La formation de macles est attribuée a I'effet de durcissement extréme d'irradiation induit par les
clusters de défauts, des boucles de dislocations aux fortes doses, ou le mouvement des dislocations
y compris dans des canaux est effectivement bloqué.

Mots-clé: aciers ferritiques/martensitiques, spallation irradiation, clusters de défauts, bulles
d'hélium, fragilisation, micro-fissures, mécanismes de déformation, canaux libres de défauts, macles
de déformation.
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Introduction

Reduced activation tempered martensitic steels are leading candidate materials for fusion reactor
structural components, liquid metal containers of future high power spallation neutron sources and
accelerator driven systems (ADS) due to their resistance to void swelling and creep and good balance
of physical and mechanical properties, and well-established commercial production and fabrication
technologies [1, 2]. Indeed, these steels have high strength up to temperatures around 500 °C, low
thermal stresses and good resistance to high dose fission neutron irradiation [3]. Since the materials
will be intensively irradiated by energetic neutrons and or other types of particles, a degradation of
their overall mechanical properties will occur. For irradiation temperatures below 400-450 °C,
irradiation hardening, defined as the increase of the yield stress, occurs and is accompanied with a
decrease of ductility and fracture toughness. The degradation of fracture toughness is reflected in an
upward shift of the transition temperature between the brittle and ductile fracture modes [4-6]. In a
fusion or spallation irradiation environment, structural materials will experience a production of high
guantities of transmutation induced impurities (notably helium and hydrogen) besides extensive
displacement damage, which may result in additional detrimental effects on the mechanical
properties [5, 7]. Helium has a very low solubility in materials. Helium atoms are easily trapped by
vacancies, dislocations, grain-boundaries and precipitate-matrix interfaces and develop into bubbles
[8-10], which may cause strong embrittlement effect. Hydrogen has a high diffusivity, which leads to
desorption at high temperatures [11-13]. In FM steels irradiated in spallation targets, the hydrogen
effect is not evident. Therefore, an important issue related to the use of tempered martensitic steels
in fusion and spallation devices is embrittlement induced by combined effects of displacement
damage and helium accumulation.

Many studies of helium effect have used charged particle irradiation or doping techniques [14-18].
For charged particle irradiation, although the experiment can be flexibly controlled in parameters
(dose, dose rate and temperature) and achieve a high irradiation dose and a high He concentration
in a very short time period, the limited implantation depth and the high dose rate make it difficult to
directly simulate bulk properties and the real irradiation environment [17]. Doping technique in
fission irradiation, with either nickel or boron isotopes, allows producing helium in bulk specimens
via transmutation reactions with thermal neutrons [15]. However, the clear demonstration of a
specific helium effect is difficult, because of a number of artefacts induced by the doping
(modifications of transformation temperatures by nickel, formation of nickel rich precipitates during
irradiation, boron segregation to grain boundaries and formation of lithium as well as helium etc.).
Due to the cons of helium implantation and doping techniques, using spallation irradiation is an
excellent opportunity to study the combined effect of helium and displacement damage.

Compared with neutron irradiation, ferritic/martensitic (F/M) steels in spallation irradiation exhibit a
strong increase of ductile-brittle transition temperature (DBTT) based on the results obtained at Paul
Scherrer Institut (PSI), which is partially attributed to helium effect [6, 7]. However, the fundamental
mechanism is still not well understood. In addition, while it has been well established that F/M steels
are relatively immune to the so called ‘high temperature helium embrittlement’ phenomenon in
fusion materials research [19, 20], helium effects at low temperatures (<400 °C) are still fully
understood.



In irradiated materials, dislocation channeling has been generally observed in both pure metals and
alloys by many researchers [21, 22], which is suspected to lead to intergranular cracking as an
intrinsic embrittlement cause [23, 24]. For unirradiated materials, brittle fracture is usually related to
various possible reasons such as dislocation pile-ups nearby grain-boundaries or the intersection of
mechanical twinning inducing micro-crack. No matter which cases induced brittle fracture, the
deformation mechanism is essential to be understood. Up to now, the deformation microstructures
of irradiated F/M steels are still very limited studied.

The availability of tensile test and hardness measurement machines and electron microscopy
facilities including focused ion beam and transmission electron microscopy for radioactive materials
at PSl allows a comprehensive study of relationships among radiation-induced microstructures and
change of mechanical properties of highly activated specimens. The specimens irradiated in the SINQ
Target Irradiation Program (STIP) provide an excellent opportunity to study the embrittlement
induced by the combined effects of displacement damage and helium. In this work our goal is to
study some of the issues mentioned above by conducting mechanical tests and microstructural
observations on different F/M steels irradiated in the second experiment of STIP (STIP-II).









1. Literature Review

1.1 Radiation damage in metals
1.1.1 Primary damage

There are three types of interactions between irradiating particle with a target material, which
contribute to the energy loss of the incident high energy particle [25]:

1) Elastic interaction between the particle and the target material atoms,
2) Inelastic interaction between the particle and the electrons of the solid, and
3) Inelastic interaction between the particle and the nuclei of the target.

As consequence of these interactions, three types of defects are introduced: i) the displacement of
original atoms from their lattice sites leads to the formation of vacancy-interstitial pairs (Frenkel
pairs); ii) the excitation of electrons and iii) the introduction of foreign atoms, either by nuclear
transmutations or by the projectile ions stopping in the solid. In general, all electronic excitations do
not result in radiation damage effects due to the quick thermalization in metallic materials. Hence,
the first and third types of damage are contemplated as the principal interest for the damage
occurring in metallic materials.

For the first type of damage, how the incident high energy particle bombarding the lattice causing
the formation of defect clusters can be described as follow [25, 26]: Firstly, a primary knock-on atom
(PKA) with a recoil energy T is created within less than 1 fs (10™ s). The minimum material-
dependent threshold energy (T4) needed for an atomic-displacement is between 10 eV and 50 eV for
metals [27]. In the following, a collision cascade is produced as a result of the slowing down of the
PKA within a very short period of time about ~0.2 ps (10 s). The collisional stage ends with
significant amounts of lattice atoms being displaced from their normal sites. The energy stored in
the cascade region is then released in ~3 ps to form a thermal spike core, which is a very hot (several
times T, T, being melting point temperature [28]) but less dense zone. A vacancy-rich depleted
zone and an interstitial shell around the depleted zone are created when the spike core is cooled
down within another ~7 ps. The cool down phase lasts up to 100 ps [29]. The cascade volume
increases with increasing T below 10 keV, while cascades are inclined to break up into sub-cascades
above 10 keV [30]. The molten material cools down and approaches the surrounding environment
temperature in few tens of picoseconds. Subsequently, most (70-90%, temperature dependent) of
interstitials and vacancies annihilate by thermal intracascade recombination. The surviving vacancies
and interstitials agglomerate to form dislocation loops or annihilate at other existing defects such as
GBs and dislocation lines, or move as free point defects.

In addition to the stated elastic collision, inelastic collisions between the incident particles and the
bombarded atom may lead to nuclear transmutation products such as helium and hydrogen in
gaseous state within a few femtoseconds, when the energy of the impinging particle is higher than a
given threshold energy.



1.1.2 Radiation-induced microstructure and defect evolution in metals

The types of defect structure created by irradiation in crystalline lattice can be given in the following:
i) Point defects (0D): vacancies and interstitials

ii) Line defects (1D): dislocation line

iii) Planar defects (2D): dislocation loops

iv) Volume defects (3D): cavities, stacking fault tetrahedral (SFTs), precipitates

The vacancy is a missing atom in the lattice and it is the simplest point defect in any crystalline
lattice, while an interstitial is an extra atom that is located in a position of a crystal that is not a
regular lattice site. Multiple vacancies (cluster up to 4 vacancies), with a binding energy of about
0.62 eV [31] are smaller compared to interstitial clusters and often observed in irradiated metals.
Self-interstitials atoms (SIAs) have a high formation energy (>2.0 eV) and a low migration energy
(>0.15 eV) resulting in a high mobility, on the other hand, vacancies have a low formation energy (<2
eV) and high migration energy (>0.5 eV) and therefore they are much less mobile than SIAs. An
agglomeration of SIAs to form SIA cluster can occur at elevated temperatures. Once these multiple
SIAs form, they are very stable against dissociation at low temperatures [32].

The experimental conditions have significant influence on irradiated microstructure. The irradiation
dose and temperature are the two main concerns as discussed below.

The calculated damage level is directly proportional to the product of the fluence and the average
kinetic energy transferred to the host lattice atoms (damage energy). The efficiency of radiation can
be characterized by cross section, which depends on the type of energetic particles. For instance, the
effective damage cross-sections for 1 MeV particles incident on copper range from ~ 30 barns (1
barn=1 x 102* cm?) for electrons to ~ 600 barns for neutrons and ~ 2 x 10° barns for Cu ions [33]. The
displacement per atom (dpa) unit as the most important parameter for quantifying radiation effects
in materials is remarkably effective in correlative the initial damage production levels over a wide
range of materials and irradiating particles. In general, numerous aspects of microstructural
evolution are qualitatively equivalent on a dpa basis for materials irradiated in widely different
irradiation environments. The accumulated damage, as the form of dislocation loops or other
microstructural features, typically exhibits a complex nonlinear relationship with irradiation dose
that depends on irradiation temperature and several other factors. Besides, the dpa unit does not
precisely characterize some of the complicated differences in primary damage production for
energetic displacement cascade conditions compared to isolated Frenkel pair production [34]. For
instance, defect production at cryogenic temperatures (where long-range defect migration and
annihilation does not occur) for neutron and heavy ion-irradiated materials is about 20-30% of the
calculated dpa value because of athermal in-cascade recombination processes [34, 35].

Irradiation temperature typically has a strong influence on the microstructural evolution of
irradiated materials. There are several major temperature regimes delineated by the onset of
migration of point defects. As an example, figure 1.1 shows the five major defect recovery stages for
copper irradiated with electrons at 4 K [36]. Stage | corresponds to the onset of long-range SIA
migration. Stage Il involves migration of small SIA clusters and SIA-impurity complexes. Stage Il



corresponds to the onset of vacancy motion. Stage IV involves migration of vacancy-impurity
clusters, and Stage V corresponds to thermal dissociation of sessile vacancy clusters.
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Fig 1.1: Electrical resistivity defect recovery stages for copper following electron irradiation at 4 K [36].

In the following, summaries are given on the experimental microstructural observations for five key
irradiation temperature regimes. At very low temperatures, defect accumulation is generally
proportional to dose until defects created in displacement events reaches the level to overlap and
annihilate preexisting defects. Defect clusters resolvable by TEM are usually not visible in this
irradiation temperature regime due to the lack of defect mobility [37]. Between recovery Stage | and
Stage lll, the SIA point defects and small SIA clusters have sufficient mobility to migrate and produce
visible dislocation loops as well as agglomerate with sessile monovacancies and vacancy clusters. In
this temperature regime, the defect accumulation is initially linear with dose, followed by a square
root dependence at an intermediate dose in pure materials. The critical dose for this kinetic
transition is dependent on the concentration of other defect sinks in the lattice (dislocations, grain
boundaries, precipitates, etc.) [38-41]. At temperatures where both SIAs and vacancies are mobile,
the predominant visible features in this temperature regime are vacancy and interstitial loops and
SFTs for irradiated fcc materials and vacancy and interstitial loops and voids for irradiated bcc
materials. The loop density and nature in bcc metals is strongly dependent on impurity content in
this temperature regime [42-44]. The individual loops within the raft aggregations exhibited the
same Burgers vector in neutron irradiated Fe. Submicroscopic cavities with cavity densities that are
about two orders of magnitude higher than the visible loop densities can be measured by Positron
annihilation spectroscopy analyses in the irradiated bcc metals [45-48]. The typical microstructural
features that appear during irradiation at temperatures above recovery Stage V include dislocation
loops (vacancy and interstitial type), network dislocations, and cavities. A diversity of precipitates
may also be formed in irradiated alloys [49-52]. At high irradiation dose, a moderate density of
network dislocations is created due to loop unfaulting and coalescence. Compared with lower
temperature irradiation, significant levels of cavity swelling are observed in the temperature regime
above Stage V. Above 0.5 Ty, there is minor microstructural changes because of thermodynamic
equilibrium processes unless a great number of impurity atoms such as helium are introduced by
nuclear transmutation reactions or by accelerator implantation [33].



1.1.3 TEM observation of radiation-induced defects

In the following paragraphs, we shortly describe the origin of the contrast in TEM observations that
allows identifying the irradiation-induced defects.

1.1.3.1 Imaging conditions for observation
Phase Contrast

The specimen introduces local changes in the phase of the electron wave. These local phase
variations are converted into amplitude variation via the Scherzer phase shift produced by the
microscope over which the operator has control by defocusing, e.g. the imaging of voids in out-of-
focus conditions. An important sub-area of phase contrast imaging is high-resolution structural
imaging. Under some conditions, the resulting image may show resolution on a scale close to the
atomic level. Generally, however, if the image is to resemble the projected charge density of the
specimen, several stringent imaging conditions must be met. Unlike diffraction contrast images,
high-resolution ‘structural’ are obtained by allowing several diffracted beams to contribute to the
image. Usually, the specimens is tilted to a low-index ‘zone-axis’ orientation and a large objective
aperture objective aperture is used to select a number of beams to form the image [53].

Z contrast

The scattering of the electron wave by atoms is proportional to their atomic mass, or Z, the atomic
number. The intensity at large scattering angles becomes higher with the increase of the atomic
number. Allowing incoherent imaging of materials represents a new approach to high-resolution
electron microscopy. The Z-contrast high-resolution transmission electron microscopy technique
provides directly interpretable images-maps of scattering power of the specimen. There are no
phases in a Z-contrast incoherent image, therefore, no phase problem for structure determination.
Location of atom column positions in an image is simplified. In addition, the resolution is higher than
in a coherent image, the information is highly localized, the intensity of atom columns directly
reflects their mean square atomic number (Z), and there are no contrast reversals with crystal
contrast image is obtained by scanning an electron probe of atomic dimensions across the specimen
and collecting electrons scattered to high angles. The resolution of the technique is determined by
the size of the electron probe [53].

Diffraction contrast

When passing through a crystal lattice, electrons diffract on the atomic planes according to Bragg’s
law:

nA=2dsin® (1.1)

Where n is an integer, A is the wavelength of the incident beam, d is the distance between the
atomic planes and 0 is the angle between the incident beam and the scattering planes. In the
resulting diffraction pattern the reciprocal lattice vector g relating the transmitted and diffracted
spots, as shown in figure 1.2, is referred as the diffraction vector, its magnitude g=1/d. The
reciprocal lattice vector g corresponds to the diffraction vector from (000) to (h k I) spot in the
diffraction pattern. The radius of Ewald sphere k (k=1/A) is much bigger than g. The diffraction



condition is often specified by the deviation vector Sg, which is the measure of deviation from the
exact Bragg condition. The diffraction condition is specified by ‘ng(mg)’, where ng is the beam
selected to form the image and mg is the beam intersecting with the Ewald sphere. The deviation
vector is then given geometrically by S,= n(n-m)g°\/2.
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Fig 1.2: Schematic of basic principle of Bragg diffraction condition and Ewald sphere.

In the microscope, as shown in Fig. 1.3, the objective aperture allows forming an image by selecting
only the transmitted beam (bright field mode) or one of the diffracted beams (dark field mode). The
resulting contrast is named diffraction contrast. In diffraction contrast, defects are imaged by virtue
of their elastic strain fields. The crystal is set at some well-defined diffracting condition, and an
objective aperture is used to form an image using one of the diffracted beams. The defect strain field
causes local changes in diffraction conditions: for instance, the diffracted planes may be locally bent,
causing changes in the amplitude of the diffracted beam used to form the image. This is the most
common mechanism used in radiation-damage studies. The image characteristics depend sensitively
on the chosen diffraction conditions [54].
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Fig 1.3: Diagram for transmitted beam and diffracted beam [54].

The imaging of small point-defect clusters shall mostly be concerned. ‘Small’ in this context is in
relation to the extinction distance £g, which plays a critical role in the description of electron
diffraction phenomena. The value of £¢g depends on the materials, the excited reflection g, and the
microscope operating voltage, but is typically several tens of nanometers. The effective extinction
distance is given by [55].
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where w is £g-S; and Sgis deviation vector.

1.1.3.2 Two beam dynamical conditions

The TEM specimen is at or close to Bragg condition in the two-beam dynamical condition, where the
spots size of transmitted and 1g diffraction beam are nearly same and the intensity is equally
distributed between transmitted and 1g diffracted beam. The deviation vector S is therefore zero or
very small under dynamical two-beam conditions. Under strong two-beam conditions, there is a
strong dynamical interaction between the two beams, and the resulting image characteristic may be

quite complicated. Image peak widths are generally rather broad, about %&g for a line dislocation.

Dislocation loops smaller than &g will not be resolved directly, in the sense that their images will not
be ‘loop-like’ but will be more complex. Therefore, it is not straightforward to study line dislocations
and their interactions. However, the contrast features of small defect clusters and helium bubbles
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under strong two-beam conditions can be exploited usefully. Particularly, for the characterization of
tiny helium bubbles (1-2 nm), the ‘two-beam’ conditions together with over-focused or de-focused
technique were employed to take images [53].

Usually, bright-field kinematical conditions are used when it is desired to avoid the dynamical
contrast effects seen in strong two-beam images. A two-beam condition is set up with a small
positive deviation parameter (Sg>0).

1.1.3.3 Weak-beam dark-field conditions

As the name implies, weak-beam images are dark-field images obtained using a weakly-excited
beam. The foil is tilted so that in regions far away from dislocations or other defects, the diffraction
planes are well away from the Bragg condition with large magnitude of deviation parameter|Sg|.
The contrast under weak-beam conditions arises from regions of large lattice strain close to the
cores of defects. Since the foil is tilted well away from the Bragg condition the average image
intensity is very low. The value of the deviation parameter |Sg|>2 x 10" nm™, this condition gives
rise to a narrow (<2 nm), high-contrast image peak located close to the dislocation core. Besides, the
narrow image peaks obtained in weak-beam microscopy are a consequence of the small value of the
effective extinction length ngf. With S§g=2 x 10" nm™, ngfz 5 nm, giving dislocation peak widths of

1 . . . .
about Eﬁf,ff=2 nm. Because of these small dislocation peak widths, weak-beam microscopy has been

particularly successful in characterizing dislocation microstructures, including the complex
dislocation microstructures frequently produced by irradiation [53]. In our present work, weak-beam
dark-field conditions at z=111, (g, 5g) =110 were exploited to investigate irradiation-induced small
defect clusters and dislocation loops in irradiated F82H.

1.2 Ferritic/Martensitic Steels in nuclear applications

Before 1970s, austenitic stainless steels were applied as primary material for fast reactor structures
and fuel cladding. Then the 9-12% Cr-Mo steels with higher thermal conductivities and lower
expansion coefficients were considered better than austenitic stainless steels for in-core applications
(cladding, wrappers, and ducts) in fast reactors. Besides, these steels have excellent irradiation
resistance to void swelling compared to austenitic stainless steels. Sandvik HT9 steel was the
selected as candidate in the US fast reactor program. EM-12, FV448, DIN 1.4914, and JFMS as similar
steels to HT9 with maximum operating temperature of ~ 550 °C were chosen in France, United
Kingdom, Germany, and Japan, respectively. In Fusion reactor studies community, HT9, EM-12,
FVv448, DIN 1.4914, and JFMS are firstly considered in US, Europe and Japan Fusion Materials
Programs [3].

In the mid-1980s, the concept of low-activation materials was applied in the international fusion
programs [1, 56-62]. The objective was to facilitate the maintenance operations by reducing the
activity level of reactors, and to limit the residual radioactivity to gain and improve public
acceptance towards fusion energy [56, 57]. Fusion reactor materials research programs in Japan,
Europe and the United States began to develop reduced-activation ferritic/martensitic steels in the
mid-1980s and early 1990s [57-59]. Based on nuclear calculations, the typical steel alloying elements
Mo, Nb, Ni, Cu, and N had to be suppressed or minimized, and the development of reduced-
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activation ferritic/martensitic steels replaced molybdenum in conventional Cr-Mo steels by tungsten
and /or vanadium [1, 60-63] and substitute niobium by tantalum [59]. Steels with 7-9% Cr and less
carbon or manganese for austenite stabilization were favored over those with 12% Cr steel where
embrittlement can be caused by lower toughness induced by delta-ferrite and increasing chi-phase
precipitation during irradiation promoted by manganese [63]. Eventually, 7-9% Cr steels were
selected for further study and development. F82H with compositions of Fe-7.5Cr-2.0W-0.2V-0.04Ta-
0.10C was chosen in the Japanese program and was investigated as part of the IEA (International
Energy Agency) Implementing Agreement on Fusion Materials. Eurofer97 with compositions of Fe-
8.5Cr-1.0W-0.05Mn-0.25V-0.08Ta-0.05N-0.005B-0.10C was the selection of the development
program in Europe. ORNL 9Cr-2WVTa steel with compositions of Fe-9Cr-2W-0.25V-0.07Ta-0.10C was
considered as the steel with the best properties in the US.

For the Cr-Mo and Cr-W elevated-temperature steels with about 5-12% Cr, martensite (body-
centered-tetragonal structure) is produced by quenching. As quenched, a high number density of
dislocations is contained in 7-12% Cr steels. Quenched steel is then tempered to improve toughness
and ductility. During tempering, M,3Cs (M is primarily Cr, Fe, and Mo) and MX (M is primarily
vanadium and niobium, and X is carbon and nitrogen) precipitate, leading to a ferrite matrix with the
large (60-200 nm) My3Cg particles on lath and prior-austenite grain boundaries and smaller (20-80
nm) MX particles in the matrix. In addition, normalizing lowers the high number density of
dislocations in the untempered martensite.

After high-energy neutron irradiation in a fast reactor, the obvious changes of microstructure
involves the formation of dislocation loops, swelling and irradiation-induced segregation as well as
precipitation. Below 400-450 °C, loop size increases and number density decreases with increasing
temperature. Loops develop into a dislocation network with increasing temperature [50, 64-66].
Above 400-450 °C, more rapid diffusion allows the irradiation-induced defects to anneal out and
precipitates to coarsen. Agglomeration of vacancies can cause void swelling up to about 500 °C. The
low-swelling property of 5-9% Cr ferritic/martensitic steels has been validated in irradiations of
modified 9Cr-1Mo (T91) and HT9 in the Fast Flux Test Facility (FFTF) and the Experimental Breeder
Reactor (EBR-II) [65, 67]. Irradiation in EBR-Il and FFTF to over 200 dpa at 400-420 °C, which is near
the maximum swelling temperature for the steels, produced swelling of <2% in FFTF and <3% for
irradiation in EBR-II. Swelling can be accelerated by high stress levels which was found in irradiation
creep studies [67]. For most of the 9-12% Cr steels investigated, Laves phase, which forms during
thermal aging and irradiation at ~ 400-600 °C during high-energy neutron irradiation, can cause
embrittlement.

Transmutation reactions of neutrons can produce new atom and gas helium or hydrogen. This effect
is significantly important for the fusion reactors. The helium to dpa ratio for ferritic/martensitic
steels in a fusion reactor is about two orders-of magnitude higher than in most fission reactors.
Nevertheless, just little helium is produced by fast neutrons in FM steels.

In Spallation Neutron Sources irradiation, at irradiation temperature above 175 °C, high-density
helium bubbles of about 1 nm diameter appeared. The microstructure changes of bubbles were
observed within increasing irradiation temperature: the size of bubbles increases and the density
slightly decreases. However, for defect clusters, there is almost no change in size at temperatures
below 235 °C and thereafter rapidly increase at higher temperatures, while there is no obvious
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change in number density up to 255 °C but then rapidly decreasing above this temperature. The
M,3Cg precipitation was amorphized at the irradiation temperature below about 235 °C, which
corresponds to about 0.3 T,, (T, is the absolute melting temperature) of the steel [68, 69]. The
bubble size increased up to 50 nm in the F82H specimen irradiated to 20.3 dpa/1800 appm He at
400(+50) °C [8].

In fast neutron reactors, the tensile behavior of irradiated 5-12% Cr ferritic/martensitic steels
depends significantly on irradiation temperature [70-74]. It was observed that the increase of yield
stress (hardening) and the loss of ductility were caused by the irradiation-induced microstructural
changes in modified 9Cr-1Mo and HT9 [71, 72] irradiated to 9-12 dpa at 390 °C. However, no change
in the amount of hardening was essentially observed when the steels were irradiated at 390 °C to 23
dpa, which indicates that hardening saturated with increasing fluence [73]. Saturation occurs by 10
dpa for irradiation at around 400 °C [73], but higher fluences are demanded at lower temperatures
[74]. Mechanical properties are generally unchanged compared to unirradiated and the thermally
aged samples after irradiation at 425-450 °C. An increase in the ductile-brittle transition temperature
(DBTT) and a decrease in upper-shelf energy (USE) were found by qualitative observation on effect
of irradiation hardening on toughness in a Charpy curve to higher temperatures [4, 5, 75, 76]. The
increase in DBTT (ADBTT) of HT9 saturates with fluence just like the yield stress saturates and the
magnitude of the shift varies inversely with irradiation temperature alike as the variation in
hardening after irradiation in FFTF at 365 °C.

In spallation neutron sources irradiation, ADBTT of FM steels shifts to higher temperature observed
in both small punch and Charpy impact tests. In small punch test [77], it was found that the DBTT
increases with increasing irradiation dose in F82H, T91 and Optimax-A irradiated in SINQ Target up
to 9.4 dpa at the temperatures between 90 °C and 275 °C and has more quickly increasing above ~6-
7 dpa. In addition, ADBTT increases linearly with the helium contents. In Charpy impact test [6], the
DBTT increasing with irradiation dose was also observed in four different FM steels (T91, F82H,
Optifer-V and Optimax-A and —C) irradiated in SINQ Target up to 7.5 dpa at the temperatures
between 120 °C and 195 °C. The tensile test results indicate that the irradiation hardening increases
with dose and the uniform elongation decreases to less than 1% as well as the embrittlement effect
is significant, however, the total elongation still can be maintained larger than 5% for four different
FM steels (T91, F82H, Optimax-A and EBW F82H) irradiated in SINQ Target below 10 dpa [78].
Besides, Henry et al [79] found there was a change in fracture behavior at doses > 16 dpa for T91
and EM10 in tensile test. The specimen exhibits brittle fracture and some fractured in the elastic
regime at high dose, whereas the lower dose samples are ductile. Moreover, the annealing effect
with ductility recovery of some specimens at 11-12 dpa was occasionally observed, which was
attributed to the short period of high temperature excursion during irradiation [78, 80]. On the other
hand, T91 and EM10 specimens irradiated to 20 dpa exhibit a recovery of ductility but still increased
strength compared to unirradiated samples after annealing [79]. FM steels irradiated in high-energy
protons and spallation neutrons environment (STIP) show more severe embrittlement effect
compared to fission neutron irradiations as seen in Fig.1.4 [81]. The colorful symbols represent
results from Spallation irradiation, while the black symbols represent results from fission neutron
irradiation. The figure indicates the saturation phenomenon of ADBTT of FM steels irradiated in
fission neutron irradiation and the ADBTT of FM steels irradiated in Spallation irradiation is much
higher than that of neutron irradiated steels above 10 dpa.
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Fig 1.4: DBTT shift as a function of irradiation dose for different FMS irradiated in STIP. Neutron-irradiation

data are included for comparison [81].

1.3 Helium effects on the mechanical properties of ferritic/martensitic (F/M) steels

With the development of fusion energy, the study of irradiation effects on structural materials for

fusion applications has increased importantly in recent years. However, due to the lack of an intense
source of 14 MeV neutrons, such those that will be present in any fusion facility and producing large

amounts of transmutation helium, we need to use other methods to simulate the irradiation effects

of these 14 MeV neutrons. The main simulation experiment methods include ion implantation,

nickel or boron doping with fission neutrons and spallation neutron source irradiation.

P. Jung et al. [16] made research on T91 samples implanted with He, to concentrations up to 0.5
at.% at temperatures from 150-550 °C by a-particle beam of energy 28 MeV. From their tensile test
results in Fig 1.5, we could observe that the effects of implantation are much more pronounced at

250 °C than at 550 °C.
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Fig 1.5: Comparison of true tensile curves at 25 °C and strain rates of 8.5x10°/s for T91 (bold lines) and EM10
after implantation of 0.5 at.% He (0.8 dpa) at 250 °C (dash-dotted) and 550 °C (solid), respectively.
Unimplanted controls (dashed) are given for comparison [16].

From the fracture surface in Figure 1.6, they also found that implantation at 250 °C induces fracture
without necking, while some necking and ductile appearance is retained at 550 °C

Fig 1.6: Fracture surfaces of 100 um thick T91 specimens after implantation at 250 and 550 °C, tested at 25 °C
and implantation temperature, respectively [16].

H. Ulimaier et al. [17] made research on 316L specimens implanted with He, to concentrations up to
1 at.% at 25 °C by a-particle beam of energy 28 MeV. The samples harden rapidly with irradiation.
They observed that the strength decreases with the increase of testing temperature, while the total
elongation decrease with the increase of helium content. They also found the hardening is
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dominated by dpa as long as the helium concentration does not exceed 0.5 at.%. However, for He
contents of around 1 at.% an additional hardening/embrittlement was observed. A. Hasegawa et al.
[18] investigated the effect of helium concentration and annealing time on the property of 316FR at
750 °C and related phenomena such as the microstructural change and helium desorption behavior
to clarify the helium embrittlement mechanism in the 316FR steel at high temperature by using 50
MeV a particle beam of the cyclotron accelerator of Tohoku University. The thickness of the samples
was 300+20 pum. Fully transgranular fracture was observed in the unimplanted specimens regardless
of the annealing time, on the other hand, the helium-implanted specimens showed fully
intergranular fracture regardless of the helium concentration and the annealing time. Threshold
helium concentration for the helium embrittlement in the 316FR steel was considered to be below 5

appm.

In other investigations, the helium production results from thermal neutron induced reactions such
as:

SNi+on" = 2Ni +y
S Ni +on" — 2 Fe +,He (4.76 MeV ) (1.3)
"B+,n" > [Li +,He (1.47 MeV )

So far, some researchers have simulated helium embrittlement based on the Ni or B doping
technology to simulate helium embrittlement. K. Shiba et al [82] made research on the F82H and '°B-
doping F82H specimens which were irradiated at lower temperatures (260-360 °C to 0.3-0.6 dpa in
JMTR (Japan Materials Test Reactor). They observed that the DBTT of '°B-dope F82H appeared to be
well above room temperature and much larger than that for the standard F82H irradiated similarly,
i.e. 230-320 °C and 0.2-0.5 dpa vs 260-360 °C and 0.3-0.6 dpa. E. Wakai et al [15] indicates that the
shift of DBTT in the radiation-hardened specimens increases with increasing helium production by
comparing F82H +11B, F82H+10B and F82H+10B+11B specimens irradiated at 250 °C in JMTR to 2.4
dpa. He gave a model to explain the shift of DBTT in Figure 1.7. The fracture stress 1 is shown to be
constant during irradiation without helium production and fracture stress 2 is shown to be changed
by the helium production during irradiation. T; and T; are identified as DBTT before and after
irradiation without helium production. T;; and T;, are identified as DBTT after irradiation with a
synergistic effect of displacement damage and helium production under fracture stress 1 and 2.
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Fig 1.7: Explanation of ADBTT due to He production [15].

The shift of DBTT due to helium production at higher irradiation temperature will be smaller than
that at lower irradiation temperature under the fracture stress 2.

Since the He production rate in steels under the irradiation in spallation targets is very high,
understanding the respective behavior of austenitic stainless steels and FM steels in such irradiation
environments is an important materials issue for developing high-power liquid metal spallation
targets, accelerator driven systems (ADS) and fusion reactor in the future. Several mixed proton and
neutron irradiation facilities such as SINQ and LANSCE in Los Alamos (USA) have been used to
investigate irradiated materials behavior. Jia et al. [77] conducted small punch tests in the
temperature range from -190 to 80 °C on martensitic/ferritic steels F82H, T91 and Optimax-A
irradiated in SINQ Target-3 up to 9.4 dpa in the irradiation temperature range of 90-275 °C. The
dose dependence of the ductile to brittle transition temperature shift ADBTT,, for three FM steels
shows that at lower irradiation doses, the ADBTT,, increases linearly with increasing dose, but at
irradiation dose higher than about 6-7 dpa with helium concentrations above about 400 appm,
there is a substantial increase of ADBTT,,. The results also show that the ADBTT,, increases linearly
with helium concentration of the specimens. Compared with neutron irradiation where the ADBTT
increasing tends to saturate at a dose level of about 3—-5 dpa, the ADBTT does not saturate in the
case of high-energy proton irradiation. In addition, it increases more rapidly at the higher dose level
of 6-7 dpa. The additional increase of ADBTT,,, may indicate that helium does not only contribute to
the hardening commensurate with the additional shift in the ADBTT but also weakens the grain- and
lath-boundaries in reducing the fracture stress. Dai et al. [7, 83] compared the data of DBTT-shift
obtained from the T91 and EM10 and other steels irradiated in STIP with some data of T91 and
Eurofer-97 steels after neutron irradiation [75, 84-87]. They found that: (1) the DBTT-shift of all the
steels irradiated in STIP shows a similar trend of DBTT shift versus irradiation dose, and (2) the DBTT-
shift of the steels irradiated in STIP is much higher than that of neutron irradiated steels and the
difference increases with irradiation dose, which is attributed to the He-induced embrittlement
effects.
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1.4 In-situ SEM investigations on micro-crack behavior

In-situ SEM and small punch tests have been used to study crack initiation and propagation by
several groups. YU et al [88] used small punch test to evaluate stress corrosion cracking (SCC)
susceptibility of high-strength steel. The surfaces of several specimens obtained after unloading at
different deformation levels (see Fig 1.8) were observed in a SEM, as shown in Fig 1.9. They observed
microcracks formed at different deformation levels in different environments (air and synthetic sea
water).

Isselin et al [89] studied crack initiation resistance characterization of weld in boiling water reactor
environment by small punch test. They concluded that 1) there were two mechanisms of initiation:
initiation at slip lines and initiation at inclusions. 2) the crack length distribution has been fitted with
the Poisson distribution. The heat affected zone (HAZ) presented the highest number of crack
initiation. 3) the HAZ specimen surface had some deformation irregularity at the micro scale
enhancing the initiation of microcrack groups.
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Fig 1.8: Unloading points on the load-displacement curve [88].
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Fig 1.9: Micrographs of the specimen surface in air and in the synthetic sea water, pH 8.2 environment [88].

1.5 Defect-free channeling in deformed metals
e Defect-free channeling in unirradiated materials

Irradiation induced hardening due to numerous small defects clusters is very often accompanied by
localized dislocation glide during plastic deformation. The microscopic mechanisms of strain
localization usually observed in irradiated materials are dislocation channeling. A number of studies
have been employed to indicate the features for these mechanisms in the past few years [21, 22, 46,
90-107]. Several years ago, a lot of researchers used different methods to investigate slip channels
[90-98]. M.S. Bapna et al [90-92] examined the deformed structure of quench-hardened gold with
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TEM. They found that plastic deformation takes place in confined regions, thereby forming the slip
channels which are free of tetrahedral stacking faults. T. Mori et al [93] studied the deformation
morphology of quench-hardened aluminum with TEM. The results showed that plastic deformation
occurred only in distinct slip bands and that these slip bands corresponded to vacancy loop free
channels. Ritschel et al [94] studied the channel slips in pre-strained molybdenum single crystals.
Their results indicated that the formation of distinct slip channels in prestrained crystals is linked to
the simultaneous fulfillment of the following conditions: (1) the prestrained sample must contain a
homogeneous dislocation structure, in which there is no noticeable excess of dislocations of one
sign; (2) the subsequent strain must take place at a temperature such that on the one hand
collective dislocation movements are able to occur, and on the other hand the barrier dislocations
present become sufficiently mobile. Besides, many researchers [95-98] observed the precipitate-free
slip zones in precipitation hardened materials.

o Defect-free channeling in irradiated face-centered cubic (fcc) materials

Microscopic strain localization in face-centered cubic (fcc) pure metal or alloys has been observed by
a number of researchers all over the world in many metallic materials such as Cu, Ni, Cu alloy and
austenic steels after several different kinds of irradiation conditions [90-95]. Since 1960s, scientists
[21, 100-102] began to study the deformation and slip bands of neutron irradiated copper crystals.
They found that copper crystals yielded in relatively few strongly developed slip bands. The
deformation in the slip bands was caused by glide of inclined dislocations close to screw orientation
belonging to the primary slip system and radiation-induced point-defect clusters were swept out by
the dislocations forming superjogs. Y. Dai, D.J. Edwards and J. S. Robachy et al [21, 100, 101]
observed the dislocation channeling after proton, neutron and ion irradiation in Cu and Cu alloy.
Particularly, D.J. Edwards [100] tried to illustrate initiation and propagation of channels during post-
irradiation deformation of neutron irradiated Cu and Cu alloy. Some of their results were presented
as in Figure 1.10. According to the observations, they suggested that the channels were initiated at
boundaries, large inclusions and even at previously formed cleared channels. Some of the channels
have been observed to penetrate through both the twin boundaries and grain boundaries. It was
argued that the high stress level reached during post-irradiation tensile tests activate dislocation

sources at the sites of stress concentrations at boundaries and interfaces.

b : g - - OEmImy

Fig 1.10: The images in (a) shows view of the intersection point of a channel with a grain boundary (b) shows

strain accumulation on the inside of the annealing twin where the channels intersected and (c) a channel has
been formed in the grain interior from an inclusion that fell out during electropolishing [100].
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Z.Yao et al [102] observed dislocation channels in single crystalline Ni irradiated with 590 MeV
protons. It appeared that in the 0.13 dpa specimens dislocation channeling is the initial deformation
mode. The dislocation image is shown in figure 1.11.

Fig 1.11: Deformation channels in (a) 0.13 dpa at RT specimens.
(b) channels containing blocked dislocations [102].

The dislocation channels in post-tensile microstructures of irradiated austenitic steels were studied
by T.S. Byun, Z. Jiao et al [22, 103]. T. S. Byun et al [22] found that cleared channels were the
dominant deformation mechanism after neutron irradiation to a dose of 0.78 dpa. Both the uniaxial
tensile loading and the multiaxial bend loading produced straight channels, which form well-defined
narrow bands. The dislocation channel images in 316 stainless steel irradiated by fast neutrons are
shown in Figure 1.12. Jiao et al [103] investigated the deformation microstructure of three model
alloys (E(UHP-304), H(304+Si), L(304+Cr+Ni)) which were irradiated with 3.2 MeV protons at 360 °C
to 1.0 and 5.5 dpa and then strained in 288 °C Ar atmosphere. From the research, near defect-free
dislocation channels were observed in austenitic alloys irradiated to 5.5 dpa and strained to 7%.
Channel expansion was found at locations where channels intersecting with grain boundaries or
other channels. The main results are shown in Figure 1.13.

Fig 1.12: Network of dislocation channels in 316 stainless steel irradiated by fast neutrons to 0.78 dpa and
tensile strained 32% [22].
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Fig 1.13: Deformation microstructure in alloys H, E and L irradiated to 5.5 dpa and strained to 7%: (a)
dislocation channels, (b) a dislocation channel at high magnification, (c) deformation twins, (d) an expanded
channel intersecting a grain boundary, (e) channel expansion at a channel-channel intersection, and (f)
selected area diffraction pattern taken from the expanded channel in (e) showing atomic planes rotation [103].

e Defect-free channeling in irradiated body-centered cubic (bcc) materials

A few of body-centered cubic (bcc) pure metals or alloys such as Fe, V, V alloy and ferritic steels were
also taken to investigate the microscopic deformation mechanisms [22, 46, 104-107]. The dislocation
channeling in pure vanadium (BCC) was studied by T.S. Byun et al [22] after tensile deformation and
bend deformation. The shape of the strain localization bands was found to be completely different
from that in fcc structure metal. In vanadium specimens, curved channels were observed after
tensile deformation, and these became a common feature after multiaxial bend deformation. A river
pattern of channels was observed in the bent samples after irradiation to a high dose of 0.69 dpa. A
highly curved channel can be formed by successive cross slip of screw dislocations. Also, the channel
width was not constant along the channel, channel widening occurred when weak defect clusters
were removed by the gliding screw dislocations changing their paths by cross slip. Figure 1.14
presents complex channeling features after neutron-irradiation to 0.69 dpa and disk bend
deformation to 10% strain. The channels can be splitting, merging, widening, and curving during
propagation. TEM micrographs of bcc vanadium in this study also show that channels in vanadium
are formed primarily on [112] planes with a few exceptions in which channels are formed on [110] or
[123] planes.
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Fig 1.14: Deformation microstructures in vanadium after neutronirradiation to 0.69 dpa and disk bend
deformation to 10% strain (Z=[-111]) [22].

The slip band of neutron-irradiated V-Cr-Ti alloys deformed in a tensile test was investigated by. M.
Sugiyama et al [104]. TEM micrographs of irradiated specimens deformation formed to the UTS
stress are shown in Figure 1.15. Outside of the deformation band, a lot of defect clusters are found,
whereas inside the band no defect clusters or dislocation lines are seen. No dislocation walls or
network can be observed on the interface between the matrix and the deformation band. The
deformation bands entirely traversed grains and extended into the next grain across the grain
boundaries.

Fig 1.15: TEM micrographs of a deformed V-4Cr—4Ti alloy at the UTS. The left micrograph shows dislocation
channels crossing grain boundary. The right one shows the BF and DF images inside of a
dislocation channel [104].

B. N. Singh et al [105] investigated the microstructures of irradiated pure iron after tensile test. It is
suggested that the formation and interaction of cleared channels may play a significant role in
determining the deformation and fracture behavior of the irradiated pure iron. The plastic
deformation seems to be concentrated mainly in the cleared channels (Figure 1.16). There is
generally no indication of dislocation generation and interactions in the volumes between the
cleared channels. Furthermore, it is rather significant to note that the formation of cleared channels
at this dose level becomes so extensive that the cleared channels begin to interact with each other.
This could be very important from the point of view of crack nucleation and fracture of the material.
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Fig 1.16. TEM image of Pure iron post-deformation microstructure, irradiated at 320 K to 0.375 dpa (NRT) and
tensile tested at 320 K [105].

S.J. Zinkle et al [46] used tensile specimens of pure Fe which were neutron irradiated at 50-70 °C in
three fission reactors to 0.0001-0.79 dpa to investigate deformation mechanism of pure Fe after
neutron irradiation. Examination of specimens after tensile deformation revealed localized
deformation in the form of cleared dislocation channels. Relatively few channels were formed in the
uniform elongation region of the gage section. Dislocation channels on multiple slip systems were
observed in the deformation region near the fracture surface, presumably due to the multiaxial
stress state produced during necking and fracture of the tensile specimen. The microstructure of
specimens tensile tested following irradiation at 0.4 dpa was shown in Figure 1.17.

Fig 1.17: General mlcrostructure near the fracture surface of Fe irradiated to 0.4 dpa at 70 °C and then tensile
tested. Several cleared channels are marked with small arrows. The large arrows show the direction of the
applied uniaxial stress. The zone axis is near [111]. The slip plane traces for several dislocation channels are

also labeled [46].
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The dislocation channels were associated with the 1/2 <111> {110} slip systems and 1/2 <111>
{211} slip systems in BCC Fe. It can be seen that most of the cleared dislocation channels are
oriented near the maximum resolved shear stress position 45° from the applied uniaxial stress. In
particular, the channels running diagonally in Figure 1.17 correspond to the (1-12)[-111] and (0-11)[-
111] slip systems, which have the maximum resolved shear stress for {112} and {110} slip planes in
this grain. The horizontal dislocation channel corresponds to (-112)[1-11] and (21-1)[1-11] slip
systems, both of which have a resolved shear stress that is only 40% of the maximum resolved shear
stress. They found the horizontal dislocation channel appears to have formed prior to the diagonal
channels, this suggests the dislocation source responsible for the horizontal channel formation may
have been associated with a localized stress concentrator such as a grain boundary inclusion that
cause the source to begin operation at relatively low applied stress. Besides, they also found the
number of cleared dislocation channels was considerably higher in TEM specimens taken near the
fracture surface compared to the uniform strain region in the tensile gage section.

Investigations of deformation mechanisms in irradiated bcc crystal structure ferritic steels were
seldom reported. So far, only N. Hashimoto [106] and K. Farrell [107] published the results of the
dislocation channeling observation in F82H steel (F/M structure) and A533B steel (tempered ferrite
bainitic structure), respectively. N. Hashimoto et al observed defect free bands, which may be
dislocation channels in the microstructure of the necked region irradiated at 300 °C and tested at RT.
The defect free bands were shown in Figure 1.18.

Flg 1. 18 Mlcrostructure of F82H (IEA heat) |rrad|ated at 300 °C and tested at RT (a) and (b) [106].

Deformation bands with a 100 nm in width were lying on the (110). The result suggests that
dislocation channeling appears to be the dominant deformation mechanism, resulting in the loss of
strain-hardening capacity at 300 °C.

K. Farrel et al [107] observed dislocation channeling in the samples of 0.1 and 0.89 dpa, where large
increases in yield stresses accompanied by prompt plastic instability failures as shown in Figure 1.19.
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Fig 1.19: Dislocation channels in A533B steel: (a) and (b) from different places, at 0.89dpa after 0.2% strain.
Defect clusters (black dots) are evident at this dose [107].

They are about 30 nm wide. The channels pass undeflected through the laths but change direction at
the former bainite packet boundaries.

From the theory aspect, Tomas Diaz de la Rubia [99] used dislocation dynamics (DD) simulation to
investigate the relation between the irradiation field and mechanical behavior. The simulation in Cu
shows the two partial dislocations move under an applied stress of 300 MPa, the leading partial
dislocation is initially pinned by the overlapping SFT. At a later time, then the leading partial
dislocation absorbs part of the overlapping stacking-fault tetrahedra (SFT) and climbs (clearly seen in
<110> projection) as the trailing partial dislocation approaches, and finally the trailing partial
dislocation catches the leading partial dislocation at the location of the overlapping SFT, constricts
and climbs by absorbing the remaining defect. Following absorption of the SFT, the dislocation
continues to move but with reduced mobility as a result of the jogs that form on the constricted line
movement.

1.6 Deformation twinning

In irradiated metals, T.S. Byun et al [108] found that deformation microstructure changed from
dislocation networks dominant to a large stacking fault/twin band dominant microstructure with
increasing radiation dose in 316LN stainless steel. Large stacking faults (>1um)/twin bands became
dominant at stresses >600 MPa in 316LN regardless of different strengthening methods such as
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irradiation dose, strain hardening and low temperature. Dense twin lamellas with {111} twin plane
were observed by Dai et al [109]. The width of the twin lamella and their bundles varies from a few
nanometers to more than 100 nm. Zinkle et al [110] also mentioned that twinning appears when
glide dislocations are strongly pinned by defect clusters (so that normal dislocation glide
deformation cannot occur up to very high stress levels). The interaction of defects and moving
twinning boundaries has been studied by atomistic simulation previously [111, 112]. A. Serra et al
[112] investigated the interaction of moving {1012} twin boundary with clusters of self-interstitial
atoms and vacancies in a hcp metal with perfect dislocations and dislocation loops. They found that
the moving interfaces can restrict the mobility of twinning boundary, modify the material
microstructure by either removing or changing components of it depending on the nature of
boundary. Whereas, M. Niewczas et al [111] studied the interactions of moving boundaries with
stacking fault tetrahedra (SFTs) in copper by molecular dynamics. The results reveal that these
interactions lead to damage of the parent SFT and formation of new defects in the twin lattice.

As a matter of fact, deformation twinning has been observed in a number of brittle materials
including metals and ceramics under different kinds of mechanical tests such as high strain rate test
(Charpy impact or shock loading) [113-117] and low temperature testing [118, 119]. A lot of
evidences have been reported to prove that the cleavage and intergranular fracture in metal and
ceramic has relation with twinning deformation. All of these research works include experiment and
simulation. All the former results show that mechanical twinning plays an important role in the
cleavage or intergranular fracture. Tibor et al [120, 121] found that ductile-brittle transition (DBT) of
bcc Fe and some ferritic steels can be closely related to the occurrence of deformation twinning
from SEM observation of Charpy impact testing sample. Jan et al [116] observed that deformation
twinning was in the vicinity of the main cleavage crack and numerous cleavage nuclei were revealed
on the twins in the close vicinity of cleavage facets in Charpy impact testing sample by SEM. They
concluded that the deformation twinning represents an integral part of the deformation processes
in the region of the propagating cleavage crack tip and that the deformation twins, which nucleate in
front of the crack act as nucleation sites for cleavage fracture nuclei. Chen et al [122] observed
deformation twinning underneath cleavage fracture surface in shock loading alumina sample by
HRTEM observation.

Simkin et al [123, 124] and T.R. Bieler et al [125] found that microcracks were observed at strains
below but near the fracture strain of a near-gamma TiAl alloy where deformation twins interacted
with grain boundaries. And the microcracks were speculated to be caused by the twin shear that
generated a concentrated opening force on one side of the twin at the boundary interface. The crack
opening is expected as a consequence of twin shear as shown in a schematic representation in Fig.
1.20 [124]. The twin shear on the illustrated (111) plane moves material away from the boundary on
the upper right side of the twin plane. (On the opposite side of this plane, i.e. the (111) plane, the
twin shear would be in the opposite direction and move material on the lower left of the twin
toward the boundary.) As the (111) plane twin develops, it requires a jog in the boundary, which can
be accommodated elastically and possibly plastically by slip in the lower grain. As the twin thickens,
a crack forms that follows the twin interface along the grain boundary-twin interface, beneath as
well as on the surface of the material (the same microcracks were observed after removal of 3 um
from surface).
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Fig. 1.20: Schematic view of twin growth before microcrack nucleation for twins [124].

More recently, Zhang [126, 127] also observed that deformation twinning could cause crack
nucleation in bcc nanocrystalline Mo by molecular dynamic (MD) simulation. In <110> columnar
nanocrystalline body-cnetered cubic Mo, deformation mechanism is dominated by deformation
twins which nucleate primarily from the grain boundaries by successive emission of twinning partials
and thickens by jog nucleation in the grain interiors. As a twin approaches a grain boundary, local
stress concentration develops due to the incompatible plastic deformations in the two neighboring
grains. The magnitude of the stress concentration increases as the twin widens, leading to grain
boundary cracking by nucleation and coalescence of microcracks/voids. The proposed mechanism
for twin-induced GB cracking is illustrated in Fig. 1.21. The model of two neighboring grains (grains 1
and 2) with a twin formed in grain 1 and intersecting with the corresponding GB is shown in Fig.
1.21(a). To accommodate the lattice rotation caused by twinning in grain 1, the GB is subjected to a
displacement A proportional to the twin width h (number of twinned layers) by A=h (b - ). Here b is
the Burgers vector for the twinning partial and 7 is the GB normal (see Fig. 1.21(a)). Such a GB
displacement is not allowed if no compatible plastic deformation occurs in grain 2, resulting in
concentrated tensile stress at the intersection. The stress concentration magnifies as the twin in
grain 1 widens, until the GB is pulled open to nucleate a GB crack. As shown in Fig. 1.21(c), as the
twin widens, the plastic deformation mismatch between grains 1 and 2 intensifies, as does the stress
concentration. Consequently, GB failure takes place and leads to intergranular fracture (Fig. 1.21

(d)).
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Fig 1.21: (a) Schematic mechanism of twin-induced GB cracking, and distribution of atomic stress o,, (GPa)
near a GB at (b) 3.3%, (c) 3.4% and (d) 3.7% tensile strain. The twin boundaries and GBs are outlined by red
dots. Tensile loading is applied along Y axis [126].

One prominent class of dislocation sources for twinning dislocations is that of pole mechanisms,
which produce spiral dislocations. Considering bcc crystals, evidently, if the spiral dislocation

b=%[111] has a pitch equal to the interplanar spacing of {112} planes and moves in a direction to

produce fault I;, a twin will be formed [128]. Cottrell and Bilby [129] proposed a pole mechanism
that fulfills the above requirements for bcc crystals. Their model is illustrated in Figure 1.22. A

%[TTT] dislocation lying on (112) plane dissociates by the reaction

l=ex 12z, 1

5[111] 95[112] +g[111] (1.4)
Which involves a zero change in elastic energy to first order, but that can occur under bow-out
stresses. The partial %[111] cross slips onto (121) as shown in Fig. 1.22 (a). The partial can then wind
around the %[ﬁ?] pole dislocation. The pole dislocation has a right-handed screw component

normal to (121) planes. Thus the partial forms a spiral and generates a twin with twinning plane as
(121) and shear direction as [111].
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(b)

Fig 1.22: (a) The Cottrell-Bilby ratchet-pole mechanism in a bcc crystal. (b) Jog version of (a). (c) Alternate pole
mechanism [129].

Pirouz et al [130] proposed a twinning mechanism for silicon based on the presence of a pinned
segment of a twining partial (Burgers vector b). The original model assumed the dissociation of a
perfect srew dislocation segment (Burgers vector b) into a twinning partial (Burgers vector b;) and a
'stationary' (or slow-moving) partial (Burgers vector b;). The twinning partial can bow out under the
application of a shear stress, forming an expanding faulted loop in a similar manner to a Frank-Read
source for perfect dislocations, and regenerating the original perfect screw segment in the process.
The model is based on well-established dislocation physics involving Frank-Read sources, with the
difference that the expanding dislocation segment is a partial dislocation rather than a perfect
dislocation. Then Lagerl6f et al [131] discussed the nucleation and growth of deformation twins
based on the double cross slip mechanism postulated by Pirouz. Whether slip or twinning dominates
depends on whether the dislocation can dissociate and on the relative mobility of the partial
dislocations, b; and b. It is possible to find conditions for which the leading partial may become
glissile whereas the trailing partial is not moving (or moving very slowly), that is twinning may be
nucleated. As the radius of the expanding loop increases, the applied stress will only need to
overcome the lattice resistance involved in forming the stacking fault and the Peierls stress. After
the expanding loop has been formed, the twinning partial and the less mobile partial react to reform
the initial perfect dislocation segment b. In as much as the perfect dislocation segment is assumed to
be in screw orientation, the dislocation segment can undergo cross-slip onto a suitable cross-slip
plane. In this case, the dislocation segment moves to a plane parallel to a plane containing the
faulted expanding loop. After cross-slip, the segment could again dissociate into a twinning and a
sessile partial, and the twinning partial would bow out to form a second expanding loop. Thus
double cross-slip accounts for thickening of the twin (or vertical twin growth) as shown in Fig.1.23.
This double-cross-slip mechanism requires that the original screw segment forms a threading dipole
connected to the twinning dislocations at the twin boundary.
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Fig 1.23: Schematic view of twin growth via the double-cross-slip mechanism [131].

According to the classical view, the nucleation of deformation twinning has strong relation with
stacking fault energy. For the high stacking fault energy materials such as a-iron, aluminum and
tungsten and so on, deformation twinning dominates deformation mechanism only in some extreme
conditions like low temperature and high strain rate [113, 114, 116-118, 120, 132-136]. However, in
recent years, deformation twinning has also been observed in nanocrystalline metals such as Al, Mo
and W [126, 127, 137, 138]. Grain size effect serves as another important parameter for deformation
twinning. However, deformation twinning also exhibits reversed crystal size effect in certain
condition such as HCP metal [139]. So far, the deformation twinning is considered to have relation
with intrinsic factors such as SFE, crystallographic orientation, and grain size and extrinsic factors
such as applied stress, strain rate and testing temperature. Chen et al [137] observed deformation
twinning in nanocrystalline Al and they propose a dislocation-based model as shown in Eq. 1.5 and
1.6 to explain the preference for deformation twins and stacking faults in nanocrystalline materials.
The transition of deformation mechanisms from normal slip to those controlled by partial dislocation
activity can be expected when grain size decreases to tens of nanometers.

2auby
™N= 1.5
N, (1.5)
and
2aub
Tp= b2k ¥ (1.6)
D bp

Where ty and tpis the critical shear stress needed to nucleate a perfect dislocation and Shockley
partial twinning dislocation respectively, W is the shear modulus, y is the stacking fault energy, by and
b, are the magnitudes of the Burgers vectors of the perfect dislocation and the Shockley partial
dislocation respectively, D is the source size of perfect dislocation or twinning dislocation which is
equal to crystal size here. When the grain size becomes smaller than a critical value D. determined
by equating Eq. 1.5 and 1.6, T, becomes smaller than ty. In addition, Han et al [140] also observed
microtwins and stacking faults in plastically deformed aluminum single crystal and they conclude
that the occurrence of these microtwins and stacking faults is directly related to the specially
designed crystallographic orientation. A developed universal dislocation-based model is proposed to
judge the preference or not for the nucleation of deformation twins and stacking faults as shown in
Eq1.7.
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Where D, |, y and by are same as in Eq 1.5 and 1.6, m is the shear factor whose value varies from 0
to 1, depending on the relation between shear plane or shear direction and twinning plane or
twinning direction. This model indicates that crystallographic orientation has a remarkable influence
on the behavior of deformation twinning in aluminum. More recently, Rodney et al [141] provides a
newfound orientation-based explanation for the grain size effect: as grain decreases the applied
stress needed for further deformation increases, thereby allowing more orientations to reach the
threshold stress for twinning.

In general, people assumed that twinning is often to be correlated with low stacking-fault energy,
D.H.Warner et al [142] claimed that the correlation is not strong. The reason is that both Ir with
highest stable stacking fault energies (480 mJ m™) and Ag with lowest (21 mJ m™) are twin fairly
readily. They solved the discrepancy between theory and experiment on twinning nucleation
through a new model guided and validated by extensive multiscale siumulations. Both the analytic
model and simulations reveal a transition from crack-tip twinning at short times to full dislocation
formation at long times. They consider the thermally activated nature of both twinning and
dislocation slip to solve the discrepancy between theory and experiments. The extended two-
dimensional (2D) analytic Peierls model of Rice and Beltz analytic model predicts that, in a wide
range of f.c.c metals, the activation energy for full dislocation emission becomes lower than that for
twinning with decreasing load, corresponding to longer times or slower strain rates. Besides, a
multiscale modelling (finite-temperature concurrent multiscale coupled atomistic dicrete dislocation
method) of Al crack tip also indicates that twin formation dominates at high loads KI>0.185eV A-2.5
and very short times t<100ps at 300 K. As the load decreases, instances of trailing dislocation
nucleation become dominant at the lowest loads and longest times t>10 ns. There is thus a
transition from twinning to full dislocation emission with decreasing load or increasing time. This
result can explain why cracks in Al are therefore not predicted to twin at room temperature except
under the most extreme conditions of shock loading. For the high strain-rate test, J. Marian et al
[135] present a new mechanism of dislocation motion by using atomistic simulations in iron. They
observed that dislocation motion at high strain rates becomes rough, resulting in spontaneous self-
pinning and production of large quantities of debris. Then, at still higher strain rates, the dislocation
stops abruptly and emits a twin plate that immediately takes over as the dominant mode of plastic
deformation.

Moreover, deformation twinning is also often observed in front of crack tip in high stacking fault
energy materials from both experiment and simulation [138, 143-147]. Hai et al [143] found that for
certain combinations of loading mode and orientation, deformation twinning does occur at
aluminum crack tips from simulation. For bcc metals, Liu et al [144] demonstrate a twin-crack
relation whereby (a) twins nucleate cracks and define a preferred cracking path and (b) a
propagating crack facilitates twinning by in situ TEM observation in molybdenum thin film. Alena et
al [145] observed crack induced twins extend toward the crystal in the <111> directions with the
speed above the velocity of the shear waves in the <111> {112} slip systems in bcc iron by free 3D
atomistic simulations. Borodin et al [146] also observed multilayer stacking fault formation on {112}
planes for <110> propagation direction at temperature below 300 K by MD simulations. Besides, Li
et al [147] reported the twinning and spontaneous detwinning phenomenon with unloading at the Al
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crack tip by in situ tensile straining under TEM observation. More recently, Wang et al [138] also
observed that the deformation twinning is pseudoelastic, manifested through reversible detwinning
in nanocrystalline tungsten during unloading in the in situ nanomechanical testing with high-
resolution TEM (HRTEM).

1.7 Objective of this PhD research

As already mentioned,Ferritic/martensitic (FM) steels are considered as potential candidate
materials for target structures of high power spallation neutron sources and structural materials for
fusion reactors, because they possess higher mechanical strength at <500 °C, better thermal
mechanical properties and lower irradiation induced swelling as compared with annealed austenitic
steels. However, high levels of irradiation-induced displacement damage and of helium (He)
concentration can be produced in these materials. Fusion reactor neutron spectra produce both
atomic displacement damage (dpa) and helium by transmutation at a relatively high rate as
characterized by a He/dpa ratio of 10-15 appm He/dpa, while that ratio is even higher, up to 100
appm He/dpa, in spallation targets like SINQ. Up to now, although a number of experimental results
show that irradiation displacement damage and helium cause a significant embrittlement effect on
FM steels, there is still no clear understanding of the fundamental embrittlement mechanism of FM
steels after irradiation. Furthermore, even the fracture micro-mechanisms including the nucleation
and propagation of crack under brittle fracture condition are also not well understood.

In this PhD thesis work, the main issues proposed to be addressed for FM steels irradiated in SINQ
(STIP-irradiation) are:

1) Characterization of microstructures (size and density of defects or helium bubbles) and their
influence on the mechanical properties for FM steels irradiated in STIP.

2) Investigation on brittle fracture mechanisms (how the crack initiates and propagates) of FM
steels irradiated in STIP.

3) The effect of the distribution of Helium bubbles in terms of size, density studied on intergranular
and transgranular fracture mechanisms.

4) Understanding of deformation mechanism of FM steels irradiated in STIP (dislocation channeling
observation).

5) Investigate the deformed microstructures underneath the fracture surfaces to gain insight into
possible mechanism of crack initiation/propagation.
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2. Experimental Methods

The chapter presents detailed information of the investigated materials, the irradiation conditions,
the mechanical testing methods and the sample preparation techniques for mechanical properties
and microstructural investigations. The main techniques and procedures are described in this
chapter for the implementation throughout the whole thesis data analysis and result discussion. In
this work, different kinds of mechanical testing methods including hardness measurement, tensile
testing and small punch testing were employed to characterize mechanical properties, such as
hardness, yield stress total elongation and to study the micro-cracking behavior. Conventional
transmission electron microscopy observations were utilized to study the microstructure of the
investigated materials, such as martensitic microstructures, precipitates and carbides, dislocations,
irradiation-induced defect clusters, dislocation loops and helium bubbles, and to understand
deformation-induced modification of the deformed unirradiated and irradiated microstructures.

2.1 Investigated materials, specimens and irradiation
2.1.1 Materials

Four different body centered cubic (bcc) ferritic/martensitic steels were studied after spallation
neutron source irradiation. The investigated materials are F82H, Eurofer97, MANET Il and T91. The
main chemical compositions of these steels are listed in Table 1.

Table 2.1: Composition of the investigated materials in wt% (Fe in balance) [148].

Steel Cr Ni Mo Mn Ti Vv Nb W Ta Cu C Si P S B N

F82H 7.87 0.02 0.003 0.1 0.004 0.19 .0002 198 003 0.01 0.09 0.07 0.003 0.001  0..007 0.007
Eurofer97 893 0.007 <0.001 0.44 0.009 0.19 <0.001 1.10 0.14 0.022 0.12 0.07 <0.005 0.004 <0.001 0.017
MANET Il 103  0.65 0.58 0.85 = 019 0.14 = = 0.11 0.18 0.005 0.004 0.030 0.030
T91 8.63 023 0.95 0.43 0.003 0.21  0.09 - - 0.046 0.1 0.31 0.02 0.006 - 0.03

The F82H steel, IEA Heat 9741, was obtained from fusion materials community in the form of a 15-
mm-thick plate. The steel was normalized at 1040 °C for 38 min followed by air cooling, and then
tempered at 750 °C for 1 h and followed by air cooling.

The Eurofer97 steel was received from FZK, heat No E83699, in the form of a 100-mm-diameter
cylinder. The steel was normalized at 979 °C for 1 h 51 min followed by air cooling, and then
tempered at 739 °C for 3 h 42 min and followed by air cooling.

The MANET Il steel was obtained from the fusion materials community as a piece of 25-mm-thick
plate. The steel was normalized at 1040 °C for 30 min followed by air cooling, and then tempered at
750 °C for 2 h and followed by air cooling.

The T91 steel was obtained from CEA, France. The heat number was 36224. The as-received material
was a 15-mm-thick plate. The steel was normalized at 1040 °C for 1 h and followed by air cooling,
and then tempered at 760 °C for 1 h and followed by air cooling.

Metallography images showing the prior austenite grain (PAG) and martensite lath structures of the
investigated materials are presented in Figure 2.1.
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Fig 2.1: Optical micrographs of different F/M steels [148].

For a comparison, the heat treatment parameters and the resulting PAG size are presented in Table
2. The results of the micro-hardness (HVygs) of as-received materials after heat treatment were also
added in the Table.

Table 2.2: Heat treatment conditions, mean PAG size and micro-hardness measurement results of the tempered
martensitic steels [148].

Materials Heat treatment conditions PAG size Micro-hardness
Normalization Tempering (um) (HVg.05)

F82H 1040 °C/38min 750 °C/1h 85+20 22045

Eurofer97 979 °C/1h51min 739 °C/3h42min 1612 237+5

MANET Il 1075 °C/30min 750 °C/2h 32+2.5 268+5

T91 1040 °C/1h 760°C/1h 15+1.5 26415

2.1.2 Irradiation conditions of the F/M steels irradiated at SINQ

All the tensile test specimens were irradiated in the Swiss spallation neutron source (SINQ) Target 4,
within the 2nd SINQ Target Irradiation Program (STIP) Il performed in 2000 and 2001. The aim of this
program is to gain insight into the relation between microstructures and mechanical properties of
irradiated structural materials in spallation targets.
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In the SINQ target, the specimens were irradiated with a mixed spectrum of 570 MeV protons and
spallation neutrons of a wide energy spectrum from 0 to 570 MeV. The irradiation was started on
the 20th of March, 2000 and interrupted on the 23rd of December. It was resumed on the 15th of
May and finally ended on the 23rd of December, 2001. The total irradiation period was about 16
months with total proton charge of 10.03 Ah. The beam profile on the SINQ target was fit as a 2D
Gaussian distribution. The proton and neutron fluences, irradiation dose, helium and hydrogen
production for STIP-Il samples were calculated with the MCNPX code which is based on Monte-Carlo
method. The irradiation temperature was influenced greatly by the proton beam current and
frequent beam trips. Since the beam current fluctuated in about £15% range, relatively large
variation of irradiation temperature should be considered. The temperature calculation of each
individual specimen relied on the simulation using the ANSYS code, which was based on the energy
deposition values obtained from the MCNPX calculation. Further detailed information about STIP-II
experiment can be found in [149]. It must be noted that the tensile specimens exhibit a dose and
temperature gradient along the length direction due to the Gaussian distribution profile of the
proton beam, giving rise to a higher dose side and a lower dose side at each tensile specimen. The
detailed irradiation parameters of the investigated samples are given in Table 2.3.

Table 2.3: Detailed irradiation parameters of investigated materials.

Material Specimen Irradiation dose Irradiation Helium
[dpa] temperature Concentration
[°C] [appm]
F82H K24-L 6.1 106 450
K24-H 8.7 140 690
K23-L 9.5 151 760
K23-H 12.9 201 1085
K18-L 9.2 133 715
K18-H 12.3 175 1015
K19-L 13.2 231 1305
K19-H 17.2 241 1505
K22-L 13.9 216 1180
K22-H 17.7 273 1550
K20-L 18.1 281 1600
K20-H 20.4 317 1795
Eurofer97 1J10-L 18.5 279 1635
1J10-H 20.4 309 1795
MANET II 017-L 18.5 279 1635
017-H 20.4 309 1795
F82H K24 7.4 122 565
K23 11.1 174 910
K18 10.7 166 850
K19 15.2 236 1305
K22 15.8 245 1370
K20 19.6 304 1740
Eurofer97 1J10 19.8 299 1750
MANET II 017 19.8 299 1750

N.B.  Upper part of Table: L and H refer to low- and high-dose specimen side.
Lower part of Table: average values.
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2.1.3 Preparation of the tensile specimens for mechanical testing

The surfaces of the irradiated tensile specimens were slightly polished using grinding papers of 2400
grit to obtain smooth surfaces. In order to reduce the radioactive dose exposing to body, the
operation had to be done quickly and carefully inside of lead-shielded ventilation chamber in the hot
lab of PSI. After mechanical polishing the specimens were rinsed twice in Ethanol and followed by
electro-polishing to remove the residual and hardened surface scratches and obtain good surface
quality before hardness measurement and tensile test. An electrolyte with 2% Perchloric acid and
98% ethylene glycol monobutyl ether was used for final polishing. The electrolyte was cooled down
to 0 °C, and a 40 V voltage was applied for 20s to 1min to remove 10 -30 um thickness surface layer
of the specimens.

2.2. Mechanical testing
2.2.1 Hardness measurement

Hardness is a useful and straightforward way to characterize the irradiation hardening as it measures
the resistance of the material to the penetration of a sharp indenter tip loaded with a given weight.
Hardness changes after irradiation can be correlated to the corresponding increase of yield stress
[150]. Therefore, hardness measurement was realized on the tensile specimen heads before tensile
testing. The measurement was carried out immediately after the final electro-polishing. The
hardness value (Hvgs) was evaluated by using a ZWICK hardness tester as shown in Fig.2.2 (a) located
in the hot lab with a Vickers indenter tip and a load of 0.5 N applied for 15 s. The horizontal and
vertical diagonals of each indent shape as shown in Fig.2.2 (b) were measured under optical
microscopy with maximum 60x magnification.

The set-up had to be properly adjusted before tests. The measurement was performed in a stable
and anti-vibration situation. The hardness measurement was carried out on each head of a tensile
specimen in order to gain the hardness values in both low dose and high dose heads. For the
measurement on each head of specimen, 10 points were measured and the average value was
calculated for the further comparison and hardening effect analysis.

Fig 2.2: Hardness measurement device (a) and SEM image of the indent shape (b).
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2.2.2 Tensile tests

Four tensile specimens of the F82H steel (K18, K19, K22 and K20) irradiated in STIP Il in at different
irradiation and test conditions as shown in Table 2.3 were selected to determine the change of the
tensile properties such as yield stress, ultimate tensile stress (UTS), uniform elongation and total
elongation after irradiation. Miniaturized dog-bone shaped flat tensile specimens with the
dimensions of 12x2.5x0.4 mm? and gauge section of 5x1x0.4 mm? (Figure 2.3) were used.

a9
| 3}
- 12 _ 0.4

Fig 2.3: The dimensions of tensile test specimen used in this work.

The tests were done with a MTS testing device (Figure 2.4 (a)). Tensile tests at a norminal strain rate
of 1x1073/s were performed at different testing temperatures in argon (Ar) environment. The
temperature calibration was conducted before the test. Two thermal couples, one fixed on the
lower specimen grip and the other fixed in the middle position of reference test specimen, were
utilized to obtain the temperature relationship between two thermal couples in order to set the
correct temperature values for high temperature tests. Home-made grips as presented in Figure 2.4
(b) were used to apply mechanical load on the shoulders of the specimens, so that the heads of the
specimens were kept undeformed during tensile testing. The gauge section was marked by ink
before test, which was employed for elongation measurement. The elongation value was obtained
from a CCD camera extensometer as shown in Figure 2.4 (c). The specimen was preloaded to 40 N
and the distance between the two blue lines was recorded from the CCD camera extensometer, then
the testing was conducted at a constant cross-head speed of 0.3 mm / min up to failure.

Fig 2.4: Pictures of tensile test device (a), sample grips (b) and CCD camera extensometer (c).
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2.3 Investigation on the micro-crack initiation and propagation
2.3.1 Successive small punch testing with SEM observation

In order to investigate the cause of embrittlement, fast cracking behavior needs to be studied.
Generally, the fast cracking behavior can be divided in 2 stages: the crack initiation stage and the
crack propagation stage. Smooth specimens are commonly used in slow strain rate test (SSRT) or
constant load/strain test for the crack initiation process study. Crack initiation can be detected by
potential drop, compliance or electrochemical method to detect very small crack. In-situ optical
observation systems were developed also, but the resolution is usually too low (detection by CCD
camera) to observe the roots of crack initiation. The crack propagation was widely investigated using
pre-cracked specimens based on the fracture mechanism with aim the quantification of the crack
growth rate. In recent work, successive small punch (SP) test and tensile test combined with SEM
observation were employed to investigate the micro-crack initiation and propagation. In order to
investigate the micro-cracking, SEM observations were done to monitor the micro-crack initiation
and propagation in the course of SP experiments. The SP test experimental configuration is
presented in Figure.2.5. It consists of a clamped, center-loaded disk specimen. The SP specimen
holder involves an upper and lower die, and four clamping screws. Using this sample holder, the
samples are protected from cupping upward during punching. Therefore plastic deformation is
concentrated in the punch contact region (1 mm ball). The SP test was conducted in Zwick
mechanical testing machine, with a maximum load capacity of 20 kN. The displacement was
measured by extensometer as indicated in Fig.2.5 during tests. A unique tank as low temperature
device was designed to obtain test temperatures from liquid nitrogen temperature to room
temperature. For this research, room temperature and liquid nitrogen temperatures were
considered for tests. The temperature was measured with a thermocouple set into the specimen die
0.5 mm away from the specimen.
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Fig 2.5: The schematic of Small Punch test set-up [77].

In order to observe grain boundaries and lath boundaries, the mirror polished specimens with 0.25
mm in thickness and 3 mm in diameter were etched in the solution (45 ml HCI+20 ml HNO3+35ml
H,0) before testing. The testing was performed with a constant crosshead speed of 0.1 mm min™.
The load-displacement curve was measured during tests.

The test procedure of successive SP test is described as follows:
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Stop testing in certain deformation levels.

Take out the specimen from SP set-up carefully for SEM observation.

Inspect the micro-crack on the surface of the deformed specimen.

Place the specimen back to the SP set-up in the same position to continue the test for
further deformation. Then repeat the step 1-3 for 4-5 times to monitor the crack initiation

P w NP

and propagation.

Five load-displacement curves were fit and merged into one curve after 5 times of deformation.
Since the yield load was clearly increased after the previous deformation, only the part after yielding
in the curve was extracted to attach to the previous curve. Finally, a merged load-displacement
curve can be obtained.

2.3.2 Successive tensile testing with SEM observation

Successive tensile testing was employed to investigate micro-crack initiation and propagation
behavior. The testing was performed with the same crosshead speed of 0.3 mm min™. The three
F82H (K24, K23 and K22) and two MANET-Il specimens (016 and 019) shown in Table 2.3 were used
for the tensile tests at room temperature.

The test procedure of successive tensile testing and SEM observation is described as follows:

Start a tensile test in the same way as described in section 2.2.2

Stop the testing at a desired deformation level, for instance the point 1 as shown Figure 2.6
Take out the specimen from the tensile machine carefully.

Inspect the micro-crack on the surface the specimen with SEM.

Place the specimen back to the tensile machine in the same position to continue the test to
the next desired deformation level. Then repeat the above steps 4-5 times to monitor the
crack initiation and propagation.

v wN e
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Fig 2.6: lllustration of successive tensile tests, (a) tensile curve and different unloading points (b) SEM images
in different unloading points under low magpnification.
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In order to investigate the crack initiation and propagation, SEM observations of tensile samples
taken at different deformation levels were performed as shown in Figure 2.6 (b).

2.4. Microstructure investigation with TEM technique

In this research work, the characterization of as-irradiated microstructure and deformed
microstructure were used with a JEOL-2010 transmission electron microscope operated at 200 keV.
A double tilt stage is applied for TEM observation. The purpose of specimen tilting is tilting
specimens by fractions of a degree to gain optimum contrast such weak beam dark field (WBDF)
diffraction conditions. The images were acquired with a slow scan CCD camera or on classical
photographic negatives.

The contrast of small defect clusters varies greatly in the contrast conditions. The image quality and
the visibility of nano-meter sized defect clusters depend strongly on proper focusing and correction
of objective astigmatism.

The diffraction-contrast method is used in present work to characterize radiation-induced defects.
The image characteristics depend sensitively on the diffraction conditions chosen.

Generally, for the characterization of tiny helium bubbles (1-2nm), the ‘two-beam’ conditions
together with over-focused or de-focused technique were employed to take images as indicated in
Fig. 2.7 (a).

Weak-beam dark-field conditions at z=111, (g, 5g) =110 were exploited to investigate irradiation-
induced small defect clusters and dislocation loops as indicated in Fig. 2.7 (b) in recent work.

BF two-beam dynamical
(Bragg) sg=0

~—

Ewald sphere

9

weak beam dark field
S>>0

Fig 2.7: Schematic representation of imaging conditions employed in recent work. (a) bright field two-beam
dynamic or exact Brag condition. (b) weak beam dark field (WBDF) condition. For each case the Ewald sphere is
sketched in the left with the corresponding experimental diffraction pattern illustrated in the center.
Representative TEM images are presented in the right.
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2.4.1 Thickness Measurement

In order to evaluate volume number density of defect clusters and helium bubbles, it is necessary to
measure the thickness of sample precisely.

2.4.1.1 Determination of specimen thickness via thickness fringes under WBDF conditions

The foil thickness was estimated using two different methods. A simple way is to count the number
of thickness fringes from foil edge under the weak-beam dark-field conditions. Since the intensity I,
of the diffracted and I, of the transmitted beams oscillate in a complementary manner depending
only on the sample thickness t if sef is constant, giving rise to a number of thickness fringes at the
edge of a specimen with a wedge shape as shown in Fig.2.8. In a case corresponding to a weak-beam
dark-field imaging condition, where S; # 0, the minimum for intensity I, (dark fringe) occurs when
t=n§§ff, with the effective extinction distance ngf introduced by equation (1.2) [55]. Therefore,
thickness of the sample is directly proportional to ngf. In this work, the thickness evaluation was
carried out in the edge or boundaries region of specimen under WBDF conditions at z=111, (g, 5g)
=110.

Fig 2.8: Schematic (a) and corresponding WBDF image of the thickness fringes formed in diffraction contrast by
a wedged specimen (b), where Z is the thickness of specimen and |, is the intensity of the transmitted beam.

2.4.1.2 Determination of specimen thickness via EELS

In the electron energy loss spectroscopy (EELS), a material is exposed to a beam of electrons with a
known, narrow range of kinetic energies. Some of the electrons undergo inelastic scattering, which
means that they lose energy and have their paths slightly and randomly deflected. The amount of
energy loss can be measured via an electron spectrometer as shown in Fig.2.9 and interpreted in
terms of what caused the energy loss. EELS allows a quick and reliable measurement of local
thickness in transmission electron microscopy, with £10% accuracy. The most efficient procedure is
the following:
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1. Measure the energy loss spectrum in the energy range about -5-200 eV. Such measurement
typically lasts few milliseconds and thus can be applied to materials unstable under electron
beam.

2. Analyse the spectrum: (i) extract zero-loss peak (ZLP) using standard routines; (ii) calculate
integrals under the ZLP (lp) and under the whole spectrum (l).

3. The thickness t of TEM specimen can be calculated as:
t=A-In (1/15), where A is the mean free path of electron inelastic scattering dependent on the
chemical composition of the sample, the incident energy of the electron beam and the
collection semi-angle, which has been tabulated for most elemental solids and oxides. [151,
152].
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Fig 2.9: typical image of Electron energy loss spectrum.

In this work, a built-in option which is available in Gatan Digital Micrograph software was used to
calculate thickness from the EELS spectrum. The EELS spectrometer ENFINA of Gatan is installed on
the JEOL-2010 at PSI.

2.4.2 Data Analysis

For the small defect clusters and dislocation loops, the micrographs at Magnification from 200Kx to
300Kx under WBDF (g, 5g) were selected to evaluate the volume number density. For the small
helium bubbles, magnification between 300Kx to 500Kx were used.

To obtain quantitative information, the defect clusters and dislocation loops were counted and
measured from different areas of each sample under exactly the same WBDF condition. In general,
for each sample, more than 300 small defect clusters and 100 dislocation loops were measured to
determine the size distribution and the mean size. The number density of defect clusters was
counted by using the imaging software ‘Fiji Is Just Imagel)’ [153] as shown in Fig.2.10. With Fiji a JPEG
digital format micrograph was used.

The data obtained on different types of defects, such as the number of defects and their size were
taken to obtain final results on the volume number density of a certain type of defects.

Besides, the width of defect-free channeling and deformation twinning was also statistically
measured by using ‘Imagel)’ software.
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Fig 2.10: Defect clusters counting by comparing BF and WBDF images of the same selected region in Image)
software.

2.5 TEM-lamella sample preparation with Focused lon Beam (FIB) technique

Several TEM sample preparation methods can be exploited to produce good quality samples. lon
milling is one of generally these techniques. The advantage of this technique is relatively simple and
yields good quality samples. However, this method is time-consuming (several hours to prepare
one sample). In addition, the ion-induced displacement damage cannot be avoided, which can be
confounded with radiation-induced damage and confuses the result. Another common exploited
technique is jet electro-polishing method, which is more efficient than other way since a group of
specimens can be prepared simultaneously. And only 1-3 min is utilized for each specimen in the
final jet electro-polishing. Nevertheless, for the radioactive FM steel sample, a 0.8 or 1 mm disc of
investigated material needs to be punched out and embedded into a 3 mm disc of stainless steel to
reduce the radioactivity and magnetism during TEM observation.

When deformed microstructures are to be investigated, such as those in small necking area or even
brittle fracture specimen without measurable plastic deformation, TEM lamella sample can be
extracted only by using focused ion beam (FIB). FIB technique is commonly used to prepare samples
for TEM, which requires very thin samples, typically below 100 nanometers. In addition, the
nanometer-scale resolution of the FIB allows the exact thin region to be chosen, e.g. grain
boundaries (GBs) and fracture surface.

The FIB facility used is a Zeiss NVision 40 situated in a radioactive lab. This device consists of a SEM
and FIB. SEM column is installed upright and FIB column is fixed with 54° to the SEM column in such
a way that electron and ion beams are crossing at the specific working distance (5.1 mm in this work)
as shown in Fig. 2.11. Automatized specimen stage with tilt and rotation options is allowed to move
the sample with nanometric precision. The NVision 40 at PSI operates between 1 keV and 30 keV Ga*
with currents between 0.1 pA and 45 nA. The highest spatial resolution of the ion beamis4 nmat 1
pA. Usually, the FIB is operated at 30 keV for rough milling and thinning of the lamella to the
required thickness and for final polishing at 2 keV.
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Fig 2.11: Schematic of FIB device together with SEM.

To prepare a TEM lamella sample, the common procedure is described as follows:

1.

Protect the sample surface with carbon layer as shown in Fig. 2.12 (a), the area is between
10x2 to 30x2 um? and deposit minimum 1 um thickness. FIB energy used is 30 kV and FIB
current conducted is ranging between 80 to 300 pA which depends on the deposition area.
Use trapezoids to mill 3 sides around the deposited quadrangle as shown in Fig. 2.12 (b), FIB
energy used is 30 kV and FIB current conducted is 6.5 nA or 13 nA. The milling depth is 25
pum.

Cut lamella in transverse direction as shown in Fig. 2.12 (c). Make sure FIB cut had
penetrated through the lamella by using visual control.

Move the micromanipulator needle to approach lamella with the help of SEM and FIB view
to the lamella. Then weld the micromanipulator needle to the lamella.

After welding the micromanipulator needle to the specimen, do the final cut to be able to lift
the lamella out.

Move the needle with lamella carefully to the ‘Platinum half-moon grid’. Bring the needle
with the specimen in the position of one of the fingers on the ‘half-moon grid’ to weld.
Approach the lamella as close as possible, but not really touch the ‘Platinum half-moon grid’
as shown in Fig. 2.12 (d) and (e).

After welding the lamella to ‘Platinum half-moon grid’, do very thin cut to disconnect the
needle from the specimen.

After the lamella is in the safe position on the ‘Platinum half-moon grid’, tilt the sample to
54 ° with SEM column and thin the lamella to 1 um. The FIB energy used is 30 kV and FIB
current conducted is between 300 pA to 3 nA. The thinner the thickness of lamella is cut to,
the smaller the FIB current is utilized.

Further tilt the lamella to 56 ° with SEM column and thin the lamella to the final thickness
between 120-150 nm for flash electropolishing as shown in Fig. 2.12 (f). The FIB energy used
is 30 kV and FIB current conducted is between 40 pA to 300 pA.
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Fig 2.12: The basic procedure of TEM lamella sample preparation by FIB: carbon deposition (a) coarse cutting
(b) transverse direction cutting (c) welding to platinum grid (d) and (e) lamella image after final polishing by FIB

(f).

In recent work, TEM lamella sample preparation was exploited in 3 kinds of typical sites as shown in
Fig.2.13 (a)-(c) on the specimens: un-deformed area, deformed area and brittle fracture surface
area.
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Fig 2.13: TEM-lamella sample preparation in three typical sites: un-deformed area (a) deformed area (b) and
brittle fracture surface area (c).

Although the pros of FIB TEM lamella technique is obvious, the drawbacks to FIB sample preparation
are the surface damage by Gallium ion, which produce noticeable effects when using techniques
such as high resolution “lattice imaging” TEM or electron energy loss spectroscopy (EELS) or
investigation on irradiation induced defects. This damaged layer can be minimized by FIB milling with
lower beam voltages, or by further milling with a low-voltage argon ion beam after completion of
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the FIB process. As a matter of fact, 30 keV ions severely damage the surface of the lamella. And the
defects produced by FIB intervene with the radiation induced defects and confuse the investigation
in TEM. According to “Stopping Range of lons in Matter” (SRIM) calculations thickness of the layer
damaged by 30 keV Ga ions in FIB is up to 20 nm [154]. Thus a final polishing with 2 keV Ga ions help
reduce the number of FIB defects to some extent, however, the surface damage cannot be fully
removed because of the damage of the Ga ions.

2.6 Flash electropolishing

In order to completely remove the damage layer by FIB, a so-called flash electropolishing method
was developed. The flash electropolishing set-up is shown in Fig. 2.14 (a), a tweezer as anode
clamping the grid with a lamella is immersed in electropolishing solution of perchloric acid in
ethanol. The solution consists of 3%-7% perchloric acid depending on which kinds of materials
electropolished. A 1 mm thick stainless plate is bent to a circle shape as cathode. The voltage can be
applied for a much shorter time with millisecond precision control by using a time relay connected
to the power supply as shown in Fig. 2.14 (b). The common used parameters for flash
electropolishing is:

e The 20-23 V applied voltage

e 0.2-0.5 seconds polishing time depending on the initial thickness of sample.
e -20to -30 °C of electropolishing solution

e 120to 200 nm initial thickness of TEM lamella sample fabricated by FIB

Fig 2.14: Home made electropolishing set-up (a) and the time relay to control electropolishing time (b).

Fig. 2.15 presents TEM pictures of lamella of irradiated F82H before and after flash electropolishing.
We can see that the high density of FIB-induced defects completely cover the image, so that
irradiation induced defects are impossible to be distinguished in Fig. 2.15 (a), while in Fig. 2.15 (b)
FIB induced damages are removed after electropolishing and the investigation on the radiation
induced defects and defect-free channeling is feasible from such high quality specimen, irradiation-
induced small defect clusters, dislocation loops and pre-existing dislocation lines are able to be
distinguished.
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Fig 2.15: TEM images of TEM lamella sample before (a) and after (b) flash electropolishing.
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3. Results

3.1 Mechanical testing

The results of the performed mechanical tests are presented below. The results are divided into
tensile testing and hardness measurement. Three different FM steels, F82H, Eurofer97 and MANET
I, irradiated under various irradiation conditions ranging from 10.7 to 19.8 dpa were tensile tested
at different temperatures. The tensile stress-strain curves and the corresponding SEM images of
fracture surface are shown in this section. Vickers hardness was measured on the electropolished
tensile specimens before tensile testing. The hardness results (Hyos) on F82H, Eurofer97 and MANET
Il in different conditions are given.

3.1.1 Tensile tests and SEM observations of fracture surface

Since the goal of the present work is to understand the deformation mechanisms of martensitic
steels irradiated in spallation neutron sources, four F82H specimens with different irradiation
conditions (see Table 2.3) were selected and tested at different temperatures. The choice was based
on previous tensile test results of martensitic steels irradiated in STIP [78, 155, 156]. Figure 3.1
presents the engineering stress-strain curves of these specimens. Although all the specimens exhibit
significant hardening and loss of ductility as compared with the unirradiated specimens, they
manifest different deformation behavior under different irradiation and test conditions. The
specimen with the lowest dose of 10.7 dpa possesses pretty large total elongation at RT, although
uniform elongation decreased to less than 1%. However, at the higher irradiation dose of 15.8 dpa,
the specimen tested at RT failed in elastic regime without any plastic deformation, which implies
very brittle fracture. The two specimens demonstrate a clear irradiation dose and He concentration
dependence of fracture behavior of the steel. It is also known that the fracture behavior of materials
depends strongly on test temperature. For example, it can be seen in Figure 3.1 that the other
specimen at a similar irradiation dose of 15.2 dpa shows a small amount of ductility at 250 °C. At a
high dose of 19.6 dpa, F82H steel was found to be brittle when tested at even higher temperatures.

1200.0 15.8dpa, 1350 appm He,
247 °C at RT test
15.2dpa, 1305 appm He,
236 °C at 250 °C test 19.6dpa, 1740 appm He,
304 °C at 300 °C test

10.7dpa, 850 appm He,
166 °C at RT test

Unirradiated at RT test

Stress (MPa)

00 20 40 6.0 8.0 100 12.0 14.0 16.0 18.0 20.0 22.0
Strain (%)

Fig 3.1: Tensile engineering stress-strain curves of F82H specimens in different irradiation and test conditions
as indicated.
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The fracture surfaces of the irradiated specimens are shown by SEM micrographs in Figs. 3.2 and 3.3
Figs. 3.2(a) — 3.2(d) are for the specimen of 10.7 dpa and tested at RT. It can be seen that the
specimen developed a strong necking before breaking. A reduction of area of 61.5% was deduced
from the micrograph in Fig. 3.2(a). On the fracture surface many large dimples were observed (Figs.
3.2(b) and 3.2(c)), which indicates a ductile fracture mode of this specimen. However, quasi-cleavage
fracture was also observed (Fig. 3.2(d)). The fracture surface of the specimen of 15.2 dpa and tested
at 250 °C exhibits a mixed ductile and quasi-cleavage fracture mode (Figs. 3.2(e) — 3.2(h)). Fig. 3.2(e)
shows a 25% reduction of the cross-section, less reduction as compared to the 61.5% of the 10.7 dpa
specimen. Although the middle part of the specimen presents dimple ductile fracture (Fig. 3.2(f)),
both the right and left edge parts were fractured in a quasi-cleavage mode (Figs. 3.2(g) and 3.2(h)). It
was observed that the failure of tensile tested specimens started with crack propagation from edge
surfaces where micro-cracks were produced by EDM cutting. This implies that cleavage cracks were
developed first from the edges, while the middle part was torn due to reduced cross- section.
However, the dimples are smaller and shallower as compare to that of the 10.7 dpa specimen (Figs.
3.2(b) and 3.2(c)). Both the specimens of 15.8 dpa/tested at RT and 19.6 dpa/tested at 300 °C show
brittle fracture without necking and area reduction (Figs. 3.3(a) and 3.3(c)). However, their fracture
surfaces look slightly different. The specimen of 15.8 dpa/tested at RT failed in a mixed transgranular
cleavage and interguranular fracture mode (Fig. 3.3(b)). Although the specimen of 19.6 dpa/tested at
300 °C also failed in a mixed transgranular cleavage and interguranular fracture mode, the fracture is
dominant in intergranular mode (Fig. 3.3(d)).

Fig. 3.4 shows the stress-strain curves of tensile test of Eurofer97 and MANET Il and the
corresponding fracture surfaces. Fig. 3.4 (a) presents the engineering stress-strain curve for a
Eurofer 97 specimen of 19.8 dpa and test at RT. This specimen also exhibits significant hardening and
loss of ductility as compared with the unirradiated specimens. The result shows that the total
elongation was about 1.5% after yielding but no necking appeared before failure. The fracture
surface, as shown in Fig. 3.4 (b), indicates that the fracture mode is dominantly intergranular
accompanied with some transgranular cleavage. However, some out-of-plane micro-cracks are
observed on the fracture surface. Fig. 3.4 (c) presents the engineering stress-strain curves for
MANET Il specimen with irradiation condition to 19.8 dpa and test temperatures at 300 °C. This
specimen also exhibits significant hardening and loss of ductility as compared with the unirradiated
specimens. The result shows that a certain necking level was still kept before failure. However, the
stress-strain curve indicates a prompt necking after yielding without obvious work hardening with
onset of necking at a strain smaller than 1 %. In Fig. 3.4 (d), the fracture surface of this specimen
shows that the fracture mode is dominantly intergranular with transgranular cleavage fracture
accompanied and dimple-ductile fracture in a small portion of the fracture surface. In contrast to the
result of Eurofer 97 irradiated to 19.8 dpa and tested at RT, this MANET Il specimen with similar
irradiation conditions exhibits a small part of dimple-ductile fracture besides intergranular and
transgranular cleavage fracture after 300 °C tensile test. The 2% total elongation is deemed to be
from the dimple-ductile fracture part.
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Fig 3.2: SEM images of fracture surfaces of F82H specimens in different irradiation and test conditions: (a) — (d) 10.7
dpa and tested at RT, (e) — (h) 15.2 dpa and tested at 250 C. (b) and (c) are areas Al and A2 in (a), respectively. (d)
is area A3 in (c). (f) and (g) are areas B1 and B2 in (e), respectively. (h) is area B3 in (g).
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Fig 3.3: SEM images of fracture surfaces of F82H specimens in different irradiation and test conditions: (a) and (b) 15.8

dpa and tested at RT, (c) and (d) 19.6 dpa and tested at 300 C. (b) and (d) are areas marked in (a) and (c),
respectively. Spots L1 and L2 indicate the locations where TEM lamellas were extracted for microstructural analysis.
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Fig 3.4: Stress-strain curves and corresponding fracture surfaces of Eurofer 97 (a) and (b) irradiated to 19.8 dpa
and tested at RT and MANET Il (c) and (d) irradiated to 19.8 dpa and tested at 300 °C. The inset shows the
fracture surface in low magnification.
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3.1.2 Hardness Measurement

Vickers hardness of the irradiated F82H, Eurofer97 and MANET Il specimens was measured at 500 g
(Hyos) load. All the specimens were mechanically polished and electro-polished as illustrated in
experimental methods 2.1.3 before hardness measurement. Irradiation dose difference along the
specimen gage length needs to be considered due to the Gaussian distribution profile of the proton
beam. Therefore, the values of hardness are given on low dose and high dose ends respectively. The
results of hardness measurement are listed in Table 3.1 and presented in Fig. 3.5. In Fig. 3.5, the
hardness values are plotted as a function of irradiation dose. It can be seen that hardness values of
both F82H and MANET Il increase with increasing irradiation dose.

Table 3.1 The results of hardness measurement of F82H, MANET Il and Eurofer 97 in different irradiation

conditions.
Sample Number H,0.5 (Low H,0.5 (High H,0.5
Dose side) Dose side)
F82H Inactive - - 208

2-ST-K24 296 (6.1dpa) 309 (8.7dpa) -
2-ST-K23 320 (9.5dpa) 353 (12.9dpa) -
2-ST-K22 362 (13.9dpa) 379 (17.7dpa) -
2-ST-K20 394 (18.1dpa) 401 (20.4dpa) -
Manet-Il Inactive - - 263
2-ST-016 351 (6.1dpa) 364 (8.7dpa) -
2-ST-019 360 (9.5dpa) 382 (12.9dpa) -
2-ST-017 437 (18.5dpa) 446 (20.4dpa) -

Eurofer97 Inactive - - 227
2-ST-1J10 407 (18.5dpa) 489 (20.4dpa) -
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Fig 3.5: Hardness versus dose of irradiated F82H, MANET Il and Eurofer97 specimens.

A distinct trend for all three FM steels (F82H, MANET Il and Eurofer97) can be observed, the
hardness for the specimens continuously increases with dose and helium contents. There is no
saturation in the increase of hardness value up to the highest irradiation dose (20.4 dpa). For F82H
specimens, the trend of increase of hardness values (AHy) corresponds to the increase of yield stress
(Aoy) from tensile test.

3.2 Micro-crack initiation and propagation

The results of crack initiation and propagation of unirradiated SP specimens tested at RT and liquid
nitrogen (LN2) temperature are presented in &3.2.1. The results of crack initiation and propagation
of irradiated tensile specimens in different irradiation conditions and tested at RT are shown in
&3.2.2.

3.2.1 Successive small punch tests and SEM observations

Small punch (SP) samples of T91 steel were used for successive SP tests at RT and liquid nitrogen
(LN2) temperatures. SEM fractography observations of SP samples taken at different deformation
levels were performed. Fig. 3.6 (a) and (b) shows the load-displacement curves of test at RT and LN2
temperature respectively. The unloading points are marked in the figure. The fracture surfaces of
specimens tested at RT and LN2 temperature are presented in fig. 3.6 (c) and (d). The fracture mode
of specimen tested at RT is dominant with ductile-dimples as shown in fig. 3.6 (c), while the
specimens tested at LN2 is dominant with transgranular-cleavage as shown in fig. 3.6 (d). Figure 3.7
shows the micro-cracks on the surface of the SP sample at the unloading point 4 of Fig. 3.6 (a). In Fig.
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3.7, we can observe that cracks initiate from the micro-voids, which occasionally contain inclusion
particles.
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Fig. 3.6: The load-displacement curves of SP tests at RT (a) and -190 °C (b).
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Fig.3.7: Micrographs of T91 at unloading point 4 of Fig 3.6 (a).

Figure 3.8 presents the micro-crack SEM images of SP sample at the unloading points 3-5 of Fig
3.6(a). From this figure, we can see a micro-crack initiating on the top and bottom of a micro-void
and propagating along slip bands. The crack propagated along two ends simultaneously and the
crack opened as the micro-void enlarged during test.
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200pm

2pm

Fig 3.8: lllustration of SEM observation at different interrupted points 3-5 (a)-(c) in low magnification and (d)-
(f) in high magnification in the successive SP test of Fig 3.6 (a).

The fracture mode of specimens tested at low temperatures is brittle fracture. Fig 3.6(b) shows the
load-displacement curve of SP sample tested at -191°C. The unloading points are marked as shown
in the figure. Figure 3.9 presents the micro-crack SEM images of the SP sample in the unloading
points 3-5 of Fig 3.6(b). It seems that cracks initiate mostly at grain boundaries. The crack
propagation behavior at different unloading points is illustrated in Figure 3.9. From this figure, we
can see that the micro-crack initiates from boundary area and propagated along boundary in both
directions simultaneously. The crack opening displacement becomes wide during propagation.

100pm

Fig. 3.9: The crack micrographs of T91 at different unloading points 3-5 (a)-(c) in low magnification and (d)-(f)
in high magnification of Fig 3.6(b).
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3.2.2 Successive tensile tests and SEM observations

The previous successive SP tests and SEM observations were carried out as a tentative experiment
on unirradiated specimens to gain insight on the micro-crack initiation and propagation behavior.
Nevertheless, a successive SP test was difficult to resume because the specimen position in the
clamping system should be always kept the same. In addition, the surface strain level at different
unloading points, particularly at the positions of the observed cracks, is difficult to be precisely
determined. Therefore, successive tensile tests were preferentially employed to investigate micro-
crack behavior.

F82H

Crack initiation and propagation were investigated by SEM observations on F82H and MANET I, with
small irradiated tensile specimens, in three irradiation conditions for F82H and two irradiation
conditions for MANET Il at RT. Experimental procedures were presented in 2.3.2. Fig. 3.10 illustrates
the front and side surface in tensile specimen as well as the tensile stress-strain curve of a specimen
of F82H irradiated to 11.1 dpa, 910 appm He at 174 °C. The tensile test was interrupted five times at
strains of 0.3, 0.9, 2.2, 3.8 and 6% for SEM observations.

Front face

é] S —
g

Side face

® 2-ST-K23

09% 2.2%

200-180.3% 3.8%
0 ~{. 6%
T ¥ T % T ¥ T v T ¥ T L T L T L 1
0 1 2 3 4 5 6 7 8
Strain (%)

Fig. 3.10: (a) Illustration of front face and side in tensile specimen; (b) Successive tensile curve of F82H
(Specimen 2-ST-K23) irradiated to 11.1 dpa, 910 appm He at 174 °C.
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At 0.3% strain, slightly after yielding, grain boundaries micro-cracks were observed on the front face

and near the edges, as shown in Fig.3.11.
o ) o TS

Fig. 3.11: SEM images showing intergranular cracks on front surface after 0.3% strain in F82H specimen 2-ST-
K23, irradiated at 11.1 dpa.

Observations showed that these intergranular cracks occur on the side surface of both unirradiated

and irradiated specimens; Fig 3.12 (a) and (b) correspond to irradiated and unirradiated specimen
respectively. This crack initiation is attributed to the brittle layer produced by Electrical Discharge
Machining (EDM) of the specimen.

Fig. 3.12: Intergranular cracks observed on the side surfaces of (a) F82H specimen 2-ST-K23, irradiated at 11.1
dpa and (b) an unirradiared F82H specimens.

Fig. 3.13 presents the crack initiation and propagation behavior on different strain levels as marked
in Fig. 3.10 with focus on one typical crack in edge region as shown in Fig. 3.13 (a). It should be noted
that this crack developed within the necking region. The strain levels indicated in Fig. 3.10 are not
the actual strains within the neck. From this figure, we can see that the micro-crack initiated in the
edge area and propagated along a grain boundary with narrow crack opening displacement as
shown in Fig. 3.13 (b). With the increase of strain level, the sharp crack tip reached grain boundary
triple point (GBTP) junction as seen in Fig. 3.13 (c). The crack was arrested at GBTP, where it blunts
under increasing deformation up to failure.
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Fig 3.13: SEM images of evolution of micro-crack after different strains in F82H specimen 2-ST-K23, irradiated
at 11.1 dpa.

The fracture surface and specimen front face are shown in figure 3.14 after failure. The crack
described in figure 3.13 is indicated with a red circle in Fig.3.14 (a), which means that the final
fracture was not induced by this crack. Figure 3.14 (b) shows the specimen surface image of edge
area close to fracture surface. Figure 3.14 (c) and (d) present the fracture surface image in the edge
area. The intergranular fracture region was observed in the edge area, while the ductile fracture
surface was observed at a distance of about 5-10 um away from the edge.
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Fig 3.14: SEM images of specimen surface close to fracture surface (a)-(b) and fracture surface in the edge area
(c)-(d) after fracture in F82H specimen 2-ST-K23, irradiated at 11.1 dpa.

With regard to the F82H specimen irradiated to 15.8 dpa in a successive tensile test, the specimen
was so brittle that it fractured in the elastic regime. Therefore, for such kind of completely brittle
sample, the crack initiation and propagation assessment cannot be investigated by successive tensile
test. Fig. 3.15 presents the microstructures of fracture surface and sample surface. From Fig. 3.15
(a), it can be seen that the fracture mode is a mixture of intergranular and transgranular cleavage.
No necking was observed. Fast crack propagation without blunting occurred during tensile test. Fig.
3.15 (b) presents a surface image of the specimen after fracture, few sharp intergranular cracks were
observed in the edge area of the specimen around 100 um away from the fracture surface.

Fig 3.15: SEM images of fracture surface (a) and sample surface (b) of fractured F82H irradiated to 15.8 dpa.
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MANET I

Since many intergranular cracks observed in the side surface layer in the F82H specimen initiated in
brittle layer produced by EDM cutting, the surface layers of irradiated MANET |l specimens were
electro-polished before successive tensile test. Around 15-20 um surface layer on each side were
removed. The successive tensile tests and SEM observations were thereafter performed. Fig. 3.16
presents the results of MANET Il irradiated up to 11.1 dpa / 910 appm He at 160 °C and tested at RT.
The stress-strain curve of successive tensile test is shown in Fig. 3.16 (a). The interrupted points at
different strain levels are indicated in the figure. Fig. 3.16 (b)-(e) present the macro-shape change on
different strain levels. From the figure, one can see that the necking deformation appears in a small

area.
o) ~2sron)]
;;‘: 600 <
F<1 | os%
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Fig 3.16: SEM images showing the shape of a MANET Il specimen irradiated to 11.1 dpa at different tensile
strain levels.

After straining to 3%, the side surface of the MANET Il specimen was observed carefully, the
microstructure is shown in Fig. 3.17. Interestingly, no micro-crack was observed, which supports the
explanation of the origin of the micro-crack in the EDM-induced brittle layer.

Fig 3.17: SEM images of side surface layer of MANET Il irradiated to 11.1 dpa at 3% strain level.
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At 4.6% strain, the side face of the specimen is as shown in Fig. 3.18. Micro-cracks were observed on
this deformation level and their direction seems parallel to one direction of slip bands as indicated
by dashed yellow lines.

Fig 3.18: SEM images of side surface layer of MANET Il irradiated to 11.1 dpa after 4.6% strain level.

3.3 Microstructure Evolution
3.3.1 Microstructures of as-irradiated F82H, Eurofer97, MANET-II

To study the effect of dose and helium concentration at different irradiation temperatures on the
change of microstructures after irradiation and to gain insight into the materials response to
mechanical loading on microscopic length scale, detailed microstructural analysis by transmission
electron microscopy (TEM) was carried out for all fractured specimens in the as-irradiated state and
after tensile test.

F82H

The microstructure of F82H prior to irradiation has the typical tempered martensitic laths containing
dislocations with a density of approximately 1 x 10" m™[157]. The average size of prior austenite
grains (PAGs) is about 86 um. My3C¢ precipitates appear to be densely distributed and mostly located
along the PAG and lath boundaries. The microstructure after irradiation to 12.3 dpa is presented in
Fig. 3.19. A couple of lath boundaries are shown in Fig. 3.19 (a) and (b) as well as a prior austenite
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grain boundary is seen in Fig. 3.19 (a). In addition, a high density of precipitates and dislocation lines
are observed in the microstructures.

Prior Austensite | -
Grain Boundary

A

Fig.3.19: Martensitic microstructures of F82H irradiated to 12.3 dpa in low magnification.

Figure 3.20 depicts representative TEM micrographs of as-irradiated F82H specimens under different
irradiation conditions. Small defect clusters and dislocation loops, appearing as black dots in BF
images, produced by irradiation are shown in Figure 3.20 (a), (c), (e) and (g) for 12.3, 17.2, 17.7 and
20.4 dpa, respectively. These small defect clusters and dislocation loops, the black dots in the BF
images and the white dots in the WBDF images, were observed in all four cases. It should be noted
that many very small white dots in the WBDF images, which are not seen in the BF images, are small
helium bubbles. In the specimen irradiated to 12.3 dpa, small defect clusters (the black dots in Fig.
3.20 (a) and white dots in Fig. 3.20 (b)) were observed, but large defect clusters with loop-shape
were very few. In the specimens irradiated to higher doses of 17.2 dpa (Fig 3.20 (c)-(d)), 17.7 dpa (Fig
3.20 (e)-(f)) and 20.4 dpa (Fig 3.20 (g)-(h)), a large number of loops were visible.
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Fig 3.20: BF and WBDF (g, 5g), g=[110], z=[111], TEM images of defect clusters of F82H irradiated to 12.3 dpa
(a)-(b), 17.2 dpa (c)-(d), 17.7 dpa (e)-(f) and 20.4 dpa (g)-(h).
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Helium bubble structure of these specimens is presented in Fig. 3.21. High density of very tiny
helium bubbles of ~1 nm were observed in the specimen irradiated to 12.3 dpa. Slightly larger
bubbles with sizes of 1-2 nm were observed in specimens irradiated to 17.2 and 17.7 dpa as shown
in Fig. 3.21 (b) and (c). With increasing of irradiation dose to 20.4 dpa, larger helium bubbles up to 3
nm were observed as well as shown in Fig 3.21 (d).

<

(c) = 17.7dpa,1550 appm He,

Fig 3.21: BF images of Helium bubbles of F82H irradiated to 12.3 dpa (a), 17.2 dpa (b), 17.7 dpa (c) and 20.4
dpa (d). (a), (c) and (d) are in under-focus condition, (b) is in over-focus condition.

The quantitative evaluation of number density and size of defect clusters and helium bubbles in a
specimen was performed by counting them on several pictures taken from different regions. The
counting of defect clusters and dislocation loops was realized in the images taken at a magnification
of 240000 times. The counting of helium bubbles was done in the images taken at a magnification of
500000 times. The average size and number density of defect clusters were determined by counting
approximate 300 defects in different micrographs under the same image condition ((g, 59), g=[110],
z=[111],) for each irradiation condition. The average size and number density of helium bubbles was
determined by counting approximate 200 bubbles in different micrographs under the same dual
beam image condition for each irradiation condition. The thickness of images selected for defects
counting is in a range of 30-50 nm, while the thickness of images selected for helium bubble
counting is in a range of 15-30 nm. The average size and density of defect clusters and helium
bubbles are given in Table 3.2. The distribution of defect clusters in the investigated 12.3, 17.2, 17.7
and 20.4 dpa specimens is presented in Fig.3.22 (a)-(d) with average sizes of 4.24, 9.56, 10.15 and
11.87 nm respectively. The corresponding number densities of defect clusters are 2.11x10%,
2.22x10%, 1.48x10%* and 1.85x10%* m™ respectively. The distribution of helium bubbles is presented
in Fig.3.22 (e)-(h) with average sizes of 1.03, 1.15, 1.35 and 1.93 nm respectively. The number
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densities of helium bubbles are 0.35x10*, 0.62x10*, 1.25x10** and 1.07x10** m™ respectively. A
general trend is that the sizes of defect clusters and helium bubbles increase with increasing
irradiation dose, while the density varies depending on irradiation dose and temperature.

40 151
12.3dpa, 1015 appm He, ((E@ 17.2dpa, 1505 appm He,
a es a es
((@) 175 °C at RT test 241 °C at 250 °C test
30
10
20
5,
10+
04 0
012345678 9101112131415 0 2 4 6 8 1012 14 16 18 20 22 26 3033.0
Size (nm) Size (nm)
151 15+
17.7dpa, 1550 appm He, 20.4dpa, 1795 appm He,
(€) 273°CatRTteat (cl) g 317 “Cat300 Ctest
104 10 4
54 54
04 04
0246 810121416182022242628 33 36 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Size (nm) Size (nm)
60
12 3dpa, 17.2dpa
60 4 ]
(e) 1015 ® 1505 appm
____ |appm | He,
_ He, 404 - 241 °C at
401 175 °C at 250 °C test
. RT test .
2. 20 -
0 T 5 T - T 1 0 T T - T ||_“-“—“-T-: 1
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 25
Size (nm) Size (nm)
80 80
17.7dpa m  20.4dpa, 1795
((@)) : , 1550 (([h]) appm He,
60+ | appm 60+ 317 °C at 300 °C
He, test
__Imc
40 atRT 40
| test
20 . 20 _
| e
5 ] P i : |
" : i N L . i wm |
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4
Size (nm) Size (nm)

Fig 3.22: Size distributions of defect clusters (a)-(d) and helium bubbles (e)-(h) in different irradiation
conditions as indicated.
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Table 3.2: Average size and number density of defect clusters, helium bubbles of the F82H specimens
irradiated in STIP II.

Sample Defect cluster Helium bubble
Size (nm) Density E+22 (m®)  Size (hm) Density E+24 (m”)
K18 (12.3dpa) 4.24 211 1.03 0.35
K19 (17.2dpa) 9.56 2.22 1.15 0.62
K22 (17.7 dpa) 10.15 1.48 1.35 1.25
K20 (20.4dpa) 11.87 1.85 1.93 1.07
Eurofer97

Figure 3.23 depicts representative TEM micrographs of Eurofer 97 specimen irradiated to 20.4
dpa/1795 appm He at 309 °C under different image conditions. Small defect clusters and dislocation
loops are shown in Figure 3.23 (a). Helium bubble microstructure of the specimen is presented in Fig.
3.23 (b), in which high-density of very tiny helium bubbles of ~1-2 nm as black dots were observed
under the over-focus condition.

Fig 3.23: WBDF TEM images of Defect clusters (a) and BF TEM images of Helium bubbles (b) of Eurofer97
irradiated to 20.4 dpa, 1795 appm Helium at 309 °C. The inset is the helium bubbles image in high
maghnification.

MANET 1I

Similar to that of the Eurofer97 specimen, Figure 3.24 presents representative TEM micrographs of a
MANET Il specimen irradiated to 20.4dpa/1795 appm He at 309 °C. Small defect clusters and
dislocation loops are shown in Figure 3.24 (a) Helium bubble microstructure of this specimen is
shown in Fig. 3.24 (b). High-density of helium bubbles of ~2 nm were observed in the under-focus
condition. The dynamical dual-beam TEM image condition was used for observation in this image.
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Fig 3.24: WBDF TEM images of Defect clusters (a) and BF TEM images of Helium bubbles (b) of MANET-II
irradiated to 20.4 dpa, 1795 appm Helium at 309 °C.

3.3.2 Deformed microstructures of as-irradiated F82H and MANET-II

In this section, the results of the investigation of the microstructures of irradiated specimens after
tensile testing at different temperatures are presented. Microstructures in either deformed area of
specimens after fracture or in the deformation region just after yielding were observed.

For the fractured F82H specimen of 15.2 dpa tested at 250 °C, TEM lamellas were extracted by FIB
from the slightly deformed area very close to the grip section as shown in Fig 3.25 (a). Fig 3.25 (b) is
a micrograph of the lamella extracted from the position as indicated in Fig. 3.25 (a). Defect-free
channels were observed in this sample as shown in Fig. 3.25 (c)-(h). Point defects are absent in the
channels, whereas numerous defects are still visible in the other parts. This implies that plastic
deformation is not homogenous in the specimen but localized within these bands. Some dislocation
lines were observed along the channel boundaries, which were likely dislocation debris resulted
from the deformation of channel area. The dislocation channels were generally, but not always,
straight in the deformed F82H sample. These defect-free channels were blocked by lath boundaries
or grain boundaries. The width of channels is about 100 nm. The slip planes of channel were
identified along two {110} at 120° as shown in Fig. 3.25 (c)-(f), which correspond to the former
observation in neutron irradiated F82H by Hashimoto et al [106]. In addition, a channel with (112)
slip plane was observed as shown in Fig. 3.25 (g) and (h). This channeling direction was also observed
in irradiated iron by Zinkle et al [46]. Besides the channeling deformation mode, tangled dislocations
were also observed. But the dislocation network here cannot be distinguished between the pre-
existing dislocations in martensite structure and the deformation dislocations. Defect-free channel
induced plastic flow localization is suspected to result in loss of ductility and premature failure.

73



A

55

100nmMX

—
[

Fig 3.25: (a) a picture showing a part of of F82H irradiated to 15.2 dpa at 236 °C and tensile tested at 250 °C
after extracting many TEM lamellas with FIB; (b) a SEM micrograph showing a TEM lamella extracted from the
position indicated in (a); (c) and (d), (e) and (f), (g) and (h) showing BF and WBDF images of three different
dislocation channels observed in the TEM lamella. The slip planes of the corresponding channels are indicated
in the figure. The channels presented in (c)-(f) were observed in the same TEM-lamella sample, while the
channel presented in (g)-(h) was observed in another TEM-lamella sample.
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In addition to the deformed F82H specimen, defect-free channeling was also observed in the
deformed MANET-II specimen. Unlike the investigation in F82H, TEM-lamella sample was extracted
directly from the slip bands area shown in Fig. 3.26 (a), on the surface of specimen at a strain of 0.5%
(see Fig. 3.16). Fig 3.26 (b) is a micrograph of the lamella extracted from the position as indicated in
Fig. 3.26 (a).

Fig 3.26: TEM lamella specimen of slip bands area fabricated by FIB.

Defect-free channels were observed in this sample as shown in Fig. 3.27 (a)-(d). In defect-free
channels, most of the crystal volume is very “clean”, whereas numerous defects and tangled
dislocations are visible in the other parts. Particularly, the tangled dislocations that are considered as
dislocation debris resulted from the deformation of channel area are found to be located in the
channel boundary area. Another interesting characteristic of defect-free channels in MANET-II is that
the channels are observed to be located close to the lath boundaries or GBs, decorated with large
carbides or precipitates, which act as mobile dislocation sources. The width of channels is also
approximate 100 nm. The slip planes of channel were identified along {110}.
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Fig 3.27: Microstructures with defect-free channels in MANET-Il irradiated to 11.1 dpa
and tested at RT.

3.3.3 Microstructures underneath fracture surfaces of F82H and Eurofer97

As mentioned above, the goal of this work is to study the deformation mechanisms of martensitic
steels irradiated in spallation neutron sources. Based on previous tensile test results of martensitic
steels irradiated in STIP, all the specimens exhibit significant hardening and loss of ductility as
compared with the unirradiated specimens. However, they manifest different fracture behaviors
under different irradiation and test conditions. For instance, F82H specimen at irradiation dose of
15.2 dpa shows a small amount of ductility at 250 °C and MANET-Il specimen at irradiation dose of
11.1 dpa shows pretty large total elongation at RT. However, F82H specimen at irradiation dose of
15.8 dpa and tested at RT failed in elastic regime without any plastic deformation, which implies very
brittle fracture. In this section, the results of the investigations on the fracture surface
microstructure of completely brittle fracture specimens are presented. The main investigations
regions include the microstructures either underneath intergranular fracture surface or underneath
cleavage surface. TEM lamella samples were cut directly from these regions.

3.3.3.1 Brittle fracture of Irradiated F82H and Eurofer 97

Strikingly, deformation twinning as the main feature was observed underneath the fracture surface
of three irradiated specimens: F82H at 15.8 dpa/1370 appm Helium at 247 °C and tested at RT; F82H
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at 19.6 dpa/1740 appm Helium at 304 °C and tested at 300 °C; Eurofer 97 at 19.8 dpa/1750 appm He
at 300 °C and tested at RT, respectively.

For the specimens broken in a brittle manner as shown in Fig. 3.2 (c), TEM observations were
performed to investigate the microstructure directly underneath the fracture surfaces by employing
lamellas extracted from the fracture surfaces. Fig. 3.28 (a) shows the representative region where
TEM lamellas of the observations were cut from the F82H specimen irradiated to 15.8 dpa and
tested at RT. Interestingly, the deformation twinning rather than dislocation channeling was
unexpectedly observed. If being viewed edge-on in TEM, the twinning bands appear as straight
bands with sharp boundaries, as seen in Fig. 3.28 (b). The twinning bands can be seen as white or
black strips (Figs. 3.28 (c) and (d)) depending on the imaging conditions. In WBDF images as shown in
Fig. 3.28 (d), small defect-clusters and dislocation loops can still be seen inside of the twinning band.
This implies that the twins were not formed by dislocation motion. In the same PAG it seems only
one twinning system was activated because the twins were parallel to each other. The twinning
plane was identified as (112) by diffraction pattern together with electron microscopic imaging as
shown in Fig. 3.28 (c), which is the typical twinning plane in BCC metals [118, 128].

20nm

Fig 3.28: (a) lllustration of the area on fracture surface of the F82H specimen of 15.8 dpa and tested at RT
where a TEM lamella extracted; (b) an edge-on view of deformation twins in the lamella; (c) and (d) a closed
view of a twin in BF and DF imaging conditions.

Since it is the first time that deformation twinning is observed in bcc FM steels, some typical features
of deformation twinning are also reported in Fig. 3.29. These TEM observations were done with
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lamella extracted from a different region from that indicated in Fig. 3.28 (a). The twinning bands can
penetrate through martensitic lath boundaries (Fig. 3.29 (a) and (b)), which can be clearly seen
under WBDF condition. Small mis-orientation lath boundaries as dislocation walls normally serve as
barrier for the dislocation motion, which is a completely different characteristic from our recent
observation of interaction between deformation twinning and lath boundaries. However, twinning
bands were arrested in the vicinities of grain boundaries in Fig.3.29 (c) and (d) and large precipitates,
carbides Fig.3.29 (e) and (f), where it could not propagate to the adjacent grain. Micro-crack
formation was also observed in the matrix, few microns below the fracture surface, as shown in Fig.
3.30 (a) and (b), initiated in the intersection position between twins and precipitates along lath
boundaries. From Fig. 3.30 (b), a large carbide/precipitate located between two deformation twins
can be seen. Furthermore, there is a large cracking gap between this carbide/precipitate and the
thick deformation twinning in the right side, while there is a minor cracking gap between this

carbide/precipitate and the thin deformation twinning in the left side.

Fig 3.29: Typical features of deformation twinning in brittle fracture F82H irradiated to 15.8 dpa
and tested at RT.
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Fig 3.30: Micro-crack induced by deformation twinning in F82H irradiated to 15.8 dpa and tested at RT.

The thickness of deformation twinning was analyzed by statistical counting. The thickness

distribution of deformation twinning in F82H irradiated to 15.8 dpa and tested at RT is illustrated in
Fig. 3.31, and the average thickness is 34 nm.
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Fig 3.31: Thickness distribution of deformation twinning in F82H irradiated to 15.8 dpa and tested at RT.

As shown in Fig. 3.28 (a), the TEM lamella sample seen in Fig. 3.28 (b) was cut from the typical
intergranular and transgranular-cleavage fracture surface. From Fig. 3.28 (a), we can see that one
grain fractured in transgranular-cleavage mode and another grain fractured in intergranular mode.
As a matter of fact, the deformation twinning was observed in the region underneath transgranular-
cleavage fracture surface. However, in the region underneath intergranular fracture surface, no
deformation twinning was observed in TEM image as presented in Fig. 3.32. A high density of
dislocation lines can be seen underneath intergranular fracture surface in Fig. 3.32 (b), but the
dislocation lines induced by deformation cannot be distinguished from pre-existing dislocation lines
of martensitic structure in FM steels. Hence, it is hard firmly conclude that there is dislocation-slip
deformation underneath such intergranular fracture surface during tensile testing.
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Fig 3.32: TEM microstructure underneath intergranular fracture surface in TEM lamella (Fig. 3.28 (a)) of F82H
irradiated to 15.8 dpa and tested at RT.

From SEM image in Fig. 3.28 (a), we can see that there are obvious steps on the transgranular-
cleavage fracture surface. The microstructure underneath these steps was carefully examined. Fig.
3.33 (a) presents an image of the microstructure in low magnification. The deformation twinning
was observed either close to the steps on the transgranular-cleavage fracture surface or a couple of
micrometers away from the fracture surface. Fig. 3.33 (b) shows the microstructure nearby a typical
large surface step, one typical deformation twinning with about 40 nm thickness and one quite thin
deformation twinning with about 10 nm thickness were observed close to this surface step. If being
viewed in larger magnification in Fig. 3.33 (c), this typical deformation twinning was not indeed
originated from the fracture surface but still with several tens nanometers away from it. The surface
step region was also inspected as shown in Fig. 3.33 (d), besides the typical deformation twinning
with straight boundaries, some broad bands with similar direction as typical deformation twinning
were also observed. From the selected area (SA) diffraction pattern, no other phase could be
identified. In order to gain more precise results, the nano-diffraction pattern combined with atomic
resolution image should be investigated.
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Fig 3.33: Deformation microstructures underneath cleavage fracture surface in F82H irradiated to 15.8 dpa and
tested at RT.

On the intergranular fracture surface in the F82H specimen, parallel strips appeared as shown in Fig.
3.34 (a). The parallel strips indicated in the SEM image correspond to the surface steps in TEM image
Fig. 3.34 (b), which is the characteristic of deformation twinning underneath the intergranular
fracture surface. It can be seen from Fig. 3.34 (b), this typical deformation twinning was indeed
originated from the fracture surface, and the thickness becomes narrow with distance away from

Fig 3.34: Deformation Twinning underneath Intergranular Fracture surface in F82H irradiated to 15.8 dpa and
tested at RT.
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In addition, another F82H specimen irradiated to 19.6 dpa, 1740 appm at 305 °C and tested at 300 °C
was studied. For this specimen broken in a fully brittle manner, which is dominantly intergranular
fracture mode as shown in Figs. 3.2 (g) and (h), TEM observation was performed to investigate the
microstructure directly underneath the intergranular fracture. Fig. 3.35 (a) shows the representative
region where TEM lamellas were cut from the specimen irradiated to 19.6 dpa and tested at 300 °C.
Parallel strips were also observed on the fracture surface. Once again, the deformation twinning was
expectedly observed underneath these parallel strips. The parallel strips indicated in the SEM image
Fig. 3.35 (a) correspond to the surface steps in TEM image Fig. 3.35 (b) In the same PAG only one
twinning system was activated because the twins were parallel to each other. The twinning plane
was also identified as (112) by diffraction pattern together with electron microscopic imaging as
shown in Fig. 3.35 (b).

Fig 3.35: Illustration of TEM lamella region on fracture surface (a); deformation twinning in TEM image (b)
underneath surface steps correlating to the parallel strips in SEM image (a); The F82H specimen was irradiated
at 304 °Cto 19.6 dpa and 1740 appm Helium and tested at 300 °C.

The twinning bands can be seen as white or black strips (Figs. 3.36 (a) and (b)) depending on the
imaging conditions. In BF image as shown in Fig. 3.36 (a), dense small helium bubbles can still be
observed inside of the twinning band in the F82H specimen irradiated to 19.6 dpa, 1740 appm at 305
°C and teste at 300 °C. The average size and number density of helium bubbles inside of the twinning
band are approximately the same as those in the undeformed region according to the statistically
counting. In WBDF images as shown in Fig. 3.36 (b), small defect-clusters and dislocation loops can
still be seen inside of the twinning band. This implies that the twins were not formed by dislocation
motion. Nevertheless, the detailed information about the average size and number density of defect
clusters as well as the nature of defect clusters (eg. Burgers vector and loop type) inside of the
twinning band is difficult to be evaluated due to the very small thickness of the bands. In addition,
the microstructures of helium bubbles, defect clusters and dislocation loops in the F82H specimen
irradiated to 15.8 dpa/1370 appm He at 247 °C and tested at RT are added for comparison as shown
in Fig. 3.36 (c) and (d). Fig. 3.36 (c) and (d) indicate the microstructures of helium bubbles and defect
clusters respectively. The high dense tiny helium bubbles as seen in the BF TEM image and small
defect clusters and dislocation loops as seen in the WBDF TEM image still can be observed inside of
the twinning band, which is alike those in the as- irradiated 19.6 dpa F82H specimen.
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20nm

Fig 3.36: TEM images of Helium bubbles (a) and (c) and defect clusters (b) and (d) inside twinning bands. The
F82H specimen was irradiated at 304 °C to 19.6 dpa and 1740 appm Helium and tested at 300 °C (a) and (b)
and irradiated at 246 °C to 15.8 dpa and 1370 appm Helium and tested at RT (c) and (d) respectively.

It should be pointed out that the twinning phenomenon was also observed in another martensitic
steel, Eurofer 97, which has a much smaller grain size (16 um). A specimen of Eurofer97 was
irradiated to 19.8 dpa/1750 appm He at 300 °C and tested RT. The tensile curve of this specimen and
the corresponding fracture surface are shown in Fig. 3.3. From Fig. 3.3 (b), we can see that the
fracture surface is dominant with intergranular and transgranular-cleavage. TEM observation was
performed to investigate the microstructure directly underneath an intergranular fracture area. Fig.
3.37 (a) shows the representative region where TEM lamellas were cut. Surface strips could be seen
on the fracture surface. As mentioned before, parallel strips on such an intergranular fracture
surface could be related to deformation twinning bands. Although there is only one obvious strip
observed on this intergranular fracture surface as shown in Fig. 3.37 (a), once again, a deformation
twin was observed underneath this surface strip. The surface strip indicated in the SEM image Fig.
3.37 (a) corresponds to the surface step in TEM image Fig. 3.37 (b), which confirms the conclusion
drawn from the observation of the previous F82H specimens. The surface step marked by white
arrows in SEM image Fig. 3.37 (a) corresponds to that in TEM image Fig. 3.37 (b). Additionally, the
thickness of twinning band becomes thinner gradually with distance away from the fracture surface
and stopped in the matrix finally. The TEM image of twinning and surface step at a high
maghnification is presented in Fig. 3.37 (c), the white contrast part represents the twinning band,
while the black contrast part represents the matrix. The twinning band is torn into two parts by the
surface step. The twinning plane was also identified as (112) by diffraction pattern together with a
BF image of the band as shown in Fig. 3.37 (d).
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Fig 3.37: Illustration of TEM lamella region on fracture surface (a); deformation twinning in TEM image (b)-(d)
underneath surface steps in SEM image (a); The Eurofer97 specimen was irradiated at 300 °C to 19.8 dpa and
1750 appm Helium and tested at RT.

3.3.3.2 Low temperature brittle fracture of unirradiated F82H, ODS-Eurofer 97 and SP T91

In order to further investigate the occurrence of deformation twinning in bcc FM steels, brittle
fractured specimens of three unirradiated FM steels (ODS Eurofer97, F82H and T91) tested at liquid
nitrogen (LN2) temperature were analyzed by TEM. The TEM observations were done on specimens
of ODS Eurofer97 tensile tested, of F82H tensile and Charpy impact tested and of T91 small punch
tested.

The ODS-Eurofer97 tensile specimen, which has a 1.5 GPa ultimate tensile stress (Fig. 3.38 (a)), broke
in a brittle manner as shown in Fig. 3.38 (b) and (c). The fracture surface is dominated by typical
transgranular-cleavage facets, whose dimensions correspond to the grain size [158]. Fig. 3.38 (c)
shows the region where TEM lamella was cut from. Unlike in the brittle fractured specimens of
irradiated FM steels, no deformation twinning was observed originated from the fracture surface.
The F82H specimen tensile tested at -175 °C, which has a 1.1 GPa ultimate tensile stress, broke in a
ductile manner as shown in Fig. 3.39 (b)-(e). The fracture surface is dominated by ductile dimples
(Fig. 3.39 (b) and (d)) together with transgranular cleavage fracture surface (Fig. 3.39 (c) and (e)).
Obviously, as seen from the fracture surface in Fig. 3.39 (a), the typical cleavage fracture surface is
only observed in few grains on the right side area while the majority of fracture surface is dominant
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with ductile-dimples on the left side region. The cleavage facet in this specimen is relatively flat with
river pattern as seen in Fig. 3.39 (e). TEM observation was performed to investigate the
microstructure directly underneath the fracture surface in the region indicated in Fig. 3.39 (e). The
result is alike in ODS-Eurofer 97, no deformation twinning was observed underneath the fracture
surface. Another two cases of low temperature brittle fracture of unirradiated FM steels are small
punch test of T91 and Charpy impact test of F82H at LN2 temperature. The fracture surfaces of these
two specimens are shown in Fig. 3.40. The fracture surface is dominant with transgranular-cleavage
facets with dimples rupture seen from the Figure. The cleavage facet of the specimens are relatively
flat with river pattern but without surface step. 3-4 TEM lamella samples were cut directly from the
cleavage fracture surface in each specimen. However, there is no deformation twinning observed
either underneath fracture surface or inside of grains far away from surface.
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Fig 3.38: Illustration of fracture surface of ODS Eurofer97 tested at LN2 temperatureure in low magnification
(a) and TEM lamella region on typical fracture surface in high magnification (b).
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Fig 3.39: Illustration of fracture surface of F82H tested at LN2 temperature (a) in low magnification (b) and
transgranular-cleavage fracture surface in high magnification (c); ductile-dimple fracture surface in high
maghnification (d) and TEM lamella region on typical cleavage fracture surface in high magnification (e).
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Fig 3.40: SEM image of fracture surface of T91 specimen by small punch test (a) and F82H specimen by Charpy
impact test (b) at LN2 temperature.
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4, Discussion

4.1 The dose dependence of defect density and size distribution

As shown in Section 3.3, the microstructure of as-irradiated F82H, Eurofer 97 and MANET-I|
specimens was investigated using TEM. In general the results are in agreement with the data
published by lJia [8, 68, 69], Vieh [159] and Zhang et al. [156] obtained from F82H and Eurofer 97
irradiated in STIP-I and STIP-1l under similar conditions.

Defect clusters and helium bubbles have been detected in the as-irradiated F82H specimens in this
work. The detailed information of number density and size distribution of defect clusters and helium
bubbles of irradiated F82H is presented in Table 3.2 and Fig.3.22. The dose dependence of number
density and size of defect clusters is given in Fig.4.1. The average cluster size is increasing with dose
as shown in Fig.4.1 (a). With increase of size, the morphology of defect clusters changes from small
dots to loop shape. The number density of clusters does not change significantly as seen in Fig.4.1
(b). The error bar is the standard deviation for the defect clusters size. For the density of defect
clusters, it is the standard deviation combined with accuracy deviation of thickness determination
(£10%). The results are in fairly agreement with the data of F82H irradiated in STIP-I and STIP-II
obtained by [8, 68, 69] using the same image conditions. For example, at about 10 dpa at irradiation
temperature of about 170 °C, the average size and density of defect clusters obtained by Jia are 3.3-
4.2 nm and 3-4x10%*/m?, respectively. The average size is about the same as the present one. The
density is slightly higher than the present data. It could be due to smaller thickness of the regions
used for counting defect clusters by Jia. In his work, the thickness of regions used for counting was
around 30 nm and in this work the thickness of lamella samples is about 50 nm. It is known that the
measured density of small defect clusters decreases with the thickness of TEM foil because of
reduced contrast and increased overlap of defect clusters [21].
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Fig 4.1: Evolution of the average size (a) and number density (b) of defect clusters with dose in irradiated F82H.
The irradiation temperature of each specimen is indicated in the figure.

The change of the size and density of defect clusters depends on both irradiation dose and
irradiation temperature. The defect clusters grow rather fast at above 250 °C. Meanwhile the density
decreases rapidly [68]. At 15-16 dpa, Jia showed a much smaller average cluster size of 4.9 nm and
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higher density of 3.8x10%* /m? for F82H irradiated at 165 °C as compared with the corresponding
data (= 10 nm and 1.8x10?2 /m?) of the 17.2 and 17.7 dpa specimens irradiated at around 240 °C. It is
clear that the difference can be mainly attributed to the effect of irradiation temperature. Due to
the great differences between spallation target and fission reactor irradiation environment, e.g. high
helium and hydrogen production, unstable proton and neutron fluxes, unstable irradiation
temperature, and so on, it is believed that a comparison of microstructural changes between STIP
irradiated and neutron irradiated FM steels at similar dose and temperature would be rather
difficult.

The helium bubble structures of the four specimens were shown in Fig. 3.21. In the specimen of 12.3
dpa/850 appm He irradiated at 165 °C, the helium bubbles are very small, around 1 nm in diameter.
In this work, lamella samples of 50 nm thickness were used, which is quite thick for observing such
small bubbles. In this case, bubbles of sub-nanometer (0.7-1.0 nm) sizes are hardly detected because
of weak contrast. Compared to Jia's data, the present data show slightly larger average size but
lower density. In Jia's observation of helium bubbles, the thickness of the foil was about 25 nm. If
one uses relatively thicker samples, such small bubbles may not be visible, as it is the case in Vieh's
work [159]. It is well known that the size of bubbles increases with dose or helium concentration or
irradiation temperature. The density of bubbles also increases with dose or helium concentration,
but decrease with irradiation temperature [8]. The dose dependence of number density and size of
helium bubbles is given in Fig.4.2. No error bar is applied for bubble size due to the relatively
homogenous distribution and the error bar for bubble density is the accuracy deviation of thickness
determination. For the tiny bubbles with size < 1nm cannot be detected by TEM, hence, the
measured number density of bubbles in 12.3 and 17.2 dpa is relatively small. With the increase of
irradiation dose, helium concentration and irradiation temperature, the size of bubbles grows
distinctly. However, from the trend of number density of helium bubbles given here, it is hard to give
a definitive conclusion due to the resolution limit of the TEM observation and deviation from
thickness measurement by EELS. Nevertheless, the trend of the size and density increasing with dose
reflects a combined effect of irradiation dose, helium concentration and irradiation temperature of
the present irradiation conditions.

2.0
2.0 P
((a) 1795 appm He/317°C = & 18] ((E@)
1.8 vE i
1.6 S ]
4] 1550 appm He/273 °C = 1.4 1550 appm He/273 °C
o ™ z. 4
"é" 1.2 1506 appm He/241 °C w 124 e
E 11015 appm He/175 °C - s ] 1795 appm He/317 °C ®
® 1.0 . s 10
N g ]
fot-d @ 4 i
0 0.8+ .E 0.8 1 1505 appm He/241 °C
0.6 S 0.6 ,
- 11015 Hel175 °C
0.4 g o0al0tommmbe]
% 0.2
0.2- 3 o021
0.0 T T T T T ¥ T ¥ T T T d 0.0 T T T T T T
10 12 14 16 18 20 10 12 14 16 18 20
Dose (dpa) Dose (dpa)

Fig.4.2 Evolution of the average size (a) and number density (b) of helium bubbles with dose in irradiated
F82H.
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Although the microstructures of the specimen in as-irradiated conditions were investigated in detail,
it was not intended to investigate as such the dose dependence or the temperature dependence of
the defect clusters or the helium bubbles. The TEM observation of as-irradiated microstructure was
aimed at providing the necessary information for the understanding of the mechanical behaviors
and deformation mechanisms of the specimens.

4.2 Correlation between irradiation defects and hardening (F82H)

Even if the main purpose of this work is to investigate the embrittlement effects induced by
radiation damage and helium, the hardening effect induced by irradiation has a critical role on
fracture toughness, as fracture and plasticity are intrinsically linked to each other. Hence, the
correlation between irradiation defects and hardening is essential. Generally, this correlation is
based on Seeger and Orowan model [160, 161]. The model relates the increase in yield strength to
the irradiation-induced defects, described through their defect density (N;), defect diameter (d;)
distributions as well as through their barrier strength (a) as indicated in Eq.4.1 [162].

A0=CIM|J.bw/Nidi (4.1)

Ao, represents the irradiation-induced increase of the yield stress, M is the Taylor factor (3.06) that
relates the shear stress on a slip plane in a single crystal to the applied uniaxial tensile stress
necessary to activate slip in a polycrystal, a is the barrier strength of the type of dispersed obstacle
considered (e.g. bubbles/clusters), W is the shear modulus of the matrix (80 GPa in FM steel) that is a
weak function of temperature and not strongly sensitive to irradiation, b is the amplitude of the
Burgers vector of the mobile dislocations (2.49 A for % <111> dislocations in bcc FM steels).

Equation (4.1) is strictly valid when only one type of defects contributes to the irradiation-hardening.
When more than one type of obstacles with different strengths are present, one has to consider a
superposition rule. As a matter of fact, several superposition rules have been proposed, which
depend on the character of the obstacles considered. For instance, the presence of long-range (e.g.
network dislocations) and short-range obstacles (e.g. bubbles) leads to linear superposition of the
contribution of each type of obstacle. In the case of multi-types of short-range obstacles as such
irradiation induced defect clusters, loops, bubbles or cavities, precipitates, a root-sum-square is the
most appropriate rule [163]. However, in the case of obstacles with different strengths, some
authors consider a linear superposition is more justified [32]. In our case, we have to take into
account the contributions of the helium bubbles and of the defect clusters. As for the Si-enriched
nanometer sized precipitates detected by APT (Atom Probe Tomography) analysis in high dose F82H
specimens [164], it seems that they do not contribute much to the hardening effect [4]. The barrier
strength value of small (1-1.5 nm) helium bubbles obtained from previous annealing experiments on
the FM steels irradiated in STIP is in the order of 0.1 [159, 165], and the strength of clusters in BCC
lies in the range 0.25 -0.5 [150, 159, 166-168]. Therefore, we are in the presence of weak obstacles
(He bubbles) and rather strong obstacles (defect clusters) so that we consider a linear superposition
and write the irradiation hardening Ao, as:

Ao, =Acg+Acc (4.2)
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where

Aoc=acMuby/Nd (defect cluster contribution) (4.3)
Acg=0gMpb,/Npdp (helium bubble contribution) (4.4)

The values of barrier strength a of the obstacles can be deduced from the measured increase of
yield strength Ao, obtained from tensile test and of the N¢, dc, Ng, dg determined from TEM
observation. In this work, as discussed in the previous section, the density of helium bubbles
measured from specimens K18 (12.3 dpa) and K19 (17.2 dpa) is not precise due to small bubble size
and thick TEM lamella. The data of these two specimens cannot be used for the hardening analysis.
Therefore, the analysis is just performed by using the hardness and TEM data measured from the
high-dose ends of specimens K20 (i.e. K20H, 20.4 dpa) and K22 (i.e. K22H, 17.7 dpa) as given in Table
3.1 and Table 3.2.

The increase of yield stress Ac, on these specimens was assessed indirectly by measuring the
corresponding Vickers hardness AH, increase, and converting it into the yield stress. The relationship
between AH, and Ac, for FM steels has been statistically fitted by Busby et al [150] and reads Ac, =
3.06 AH, . The calculated yield stress increase, based on the hardness measurement, is presented in
Table 4.1. Taking the barrier strength value of 0.1 for small helium bubbles, the contribution of
helium bubbles to the hardening of the specimens (Acys) can be calculated using Equation 4.4. The
results are given in Table 4.1. Using Equation 4.2 the contribution of defect clusters to hardening can
be easily deduced. To calculate the barrier strength of the defect clusters, the density values in Table
3.2 measured under a single WBDF image condition has to be corrected. As mentioned before, the
actual density of defect clusters and loops was evaluated only from micrographs with single imaging
condition z=[111] and g= (110), in which only up to 40% of the defect clusters and loops could be
detected [169]. Hence, a multiplication factor of 2.5 was used to correct the number density of the
clusters. Finally the barrier strength of defect clusters obtained for the two specimens K22H and
K20H is 0.23 and 0.22, as shown in Table 4.1.

Table 4.1 Calculated Ao, from AH, as: Ac, = 3.06 AH,

Sample dpa/He appm AHvgs Ao, Aoy Aoy oc
K22H 17.7/1550 171 523 250 273 0.23
K20H 20.4/1795 193 591 277 314 0.22

The barrier strength values of 0.22-0.23 for the defect cluster and loops in FM steels seem a little too
small, particularly considering the possible contribution of the Si-enriched precipitates was not taken
into account. Performing the same exercise by using the root-sum-square superposition (i.e. (Ao, ) 2
= (Aog)® + (Aoc)?), we get the barrier strength of defect clusters being 0.37%0.1 for the K20 and K22
specimens. This value is in good agreement with 0.38-0.51 obtained by Liu and Biner [12] through
molecular dynamics simulations on screw dislocation-interstial loops interaction in BCC iron at 300K
and also the published results. For instance, Bergner et al [168] obtained the values of acas 0.4+0.16
based on experimental results of neutron-irradiated Fe-Cr alloys, considering two types of defects
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including defect clusters and alpha prime o’ precipitates. P.V. Durgaprasad et al [170] determined
the barrier strength of loops ranging from 0.32 to 0.75 in irradiated ferritic/martensitic steels by
using dislocation dynamic (DD) simulations.

4.3 Fracture mechanisms of FM steel in different irradiation and test conditions

The crack initiation and propagation assessment of unirradiated and irradiated FM steel specimens
has been performed by interrupted SP and tensile test accompanying with SEM observation. For the
unirradiated T91 under successive SP test, there were two kinds of crack initiation sites: initiation
from the inclusions when testing at RT and initiation from grain boundaries (GBs) or lath boundaries
(LBs) when testing at LN2 temperature. Initiation at inclusions was accompanied with plastic
deformation ahead of crack tip and propagation can be easily captured, while initiation at GBs or LBs
was with a small plastic deformation zone ahead of the crack tip and fast crack propagation
occurred. For the irradiated F82H under successive tensile test, the intergranular crack initiates from
the side surface before yielding. However, there were two kinds of propagation modes: in the
specimen irradiated to 11.1 dpa the cracks were arrested by GBs, while in the specimen irradiated to
15.8 dpa fast crack propagation resulted in intergranular or transgranular fracture. For the crack
arrested by GB, slip bands were activated in the grains ahead of crack tip and crack propagated along
one of the slip band. For the crack with fast propagation, it was not possible to capture the
propagation trace and only the final fracture surface could be obtained. With regard to the MANET II
irradiated to 11.1 dpa and electro-polished under successive tensile test, the first cracks were
observed at 4.6% strain level and the crack direction was parallel to one of slip planes. The crack
initiation and propagation assessment will be compared with the fracture surface to further discuss
the fracture behavior in different irradiation and test conditions.

Three different FM steels F82H, Eurofer97 and MANETII irradiated in different conditions and tensile
tested at different temperatures showed various deformation and fracture behaviors. The four F82H
specimens at different irradiation conditions tested at different temperatures exhibit different
fracture modes. The low dose specimen at 10.7 dpa possesses pretty large total elongation at RT,
although the uniform elongation decreased to less than 1%. However, at a little higher irradiation
dose of 15.8 dpa, the specimen tested at RT failed in elastic regime without any plastic deformation,
and showed a mixed mode of about 50% intergranular fracture and transgranular cleavage fracture.
The two specimens demonstrate a clear irradiation dose dependence of fracture behavior of the
steel. The fracture behavior of the irradiated specimens depends strongly on test temperature. The
specimen of 15.2 dpa exhibited a significant amount of ductility at 250 °C compared with the 15.8
dpa specimen tested at RT. Meanwhile, its fracture surface demonstrated a mixed mode of ductile
and quasi-cleavage fracture. With increasing irradiation dose and helium concentration, the brittle
fracture features were greatly enhanced. At a high dose of 19.6 dpa and with 1740 appm He, F82H
steel was found to be brittle even at 300 °C. The specimen failed again without any plastic
deformation.

The synergistic low-temperature hardening-helium embrittlement (LTHE) was studied by Dai and
Odette [171]. As schematically illustrated in Figure 4.3, LTHE may be described as follows. Cleavage
fracture can be triggered when the local stress at the tip of a blunting crack, Mo,, exceeds a critical
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local stress o.* of the order of 2000 MPa in FMS [172]. M is a factor of about 1.5 to 3 depending on
the shape of the crack [173]. Similarly, brittle IG fracture occurs when the stress at the crack tip is
greater than the critical local stress o;g*, and when it encompasses a sufficient volume for grain
boundary decohesion. If transgranular cleavage occurs at the first place, then o;;* is higher than o *.
However, He accumulation at the grain boundaries results in a decrease of o;;* decreases. When o;*
is lower than o.*, GB becomes the favored crack path. o,* continues to decrease with increasing He
accumulation resulting in an increment of the ductile to brittle transition temperature (AT, in Fig.4.4)
. The transition from transgranular cleavage to IG crack path can be determined with fractography
observations and is related to an increase of the fraction of grain boundary facets on the fracture
surface.

Fig.4.3: Sketch showing the mechanisms for irradiation-induced hardening (increase of yield stress, Ac,) and
helium-induced grain boundary weakening effects (decrease of the intergranular fracture stress, o,,*) that
elevate the brittle to ductile transition temperature [171].

The defect clusters produced in spallation irradiation mainly contribute to the hardening effect intra-
grains, while the helium bubbles induced in spallation irradiation result in the combined effects of
pronounced intra-granular hardening and weakening of grain boundaries strength. As shown in Fig.
3.5, the hardening continuously increases with dose under the present irradiation conditions. The
Hardness is about 330 at 10.7 dpa, about 370 at 15.5 dpa and about 390 at 19.6 dpa. The
corresponding yield stress is about 965 MPa as measured for the 10.7 dpa specimen 1080 and 1150
MPa at 15.5 dpa and 19.6 dpa, respectively, if taking the same converting factor of 2.92 as calculated
from the 10.7 dpa specimen. On the other hand, the cohesion strength of grain boundaries should
be weakened. This effect should increase with increase of helium concentration. It might also
increase slightly with irradiation temperature in the low temperature regime because of faster
helium diffusion at higher temperatures. From the fracture mode of the specimens, one can expect
that for the specimen of 10.7 dpa tested at RT, although significant hardening effect appeared, both
intergranular and cleavage fracture stress are o™ and o.* still higher than the actual yielding stress,
which leads to ductile fracture of the specimen. At 19.6 dpa, Mo, increased to a level clearly higher
than o;g* and o.* not only at RT but also at 300 °C. Meanwhile, the GBs are strongly weakened that
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results in oig* < o.*, leading to intergranular fracture dominated situation. At intermediate doses of
15.2 and 15.8 dpa of the four specimens, the fracture surface of the 15.8 dpa specimen tested at RT
appeared about half-to-half of intergranular and transgranular cleavage fracture. This implies that
oig* ~ 0., and both are greater than Mo,. Whereas the mixed fracture mode of ductile and
transgranular cleavage for the 15.2 dpa specimen tested at 250 °C indicates that o * is about the
same as Mo,. For 6.* ~ 2000 MPa, M is about 1.8-2.0, which is in agreement with usual expectations.

Henry [79] et al obtained the similar result in T91 and EM10 specimens irradiated in the same
irradiation experiment, STIP Il. The high dose of specimens of 18-20 dpa and tested at RT and 250 °C
exhibited no necking appearance and intergranular and cleavage fracture surface. At 350 °Ca T91
specimen also showed fully brittle fracture, while an EM10 specimen demonstrated some necking
and rather ductile fracture with numerous secondary cracks on fracture surface. However, except for
two specimens of 19.3 dpa tested at RT that failed in elastic regime, all other specimens broke after
yielding. The two specimens that failed in elastic regime still reached a stress level of about 1100
MPa, higher than that of the F82H specimens tested in this work. A clear difference between F82H,
T91 and EM10 steels is that the grain size of T91 and EM10 are smaller than that of F82H.

In this study, although just Eurofer97 and MANET-II specimens of 19.8 dpa were tested, they did
show a behavior different from that of F82H, rather similar to that of T91 and EM10, as shown in Fig.
3.2 and 3.3. The Eurofer97 specimen of 19.8 dpa exhibited about 1% elongation at RT, and the
MANET-II specimen of 19.8 dpa presented more than 2% elongation at 300 °C. A noteworthy
observation is that there were many secondary cracks on the fracture surfaces of the Eurofer97 and
MANET-Il specimens, although the fracture surfaces were dominant with intergranular and
transgranular features. The secondary cracks were mostly along grain boundaries. The formation
and opening of secondary cracks may contribute to the main part of the elongation of the
specimens.

4.4 Deformation microstructure and fracture mechanisms

In subsections 3.3.2 and 3.3.3, the deformation microstructures of irradiated FM steels have been
presented in details. Dislocation tangles and cells formed during plastic deformation are hard to be
distinguished from the pre-existing dislocation structures in FM steel. They are formed by classical
mechanisms of dislocation nucleation, propagation and accumulation. Phenomenological laws based
on dislocation dynamics of the strain-hardening were already used and shown to reproducing well
the experimental curves of FM steels [174]. They will not be discussed here. Only the deformation
mechanisms consisting of dislocation motion in defect free channels and deformation twinning will
be discussed in this section.

4.4.1 Relationship of defect free channels with deformation and fracture

Defect free channels were only observed in the region close to the necking area of the F82H
specimen (K19) irradiated at 15.2 dpa/1305 appm He and tested at 250 °C, and of MANET-II
specimen irradiated at 11.1 dpa and tested at room temperature. The K19 specimen fractured in
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relatively ductile mode but without strain-hardening. This behavior was significantly different from
F82H specimen (K22) irradiated in similar irradiation condition (15.8 dpa/1350 appm He) that failed
totally brittle in the elastic loading when tested at RT. In literature, most of the defect free channel
observations have been done in different fcc irradiated metals such as Cu, Au, Ni and austenitic
steels [21, 90-95, 100, 102, 103, 108, 175-177]. However, it is also been observed in bcc irradiated
metals: irradiated iron [46, 105], vanadium and vanadium alloy [22, 104]. To our knowledge, for FM
steels, defect free channels were observed only once in neutron irradiated F82H [106].

Defect free channels are responsible for plastic flow localization, and consequently of
inhomogeneous deformation, which is usually considered as the main cause for the observed loss of
ductility. The existence of defect free channels in relatively brittle sample is the signature of
dislocation activity and plastic deformation occurring in the neck region prior to failure. Although the
total elongation of the F82H specimen in which the channels were observed is only 4%, the
reduction area on the fracture surface is 25%, which means that the necking was localized in a small
volume. According to the SEM observations of fracture surface, plenty of shallow dimples were
observed. All these results attest that defect free channels do not lead to intergranular brittle
fracture but are rather related to the loss of elongation and ductility. Nevertheless, many
researchers consider that defect free channels are directly involved in intergranular cracking,
especially in irradiation assisted stress corrosion cracking (IASCC) research community. For instance,
Evrard and Sauzay [24, 178] studied the effect of dislocation channel on intergranular microcrack
nucleation during tensile deformation of pre-irradiated austenitic stainless steels. They performed
finite element computations within the framework of crystal plasticity, from which they showed the
influence of the geometry of the channel (width, length, orientation with respect to the grain
boundary) on the grain boundary stress field. The results of the simulations are further elaborated
into a micro-crack nucleation criterion of Griffith type, which properly describes the grain
boundaries characteristics on intergranular cracking irradiated austenitic stainless steels. In a review
article of Was et al. [23], it could not be concluded which of the emission or the termination of
dislocation channels at grain boundaries is most effective in inducing IGSCC. It was also outlined that
the exact role of localized deformation in IGSCC remains largely not understood.

In this work, the defect free channels do not seem to have a direct relation with the intergranular
fracture. They certainly correlate to some extend with the loss of ductility following irradiation, but
their exact role in the ductility reduction remains in all cases difficult to quantify. Indeed, the overall
plastic behavior of the irradiated FM steels is a very complex problem that cannot be reduced to a
simplistic view considering that the plastic deformation strictly occurs in the defect-free channels.
For instance the interaction between different channels, the density of channels and its evolution
with strain have to be taken into account, as well as the ferritic matrix surrounding the channels that
must deform to fulfill the displacement compatibility. In an attempt to address these issues, a two
dimensional finite element model was developed by Odette et al. [179] where soft bands where
imbedded in a stronger matrix. In particular, the authors pointed out that flow localization in defect-
free channel is not a prerequisite to explain the low uniform elongation of irradiated materials and
that a complete and comprehensive description of the reduction of the uniform elongation must
take into account the concurrent deformation of the strong matrix and soft channels.

The exact role of defect free channels in the irradiated FM steels can be summarized as follows. The
intersection of these soft bands and grain boundaries can indeed cause large stress field nearby
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grain boundaries. These large stresses conjugate with elemental segregation and helium or
hydrogen distribution along grain boundaries produced by transmutation can weaken the strength
of grain boundaries. These combined effects on the material may cause intergranular fracture as
shown by some researcher. However, for the irradiation conditions where we observed defect-free
channels, no intergranular fracture took place, indicating that they mainly play a role in plastic
deformation.

4.4.2 The nucleation conditions of deformation twinning in FM steels and its effect on brittle fracture

One of the most interesting observations of this work is that deformation twinning occurs
underneath the fracture surfaces of the completely brittle fractured samples including the 15.8 dpa
F82H specimen tested at RT, the 19.6 dpa F82H specimen tested at 300 °C and the 19.8 dpa
Eurofer97 specimen tested at RT. The F82H specimens with larger grain size (86 um) fractured in the
elastic regime without measurable macro-plasticity and with totally intergranular and cleavage
fracture surface, while the Eurofer97 specimen with smaller grain size (16 um) fractured at about 1%
of elongation after yielding and with fully intergranular and cleavage fracture surface as well. So far,
the deformation twinning has been commonly observed in irradiated austenitic steels by different
investigators [103, 107, 109, 175-177]. However, to our knowledge twinning has never been
observed in irradiated FM steels. We also emphasize that, up to now, twinning was found only at
high dose obtained in spallation environment.

We recall that the creation of a twin region is a two-step process involving the nucleation of a small
twin followed by its growth. In general, the critical event for twinning is nucleation that usually
necessitates a much lower stress than that for propagation [180].

Twin-nucleation:

The different models proposed to predict the twinning stress in bcc metals and alloys lead to a very
large difference in the twinning stress value. For instance, Ojha et al. [181] provides the twinning
stress in Fe calculated with five different models that was found to range from 430 MPa to 7050
MPa. All these models invoke the stacking fault energy (in bcc alloys, the stacking refers to the {112}
planes) that can be, depending on the model considered, either the stable stacking fault energy, the
unstable stacking fault energy, or the twin boundary migration energy. These authors developed a
model to calculate the general plane fault energy (GPFE) from atomistic simulations of Fe, Fe-50%Cr,
Fe-25%Ni and Fe-3%V. To calculate the twinning stress, an initially dissociated 1/2<112> on three
{112} planes is considered that glide under the application of a stress on their respective slip until
the two trailing dislocations cross slip onto two slip planes parallel to that of the leading partial
dislocation creating a twin nucleus. By taking into account the line energy of the partial dislocation,
the interaction energy between them and the work done by the applied stress, the critical stress for
twin nucleation was determined. A very good agreement was found between the calculated
twinning stress and the experimentally determined one for all the materials mentioned above. These
results are presented in Fig. 4.4. We used this plot to make a rough estimate of the twinning shear
stress in our FM steel, which we assume to lie between the value of Fe and Fe-50%Cr. The plot in Fig.
4.5 indicates that the critical twin nucleation effective shear stress Ty nu is about 200 MPa. This

value needs to be converted into the critical applied uniaxial tensile stress for twin nucleation Gu nuc
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by considering a geometrical Taylor's factor and by adding the athermal long range component o,
as:

Gtw,nucl = MT Ttw,nucl + Gath (47)

with a Taylors' factor of 3, and oy, of about 500 MPa for FM steels as reported by Spatig et al. [174].
The critical applied uniaxial tensile stress for twin nucleation reads then 1100 MPa. With such a high
stress value, it is clear that deformation twinning can dominate deformation only in some extreme
conditions, such as low temperature and/or high strain rate [113-119], for which the critical stress
for slip is significantly greater than 1100 MPa. It is clear that this estimated stress value for twin
nucleation only gives an indication of the stress level needed to trigger twining in FM steels. It is
noted that this stress corresponds to the yield stress measured by tensile stress in Eurofer97 at
loading rate of 10 s™, which was found to be 1100 MPa. We conclude that the transition between

slip and twinning in unirradiated should occur at temperature close to LN2 temperature where
dislocation slip occurs.
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Fig 4.4: Experimental and calculated twinning nucleation critical shear stress for Fe and Fe-based alloys,
according to [181].

In terms of the applied tensile stress, the critical condition for twinning initiation in irradiated
specimens must be different from those in unirradiated specimens, for the reason explained below.
At first glance, the occurrence of twinning in some irradiated specimens appears contradictory with
Giw,nucl = 1100 MPa. Indeed, for two F82H specimens over three, namely specimens at 15.8 dpa
tested at RT and 19.6 dpa tested at 300 °C, the tensile stresses at brittle fracture were lower than
the estimated oy, nu. We recall that the tensile fracture stress of the 15.8 dpa specimen was 1033
MPa while it was 822 MPa for the 19.6 dpa specimen. The discrepancy between the estimated
Giw,nucl @t 1100 MPa and these experimental values is likely to be linked to the weakening of the grain
boundaries cohesion. As discussed in the Section 4.3 above, the accumulation of He on the grain
boundaries, beyond a bulk threshold of typically 500 appm He, results in a strong decrease of the
intergranular fracture stress oig*. Thus, for specimens at high dose and high helium content,
intergranular cracking may already occur in the elastic regime because the intergranular fracture
stress can become lower than the critical stress for normal dislocation slip deformation so that
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intergranular micro-cracking occurs. When intergranular micro-crack are formed, they act as local
stress intensity factors, raising the stress level at the crack tip o, according to the equation o, = Mo,
with M being in the range 1.5-3. Therefore, intergranular cracking must be sufficient to trigger
twinning through the stresss amplification at the micro-crack tips. In addition, since oy is greater
than oy ynirr, the local stress o, at the tip of a nascent intergranular micro-crack or of an already
existing micro-crack in irradiated FM steel will be larger than o, ynir according to the following scaling
law:

0-n,irr = on,unirr X (oy,irr/oy,unirr) (48)

Thus, the ratio (0y,i/0y,unirr) Provides an additional increase of the stress at the micro-crack tip in
irradiated as compared with unirradiated material. The envisaged mechanisms are depicted in (see
Fig. 4.5), where an iso-stress contour for the normal stress component to the crack plane is
qualitatively shown as well as the twins that form in the crack wave. Either the twins form in the
process zone as a result of the very high stress field and strain gradient, which needs to be
accommodated (Fig. 4.5 left), or they initiate at the interface between a crack and a precipitate (Fig.
4.5 right). Note that such a process involves a running crack and consequently has to be regarded as
a highly dynamic process. It is also well known that the high stresses and strains are localized in a
small zone around the crack. In other words, large stress and strain gradients exist ahead of the
crack tip. So the twins nucleate very close to the crack and propagate away from the crack tip over a
small distance. The observation of twin configuration in Fig. 3.33 strongly supports the view that the
process of nucleation takes place during crack propagation. The twins appear wider close to the
crack curve than further away, which shows that the twin propagated from the crack surfaces inside
the material, all along the crack wake.

Twin-propagation:

It is well known that the stress to propagate a twin is significantly lower than that to nucleate it. So
when the conditions for twin nucleation are met, the stress to overcome the irradiation-induced
obstacles by the propagation partial dislocation should be sufficient. Since twining deformation
involves the propagation of a single partial dislocation per glide plane, the irradiation-induced defect
cannot be completely destroyed. It is indeed believed that the clearing of the defects requires the
sweeping of many dislocations. This is consistent with our current observation in Fig. 3.35 revealing
that both defect clusters and helium bubbles still exist in the twinning bands. Furthermore, for
helium bubbles, for instance, the average size and number density (1.82 nm/1.04E+24m™) are
approximately similar as those in the parent matrix (1.93 nm/1.07E+24 m) in 19.6dpa K20
specimen, whereas, for defect clusters, number density and nature of defect clusters are hard to be
determined in this study because of very thin thickness of the bands (34 nm in
average).Consequently, in irradiated metals, the critical stress for the normal dislocation slip
deformation depends on the required stress to overcome the pinning of irradiated defects, while the
critical stress for the twinning deformation depends on the required stress to nucleate the first
stacking fault.
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Twinning-induced cracking:

From the discussion on twin-nucleation, the sequence of event proposed for the irradiated material
is: 1) formation of intergranular micro-cracks followed by, 2) formation of the twins in the process
zone around the micro-crack tip. Once twins are formed, they can act as micro-crack initiator as
suggested by the observations in Fig 3.30, where cracks resulting from the interaction of a twin with
large precipitates/carbides at prior austenite grain boundaries. The existence of such micro-cracks
indicates that twinning is likely to induce additional micro-cracking as explained schematically in Fig.
4.5. In polycrystals, each grain is constrained by its neighboring grains through grain boundaries. A
twin formed in grain 1 interacts with the corresponding GB. To accommodate the lattice rotation
caused by twinning in grain 1, the GB is subjected to a displacement A proportional to the twin width
[126, 127]. However, plastic deformation in grain 2 and in the adjacent to the twin boundary is
limited since the dislocations are strongly pinned by irradiation-induced clusters and helium bubbles
in high dose specimens. To fulfill the displacement continuity at the grain and twin boundaries
without plasticity, the displacements are essentially elastic and lead to high stress in GB .The stress
increases as the twin in grain 1 widens, until the GB is pulled open to nucleate a GB crack [126].
Moreover, compared with nanocrystalline materials or the low temperature testing of unirradiated
materials [118, 119, 127, 132, 137, 139, 182], this high stress effect acts synergistically with the
weakening of the GB due to helium accumulation and/ or element segregation caused by irradiation.
Therefore, particularly for the specimens (15.8 dpa and 19.6 dpa F82H and 19.8 dpa Eurofer97 in this
study) irradiated to high dose with high helium contents, the crack opening is facilitated due to the
combined effects of stress concentration induced by twinning-GBs intersection and weakening of
GBs strength caused by irradiation.
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5. Conclusions

Three different Ferritic/Martensitic (FM) steels F82H, Eurofer97 and Manet Il were irradiated to
10.7-19.8 dpa and 850-1750 appm He at temperatures of 166 to 304 °C in STIP-II. In order to
investigate the fracture behaviors and the embrittlement of FM steels induced by combined effect of
displacement damage and helium after spallation irradiation, tensile tests of the irradiated
specimens were conducted at different temperatures. Furthermore, successive tensile tests together
with SEM observations were performed at 25 °C on irradiated F82H and MANET Il steels to study
micro-crack initiation and propagation features. Hardness was measured on the electropolished
tensile specimens before testing. TEM-lamella samples were prepared by FIB in undeformed regions
of the F82H specimens of different doses and the 19.8 dpa MANET Il and the 19.8 dpa Eurofer97
tensile specimens to investigate irradiation induced microstructural changes such as defect clusters
and helium bubbles, and in deformed areas, particularly directly underneath fracture surfaces, of the
specimens to observe the deformation microstructure.

Mechanical properties of FM steels after irradiation

The tensile test results show that all the irradiated specimens exhibit significant hardening and loss
of ductility as compared with the unirradiated specimens. The F82H specimen of 10.7 dpa possesses
pretty large total elongation at RT, although uniform elongation decreased to less than 1%. Fracture
surface is dominant in dimple-ductile. The 15.8 dpa F82H specimen tested at RT failed in elastic
regime without any plastic deformation, in a mixed transgranular cleavage and intergranular
fracture surface. The specimen of 15.2 dpa F82H specimen tested at 250 °C show a small amount of
ductility with a mixed ductile and quasi-cleavage fracture mode, while the 19.6 dpa F82H specimen
tested at 300 °C present fully embrittlement with intergranular dominant fracture mode.

Compared with F82H, the brittle fracture mode in MANET Il and Eurofer97 is different. The
Eurofer97 specimen of 19.8 dpa presented about 1% elongation at RT with a mixed intergranular
and cleavage fracture mode, and the MANET specimen of 19.8 dpa demonstrated more than 2%
elongation at 300 °C with an intergranular dominant fracture mode together with a small portion in
dimple fracture mode. The difference is attributed to the smaller grain size in Eurofer97 and MANET
Il and the main part of elongation is speculated to be induced by many secondary cracks.

Vickers hardness was measured on the tensile specimens before tensile testing. The hardness results
demonstrate a clearly increasing trend with increasing irradiation dose and helium content in F82H,
Eurofer97 and MANET Il specimens. Especially, the increase of hardness was still not saturated at the
highest dose (20.4 dpa), which is attributed to the helium effect on hardening.

The fracture behaviors could be interpreted with the combined effects of the pronounced intra-
granular hardening induced by defect clusters and helium bubbles and the helium weakening on the
grain boundary strength.
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Micro-crack initiation and propagation behavior

The successive small punch (SP) tests accompanying with SEM observations performed on
unirradiated T91 indicated that micro-cracks initiated from the inclusions when tested at RT,
whereas on grain boundaries (GBs) or lath boundaries (LBs) when tested at LN2 temperature.

The micro-crack initiation on side surfaces was observed in irradiated F82H and MANET Il tensile
specimens during successive tensile testing. This crack initiation is attributed to the brittle layer
produced by EDM. In the F82H specimen of 11.1 dpa the cracks were arrested by GBs, while in the
specimen of 15.8 dpa fast crack propagation resulted in fracture in elastic regime and the crack
propagation could not be captured during the test.

After removing about 20 um thickness from each surface by electro-polishing, first cracks were just
observed on 4.6% strain level in MANET Il specimen of 11.1 dpa during successive tensile testing.

As-irradiated microstructures of FM steels

The as-irradiated microstructure of F82H specimens of 12.3 to 20.4 dpa was investigated by TEM. All
the TEM samples were prepared from un-deformed region of tensile specimens.

Small defect clusters were observed in the 12.3 dpa specimen, together with few large defect
clusters with loop-shape. In the specimens of 17.2, 17.7 and 20.4 dpa, many large dislocation loops
were seen besides the small clusters. In addition, helium bubbles were observed in all of these four
specimens. The average size of defect clusters (including loops) increases from 4.2 nm to 11.8 nm
when dose increasing from 12.3 dpa to 20.4 dpa, whereas the number density does not show a
significant change.

Helium bubbles are very small in the specimen of 12.3 dpa, 1015 appm He irradiated at 175 °C. The
average size of visible helium bubbles is about 1 nm. The size of bubbles increases with irradiation
dose and is about 1.93 nm in specimen irradiated to 20.4 dpa, 1795 appm He at 317 °C. The values of
number density of helium bubble in specimens of 12.3 dpa and 17.2 dpa are believed to be
underestimated due to the invisibility of very tiny bubbles (<1 nm) in the specimen of 12.3 dpa and
the reduced contrast in the relatively thick region (about 50 nm) of the specimen of 17.2 dpa.

The barrier strength of defect clusters was assessed as 0.37+0.1 in dispersed barrier model based on
the TEM results of the irradiated F82H specimens.

Defect-free channeling in irradiated FM steels

The localized deformation bands as defect free channels along {110} and {112} slip plane were
observed in the F82H specimen of 15.2 dpa tested at 250 °C defect free channels with {110} slip
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plane were were observed in the MANET Il specimen irradiated to 11.1 dpa tested at RT. The width
of the channels is approximate 100 nm.

Deformation twinning in brittle fractured irradiated FM steels

Interestingly, deformation twins were observed in the 15.8 and 19.6 dpa F82H, 19.8 dpa Eurofer97
fractured samples. For F82H specimen, twins were observed underneath both intergranular and
cleavage fracture surface, while it was only observed underneath intergranular fracture surface in
Eurofer97 specimen. The detailed features are as follows.

e The twins were observed in the regions both directly under fracture surfaces and a couple of
micrometers away from fracture surface. There was only one twinning system activated in
the same prior austenite grain.

e The twinning plane was identified as (112) which is the typical twinning plane in BCC metals
and the thickness varied from 10 to 190 nm with an average thickness of 34 nm.

e The thickness of twins becomes thinner gradually with distance away from a fracture surface
and stopped in the matrix finally, which indicates that these twins were initiated on the
fracture surface.

e Twins were seen to be arrested in the vicinities of grain boundaries and large precipitates,
where it could not propagate to the adjacent grain. However, twins could penetrate
martensitic lath boundaries.

o Defect-clusters and helium bubble structures observed inside the twinning bands were
similar to that outside twins. For instance, in the F82H specimen irradiated to 19.6 dpa, 1740
appm at 305 °C and tested at 300 °C, the average size and number density of helium bubbles
inside of the twinning band (1.82 nm/1.04E+24 m™) are approximately the same as those in
the parent matrix (1.93 nm/1.07E+24 m™).

The nucleation of deformation twins is attributed to the high stress level caused by irradiation
hardening combined with stress concentration in front of crack tip. Micro-crack initiation was
observed to be induced by the twin-boundary or twin-precipitates interaction, which is
contemplated to be facilitated due to the combined effects of stress concentration induced by twin-
GB intersection as well as the weakening of the grain boundaries cohesion induced by helium.
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