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Abstract
Open flows, such as wakes, jets, separation bubbles, mixing layers, boundary layers, etc.,

develop in domains where fluid particles are continuously advected downstream. They are

encountered in a wide variety of situations, ranging from nature to technology. Such configu-

rations are characterised by the development of strong instabilities resulting in observable

unsteady dynamics. They can be categorised as oscillators which present intrinsic dynamics

through self-sustained oscillations, or as amplifiers, which exhibit a strong sensitivity to exter-

nal disturbances through extrinsic dynamics. Over the years, different linear and nonlinear

approaches have been adopted to describe the dynamics of oscillators and amplifiers. How-

ever, a simplified physical description that accurately accounts for the nonlinear saturation of

instabilities in oscillators as well as that of the response to disturbances in stable amplifier

flows is still missing.

In this thesis, this question is addressed by introducing a self-consistent semi-linear model.

The model is formally constructed by a set of equations where the mean flow is coupled to

a linear perturbation equation through the Reynolds stress. The full nonlinear fluctuating

motion is thus approximated by a linear equation. The nonlinear dynamics of oscillators

is studied in the cylinder wake, where the most unstable eigenmode of finite amplitude is

coupled to the instantaneous mean flow for different oscillation amplitudes. This family of

solutions provides an instantaneous mean flow evolution as a function of an equivalent slow

time. A transient physical picture is formalised, wherein a harmonic perturbation grows and

changes the amplitude, frequency, growth-rate and structure due to the modification of the

instantaneous mean flow by the Reynolds stress forcing. Eventually this perturbation saturates

when the flow is marginally stable. In contrast to standard linear stability analysis around

the mean flow, the iterative solution of the model provides a priori an accurate prediction of

the instantaneous amplitude, frequency and growth rate, as well as the flow fields, without

resorting to any input from numerical or experimental data.

Regarding noise amplifiers, the nonlinear saturation of the large linear amplification to ex-

ternal disturbances is studied in the framework of the receptivity analysis of the backward

facing step flow. The self-consistent model is first introduced for harmonic forcing and later

generalised to stochastic forcing by reformulating it conveniently in frequency domain. The

results show an accurate prediction of the response energy as well as the flow fields. Hence,

a similar picture is revealed, wherein the Reynolds stress dominates the saturation process.

Despite the difference in the dynamics of the described flows, they share the same nonlinear

saturation mechanism: the mean flow distortion.
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Résumé
Les écoulements ouverts, tels que les sillages, jets, bulles de séparation, les couches de mé-

lange, les couches limites, etc., se développent dans les domaines où les particules de fluide

sont advectées en aval. On les rencontre dans une grande variété de situations, allant de la

nature à la technologie. De telles configurations sont caractérisées par le développement de

fortes instabilités résultant en une dynamique instationnaire. Les écoulements peuvent être

divisés en deux classes : les oscillateurs qui présentent une dynamique intrinsèque à travers

des oscillations auto-entretenues, et les amplificateurs, qui présentent une forte sensibilité

aux perturbations extérieures à travers une dynamique extrinsèque. Au fil des ans, différentes

approches linéaires et non linéaires ont été adoptées pour décrire la dynamique des oscilla-

teurs et des amplificateurs. Toutefois, une description physique simplifiée qui représente de

façon précise la saturation des instabilités non linéaires dans les oscillateurs, ainsi que celle

de la réponse à des perturbations dans les écoulements stables, comme les amplificateurs,

manque encore à ce jour.

Dans cette thèse, cette question est abordée par l’introduction d’un modèle semi-linéaire

auto-cohérent couplé. Le modèle est formellement construit par un ensemble d’équations où

l’écoulement moyen instantané est couplé à une équation de perturbation linéaire à travers le

tenseur de Reynolds. Le champ de vitesse fluctuant nonlinéaire est donc approximé par une

équation linéaire. La dynamique d’un oscillateur nonlinéaire est étudiée.

Le sillage d’un cylindre est étudié comme prototype d’oscillateur non-linéaire, où le mode

propre le plus instable est couplé pour différentes amplitudes finies. Cela fournit une variation

quasi-statique de l’écoulement moyen instantané en fonction d’un temps lent équivalent.

Une image physique transitoire est formalisée, dans laquelle une perturbation harmonique

grandit et change d’amplitude, de fréquence, de taux de croissance et de structure en rai-

son de la modification du champ moyen instantané par le forçage du tenseur de Reynolds.

Cette perturbation sature finalement lorsque le écoulement moyen est marginalement stable.

Contrairement à l’analyse de stabilité linéaire standard autour de l’écoulement moyen, la

solution itérative du modèle fournit a priori une prédiction précise de l’amplitude instantanée,

de la fréquence et du taux de croissance, ainsi que des champs d’écoulement, sans avoir

recours à des données simulées ou expérimentales.

En ce qui concerne les amplificateurs de bruit, la saturation nonlinéaire de la forte amplifica-

tion à des perturbations externes est étudiée dans le cadre de l’analyse de la réceptivité de

l’écoulement sur une marche descendante. Le modèle auto-cohérent est d’abord introduit

pour un forçage harmonique et ensuite généralisé à un forçage stochastique, en le reformulant
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dans le domaine de fréquentiel. Les résultats montrent une prédiction précise de la réponse

ainsi que les champs d’écoulement. Par conséquent, la norme d’une physique similaire est

décrite, dans laquelle le tenseur de Reynolds domine le processus de saturation. Malgré la

différence dans la dynamique des écoulements décrits, ceux-ci partagent le même mécanisme

de saturation non linéaire : la distorsion de écoulement moyenne.

Mots clefs : Écoulements Ouverts, Écoulement Cisaillé, Instabilité Hydrodynamique, Dyna-

mique Non Linéaire, Réponse Harmonique, Dynamique Stochastique
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1 Introduction

1.1 Open flows

Open flows are characterised by fluid particles continuously advected downstream; entering

and leaving the fluid domain. A common feature of open flows is that they present strong

instabilities (Drazin & Reid (1981); Drazin (2002); Chomaz (2005); Charru (2011)). The concept

of stability of a physical state of a system was clearly expressed already back in the nineteenth

century by Clerk Maxwell (see Campbell & Garnett (1882)).

[...] When the state of things is such that an infinitely small variation of the present state

will alter only by an infinitely small quantity the state at some future time, the condition

of the system, whether at rest or in motion, is said to be stable; but when an infinitely

small variation in the present state may bring about a finite difference in the state of the

system in a finite time, the condition of the system is said to be unstable. [...]

Therefore, the unstable nature of open flows yields a high sensitivity to perturbations that

results in an unobservable unstable steady state (Drazin (2002)), and an observable unsteady

dynamics with time varying coherent structures that eventually evolve into turbulence.

Open flows encompass many different configurations, i.e. wakes, jets, separation bubbles,

mixing layers, Poiseuille flow, Couette flow, boundary layers, and also Rayleigh-Benard con-

vection with through flow or Taylor-Couette flow with axial advection. These archetypes

characterise open flows that are encountered in a wide variety of situations, ranging from

nature to technology. Some examples of unstable open flows that we can find in nature are the

shear layer instability that appears due to wind cross flow as visualised by clouds in Fig. 1.1(a)

or the well known von-Karman vortex street that appears due to a strong wind passing around

an island as visualised by clouds in Fig. 1.1(b). Other examples are found in flows passing

around basic geometrical shapes like the von-Karman vortex street that appears in the flow

around a cylinder illustrated in Fig. 1.1(c) or the flow around a sphere depicted in Fig. 1.1(d).

These simplified configurations serve as canonical study cases that are used to describe and

1



Chapter 1. Introduction

Figure 1.1 – Open flows in nature and technology. (a) Cloud visualisation of a shear layer
flow. (b) Von-Karman vortex street visualised by clouds around an island. (c) Unstable flow
around a cylinder, the Von-Karman vortex street is visualised by dye (Sadatoshy Taneda in
Van Dyke (1988)). (d) Flow passing around a sphere (Werle (1980); Van Dyke (1988)). (e,f)
Smoke visualisation Unstable separated flow around an airfoil (GmbH (2010)) with industrial
application in wings. (g,h) Smoke visualisation of a jet flow (Crow & Champagne (1971)) with
industrial application in turbojets.

understand the physical behaviour of the flow in more complex geometries encountered in

practical problems like the flow around an airfoil illustrated in Fig. 1.1(e,f) or the jet flow

shown in Fig. 1.1(g,h) .

The ubiquitous nature of these flows highlights the importance of understanding their dynam-

ics. The description of the dynamics should consider:

2



1.2. Linear dynamical characterisation and non-normality in open flows

• the spatial evolution of the base or mean flow (in general inhomogeneous)

• the perturbations introduced

• the evolution and advection of the perturbations

• the control of the instability, what enhances or reduces the unstable behaviour

• the nonlinearities involved intrinsic to the Navier-Stokes equations (NSE)

among others (Chomaz (2005)). These are some of the questions that need to be addressed in

order to improve the prediction of natural phenomena as well as to control the flow behaviour,

advantageous for technology development.

1.2 Linear dynamical characterisation and non-normality in open

flows

Open flows characterised by their unstable nature can be categorised as oscillators, which

present intrinsic dynamics (self-sustained oscillations), or as amplifiers, which exhibit a strong

sensitivity to external disturbances through extrinsic dynamics (noise driven perturbations)

(Chomaz (2005); Huerre & Monkewitz (1990)). The dynamical analysis of the evolution of

the perturbations can be approached from two different point of views, either local, at each

streamwise location or global, in the whole domain.

Local stability analysis

The local point of view is natural for weakly nonparallel flows which assume a steady base or

mean flow that varies slowly on a long length scale when compared to the shorter instability

waves (Schmid & Henningson (2001); Chomaz (2005); Charru (2011)). Then, locally at each

streamwise station of the slowly varying steady base flow, the evolution of the perturbation is

represented as a superposition of instability waves of the associated parallel (homogeneous)

base flow, illustrated in Fig. 1.2 (Drazin & Reid (1981)). Therefore, the linear stability at

each station is based on the evolution of the response to an impulse perturbation of the

linearised equations that describe the flow dynamics. This response exhibits three different

types of behaviour as illustrated in Fig. 1.3 . The flow is linearly stable when any infinitesimal

perturbation decays in time to zero for t →∞ (Fig. 1.3(a)). Otherwise, if the infinitesimal

perturbation grows then the flow is linearly unstable. For an unstable flow two types of

instability can be distinguished, formalised as absolute and convective instability, depending

on the competition between the local instability and the basic advection (Bers (1975); Huerre

& Monkewitz (1985)). A flow is convectively unstable when the perturbation, in addition to

being amplified, is advected downstream and moves far from the initial point (Fig. 1.3(b)). In

this case the advection of the base flow is stronger than the instability growth. On the other

hand, a flow is absolutely unstable when the impulse grows to infinity at the initial location

due to a stronger growth of the instability than the advection (Fig. 1.3 (c)).

3



Chapter 1. Introduction

Figure 1.2 – Local stability analysis studies the development of instability waves independently
at each station in the streamwise direction assuming a parallel base flow U0(y ; X ). (a) Wake
behind a cylinder at Re = 105 (experiment of Sadatoshy Taneda illustrated in Van Dyke (1988)).
(b) Synthetic weakly nonparallel wake to model real wakes (Pier & Huerre (2001)).

Figure 1.3 – Evolution in the space-time plane (x, t) of a perturbation located close to x = 0
at time t = 0, for a one dimensional base state with positive advection from left to right. The
base flow is (a) stable; (b) convectively unstable; (c) absolutely unstable. Image extracted and
modified from (Charru (2011)).

Global stability analysis

In the global approach the instabilities and the base flow have no separated length scales

and the dynamics of the perturbation result from the interactions between global modes

extended over the whole physical domain. The global behaviour of the flow depends on

the interactions of the local behaviour of different zones; stable, convective or absolutely

unstable. Thus an open flow can be globally stable but locally convectively unstable, since

perturbations are continuously advected while growing (see Fig. 1.4(b)). Such flows behave

as amplifiers with no intrinsic instability and presenting high sensitivity to external forcing

(Chomaz (2005); Schmid (2007)). An example of an amplifier is the jet flow, as illustrated in

4



1.2. Linear dynamical characterisation and non-normality in open flows

Fig. 1.1(g) and Fig. 1.4(b) where small harmonic excitations result in large coherent structures

(Crow & Champagne (1971)). In contrast, a globally unstable flow will present a large enough

region of local absolute instability (see Fig. 1.4(a)). In general, this kind of open flow displays

intrinsic nonlinear dynamics and develops self-sustained oscillations, (Huerre & Monkewitz

(1985); Chomaz et al. (1988); Chomaz (2005)), for example, the flow behind a cylinder. This

resonance results in a clear peak in the frequency spectrum of the flow in the wake representing

the frequency of the vortex shedding (see Fig. 1.4(c)). In contrast, amplifiers present a broad

frequency spectrum without any specific frequency selection (Nichols & Lele (2010)); however,

there is a frequency region where the external noise amplification is stronger as appreciated in

Fig. 1.4(d).

Traditionally, linear stability analysis is concerned with a quantitative description of the flow

dynamics involving the evolution to the infinite time horizon of the perturbations. The

description of this long term behaviour is inferred from the eigenvalues and eigenmodes of

the linear operator L , that is obtained from the linearised Navier-Stokes equations around

a steady solution or base flow. The operator L governs the linear dynamics of the flow

formalised as

du

d t
=L u, (1.1)

where u is the state vector of the flow field. The modal analysis is able to predict the onset

of instabilities in supercritical flows or oscillators, when a dominant unstable eigenmode

appears. The unstable mode describes the initial structure and frequency of the perturbation

as it starts growing (see Fig. 1.4(e) (Theofilis (2011))), before its amplitude is too big and

nonlinear interactions start to be important (Barkley (2006)). However, modal analysis fails

to describe the dynamics of stable flows like amplifiers showing stable spectrum with no

predominant eigenmodes (see Fig. 1.4 (f) and Garnaud et al. (2013)). The amplifying potential

of these flows is best understood by drawing attention to the non-normality of the linear

operator L , produced by the strong streamwise advection of the base flow, or steady solution

of NSE. This feature dictates the nature of the dynamics in self-sustained oscillators and noise

amplifiers.

Non-normality

Recently it started to become clear that for non-normal linear operators, the spectrum is

not sufficient to characterise the dynamics of the flow (Farrell & Ioannou (1996); Trefethen

et al. (1993); Schmid & Henningson (2001); Chomaz (2005); Schmid (2007)). It is well known

that since the eigenmode basis is not orthogonal, then even for a stable operator, whose

eigenmodes all decay in time, small initial perturbations may experience very large transient

growth. The time evolution of the perturbations is dictated by the solution of the homogeneous

equation (1.1) under initial perturbations. Therefore, the dynamics of the least stable mode is

in many cases entirely irrelevant to the temporal behaviour of the linear system at finite time.
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Figure 1.4 – Comparison of oscillators and amplifiers in their main characteristics. (a) Absolute
(AU) and convectively (CU) unstable regions in an oscillator, there is a large enough absolutely
unstable region to present global instability as in the flow around a cylinder for Re=140 (figure
modified from Van Dyke (1988)). (b) Amplifiers present a convectively unstable region that
amplifies strongly external noise even for a globally stable flow as in a turbulent jet (figure
modified from Van Dyke (1988)). (c) Power spectral density function extracted from a signal
in the cylinder wake, showing a clear peaked frequency associated to the von-Karman vortex
street (Pier (2002)). (d) Power spectral density function extracted from a signal in a turbulent
jet, showing a response to noise in a preferred region in frequency (Barré et al. (2006)). (e)
Global linear stability analysis around an unstable base flow in the cylinder flow showing a
clear unstable mode. (f) Global linear stability on the mean flow of a turbulent jet showing a
flat stable spectrum without any unstable mode (Nichols & Lele (2010)).

Consequently one of the standard approaches to characterise the dynamics in amplifiers is to

look at initial disturbances which lead to the maximum growth and follow the evolution of

these perturbations in time. The maximally amplified initial conditions are described by the

leading singular vectors of the time propagator eL t , (Trefethen et al. (1993); Farrell & Ioannou

(1996); Schmid & Henningson (2001); Schmid (2007)).

Furthermore, non-normality leads also to an extreme sensitivity to forcing. This forcing can
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be created due to different sources like free-stream turbulence, wall roughness, or other non-

smooth geometries, body forces, or even neglected terms, such as nonlinearities. The response

to harmonic forcing at frequency ω is governed by the resolvent operator R = (iωI +L )−1 for

a stable L . It corresponds to the particular solution of the linear equation

du

d t
=L u + f e iωt , (1.2)

forced by f . When L is non-normal the response to forcing is much larger than the least

damped eigenvalue and is given by its pseudospectrum (Schmid & Henningson (2001);

Chomaz (2005); Schmid (2007); Farrell & Ioannou (1996)). In addition, the spatial struc-

ture of the response does not resemble the shape of the forcing. The strong sensitivity to noise

in amplifiers is thus interpreted by the non-normality of the operator L . The study of the

response to forcing or receptivity analysis is common for noise amplifiers, for which one of

the relevant procedures is to find the optimal harmonic forcing structures that at frequency

ω lead to the most energetic responses. The optimal forcing and corresponding response

structures are provided by the singular vector of the resolvent operator R, as described in

Farrell & Ioannou (1996); Schmid (2007); Garnaud et al. (2013); Dergham et al. (2013); Boujo &

Gallaire (2015) among others.

Large transient growth and response to forcing are thus interpreted by the non-normality

of the operator L , whose direct eigenmodes are not orthogonal to each other and whose

direct and adjoint normal bases do not coincide (Chomaz (2005); Marquet et al. (2009);

Schmid (2007)). The non-normal behaviour can be characterised by two different physical

mechanisms (Marquet et al. (2009)). The lift-up non-normality differentiates the direct and

adjoint modes by their components: the direct is dominated by the streamwise component and

the adjoint by the cross-stream component, common in parallel flows. The convective non-

normality results in a different localisation of the direct and adjoint global modes, downstream

and upstream respectively.

Finally, the non-normality of the linear operator L creates a large sensitivity of its spectrum

to perturbations in the operator, ∆L . In other words, small perturbations in the operator

∆L may induce very large variations in the spectrum (Trefethen et al. (1993); Schmid &

Henningson (2001); Chomaz (2005)). Therefore, small variations in the base flow around

which the linear operator L has been computed may create large variations in the linear

dynamics, arguing for the importance of sensitivity analysis (e.g.Bottaro et al. (2003)), which is

also relevant for flow control (Camarri (2015)).

As a final note, the strong noise sensitivity coupled to the sensitivity of the linear operator to

perturbations legitimise the relevance of nonlinear studies. In other words, small disturbances

in the flow may lead to large responses which modify the base state around which the linear

operator L has been computed, and thus varying the spectrum of the non-normal operator

L that describes the dynamics of the perturbations, allowing the flow to escape from linearly

stable solutions in certain cases. This bypass mechanism has been postulated as an interpre-
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Figure 1.5 – Results from Barkley (2006). (a) Snapshot of the unstable vortex shedding, (b) base
flow and (c) mean flow vorticity contours. (d) Frequencies (Strouhal) and (e) growth rates as a
function of Reynolds number. In (d) frequency of the vortex shedding dark curve. Triangles
are obtained from the stability analysis around the mean flow, and thin line shows the stability
analysis around the base flow.

tation for the transition to turbulence in stable flows (Schmid & Henningson (2001); Schmid

(2007)).

1.3 Nonlinear dynamics of oscillators and amplifiers

There are many situations for which the linear analysis fails to describe the main characteristics

of the flow due to the intrinsic nonlinearity of the Navier-Stokes equations. Therefore, in this

section we will introduce some of the concepts that have been developed along the years

trying to describe the behaviour in flows for which the nonlinear dynamics plays a key role.

1.3.1 Oscillators

One of the most common supercritical flows is the wake flow that appears behind bluff bodies.

The flow develops a strong intrinsic instability resulting in a von-Karman vortex street (von

Karman (1911)), as illustrated in Fig. 1.1(b,c,e,f). An extensively studied prototype for bluff-

body wakes is the flow past a circular cylinder. The laminar flow becomes absolutely unstable

through a Hopf bifurcation for Reynolds number above Re > 47 (von Karman (1911); Jackson

(1987); Provansal et al. (1987); Williamson (1988)), defined as Re = U∞D/ν, where ν is the

kinematic viscosity, U∞ the free-stream velocity and D the cylinder diameter (see Fig. 1.5 (a)).
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1.3. Nonlinear dynamics of oscillators and amplifiers

Figure 1.6 – Sketch of the supercritical Hopf bifurcation. (a) sketch of the transition from
stable to unstable given by a positive growth rate σ at the critical Reynolds number Recr

and (b) sketch of the evolution with Reynolds number Re of the amplitude A of the periodic
fluctuations which is modelled by the Stuart-Landau amplitude equation (Stuart (1960)). (c)
Evolution of the amplitude of the fluctuation in time t extracted from the signal in the unstable
cylinder wake at Re = 48 (Dušek et al. (1994)).

As described in Fig. 1.4(c) the oscillations of the vortex street are dominated by a fundamental

frequency when compared to higher harmonics, even in the fully saturated regime (Dušek

et al. (1994); Pier & Huerre (2001); Pier (2002)).

The first natural approach is to try to describe the flow dynamics by linear stability analysis

around the base flow which is the solution of the steady NSE. Global stability analysis around

the base flow, depicted in Fig. 1.5(d) as thin line, provides an accurate frequency and spatial

structure prediction of the dynamics only close to the threshold, while it fails to predict the

frequency of the vortex shedding at Reynolds number beyond the critical value Re > 47 (Zebib

(1987); Jackson (1987); Pier (2002); Noack et al. (2003); Barkley (2006); Sipp & Lebedev (2007)).

However, stability analysis around the mean flow, defined as the time average value of the full

NSE solution, provides a more accurate description of the dynamics in terms of frequency

and spatial structure of the oscillations yielding a close to zero growth rate (Triantafyllou et al.

(1986); Hammond & Redekopp (1997); Pier (2002); Barkley (2006)), see Fig. 1.5(e), although

the saturation process and the amplitude of the oscillations are not described.

Nonlinear interactions and mean flow limitations

The incapability of the base flow linear stability analysis to predict the fluctuating frequency

seems to be related to the nonlinearity (Waleffe (1995)) captured by the Reynolds stress which

modifies the base flow into the mean flow, also reported in other flows by Maurel et al. (1995).

Hence the use of nonlinear simple models as the Stuart-Landau amplitude equation (Stuart

(1960)),

d A

d t
=λA− (µ+ν)A|A|2, (1.3)
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for a complex amplitude A and whose complex coefficients (λ,µ,ν) depend on the Reynolds

number ((Dušek et al. (1994); Sipp & Lebedev (2007)). These models are able to describe

qualitative aspects of the saturation of the instability. The Stuart-Landau amplitude equa-

tion is capable of describing the saturation mechanism in supercritical Hopf bifurcations

(Fig. 1.6(a,b)) as the flow passes from stable to unstable, providing an accurate estimation of

the time evolution of the instability amplitude as illustrated in Fig. 1.6(c) for the cylinder flow

at the critical Reynolds Recr = 48. The multiple-scale expansion study presented by Sipp &

Lebedev (2007), for the base flow at the critical Reynolds number, shows the relation between

the accurate description of the flow dynamics by the mean flow stability and the nonlinear

coefficients of the simple amplitude equation. Therefore it relates the nonlinearity hidden in

the mean flow through the Reynolds stress and the nonlinear saturation. A weakly nonlinear

mode expansion for different bodies has been carried out by Meliga et al. (2009a,b). However,

the perturbative nature of all these derivations limit their validity only very close to threshold.

The underlying dynamics are understood as a base flow that is globally unstable and therefore

develops an instability which grows and modifies the underlying mean flow (Maurel et al.

(1995); Zielinska et al. (1997)) through the Reynolds stress. This mean flow variation reduces

the instability growth rate, by means of the nonlinear Reynolds stress terms as suggested ini-

tially by Stuart (1958) and later, described in the work on the transient evolution of the cylinder

instability by Thiria & Wesfreid (2009) and Thiria et al. (2015). Eventually the perturbation is

saturated in a marginally stable periodic cycle with zero growth rate around a stable mean

flow in the spirit of Malkus (1956).

As described above, mean flow linear stability analysis includes part of the nonlinearities

gathered in the Reynolds stress term. That is why acceptable predictions in terms of frequency

and structure were obtained by performing mean flow stability analysis on high Reynolds

number turbulent wake flow using RANS and LES turbulent models applying local analysis in

Meliga et al. (2009c) and using the global approach in Meliga et al. (2012). However, when there

is a strong interaction between harmonics or the temporal spectrum is broad, the stability

around the mean flow fails (Meliga et al. (2009c, 2012)), which is interpreted as the lack of

nonlinear interaction between the fluctuation with itself in the mean flow stability. These

ideas are confirmed in Turton et al. (2015) where instabilities in thermosolutal convection are

reported. The mean flow stability of the traveling waves, characterised by a peaked temporal

power spectrum, yields an eigenvalue whose real part is almost zero and whose imaginary

part corresponds very closely to the nonlinear frequency. In contrast, linear stability on the

mean field of the standing waves, characterised by a broad power spectrum, yields neither

zero growth nor the correct nonlinear frequency. All these results suggest that the frequency

of any quasi-monochromatic oscillation can be predicted from its temporal stability of the

mean, a property coined RZIF (Real zero imaginary frequency) by L. Tuckerman in Turton

et al. (2015).
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1.3. Nonlinear dynamics of oscillators and amplifiers

Figure 1.7 – Sketch of the transient wake dynamics from Tadmor et al. (2011). The figure illus-
trates on the left insets the deformation between the base flow and the mean flow accounted
for by the shift mode, in vertical ∆a (Noack et al. (2003)), which is not contained in the basis of
the unstable base flow modes (a1a2). The unstable mode deformation along the transient is
depicted on the right insets.

Reduced order models

One of the motivations to understand in details how the fluid systems behave is to create

simpler models for flow control. These low-order models are addressed in the least-order

Galerkin framework (Noack et al. (2003); Tadmor et al. (2010, 2011)). Initially the models

are based on a fixed set of dominant coherent structures obtained from the linear dynamics

around the base flow. The range of validity of these simple models is restricted because they

ignore mode deformations during transients as it happens in the saturation of the cylinder

wake. These limitations are addressed by introducing the shift mode (Noack et al. (2003)) as

a least-order Galerkin representation of the mean flow variations as depicted in vertical in

Fig. 1.7, where the shift mode is represented out of the space of the base flow mode basis,

which is depicted as a horizontal plane. The described bilateral coupling between variations

in the fluctuation growth rate and mean flow variations in the NSE is described in Tadmor

et al. (2010). The low dimensional models based on proper orthogonal decomposition (POD)

(Noack et al. (2003) Tadmor et al. (2010) Tadmor et al. (2011)) are then able to predict the

mean flow behaviour as well as the transient from steady base flow to the developed periodic

oscillatory flow. The nonlinear structure of the Reynolds stress is described in terms of the

POD harmonics extracted from the mean flow providing a very good description of the system

dynamics.

Full nonlinear approach

All the pieces of work presented so far introduce the nonlinear terms a posteriori, resorting

to the exact DNS results to extract information of the nonlinear behaviour. In a different
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Figure 1.8 – (a) Shows the base flow of the synthetic two-dimensional wake. (b) Illustrates the
fluctuations of the von-Karman vortex street (c) Shows the energy evolution of the different
modes, illustrating the mean flow modification and the first harmonic as the most energetic.
Figures extracted from the work of Pier & Huerre (2001).

approach, looking back to the local stability introduced above, Pier & Huerre (2001) study the

nonlinear saturation and frequency selection of the vortex shedding on a synthetic weakly

non-parallel wake Fig. 1.8(a). From the previous study (Pier & Huerre (1998)) it is known that

the frequency of the whole nonlinear wave train described as a steep global mode is dictated

by the marginal stability criterion of the absolute real frequency at the local transition station

between convectively unstable and absolutely unstable (see Fig. 1.3 (a)). The relevance of the

study in Pier & Huerre (2001) is based on the a priori non-linear approach where interaction

of different modes at different wave numbers create a nonlinear dispersion relation, in the

context of temporal analysis. Imposing the selected frequency in the dispersion relation,

it is possible to obtain the correct wave number providing the fluctuating structure and

thus the description of the whole nonlinear dynamics. A detailed analysis of the dynamics

reveals that the mode corresponding to the zeroth wave number is associated to the mean flow

modification from the base flow created by the nonlinear Reynolds stress forcing. Furthermore,

observe how the full nonlinear saturated oscillations is well approximated by the first harmonic

around the mean flow, illustrated in Fig. 1.8(c) where the first harmonic clearly dominates

the fluctuating energy. This very same frequency selection criterion is applied to the cylinder

wake in Pier (2002) showing a fair estimation of the vortex shedding frequency, even in this

strongly non-parallel flow, although the linear stability around the mean flow performs better.

Summarising, the reported studies suggest the nonlinear Reynolds stress term and the first

harmonic of the saturated state as the key ingredients to describe the strongly nonlinear

saturation occurring in supercritical flows.

1.3.2 Amplifiers

An example of a convectively unstable flow with strong advection of the perturbation is the

jet flow. Jets can present coherent oscillating structures that come from amplification of the

incoming perturbation as noise at the inlet (Crow & Champagne (1971); Garnaud (2012);

Garnaud et al. (2013)) and illustrated in Fig. 1.9 for laminar and turbulent jets (Garnaud et al.
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(2013)). Trying to account for certain nonlinearity, Nichols & Lele (2010) and Garnaud (2012);

Figure 1.9 – (a) Experiment of a laminar and turbulent jet illustrating the coherent perturbation
structures that appear at relatively low Reynolds due to the Kelvin-Helmholtz instability in
axisymmetric jets, Zaouali et al. (2009). (b) Optimal gain at each frequency for an optimal
forcing/response around a mean flow of a modelled turbulent jet (Garnaud et al. (2013)).

Garnaud et al. (2013) performed linear stability analyses around the mean flow in turbulent

jets instead of the base flow and showed that all eigenvalues have negative growth rate as

depicted in Fig. 1.4(f). This convective nature of the jet flow, with no intrinsic instability,

defines the jet as a selective amplifier.

The authors took a different approach and conducted a study of optimal linear frequency

response to forcing on the model mean flow of a turbulent jet at high Reynolds number using

a global approach. It was found that a frequency selection mechanism exists, yielding a

system with higher gain or equivalently larger resolvent operator norm at certain frequency

range, see Fig. 1.9(b). Optimal body forcing and boundary condition forcing were used with

similar results for the preferred frequency and response structures, showing a clear connection

between body and boundary forcing.

Another example of an amplifier is the backward-facing step, showing stable two-dimensional

modes for Reynolds number at least up to Re ∼ 1500 and exhibiting the first three-dimensional

unstable mode at Recr ∼ 748 (Barkley et al. (2002) and Lanzerstorfer & Kuhlmann (2012)).

Receptivity analyses on the base flows have been performed by Marquet & Sipp (2010); Boujo

& Gallaire (2015); Marquet et al. (2010) showing a very strong amplification to optimal forcing

in a narrow range of frequency. In addition, Blackburn et al. (2008) also study the transient

growth of the globally stable backward-facing step presenting a very large time amplification

as illustrated in Fig. 1.10. Results of Blackburn et al. (2008) for the three-dimensional backward

facing step under stochastic forcing at the inlet shows a predominantly two dimensional

response structure, very similar to the linear optimal growth perturbations. In addition, the
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Figure 1.10 – (a) Sequence of the linear perturbation vorticity developed from the global
optimum disturbance initial condition. The characteristic space-time dynamics of a local
convective instability is clear. (b) Growth envelopes of the optimal and some leading sub-
optimal two-dimensional disturbances. Two-dimensional backward-facing step at Re = 500
(Blackburn et al. (2008)).

response shows a very narrow frequency range, in line with the linear predictions.

Coupled systems: mean flow - fluctuation

It should be highlighted that these studies are linear and do not account for any sort of

nonlinearity that might appear due to the large amplifications. In fact, large amplifications of

external disturbances added to the sensitivity of the linear operator allows the flow to escape

from linearly stable solutions as seen in transition to turbulence. This scenario is studied by

means of nonlinear or semi-linear models. The stochastic structural stability theory (SSST)

has been introduced by Farrell & Ioannou (1993) to describe the appearance of coherent

structures in stable flows. The theory is formalised in the stochastic framework, assuming that

the flow is forced by white noise to model turbulence and external disturbances. SSST consists

in rewriting the full NSE forced by white noise, δ-correlated in space and time, in a system of

equations where the linear response to white noise is coupled to the time varying ensemble

average mean flow by means of the nonlinear Reynolds stress. The stochastic linear response

to forcing is reformulated as the covariance matrix that describes the statistically steady state

of the response as a Lyapunov equation. The coupled dynamical system is written as

dU

d t
=N (U )+F (C ), (1.4a)

dC

d t
=LU C +CL †

U +Q , (1.4b)

where U is the ensemble averaged mean flow, C is the covariance matrix of the response

statistics, Q defines the spatial distribution of the white noise forcing, F (C ) is the Reynolds
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stress forcing contracted from the fluctuating response and N and L are the nonlinear and

linear operators respectively, extracted from the NSE.

Figure 1.11 – SSST theory applied to jets in barotropic turbulence (Farrell & Ioannou (2007)).
a) Linear stability of the coupled system (1.4) around the equilibrium states at different white
noise forcing Q , b) for a forcing of amplitude Q = 1.5 the system is unstable and starts evolving
nonlinearly to a new equilibrium state. c) The preferred wave number of the most unstable
mode is selected n = 8 and appears in the saturated state. d) Snapshot of the mean flow as
it evolves from unstable equilibrium perturbed t = 0, then the most unstable mode starts to
grow t = 40 and it settles in a new steady equilibrium state t > 150.

The traditional concept of flow stability addresses the stability of eddy perturbations C as-

suming a mean flow structure U . Stability in this sense is determined by the eigenvalue of

the operator L with the greatest real part as described above. However, the time-dependent

system (1.4) allows for excursions of [C ,U ] that are transiently unstable, in other words, the

linear operator L can be stable but the linearised coupled system (1.4) can be structurally

unstable for certain values of the forcing. This scenario is represented in Fig. 1.11 for the

description of turbulent jets that appear in the atmosphere. The linear operator L around the

mean flow U is always stable, however the steady solution of the coupled system becomes un-
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stable for certain value of the background turbulence forcing Q (Fig. 1.11(a)) with a preferred

wave number of the unstable eigenmode illustrated in Fig. 1.11(b). The system escapes from

the initial equilibrium solution to another equilibrium through a transient Fig. 1.11(b,c). This

example is one of the situations in which the SSST was applied to describe the appearance of

coherent structures in turbulent atmospheric flows that are linearly stable in the traditional

sense, as described in Farrell & Ioannou (2003, 2007, 2009a,b), among other works.

Figure 1.12 – a) The finite-amplitude streamwise roll and streak that result from the equilibra-
tion of the eigenmode of the SSST system (1.4) for Couette flow (Farrell & Ioannou (2012)).
It shows the streamwise-averaged mean flow velocity in streamwise direction U (contours)
and the spanwise velocities V ,W (vectors). Consistent with the lift-up mechanism, positive V
is associated with a decrease in U . b) Three-dimensional illustration of the fluctuating flow
associated with the Couette flow at Re ' 1500 (Beaume et al. (2015)). The surfaces represented
in colour correspond to the fluctuating velocities around the mean flow. The grey surface
represents the critical layer of the zero value of the streamwise averaged mean flow.

A very important property of the coupled equations (1.4) is their global stability, that is, that

both the perturbations field covariances and the mean flow remain bounded for all times as

proven in Farrell & Ioannou (2003). This global stability property of the coupled equations

implies that even if the velocity profiles become transiently exponentially unstable the fluxes

induced by the perturbation fields equilibrate the instabilities maintaining perturbation fields

of finite variance and mean flow. These coupled equations can thus produce a time-dependent

equilibration of instabilities in a turbulent environment and constitute a stochastic alternative

to the deterministic Landau equation paradigm for stabilisation of unstable systems (Farrell &

Ioannou (2003)).

Furthermore, the generality of the SSST allows it to describe sustained coherent structures of

interactions between Rolls and Streaks that appear during the transition to turbulence in the

three-dimensional Couette flow (Farrell & Ioannou (2012)), and depicted in Fig. 1.12(a). An

extension of this theory, called the restricted nonlinear model (RNL) simplifies the calculations

and has been applied more recently also to the description of transient dynamics in the Couette
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flow (Thomas et al. (2014)).

Another example of these models that describe the nonlinear instability in linearly stable flows

is presented by Beaume et al. (2015). The model consists in a system of the mean flow equation

coupled by the nonlinear Reynolds stress forcing to the linear equation of the response to

external forcing around this mean flow. The model is coupled iteratively and is able to describe

the coherent structures, illustrated in Fig. 1.12(b), that appear due to hydrodynamic instability

in the transition to turbulence in the Couette flow (Drazin & Reid (1981); Waleffe (1997)). These

quasilinear models provide a complementary point of view to the tracking of fully nonlinear

states see Schneider et al. (2010) for a very recent contribution and references therein.

1.4 Present work

Different linear and nonlinear approaches have been used for local and global stability analysis

over the past years. As documented above, to describe the dynamics of certain stable and

unstable flow configurations, it is of crucial importance to retain some nonlinear terms, as

in the simple model of the Stuart-Landau equation (Stuart (1960)) used for the description

of supercritical instabilities. In unstable flows, the key role of the nonlinearity hidden in the

mean flow through the Reynolds stress has been highlighted in the description of the flow

dynamics in the unstable wake (Triantafyllou et al. (1986); Hammond & Redekopp (1997); Pier

(2002); Pier & Huerre (2001); Barkley (2006); Noack et al. (2003); Tadmor et al. (2010); Maurel

et al. (1995); Thiria & Wesfreid (2009); Thiria et al. (2015); Meliga et al. (2009c)), while in stable

configurations, the nonlinear coupling of linear response and mean flow serves to describe

the coherent structures during the transition to turbulence (Waleffe (1995); Farrell & Ioannou

(2003, 2007); Bakas & Ioannou (2011); Farrell & Ioannou (2012); Thomas et al. (2014); Beaume

et al. (2015)).

A simplified physical description that accurately accounts for the nonlinear saturation of

the instability in unstable flows as well as for the saturation of the response to disturbances

in stable flows is still missing. This opens the question of whether one could formulate

a simplified set of equations to capture the physical picture that describes the saturation

dynamics of oscillators and amplifiers far from threshold (Stuart (1958, 1960); Waleffe (1995)).

This thesis aims at answering this question by introducing a coupled self-consistent semi-

linear model. Inspired by the works of Stuart (1960); Sipp & Lebedev (2007); Pier & Huerre

(2001); Farrell & Ioannou (2003); Barkley (2006) the model consists in a mean flow equation

coupled with a linear fluctuating equation by means of the Reynolds stress feedback. The

model is first introduced in an unstable flow, the benchmark cylinder flow, and subsequently

applied to a stable amplifier flow, the backward-facing step flow. A similar mechanism of the

saturation dynamics happens in both flows.
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1.5 Outline

The outline of this thesis is the following.

Chapter 2 briefly introduces the self consistent model in the unstable cylinder flow describing

the von-Karman vortex street and the mean flow of the saturated regime formalising the key

ingredients that govern the saturation.

Chapter 3 revisits the saturated flow in the cylinder case providing more details on the non-

linear dynamics as well as of the iterative procedure used to couple the system. Furthermore,

the transient of the saturation is described by the self-consistent model.

Chapter 4 introduces the self-consistent model applied to an amplifier; the backward-facing

step forced by optimal harmonic forcing. First, it is presented an asymptotic analysis to

describe the influence of the different nonlinear interactions and then the nonlinear dynamics

of the saturation is reported.

In Chapter 5 the self-consistent model is extended to an amplifier excited by white noise forc-

ing, applying the model to an approximation of stochastic forcing/response in the frequency

domain.

In Chapter 6 a discussion is presented, showing the advantages and drawbacks of the model.

Finally in Chapter 7 short conclusions are drawn and possible future works are described.

Appendix A describes some of the critical aspects of the self-consistent model and its imple-

mentation.
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2 Mean flow stability for an unstable
open flow

This chapter presents a first attempt to understand better the nonlinear saturation mechanism

in the cylinder wake flow. A semi-linear self-consistent model is introduced and validated an-

swering the question why the mean flow linear stability analysis is relevant for the description

of the dynamics and highlighting the role of the nonlinear Reynolds stresses in the saturation

process.

Paper: A self-consistent mean flow description of the nonlinear satu-
ration of the vortex shedding in the cylinder wake
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Chapter 2. Mean flow stability for an unstable open flow

A self-consistent mean flow description of the nonlinear saturation
of the vortex shedding in the cylinder wake

Vladislav Mantič-Lugo1, Cristóbal Arratia1 and François Gallaire1

1) LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Physical Review Letters, PRL 113, 084501 (2014)

The Bénard-von Karman vortex shedding instability in the wake of a cylinder is perhaps

the best known example of a supercritical Hopf bifurcation in fluid dynamics. However,

a simplified physical description that accurately accounts for the saturation amplitude of

the instability is still missing. Here we present a simple self-consistent model that provides

a clear description of the saturation mechanism and quantitatively predicts the saturated

amplitude and flow fields. The model is formally constructed by a set of coupled equations

governing the mean flow together with its most unstable eigenmode with finite size. The

saturation amplitude is determined by requiring the mean flow to be neutrally stable. Without

requiring any input from numerical or experimental data, the resolution of the model provides

a good prediction of the amplitude and frequency of the vortex shedding, as well as the spatial

structure of the mean flow and the Reynolds stress.

PACS numbers: 47.20.Ky, 47.15.Fe, 47.27.-i, 47.32.-y

2.1 Introduction

Simple models are essential to our understanding of complex nonlinear phenomena. The van

der Pol oscillator, for example, demonstrates how nonlinear oscillations can be described by

the appearance of a limit cycle (Charru (2011)). In large dimensional systems, however, these

simple models do not entirely reveal the mechanisms that determine relevant parameters

like the dominant frequency or saturation amplitude. For supercritical instabilities in fluid

dynamics, the mean flow has been proposed as a key element to explain the origin of the

dominant frequency (Triantafyllou et al. (1986); Hammond & Redekopp (1997); Pier (2002);

Barkley (2006)) and the physical mechanism of the saturation process (Stuart (1958); Maurel

et al. (1995); Barkley (2006)). The physical picture thus invoked to understand the saturation is

the following: perturbations feeding on an unstable flow induce mean flow modifications that

increase while perturbations grow, up to the point where the mean flow becomes neutrally

stable and perturbations stop growing and saturate. The present Letter aims at assessing this

scenario.

An early formulation of this concept of marginal stability of the mean flow was given by (Malkus
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(1956)) in the context of turbulent flows. Shortly after, aiming for an equation describing the

saturation of supercritical instabilities, (Stuart (1958)) devised a simplified closed system

wherein the mean flow was only affected by the Reynolds stress divergence of its leading

eigenmode. By further assuming that the eigenmode was given by the unperturbed base

flow, Stuart managed to obtain an equation for the saturation amplitude through the exact

balance between the dissipation of the perturbation and the energy transfer from the mean

flow. It wasn’t until after two more years, through a more rigorous perturbative analysis close to

threshold, that he mathematically derived an amplitude equation, the Stuart-Landau equation,

directly from the Navier-Stokes equations (Stuart (1960)).

Despite the beauty and consistency of the multiple-scale expansion method, its perturbative

nature implies that the spatial structure of the growing unstable mode is in large part fixed

by the unperturbed base flow. However, there are cases in which the spatial structure of the

saturated mode differs considerably from that of the linear mode, limiting the validity of

the usual Stuart-Landau amplitude equation (Dušek et al. (1994); Noack et al. (2003)). This

opens the question of whether one can formulate a more accurate prediction of the saturation

amplitude by retaining some of the spatial degrees of freedom.

The purpose of the present Letter is to propose a model that physically describes the saturation

mechanism of an unstable flow, shedding some light on the nonlinear effects that are relevant

for the coupling of the perturbation and the mean flow equations. The coupled equations are

solved in a self-consistent way, through a quasi-linear single harmonic approximation of the

perturbation, allowing to determine a priori the mean flow and the frequency and structure of

the dominant harmonic perturbation, without resorting a posteriori to linear stability analysis

of mean flows averaged from DNS or experimental data. In addition, the method yields a

prediction of the perturbation amplitude.

A widely studied archetype of a supercritical instability in fluid flows is the flow past a circular

cylinder (Williamson (1988)), characterized by the non-dimensional Reynolds number Re =
U∞D/ν, where ν is the kinematic viscosity, U∞ the free-stream velocity and D the cylinder

diameter. As the Reynolds number increases, a Hopf bifurcation occurs at Re ∼ 47( Provansal

et al. (1987)) and the flow dynamics changes from a steady symmetric state to an oscillating

time periodic configuration presenting the Bénard-von Karman vortex street (von Karman

(1911)). The contribution of the fundamental harmonic is dominant compared to the higher

harmonics even in the fully saturated regime(Dušek et al. (1994)).

Linear stability analyses describes well this instability by predicting the value of the threshold

as well as the shedding frequency at threshold (Zebib (1987); Jackson (1987); Noack et al.

(2003)). However, as noticed in Pier (2002) and Barkley (2006), the frequency prediction based

on the leading eigenvalue of the base flow does not match the experiments as one departs from

threshold. In contrast, the stability analysis around the mean flow shows a remarkably good

frequency prediction with almost zero growth rate, supporting the validity of Malkus’ marginal

stability criterion. However, these linear stability analyses cannot provide any information

21



Chapter 2. Mean flow stability for an unstable open flow

about the perturbation amplitude.

Qualitative aspects of the saturation of the instability are well described by a Stuart-Landau

amplitude equation, the coefficients of which could be obtained both empirically (Dušek et al.

(1994) =)and using the multiple-scale expansion, as done by Sipp & Lebedev (2007). However,

due to the perturbative nature of its derivation, this model is quantitatively valid only very

close to threshold. We therefore focus on the supercritical regime of the flow past a cylinder, for

Re > 47 and propose a non-perturbative quasilinear model coupling the mean flow equation

to a linear harmonic disturbance, consistently accounting for the mean flow distortion. In this

approach, the mean flow comes as a result of the model instead of being required as an input.

2.2 The physical concept of the self-consistent model

The starting point of the model is the Reynolds decomposition u(x , t ) =U (x)+u′(x , t ) of the

instantaneous flow in mean U = 〈u〉 and perturbation u′, where 〈〉 denotes time-averaging and

where 〈u′〉 = 0 by construction. Because of incompressibility, it is understood in what follows

that all velocity fields must be divergence free; we will not write this condition explicitly. This

decomposition can be introduced in the 2D incompressible Navier-Stokes equations to yield

N (U ) =−〈(u′ ·∇)u′〉 (2.1a)

∂t u′+LU (u′) =−(u′ ·∇)u′+〈(u′ ·∇)u′〉 (2.1b)

where

N (U ) ≡ (U ·∇)U +∇P −Re−1∆U , (2.2)

corresponds to the advective, pressure gradient and diffusive terms of the Navier-Stokes

equations (NSE) and LU (u′) is the corresponding operator for the NSE linearized around U ,

i.e.

LU (u′) ≡ (U ·∇)u′+ (u′ ·∇)U +∇p ′−Re−1∆u′. (2.3)

P and p ′ are the pressure fields required to impose incompressibility on U and u′, respectively.

No approximation has been performed so far.

Different nonlinear effects can be identified in (2.1). The right hand side (RHS) of (2.1a)

corresponds to minus the Reynolds stress divergence 〈(u′ ·∇)u′〉, a forcing of u′ on U which

can be also viewed as the body force required for the mean flow U to become a stationary

solution of the NSE (Barkley (2006)). The effect of the mean flow U back on the fluctuating

part u′ is contained in the nonlinear advection terms of the linearized operator LU (u′); with

U prescribed by experimental or computational data, these are the terms that are taken into

account in mean flow stability analyses. The RHS of (2.1b) contains the nonlinear terms

that allow interactions of u′ at different frequencies and generate different harmonics. In
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Figure 2.1 – Growth rate σ1 for the converged coupled system of equations of the self-
consistent model (2.4) for different Reynolds stress forcing amplitudes A2

f at Re = 100. The
insets show the spatial distribution of the divergence of the Reynolds stress in the x-direction
and the boundary of the recirculation region for different A2

f , as indicated in the figure.

the present case of the cylinder, the power spectra of the vortex shedding signal is strongly

dominated by a single frequency, the fundamental harmonic of the vortex shedding (Dušek

et al. (1994)). Neglecting the nonlinear terms in the RHS, Eq. (2.1b) becomes linear in u′. The

linearized Navier-Stokes operator can be diagonalized and the perturbation can be therefore

expanded into the basis of its eigenmodes u′
n = un exp(λn t )+ ūn exp(λ̄n t ), where the overbar

represents the complex conjugate. Focusing on the least stable eigenmode pair n = 1, one

obtains

N (U ) =−2A2ℜ ((ū1 ·∇)u1) , (2.4a)

λ1u1 +LU (u1) = 0, (2.4b)

where u1 is the least stable eigenmode of the model mean flow U as computed from (2.4b),

λ1 =σ1+iω1 is its associated eigenvalue and A is a real constant that represents the amplitude

of the first eigenmode as normalized by its L2 norm. ℜ(·) in (2.4a) denotes the real part. In

the computation of the Reynolds stress divergence, the time variation associated to the real

part of the eigenvalue σ1 is neglected. Therefore, Eq. (2.4a) can be seen as a quasi-static

approximation of the mean flow in which the slow time scale dynamics associated to the

growth of the unstable mode is slaved to the amplitude A, which may be then treated as an

external parameter.

The straightforward solution of (2.4) for A = 0, corresponds to the base flow UB , i.e. the

stationary solution of the NSE together with its corresponding unstable eigenmode u1,B ,
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Figure 2.2 – Comparison of the x-component of the mean flows (a) and the Reynolds stress
divergence (b) for Re = 100 computed from DNS (top half) and predicted from (2.5) (bottom
half, SC). Plot (c) shows horizontal and vertical cuts for y=0 (top), x=1 (bottom left), and
x=3 (bottom right), for the x-component of the mean flows (U ,U∗), the base flow (UB ) and
Reynolds stress divergence (F = 〈(u′ ·∇)u′〉), as detailed in the legend.

which represents the initial perturbation growing at a rate σ1,B and frequency ω1,B . If the

amplitude A is increased, the unstable mode turns the initial base flow into an increasingly

modified mean flow through the divergence of the Reynolds stress in (2.4a). In the process,

the mean flow modifications simultaneously change the eigenmode structure and eigenvalue

through the linearized perturbation equation (2.4b). One can expect that, from small to

moderate values of the amplitude A, there exists a solution to the coupled perturbation–mean

flow equations (2.4), meaning that the perturbation structure u1 is the one that forces the

mean flow U by the Reynolds stress divergence in such a particular way that the mean flow

generates the aforementioned perturbation structure u1. Associated to this solution there will

be a certain growth rate σ1 and frequency ω1, creating an implicit relation between the growth

rate and amplitude σ1(A).

For a finite amplitude A, the software FreeFem++ is used to discretize (2.4) and solve (2.4a)

for a given u1, while SLEPC is used for the eigenvalue problem (2.4b) with a given U . These

two equations are then coupled through an iterative scheme until convergence is achieved.

The eigenmode of an initial guess for the mean flow Ug (the base flow UB or a solution of

(2.4) for a smaller amplitude) is used for the Reynolds stress forcing in (2.4a), allowing to solve

for a mean flow correction Uc which serves to generate a new guess Ung = γUc + (1−γ)Ug

where 0 < γ< 1. The leading eigenmode of the new guess is then computed and the process is

repeated until convergence is achieved. We have found that this procedure converges robustly

provided the eigenmode is normalized by its associated Reynolds stress divergence, i.e. when

A2
f ≡ A2‖2ℜ ((ū1 ·∇)u1)‖L2 /‖u1‖2

L2 is fixed. This is natural since variations of the amplitude

A f directly control the magnitude of the forcing term (RHS in 2.4a).

As shown in Fig. 2.1, the growth rate σ1 resulting from these computations decreases as the
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Figure 2.3 – Comparison of the frequency predictions of the self-consistent model for different
Reynolds numbers. Vortex shedding frequency from experiments byWilliamson (1988) (dashed
black line), the present result (blue triangles), the most unstable mode of the base flow (solid
red line) and the mean flow obtained from DNS (red squares).

amplitude of the Reynolds stress increases. At the same time, the structure of the Reynolds

stress forcing computed from the most unstable eigenmode moves upstream with increasing

amplitude A f , (insets in Fig. 2.1) continuously modifying the mean flow and stabilizing it. The

upstream migration of the Reynolds stress forcing follows the shortening of the recirculation

region of the corresponding mean flow, indicated by the black line in each inset of Fig. 2.1.

This length reduction of the recirculation region is totally in line with previous descriptions of

the differences between the base and the mean flow (Barkley (2006); Noack et al. (2003)), and

it has been proposed as a key feature for the instability saturation mechanism (Zielinska et al.

(1997)).

A clear physical picture emerges: the base flow UB first develops its instability which grows and

forces the underlying flow through the Reynolds stress divergence 2A2ℜ ((ū1 ·∇)u1) , modifying

it towards the mean flow. If one is to imagine that the evolution given by the NSE linearized

around the model’s mean flow (2.4b) could approximate the evolution of the vortex shedding

around the exact mean flow, then one requires the leading eigenmode to oscillate in a purely

sinusoidal way. This corresponds to the marginal stability criterion, consistent with the results

of Barkley (2006) and with the stabilizing effect of the growing perturbations on σ1(A) through

the mean flow distortion (see Fig. 2.1). Therefore, we look for a particular amplitude A∗ for

which there is a marginally stable mean flow U∗ such that σ∗
1 (A∗) = 0. This amplitude A∗,

which is not known a priori, will correspond to the saturation amplitude of the self-consistent

model:

N (U∗) =−2A∗2ℜ(
(ū∗

1 ·∇)u∗
1

)
, (2.5a)

iω∗
1 û∗

1 +LU∗(û∗
1 ) = 0. (2.5b)
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Figure 2.4 – Comparison of the vortex shedding amplitude predictions of the self-consistent
model for different Reynolds numbers. Saturation amplitude obtained from DNS (red circles),
predicted by the self-consistent model (blue triangles) and as given according to weakly
nonlinear expansion around threshold (dash-dotted line).

2.3 Self-consistent model for the mean flow calculation

Fig. 2.2(a) compares the converged mean flow U∗ obtained by the present model (bottom

half) with the mean flow of the nonlinear DNS (top half), showing that the approximation

of the mean flow x-direction velocity is remarkable, with a length and minimum velocity

of the recirculation region about 2% from the equivalent values of the full DNS. Moreover,

the similarity of the Reynolds stress divergence of the model, calculated from the leading

eigenmode u1, and that of the fully nonlinear time-averaged DNS is striking (Fig. 2.2(b)). A

more quantitative comparison is given in Fig. 2.2(c). It should be highlighted that the full DNS

Reynolds stress divergence is built by all the harmonics whereas in the self-consistent model

it is constituted only by the leading eigenmode of the mean flow, which is approximatively

neutrally stable. Both, the self-consistent and fully nonlinear Reynolds stress divergence

present similar amplitude and spatial distribution concentrating the forcing close to the

cylinder. The Reynolds stress forcing acts on their corresponding mean flows by pushing

downstream the recirculation region of the base flow (Fig. 2.1) thus reducing its streamwise

length, consistent with the recirculation length difference between the mean and the base

flow (Noack et al. (2003); Barkley (2006); Zielinska et al. (1997)).

Fig. 2.3 compares the frequency predicted by the present self-consistent saturation model with

experimental and DNS data for different Reynolds number. Due to the ressemblance of the

model and exact mean flows, it does not come as a surprise that the leading eigenfrequency of

the present model falls onto the experimental data, as does the eigenfrequency of the linearly

least stable mode of the real mean flow, as described by Barkley (2006). On the contrary, the

unstable base flow considerably underestimates the experimental frequency.
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The amplitude of the perturbation, defined as A = ‖u′‖L2 , varying with the Reynolds number

is compared in Fig. 2.4 for the DNS, self-consistent and the amplitude approximation of

the weakly nonlinear theory. The weakly nonlinear theory is valid only close to the critical

Reynolds number as it start to diverge from both the DNS and self-consistent results for

Re > 50. This is because the weakly nonlinear theory is based on a perturbative expansion

around threshold (Sipp & Lebedev (2007)), which is unsuitable to describe spatial variations of

the oscillating mode (Dušek et al. (1994)) and yields an overestimated amplitude at saturation.

In the self-consistent model this limitation is relaxed and the resulting amplitude follows

the DNS results, indicating that the main nonlinear effects responsible for saturation are

well captured in the coupling of the mean flow and perturbation equations in (2.5). As the

Reynolds number increases, however, the number of iterations required for our direct method

to converge to σ∗
1 = 0 becomes increasingly large. Similar issues for converging to steady

solutions of the NSE when increasing Re have been reported in the literature, see (Fornberg

(1980)) for instance.

2.4 Discussion and conclusions

The resolution of system (2.5) provides an excellent approximation of the mean flow velocity

field and the perturbation’s amplitude, frequency and spatial structure of the Reynolds stress

forcing. Moreover, Eqs. (2.4) constitute a self-consistent model which formalizes and supports

the idea of an instability saturation process wherein the perturbation, given by the most unsta-

ble eigenmode, grows around the mean flow and modifies it, saturating when the mean flow

is marginally stable (Stuart (1958); Maurel et al. (1995); Barkley (2006)), in a way reminiscent

to Malkus (1956) notions.

Note that some flows present positive growth rate when linear stability is computed around

the mean flow (Sipp & Lebedev (2007)), probably due to the neglected nonlinear terms in the

perturbation equation (2.4) and the presence of higher harmonics. Nonetheless, the present

model is expected to work for other laminar globally unstable flows dominated by a single

harmonic and with a marginally stable mean flow. This includes flows reaching limit cycles

above the bifurcation e.g. wakes, hot jets, mixing layers with counterflow, swirling jets, etc. but

this excludes aperiodic, chaotic and turbulent flows. In addition, the model can be generalized

to harmonic forcing response in stable cases. This can be done by applying a source term in

the RHS of (2.5b) and replacing the unstable mode by the linear response to the forcing at

a given frequency in (2.5a). This methodology can be used to include higher harmonics in

the present case, adding linear equations for the higher harmonics as forced by the nonlinear

interactions of the unstable mode.

The present quasi-linear self-consistent model is, for laminar flows, a deterministic coun-

terpart of similar stochastic models recently developed to describe coherent structures in

turbulent flows (Farrell & Ioannou (2012); Bakas & Ioannou (2014)). It may open new possi-

bilities as a model reduction for flow control (Noack et al. (2003)), since the coupled mean
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flow–perturbation equations are solved as a closed system independent of time, allowing the

calculation of a mean flow approximation a priori without requiring the full time evolution

simulation for the a posteriori mean flow extraction.
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3 Revisited mean flow and transient
dynamics for an unstable open flow

In this chapter, we revisit the self-consistent model applied to the cylinder flow providing

more details of the saturated flow, interpreting the mean flow as a phase average. This new

view allows the amplitude A of the unstable mode, which links the manifold of the coupled

solutions of the self-consistent model from the base flow to the mean flow, to be reinterpreted

as a slow time variation. The instantaneous mean flow along with its corresponding unstable

mode are thereby evolving in a slow time scale compared to the oscillations.

Paper: A self-consistent model for the saturation dynamics of the vor-
tex shedding around the mean flow in the unstable cylinder wake
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The supercritical instability leading to the Bénard-von Karman vortex street in a cylinder

wake is a well known example of supercritical Hopf bifurcation: the steady solution becomes

linearly unstable and saturates into a periodic limit cycle. Nonetheless, a simplified phys-

ical formulation accurately predicting the transition dynamics of the saturation process is

lacking. Building upon our previous work, we present here a simple self-consistent model

that provides a clear description of the saturation mechanism in a quasi-steady manner by

means of coupling the instantaneous mean flow with its most unstable eigenmode and its

instantaneous amplitude through the Reynolds stress. The system is coupled for different

oscillation amplitudes, providing an instantaneous mean flow as function of an equivalent

time. A transient physical picture is described, wherein a harmonic perturbation grows and

changes in amplitude, frequency and structure due to the modification of the mean flow by

the Reynolds stress forcing, saturating when the flow is marginally stable. Comparisons with

direct numerical simulations show an accurate prediction of the instantaneous amplitude,

frequency and growth rate, as well as the saturated mean flow, the oscillation amplitude,

frequency and the resulting mean Reynolds stresses.

3.1 Introduction

The onset of the Bénard-von Karman (von Karman (1911)) vortex street in the cylinder wake is

a classical example of supercritical Hopf bifurcation: above the critical threshold of Re = 47

(Provansal et al. (1987)), a self-sustained time-periodic pattern of regularly spaced alternated

vortices emerges, which is shed at a well-defined frequency. This threshold could be retrieved

theoretically (Zebib (1987); Jackson (1987); Noack et al. (2003)) using a linear stability analysis

around the base flow, the steady solution of the Navier-Stokes equations (NSE), which provided

in addition an accurate frequency prediction at the critical Reynolds number. However,

the linear frequency prediction departs immediately after threshold from the experimental

measurements or direct numerical simulations (DNS) of the full nonlinear Navier-Stokes

equations.

More generally this instability is an archetypical test case for developing formulations and

theoretical concepts. Some examples are the computation of the instability threshold on
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numerically obtained solutions of the Navier-Stokes equations (Zebib (1987); Jackson (1987)),

the experimental determination of the Landau constants for the description of the bifurcation

with an amplitude equation (Provansal et al. (1987)), the understanding of the appearance

of the global instability as the development of a region of absolute instability (Triantafyllou

et al. (1986); Chomaz et al. (1988)), the construction of reduced models for flow control (Noack

et al. (2003); Tadmor et al. (2010)) as well as an interesting test-bed for sensitivity analysis

and optimal open loop control design (Strykowski & Sreenivasan (1990); Giannetti & Luchini

(2007); Marquet et al. (2008); Boujo & Gallaire (2014)).

A key ingredient to a correct description of the dynamics above threshold is to properly capture

the effective mean flow that results from the additional distortion caused by the retro-action

of the quadratic contributions (the Reynolds stresses) of the fluctuating structures onto the

steady flow component (Barkley (2006); Stuart (1958); Maurel et al. (1995)). In the cylinder

wake flow above threshold, the frequency prediction based on the linear stability analysis of

the mean flow outperforms the frequency prediction of the dominant eigenmode of the base

flow solving the NSE (Triantafyllou et al. (1986); Hammond & Redekopp (1997); Pier (2002);

Barkley (2006); Mittal (2008)). In addition, it also sheds light on the nonlinear saturation

mechanism: perturbations to the unstable flow induce mean flow modifications that increase

while perturbations grow, until the point at which the mean flow becomes neutrally stable

(Barkley (2006); Mittal (2008)) and perturbations saturate, as formulated early by Malkus

(1956) in the context of turbulent flows. This is also the main idea behind Stuart’s (Stuart

(1958)) initial simplified model wherein the mean flow is only affected by the Reynolds stress

divergence of the most unstable eigenmode of the unperturbed base flow. This focus on the

mean flow distortion by finite perturbations was later dropped by Stuart in favor of a more

rigorous perturbative analysis of the Navier-Stokes equations close to threshold (Stuart (1960)),

which yields the well-known Stuart-Landau amplitude equation.

The rigorous application of Stuart’s mutiple-scale expansion method to the cylinder wake

flow by Sipp & Lebedev (2007) yields a Stuart-Landau amplitude equation that captures well

the nascent nonlinear saturation mechanisms and correctly predicts the nonlinear frequency

correction in the vicinity of the instability threshold Re = 47. The absence of any adjustable

parameter is remarkable in comparison to the empirical approach where the Stuart-Landau

amplitude equation is chosen so as to reproduce the qualitative aspects of the saturation of the

instability with empirically-tuned coefficients (Dušek et al. (1994)). Sipp & Lebedev (2007) also

showed that the marginal stability property of the mean flow was not generic but intimately

linked to the dominance of the fundamental harmonic in the periodic signal.

However, despite the elegance and rigorousness of the multiple-scale expansion method, its

perturbative nature limits its validity to the immediate vicinity of the threshold. Thus, it quickly

fails to capture the saturated flow since the perturbation of the amplitude equation is fixed

around the unperturbed base flow (Dušek et al. (1994); Noack et al. (2003).) More precisely, it

fails to provide correct nonlinear frequency corrections at Reynolds numbers which are only

10% above the bifurcation threshold. This opens the question of whether one can formulate a
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consistent and accurate prediction of the saturation amplitude and perturbation by retaining

some of the nonlinear terms, or if only direct numerical simulations of the full nonlinear

Navier-Stokes equations or careful experiments can provide an accurate description of the

dynamics.

Recently, building on Malkus’ marginal stability criterion and on Barkley’s observation, the

authors proposed a quasilinear self-consistent model: the full nonlinear distortion of the

mean flow caused by the Reynolds stresses is taken into account but the fluctuation structure

is obtained from a linearized disturbance equation (Mantič-Lugo et al. (2014)). These two

equations are solved together in a self-consistent coupled way, with the scalar amplitude A

of the disturbance as sole free parameter. For a specific value of the amplitude A∗, the mean

flow is found to be marginally stable, yielding an approximation of the mean flow as well as

the fluctuating structure, its frequency and amplitude. The predicted frequency compared

very well to that obtained from DNS, for Reynolds number as high as Re = 100.

In this description of the stationary limit cycle (Mantič-Lugo et al. (2014)), the amplitude A

was treated as an external parameter controlling the amplitude of the leading eigenmode. In

the present paper, we consider A as a dynamical variable reflecting the evolution in time of

the amplitude of the leading eigenmode, whose instantaneous growth rate is given by the

real part of its leading eigenvalue. The purpose of this paper is therefore two-fold: (i) first, we

quantify the accuracy of the approximation of the limit-cycle by the marginal self-consistent

solution (U∗,u′∗,ω∗, A∗). (ii) Second, we show that the family of self-consistent solutions can

also be used to describe the transient evolution of the flow starting from a small disturbance

added to the base flow at time t = 0 and reaching the limit-cycle after the transient has died

out. This amounts to a quasi-static approximation where the amplitude of the mode grows

according to its instantaneous growth-rate until it saturates. In contrast to the approach of

Thiria et al. (2015), who have shown the relevance of this quasi-static approach using a weakly

non parallel stability analysis of the instantaneous mean flow, averaged on the fly from DNS

data, the quasi-static mean flow is here rather obtained as a result of the model.

Section II introduces the formulation used throughout the whole paper and presents the quasi-

linear model in a general setting. Section III defines the physical domain and the numerical

framework in which the model is applied. Section IV describes the method developed to solve

the model. The results of the cylinder mean flow calculation and the transient dynamics are

presented in Secs. V and VI, ending with comments and conclusions.

3.2 Formulation and self-consistent quasi-linear model

3.2.1 Instability onset and transient dynamics

We consider a two dimensional (2D) flow with uniform velocity U∞ex and viscosity ν inci-

dent on a cylinder of diameter D centered at the origin. The flow is governed by the 2D
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incompressible Navier-Stokes equations (NSE)

∂t u +N (u) = 0, (3.1)

where

N (u) ≡ (u ·∇)u +∇p −Re−1∆u, (3.2)

corresponds to advection, diffusion and the gradient of the pressure p required to impose

incompressibility

∇·u = 0. (3.3)

Throughout the article, all the variables are non-dimensionalized using length D and velocity

U∞ as reference scales, and the sole physical parameter is the Reynolds number Re ≡U∞D/ν.

The NSE can be equivalently written for the velocity u′ = u −U relative to some stationary

reference flow U , i.e.

∂t u′+LU (u′)+N (U ) =−(u′ ·∇)u′, (3.4)

where

LU (u′) ≡ (U ·∇)u′+ (u′ ·∇)U +∇p ′−Re−1∆u′, (3.5)

is the operator for the NSE linearized around U .

The onset of the vortex shedding instability can be understood from linear stability analysis,

in which U corresponds to a steady solution UB of the NSE

N (UB ) = 0, (3.6)

which is called the base flow, and u′ is considered sufficiently small so that (3.4) becomes

∂t u′
B +LUB (u′

B ) = 0. (3.7)

The solutions of this linearized perturbation equation can be expanded in the basis of eigen-

modes unB with their corresponding eigenvalues λnB =σnB + iωnB , n = 1,2, . . . ,∞ sorted by

decreasing real part. The (large-time asymptotic) growth rate σ is given by the most unstable

eigenvalue pair (λ1, λ̄1) as σ≡σ1 =ℜ(λ1), while the frequency corresponds to the imaginary

part ω ≡ ω1 = ℑ(λ1), the overbar represents complex conjugate. The linear equation (3.7)

yields u′
1B = A0u1B e(λ1B t+iφ0) + A0ū1B e(λ̄1B t−iφ0), as solution for an initial condition based on

the most unstable eigenmode u′
0 = A0u1B e iφ0 + A0ū1B e−iφ0 , which will be used throughout

the paper, where φ0 in [0,2π] is the phase determined in the initial condition. The amplitude

of u′
0 is A0 since u1B is normalized as

p
2‖u1B‖ = 1. The norm ‖.‖ is an L2 norm determined

by the Hermitian inner product (a|b) = ∫
Ωa ·bdΩ = ∫

ΩaH ·bdΩ, for complex fields in the
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domainΩ.
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Figure 3.1 – Velocity fields in x-direction; (a) base flow UB x and (b) mean flow Ux . (c) The most
unstable eigenmode u1B x from stability analysis (3.7) around base flow UB . (d) Fluctuation
snapshot u′ around the saturated mean flow U . Reynolds stress divergence 〈(u′ · ∇)u′〉, x-
direction component for the: (e) eigenmode of the base flow and (f) fluctuation around
the mean flow. (g) Transient of velocity in the x-direction at the point (x = 2, y = 1) for two
initial conditions shifted by π. The change of frequency is marked by the arrow length. (h)
Transient evolution of the fluctuation amplitude amplitude A(t ) for the DNS (solid line) and
self-consistent model (dashed line). All solutions are for Re = 100.

At threshold Recr ≈ 47 the growth rate σ turns positive, the base flow becomes unstable

(Jackson (1987); Zebib (1987)) and the system undergoes a supercritical Hopf bifurcation

(Provansal et al. (1987)). The development of the instability for Re = 100 is shown in Fig. 3.1.

The unstable global mode of the base flow (shown in Fig. 3.1(c)) is the infinitesimal structure

that grows from the base flow solution (Fig. 3.1a). As it evolves in time (see Fig. 3.1g) and

the nonlinear terms in the right-hand side (RHS) of (3.4) become important, this unstable

structure gets modified in space and saturates in a time periodic solution with a new frequency

and a finite amplitude. Above threshold, the system eventually settles in a limit cycle with a

frequency and spatial structure which are different from the initial perturbation (Dušek et al.

(1994)), as can be seen in Figs. 3.1(b) and 3.1(d) showing the mean flow and a snapshot of the

corresponding u′ as defined below.

Fig. 3.1(g) displays the transient of the x-direction velocity at the point (x = 2, y = 1) for two

initial conditions composed of the eigenmode with different phaseφ0 and the same amplitude

A0. There are two different time scales involved in the development of the instability: a fast

time scale associated to the shedding of alternating vortices and a slower one associated to

the growth in amplitude of the corresponding velocity oscillations. These two time scales are

initially given by the inverse of the real and imaginary parts of the unstable eigenmode; this

scale separation becomes arbitrarily large as the Reynolds number Re approaches threshold.

As done by Sipp & Lebedev (2007), this can be used to perform a weakly nonlinear perturbative

expansion leading to a Stuart-Landau equation for the amplitude of the unstable mode, which

is valid only close to threshold (Fig. 3.9).
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The present description of the transient development and the saturated flow of the instability

also exploits this separation of scales: it is performed by means of a Reynolds decomposition.

We define U (t) as the phase averaged mean flow U = 〈u〉, where 〈·〉 denotes the average on

the phase φ0 of the fluctuation. By construction, the fluctuation u′ is such that 〈u′〉 = 0. This

phase average corresponds to an integral over the oscillation (fast) scale only, and allows a

simple separation of time scales during the transient while being equivalent to a time average

in the saturated regime. Thereby, in practice, for a given specific time τ the corresponding

instantaneous mean flow U (τ), or average over the phase, is given by averaging along the full

velocity u(τ) of several DNS simulations with initial conditions u′
0 of the same amplitude A0

and shifted in φ0 as depicted in Fig. 3.1(g) for two φ0 shifted by π.

Inserting this mean flow decomposition u =U +u′ in the 2D NSE yields

N (U ) =−〈(u′ ·∇)u′〉, (3.8a)

∂t u′+LU (u′) =−(u′ ·∇)u′+〈(u′ ·∇)u′〉, (3.8b)

where the time derivative term ∂tU on the left-hand side (LHS) of (3.8a) has been neglected.

This term reflects the slow deformation of the mean flow which is null in the stationary regime

and small but non-zero during the transient; neglecting this term amounts to a quasi-static

approximation slaving the mean flow U to the forcing by u′ given in the RHS of (3.8a). Note,

however, that the fluctuation u′ does not have to be small compared to the mean U . The

amplitude of the fluctuation is defined as the square root of the phase averaged kinetic energy,

A =
√

1

2π

∫ 2π

0

∫
Ω

u′2dΩdφ0 =
√

〈
∫
Ω

u′2dΩ〉, (3.9)

which corresponds to a temporal average over a period for a harmonic fluctuation. The

amplitude A at t = 0 coincides with the amplitude of the initial condition A0 explaining the

choice of
p

2‖u1B‖ = 1.

The system (3.8) is composed of two coupled equations. In the stationary regime, the mean

flow U is a solution of the steady mean flow equation (3.8a), while the fluctuation equation

(3.8b) describes the fluctuating field u′. As described briefly in Mantič-Lugo et al. (2014), there

are different nonlinear effects in (3.8), two of which are dominant for the development of the

instability.

• First, the RHS of (3.8a) corresponds to minus the Reynolds stress divergence 〈(u′ ·∇)u′〉,
a nonlinear mean momentum addition of the time dependent fluctuation u′ on U .

The x-component of this forcing term is shown in Fig. 3.1 for the initial u′ given by

the unstable eigenmode of the base flow (Fig. 3.1(e)) and for the final periodic state

(Fig. 3.1(f)). This momentum addition can be also viewed as the body force required for

the mean flow U to become a stationary solution of the NSE. Fig. 3.1(b) shows that the

mean flow U prevailing once the limit cycle has been reached, presents a much shorter
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Chapter 3. Revisited mean flow and transient dynamics for an unstable open flow

recirculation bubble and less shear in the wake than the base flow UB (Fig. 3.1(a)),

(Maurel et al. (1995)).

• The second nonlinear effect in (3.8) which is relevant for the instability is that of the

mean flow U on u′, which is contained in the advection terms of LU (u′) present in

the fluctuation equation (3.8b). This includes the advection of u′ by U (i.e. (U · ∇)u)

and the source terms ((u · ∇)U ) responsible for the energy transfer associated to the

growth in amplitude of the fluctuations. These effects are included in the various linear

stabiliy analyses performed around mean flows (Triantafyllou et al. (1986); Hammond &

Redekopp (1997); Pier (2002); Barkley (2006); Mittal (2008)), which neglect the RHS of

(3.8b) and in practice ignore (3.8a), since the mean flow is usually obtained from DNS

or experimental data. As remarked by Barkley (2006), such a linear stability analysis

performed globally around the mean flow U provides a very good frequency prediction

with a growth rate very close to zero.

• The third nonlinear effect, seen in the RHS of (3.8b), (u′ ·∇)u′−〈(u′ ·∇)u′〉, represents

the time dependent, zero mean, momentum addition from the nonlinear interactions

of u′ at different frequencies, resulting from the nonlinear interactions between higher

harmonics.

Neglecting this last nonlinear term as a consequence of the very harmonic nature of the

periodic limit cycle, the flow dynamics can be understood as a base flow that develops an

instability which grows and forces the underlying flow through the Reynolds stress divergence

〈(u′ ·∇)u′〉. Initially, the Reynolds stress divergence of the unstable global mode, depicted in

Fig. 3.1(e), forces the base flow (Fig. 3.1(a)) modifying it towards the mean flow (Fig. 3.1(b)),

until the point at which the mean flow is (almost) marginally stable and the perturbation satu-

rates into a limit cycle with a certain amplitude and frequency. In this process, the Reynolds

stress forcing of the initial perturbation (Fig. 3.1(e)) is modified and migrates upstream, as can

be seen by comparing it with the Reynolds stress of the saturated flow in Fig.3.1(f).

Because the mean flow provides a very good prediction of the vortex shedding frequency with

an essentially zero growth rate, it is tempting to imagine that the NSE linearized around the

instantaneous mean flow (3.7) could approximate the instantaneous frequency and growth-

rate of the evolving vortex shedding. Thiria et al. (2015) have indeed confirmed this suggestion,

using a weakly non parallel stability analysis of instantaneous mean flows obtained from DNS

simulations. It must be noted, however, that there is no amplitude information in such a

linear approach. The objective of the present paper is to show that the self-consistent model

(Mantič-Lugo et al. (2014)) provides a fairly accurate and fully consistent description of the

transient dynamics involved in the passage from the unstable base flow (Fig. 3.1(a,c,e)) to the

fully saturated mean flow with vortex shedding (Fig. 3.1(b,d,f)).
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3.2. Formulation and self-consistent quasi-linear model

3.2.2 Self-consistent model

As introduced by Mantič-Lugo et al. (2014) the self-consistent model relies on the much larger

amplitude of the fundamental compared to the rest of harmonics. For the present case of

the cylinder, Fig. 3.2 shows the structures of the velocity and energy of the fundamental and

second harmonic extracted from the fluctuation field u′ around the mean flow computed from

DNS (from now on denoted UDN S , leaving U for the mean flow of the model). The leading

terms of the Fourier series are computed from the DNS’ temporal signal at each spatial point to

extract the dominant frequencies. The power spectra of the vortex shedding signal is strongly

dominated by the fundamental frequency, with decaying energy of the higher harmonics

(Dušek et al. (1994)). This fundamental frequency dominance can also be seen in Fig. 3.2,

where the energy of the second harmonic is less than 3% of the fundamental.
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Figure 3.2 – Fluctuation velocity in x-direction ux ; (a) fundamental frequencyω and (b) second
harmonic 2ω extracted from the fully nonlinear DNS fluctuating field u′(x , t ) by Fourier series.
Energy of the fluctuation; (c) fundamental frequency ω, Eω = ∫

Ωu2
ωdΩ= 7.6 and (d) second

harmonic 2ω, E2ω = ∫
Ωu2

2ωdΩ= 0.16. Re = 100.

This dominance of the fundamental harmonic supports that the RHS of (3.8b), which is

responsible for energy transfers between different frequencies, is of limited importance and is

therefore neglected in the model (Mantič-Lugo et al. (2014)). Hence, the perturbation equation

(3.8b) is simplified neglecting the nonlinear RHS, corresponding to a global linear stability

analysis around the mean flow. Furthermore, the model assumes that this fundamental

frequency structure is directly given by the most unstable mode of the linear stability analysis

around the mean flow. In addition, the mean flow is not extracted from DNS or experimental

values, but given from (3.8a) with the forcing of the most unstable eigenmode, forming a

closed system of interactions. The resulting self-consistent quasilinear model is written:

N (U ) =−2A2ℜ ((ū1 ·∇)u1) , (3.10a)

λ1u1 +LU (u1) = 0, (3.10b)

where ℜ(·) denotes the real part and A > 0 is the instantaneous amplitude in the L2 norm

(3.9) of the first eigenmode pair. Thus, the full instantaneous velocity field is approximated as
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Figure 3.3 – Growth rate σ1 for the converged coupled system of equations of the SC model
(3.10) for different perturbation u1 amplitude A at Re = 100. The insets show the structure of
the Reynolds stress divergence 2A2ℜ ((ū1 ·∇)u1) in the x-direction and the boundary of the
recirculation bubble.

u(x, t) =UDN S(x)+u′(x, t) 'U (x)+u′
1(x, t) , where u′

1(x, t) = Au1(x)e((σ1+iω1)t ) + cc. with ω1

the frequency and σ1 the growth-rate.

The solution of (3.10) for a given A proceeds exactly as in Mantič-Lugo et al. (2014), also

described in more detail in section 3.4. The amplitude A of the leading eigenmode u′
1 of U is

initially treated as an external parameter allowing us to find a family of coupled mean flow

U (A) and perturbation u1(A) solutions with their corresponding growth rateσ1(A) as function

of the amplitude A (Fig. 3.3).

Following the physical saturation process previously described, the growth rate σ1 resulting

from these computations decreases with the amplitude increase A, as shown in Fig. 3.3.

Simultaneously, the Reynolds stress forcing constructed from the most unstable eigenmode

migrates upstream with increasing amplitude A (insets in Fig. 3.3) progressively reshaping

the mean flow and stabilizing it. The upstream relocation of the Reynolds stress divergence

forces the contraction of the recirculation region on the corresponding mean flow, marked

by a dashed line in the insets. The recirculation bubble shortening was reported in previous

descriptions of the differences between the base and the mean flow (Barkley (2006); Noack et al.

(2003)) and has been argued to be as a critical factor in the instability saturation mechanism

(Zielinska et al. (1997)).

Subsequently, the amplitude A = A(t ) can be also interpreted as a dynamical variable reflecting

the evolution in time of the amplitude of the leading eigenmode, whose instantaneous growth

rate is given by the leading eigenvalue as σ1 =ℜ(λ1). That is, the self-consistent model (3.10)
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is extended to account for the transient dynamics by adding the equation

d A(t )

d t
= A(t )σ1(A), (3.11)

which links, through the growth rate σ1(A) (Fig. 3.3), the family of (U ,u1) solutions of (3.10)

for different A to the development in time of the instability.

The relevant range of the amplitude A goes from A = 0, which corresponds to the base flow

solution UB with its unstable eigenmode, up to an amplitude A∗ such that σ1(A∗) = 0, which

yields a stationary solution of (3.11) that corresponds to the saturated vortex shedding state.

The problem of finding the amplitude A∗ corresponding to this saturated state can be rewritten

by adding the constraint σ1 = 0 in (3.10) and we get

Find: A∗ > 0 such that: σ∗
1 = 0, for

N (U∗) =−2A∗2ℜ(
(ū∗

1 ·∇)u∗
1

)
, (3.12a)

iω∗
1 u∗

1 +LU∗(u∗
1 ) = 0. (3.12b)

Summarizing, the system (3.10) together with (3.11) constitute a self-consistent closed model

of the base flow stabilization process from the unstable base flow UB to a marginally stable

mean flow U∗ given by (3.12). It approximates the slow time evolution of the transient dynam-

ics by means of a quasi-static approximation of the instantaneous mean flow U (A(t )), which

is parametrized by the amplitude A. The model is based on the nonlinear coupling between

the mean flow equations and the linear stability equations through the Reynolds stress.

3.3 Computational details

The computational domain is defined in Cartesian coordinates with center in the cylinder,

its nominal size is characterized by x−∞ = y∞ = y−∞ = 20D distance to upstream, upper and

lower boundaries respectively and x∞ = 40D distance to the outlet boundary. The nominal

mesh, C3 in Tab. 3.1, has 13322 cells and 6731 vertices being locally clustered around the

cylinder and the wake region. The Dirichlet boundary condition (ux ,uy ) = (1,0) is used at

the inlet x = x−∞, upper y = y∞ and lower y = y−∞ side boundaries. No-slip condition

(ux ,uy ) = (0,0) is applied on the cylinder boundary x2 + y2 = D2/4 and outflow boundary

condition is applied at the outlet x = x∞.

The linear and nonlinear Navier-Stokes equations are discretized and solved using the finite

element method. Taylor-Hood (P2,P2,P1) elements are used representing (ux ,uy , p) for the

spatial discretization. The time discretization of the DNS (Direct Numerical Simulation) of

NSE solution is done applying an implicit first-order time scheme based on Characteristics-

Galerkin method with a δt = 0.02s. FreeFEM++ is used to handle and solve the linear and

nonlinear systems of equations and to build the matrices of the generalized eigenvalue prob-

lem which is solved by means of the SLEPc software.
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Mesh x−∞ = y∞ x∞ N nodes Base flow, Re=60, λB

C1 20 20 2867 0.0488+0.761i
C2 20 40 4755 0.0490+0.761i
C3 20 40 6731 0.0491+0.761i
C4 20 40 15862 0.0493+0.760i
C5 30 80 10390 0.0478+0.752i
C6 40 120 68215 0.0472+0.748i
C7 30 200 123412 0.0474+0.750i

Barkley (2006) 0.0496+0.757i

Table 3.1 – Comparison of the most unstable eigenvalue λB of the linear global stability
analysis (3.7) on the base flow UB at Re = 60 for different mesh size and resolution.

The numerical approach is validated comparing in Tab. 3.1 the unstable eigenvalue of the base

flow at Re = 60 for seven meshes with different resolution and sizes and the results obtained

in Barkley (2006). Based on the good agreement between the values in Tab. 3.1 the mesh C3 is

selected to be the nominal mesh as its resolution is deemed to be enough. In addition, the

critical Reynolds number for the mesh C3 is Recr = 46.7 varying less than 1% compared to

Recr = 46.3 presented in Barkley (2006), which base flow and mean flow are also compared to

the present approach in Fig. 3.9a together with experimental results for different Reynolds

number showing an excellent agreement. Having in mind that the aim of this paper is physical

analysis and model presentation, the mesh selection is a compromise between sufficient mesh

resolution and computational costs due to the large amount of linear stability computations

required to converge the coupled equations.

3.4 Model solution

The core of the model and the most difficult part of solving it is given by the coupled system of

equations (3.10), which for each amplitude A requires finding a mean flow which is generated

by the Reynolds stress divergence of its own leading eigenmode. This is a non-standard

problem, but once it is solved and the growth rate σ(A) known in the relevant range of

amplitudes, solving (3.12) to obtain the transient dynamics is straightforward. The solution of

the model is found by means of two nested iterative loops: an inner loop to solve (3.10) for a

particular value of A, and an outer loop to solve (3.12) by increasing A from 0 to A∗ required to

advance from the unstable base flow UB to the marginally stable mean flow U while capturing

the transient dynamics.

Inner loop: equation coupling λ1(A) The iterative solution of (3.10) starts with an initial

guess for U , in this case the base flow UB . The corresponding eigenmode u1 is computed

from (3.10b), which is then inserted in (3.10a) to compute a new U using the Newton-Raphson
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method. This new U is used with a relaxation factor (as described in detail inTab. 3.2) to

update the previous guess for a new iteration. This iterative algorithm converges robustly to

a solution of (3.10) if the system is controlled by fixing the amplitude of the Reynolds stress

forcing A f ≡ A2‖2ℜ ((ū1 ·∇)u1)‖ instead of the amplitude A of the perturbation.

This is intuitive since the amplitude A f directly governs the size of the forcing term in the RHS

in (3.10), which in terms of A f becomes

A22ℜ ((ū1 ·∇)u1) = A f
2ℜ ((ū1 ·∇)u1)

‖2ℜ ((ū1 ·∇)u1)‖ , (3.13)

and where we recall that u1 is of unit L2 norm (3.9). If the system is controlled by fixing

A, the change in shape of u1 between iterations influences the norm of the Reynolds stress

‖2ℜ ((ū1 ·∇)u1)‖ which involves derivatives, thus changing the size of the RHS of (3.10) and

hindering convergence. In contrast, by fixing A f the norm of the RHS of (3.10) is kept constant

despite changes in the shape of u1. Note that this change in normalization of the Reynolds

stress forcing is only due to convergence issues and thus it does not have any influence on

the physics of the results, since there is a fixed relation between A and A f for the converged

system (3.10) at each amplitude step A or equivalently A f .

With fixed A f , this iterative procedure converges while reducing the growth rate σ1 and

increasing the frequency ω1, as can be seen in Fig. 3.4a for a case in which a marginally stable

region is reached. The residuals Rs are defined as the L2 norm on the domainΩ of the relative

variation of the fields between two consecutive steps Rs = ‖U n+1 −U n‖/‖U n‖. They reduce

while iterating Fig. 3.4b assuming the solution to be converged when all the residuals are less

than Rs < 10−4.

Outer loop: amplitude A∗. This parameterizes the slow time evolution of the instantaneous

mean along the transient by means of the amplitude A f of the Reynolds stress forcing and

equivalently the amplitude A of the perturbation u1 as it is the free parameter in (3.10). We

assume that eventually for a particular value A∗ (or A∗
f (3.13)), which is not known a priory,

the system (3.12) is marginally stable similarly to the DNS mean flow.

For each amplitude A there is a nonlinear solution of the coupled perturbation-mean flow

system (3.10) with a certain growth rate σ1, frequency ω1 and perturbation structure u1, with

its corresponding Reynolds Stress divergence 2A2ℜ ((ū1 ·∇)u1). Fig. 3.3 presents several of

these system solutions for different amplitudes A showing the relation of the growth rate and

the amplitude σ1(A).

The growth rate σ1(A f ) for each amplitude A f is not known until the nonlinear system (3.10)

is coupled iteratively. Therefore, in order to asses the transient dynamics and achieve the

marginally stable solution U∗,u∗
1 with ω∗

1 , several steps in A f are required closing the sys-

tem (3.10) at each step, in order to obtain the evolution σ1(A),U (A),ω1(A),u1(A).
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Chapter 3. Revisited mean flow and transient dynamics for an unstable open flow

Coupled system solution. The perturbation-mean flow system (3.12) is solved as described

in Tab. 3.2. The relaxation factor required to have a stable convergence in the inner loop

• U n=1 =UB initial condition.
• Select small A f arbitrarily.

1. Solve linear stability (3.10b), U n → un
1

2. Calculate Reynolds stress forcing, 2ℜ ((ū1 ·∇)u1)
3. Solve the forced Mean flow equation (3.10a), un

1 →U n+1/2

4. Calculate the new mean flow U n+1 to input into the linear stability equation,
U n+1 =U n+1/2γ+ (1−γ)U n where 0 ≤ γ≤ 1 is a relaxation factor.
Residuals Rs should reduce at each step.

5. Go to Step 1 and repeat till converged: Rs < Tolerance
• If σ1 > 0, increase amplitude A f , go to Step 1, until σ∗

1 = 0, so that A f → A∗
f

Table 3.2 – The full double nested iterative procedure that obtains the transient quasi-steady
relations of U (A),u1(A),σ1(A),ω1(A) from (3.10) and finds the saturated flow of the self-
consistent model A∗,ω∗,U∗,u∗

1 , solving the coupled system (3.12).
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Figure 3.4 – (a) Growth rate and frequency evolution during convergence of the inner loop
with fixed Amplitude A f = 0.35 and relaxation factor γ= 0.5 for Re = 60. (b) Residuals Rs of
the velocity U , pressure p and Reynolds stress divergence f decrease during converge of (a).
(c) Iterations (it) required to converge at different Reynolds number Re = 60 and Re = 100.

varies from γ = 0.5 for Re = 60 to γ = 0.1 for the large amplitudes A f for Re = 100. This

difference is related to the increased difficulty to converge for σ∗
1 = 0 as the Reynolds number

increase as shown in Fig. 3.4c. Similar issues for converging to steady solutions of the NSE

when increasing Re have been reported in the literature, see Fornberg (1980) for instance. The

required amplitude A∗ to saturate the base flow grows with the Reynolds number, entailing an

increased number of iterations (it), (Fig. 3.4c). For Reynolds higher than Re > 110 the number

of iterations required to converge increase rapidly, therefore only partial convergence was

achieved for Re = 120. Different initial conditions and relaxation values have been tried, all

converging to the same marginally stable mean flow solution U∗, showing that the solution to

the coupled system (3.12), A∗,ω∗
1 ,U∗,u∗

1 is not path dependent.
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3.5 Saturated flow

3.5.1 Mean flow and base flow

The converged mean flow U∗ obtained from the self-consistent model predicts very accurately

the DNS result showing the same recirculation bubble length with a similar wake distribution

as presented in Fig. 3.5 for Re = 60 and Re = 100.
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Figure 3.5 – Re = 100 and Re=60 Self-consistent (a,b) and DNS (c,d) comparison of the mean
flow velocity U∗ for the x-direction. For Re = 60 (a) self-consistent and (c) DNS. For Re = 100
(b) self-consistent and (d) DNS.

A more quantitative comparison to DNS results is presented in Fig. 3.6. The model provides an

excellent prediction of the mean flow recirculation bubble for all Reynolds numbers (Fig. 3.6a),

exhibiting a recirculation length Lx that is much shorter than in the wake of the base flow UB .

Fig. 3.6b shows the relative difference between the model’s mean flow U∗ and the ’exact‘ mean

flow from DNS UDN S , as well as the corresponding difference associated with using the steady

base flow UB as approximation of the mean flow. The relative difference between a steady flow

U (the base flow UB or the model’s mean flow U∗) and the mean flow from DNS is defined as

the norm of their difference normalized by the velocity deficit Uδ ≡UDN S −1ex of the DNS

mean flow, i.e. Diff(U ) = ‖U −UDN S‖/‖Uδ‖; this difference is independent of the domain size.

As it can be seen in Fig. 3.6b, the relative difference of the model’s mean flow U∗ stays below

10%, while the difference of the base flow UB increases up to 100%.

As can be seen from Fig. 3.5(b-d), the difference between U∗ and UDN S is in large part located

far downstream, a region in which the flow dynamics consists mainly in the advection and

diffusion of the shed vortices. In the case of the mean flow from DNS (Fig. 3.5(d)), the advected

vortices lead to a relatively strong and concentrated velocity deficit in the wake as compared to

the model’s prediction (Fig. 3.5(b)), in which the velocity deficit seems blurred. As it will be seen

below, this seemingly minor difference between the mean flows has important consequences

for the respective leading eigenmodes and their associated Reynolds stress.
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Figure 3.6 – (a) Base flow (triangles) and mean flow recirculation bubble length Lx variation
with the Reynolds number Re for the self-consistent model (circles) and DNS (squares). (b)
Relative difference of the self consistent model results U∗ (circles) and the base flow UB

(triangles) compared to the exact DNS mean flow UDN S . The relative difference is defined as
‖U −UDN S‖/‖Uδ‖.

3.5.2 Fluctuation and perturbation

In the left of Fig. 3.7, the x-velocity component of the perturbation u′∗
1 from the leading

eigenmodes of the self-consistent model u∗
1 (Fig. 3.7(a)) and the perturbation velocity u′

1DN S

of the leading eigenmode u1DN S around the DNS mean flow (Fig. 3.7(e)) are compared to a

snapshot of the corresponding fluctuating velocity component of the fully nonlinear DNS u′

(Fig. 3.7(c)). The least stable eigenmode u∗
1 of the self-consistent model presents a wavelength

of the vortex shedding that is very similar to that of the DNS snapshot u′, as illustrated more

quantitatively in Fig. 3.8a where the contrast with the wavelength of base flow eigenmode u1B

can be also appreciated. This resemblance is also well captured by the eigenmode u1DN S of

the exact DNS mean flow UDN S , shown in Fig. 3.7(e) and also Fig. 3.8a; this was highlighted by

Barkley (2006) and also by Mittal (2008), who has mentioned the relationship of this streamwise

wavelength to the (accurate) frequency prediction of the eigenmode of the mean flow.

Besides this similarity, there are important differences between the eigenmode of the self-

consistent model u∗
1 and that of the DNS mean flow u1DN S . The present model solution

u∗
1 captures also important features of the spatial distribution of the vortex shedding, since

the amplitude of the corresponding streamwise oscillations peaks close to the cylinder and

decreases quickly downstream, similar to the fully nonlinear snapshot (Fig. 3.7(c)). This trend

is illustrated in more detail in Fig. 3.8b, which shows the energy distribution of the fluctuating

velocity integrated in the y-direction, illustrating how far are the energy distribution of the

base flow and mean flow eigenmodes from the exact DNS. For the eigenmode of the DNS

mean flow u1DN S , the peak in amplitude of the streamwise oscillations is followed by a much

weaker decay downstream, resulting in a flow structure that is much more elongated than

the actual vortex shedding. In addition, the nodal lines of the model’s eigenmode are mostly

aligned to the y-direction in the downstream region (Fig. 3.7(a)), similar to the nonlinear fluc-

tuations from DNS (Fig. 3.7(c)) and unlike the oblique structures of u1DN S (Fig. 3.7(e)). These
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Figure 3.7 – Re = 100 Self-consistent and DNS comparison for the perturbation and fluctuation
velocity (a,c,e) and Reynolds stress divergence (b,d,f) in the x-direction. (a) Perturbation
velocity of the self consistent model calculated by the most unstable eigenmode u′∗

1 , (c)
Snapshot of the DNS fluctuation velocity u′ and (e) perturbation velocity u′

1DN S by the most
unstable eigenmode of the DNS mean flow with the same amplitude as the DNS snapshot. (b)
Reynolds stress divergence of the self-consistent model 2A∗2ℜ(

(ū∗
1 ·∇)u∗

1

)
, (d) Reynolds stress

divergence of the full nonlinear DNS 〈(u′ ·∇)u′〉 and (f) Reynolds stress divergence build by the
least stable eigenmode of the DNS mean flow 2ℜ ((ū1DN S ·∇)u1DN S) enforcing the amplitude
to be the same as the DNS Reynolds stress.

two differences between u∗
1 and u1DN S can be directly traced to the previously mentioned

difference between the model’s (U∗) and the DNS (UDN S) mean flows regarding the more

concentrated velocity deficit of UDN S in the region far downstream (Fig. 3.5(d)). The relatively

strong shear associated to the more concentrated velocity deficit in the downstream region of

UDN S coincides with the larger amplitude of the streamwise oscillations as well as with the

oblique structures of u1DN S , which are tilted against the shear of UDN S . This subtle failure

of U∗ in correctly approximating the mean flow from DNS appears as necessary for a better

approximation of the vortex shedding structure with a single mode.

The comparison between the Reynolds stresses shown on the right of Fig. 3.7 is striking. The

Reynolds stress divergence calculated from the leading eigenmode of the model (Fig. 3.7(b))

2A∗2ℜ(
(ū∗

1 ·∇)u∗
1

)
is remarkably similar to that of the fully nonlinear time-averaged DNS

〈(u′ · ∇)u′〉 (Fig. 3.7(d)). Both, the self-consistent and fully nonlinear DNS Reynolds stress

present similar amplitude and spatial distribution concentrating the forcing close to the

cylinder. On the contrary, the Reynolds stress based on the most unstable eigenmode u1DN S

around the time averaged DNS (Fig. 3.7(f)) presents an elongated structure with the forcing

spread further downstream. The different spatial structures of the Reynolds stresses of the

two eigenmodes (model and mean-flow) are a direct result of the different spatial structures

of the respective modes described above (Figs. 3.7(a) and 3.7(e)). It should be noted that
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Figure 3.8 – Re = 100 (a) Stream-wise cut of the fluctuation velocity u′
y in the y-direction

at y = 0.7 and (b) energy integral in y-direction averaged over one period, Ep (x) =
T −1

∫ T
0

∫ ∞
−∞ u′2(x, y, t )d yd t . Base flow linear perturbation (dashed line), perturbation velocity

of the self consistent model calculated by the most unstable eigenmode u′∗
1 (thick solid line),

snapshot of the DNS fluctuation velocity u′ (dashed-dotted line), and the velocity from the
most unstable eigenmode of the DNS mean flow u1DN S (thin solid line); the base flow and
DNS mean flow eigenmode amplitudes are fixed to be the same as the DNS snapshot.

the shape of the Reynolds stress divergence completely determines the mean flow in the

self-consistent model and in DNS, and unlike the linear solution around the DNS mean flow.

This is because the self-consistent result U∗,u1 comes as a closed system solution where the

mean flow and perturbation interact between each other nonlinearly through the Reynolds

stress (3.12) in a similar manner as in the full DNS, while the linear solution around the DNS is

largely uncoupled (3.7).

Note that the full DNS Reynolds stress divergence is built by all the harmonics u′ whereas in the

self-consistent model it is constituted only by the neutrally stable eigenmode u∗
1 of the mean

flow. Therefore, the amplitude of the higher harmonic contribution decreases more abruptly

for the Reynolds stress forcing than for the fluctuation since they scale as 〈(u′ ·∇)u′〉 ∼O (u′2).

This scaling difference may explain why the Reynolds stress divergence of the model resembles

better the exact DNS solution Fig. 3.7(b-d) than the fluctuating velocity Fig. 3.7(a-c).

Fig. 3.9a shows that the saturated frequency of the vortex shedding from experiments is well

approximated by the model converged solution represented by squares in Fig. 3.9a, while at

the same time, matching the eigenvalues of the linear stability around the DNS mean flow as

previously described by Barkley (2006). The model is valid far from threshold, contrary to the

perturbative theory (thin straight line) of the well known amplitude equation (Sipp & Lebedev

(2007); Stuart (1960)), capturing the correct frequency shift from the initial base flow (solid

line Fig. 3.9a).

The perturbation amplitude predicted by the self-consistent model (squares) follows closely

the DNS results (circles), as seen in Fig. 3.9b, capturing well the nonlinear retroaction of the

perturbation equation onto the mean flow. However, the model requires a slightly larger

perturbation amplitude A∗ in order to obtain a marginally stable mean flow. This probably
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Figure 3.9 – (a) Frequency ω of the least stable eigenmode of the self-consistent model mean
flow (squares), steady base flow (solid line) and DNS mean flow (circles) as compared to
Barkley (2006) eigenvalues around the mean flow (triangles), experimental frequency (dash
line) and the weakly nonlinear theory prediction (Sipp & Lebedev (2007); Stuart (1960)) (thin
solid line). (b) Fluctuation and perturbation amplitude A∗ variation with Reynolds number
for the weakly nonlinear theory (dashed line), converged self-consistent model (squares) and
saturated DNS (circles).

because the Reynolds stress forcing is only constructed by one harmonic which has to approx-

imate the spatial information of all harmonics in DNS. The reduced amplitude at Re = 120 is

related to the partial convergence. Note also how the weakly nonlinear theory is valid only

close to the critical Reynolds number as it starts to diverge from DNS and self-consistent

results for Re > 50, Fig. 3.9. This discrepancy of the weakly nonlinear theory is caused by the

lack of coupling between the mean flow variation and the perturbation equation through the

Reynolds stress which on the contrary is present in the self-consistent model.

3.5.3 Vorticity fields

In order to complement the description of the flow field behind the cylinder, the vorticity

of the fluctuation is presented in Fig. 3.10. The self-consistent vorticity structure from the

perturbation u′∗
1 illustrated in Fig. 3.10(a) resembles well the fully nonlinear DNS fluctuation

u′ at the fundamental frequency (ω, Fig. 3.10(c)), showing a similar pattern of horizontally

alternated positive and negative vortices with a reflection symmetry about y = 0. However,

the self-consistent model misses the vertical alternation of vortices gathered in the second

harmonic at (2ω, Fig. 3.10(d)) and thus explaining the difference with the total fluctuation

snapshot depicted in Fig. 3.10(b). The vorticiy of the perturbation around the mean flow u1DN S

shows an even poorer approximation of the DNS snapshot presenting oblique structures in

the same fashion as previously described in Fig. 3.7 and Fig. 3.8.

It seems that the loss of symmetry about y = 0 is secondary in the wake dynamics and in the

saturation process since the self-consistent model is able to capture the correct shape of the
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Figure 3.10 – Re = 100 Self-consistent and DNS comparison for the vorticity of the fluctuation.
(a) Perturbation vorticity of the self consistent model calculated from the most unstable
eigenmode u′∗

1 . (b) Snapshot of the DNS fluctuation vorticity from u′, (c) fluctuation vorticity
of the fundamental and (d) vorticity distribution of the second harmonic, both extracted from
the fully nonlinear DNS fluctuating field u′(x , t) by Fourier series. (e) Perturbation vorticity
from the most unstable eigenmode u1DN S of the DNS mean flow with the same amplitude as
the DNS snapshot.

Reynolds stress divergence (Fig. 3.7), the mean flow (Fig. 3.5-3.6) and the fluctuation energy

distribution (Fig. 3.8(b)) with a symmetric vorticity distribution.

3.6 Transient evolution

The transient evolution of the 2D cylinder flow from the unstable base flow UB to the marginally

stable mean flow U ,σ1 = 0 is considered by splitting the effects between the fast time-scale of

the fluctuation oscillation u′(t ) and the slow time evolution of the mean flow U . The evolution

in time of the instantaneous mean flow is assessed by calculating the average among DNS

with several initial conditions defined as the base flow UB plus a small perturbation A0u1φ, of

same amplitude A0 and a structure of the most unstable eigenmode u1 and different phase

φ0, which allows the selection of the wave phase of the initial perturbation as introduced in

3.2. The initial phase angle span φ0 = [0,2π] is divided in nφ = 8 equal parts providing an

instantaneous mean flow approximation at each slow time step equivalent to an average over 8

snapshots of one period in the fast time scale. An average over nφ = 8 is deemed to be enough

as nφ = 4 and nφ = 8 provided indistinguishable results.

The phase averaged mean flow evolves in time with an associated change of the fluctuation

shape, frequency and amplitude. The saturation of the DNS fluctuation amplitude ADN S

(solid line) is presented in Fig. 3.1(h), being calculated from the norm of the instantaneous

velocity minus the phase averaged mean, u′ = u −UDN S(t). On the other hand, the results
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Figure 3.11 – (a) Time evolution of the fluctuation amplitude during the saturation pro-
cess, DNS (solid line), self-consistent (dashed line) and simplified polynomial relation
(3.14) of σ1(A) (dash dotted line) for Re = 100. (b) Time for the instability growth (tg =
tA0.99 − tA0.01) (3.15) as function of the Reynolds number for the DNS (squares) and based on
a polynomial approximation (3.14) of the σ1(A) relation (dash dotted line). Characteristic
period of the base flow perturbation 1/St (circles).

U (A),u′
1(A),σ1(A),ω1(A) of the self-consistent model (3.10) for each amplitude A predict,

through the evolution equation (3.11), an analogous slow time-scale dynamics which can

be compared to the DNS exact transient. Then, knowing the relation σ1(A) from Fig. 3.3,

(3.11) is integrated with a fourth order Runge-Kutta method and the corresponding small

initial amplitude A0. The amplitude A(t ) as a function of time for the self-consistent model is

compared to DNS in Fig. 3.11(a) and in logarithmic scale in Fig. 3.1(h). The model shows a fair

agreement with the transient dynamics of the DNS, closely matching the initial evolution up

to roughly half the amplitude of saturation, while also capturing the final stage of saturation

with the modest difference in final amplitude shown in Fig. 3.9b. There is an overshoot in

the transient, also reported inTadmor et al. (2010), which the self-consistent model fails to

reproduce probably because it is based on a quasi-static approximation.

Indeed at this Reynolds number there is no strict separation of time scales since the transient

time based on the base flow growth rate is of similar order of magnitude as the fluctuation

period 1/σ1B ∼ 1/St ∼ 8 for Re = 100. However, defining a time for the instability growth tg as

the time between the amplitude 1% and 99% of the saturated mean flow amplitude, the DNS

results show that the frequency time scale 1/St is much smaller than tg even for Reynolds

numbers as large as Re = 100 (Fig. 3.11(b)). Hence, there is time for several oscillations during

the growth of the instability, pointing to the relevance of the averaging process involved in the

self-consistent model.

A step further in simplification of the transient dynamics is to approximate the function σ1(A)

obtained from the self-consistent model in Fig. 3.3 with a simple polynomial of second order
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consistent with the Stuart-Landau amplitude equation (Stuart (1960)),

σ1(A) ∼σ1B

(
1− A2

A∗2

)
, (3.14)

where σ1B is the growth rate from the most unstable mode of the linear stability around the

base flow, and A∗ is the saturated amplitude. Integrating (3.11) from A0 at t = 0 and assuming

the polynomial relation (3.14) we obtain an analytical solution which is plotted in Fig. 3.11(a)

showing a good approximation of the amplitude evolution when compared to DNS. The time

of the transient evolution can be calculated from the relation (3.14) as

tg = K

σ1B
, (3.15)

where K = 1
2 log

(
0.992

1−0.992
1−0.012

0.012

)
. The transient time tg obtained from the crude approximation

(3.14) compares well to the DNS transient time as illustrated in Fig. 3.11(b). Thereby relation

(3.15) allows to obtain an a priori approximation of the transient time tg independent of the

mean flow and just dependent on the base flow growth rate σ1B .

During the transient, the base flow is modified slowly with the progressive saturation of the

instability associated to the growth rate reduction with time. The instantaneous growth rate σ

of the fluctuating instability u′ around the instantaneous mean flow UDN S(t ) can be obtained

from

σ(t ) = d log ADN S(t )

d t
, (3.16)

where the fluctuation amplitude ADN S(t ) of the DNS at each slow time step is extracted from

Fig. 3.1(h). This nonlinear instantaneous growth rate σ (solid line) is compared in Fig. 3.12(a)

to the linear growth rate σ1DN S (circles and triangles) calculated from the linear stability

analysis (3.7) around each instantaneous mean, showing a slightly delayed saturation of

the linear growth rate but a similar overall evolution. The instantaneous growth rate of the

self-consistent model obtained for its equivalent time (dashed line in Fig. 3.12(a)) follows

however more closely the exact DNS transition, but misses the overshoot of the DNS before

the saturated value.

On the other hand, the linear frequency of the DNS instantaneous mean (circles and triangles)

matches better the exact DNS nonlinear frequency (solid line in Fig. 3.12(b)), which is extracted

from the time evolution of the x-direction velocity at (x, y) = (2,1), as depicted in Fig. 3.1(g),

when compared to the predicted frequency of the self-consistent model (dashed line) at the

equivalent time. A similar remarkable agreement was found already by Thiria et al. (2015)

using a weakly non parallel stability analysis. We think that this minimal difference might

appear because the self-consistent model transient evolution and the DNS correspond to

independent dynamical systems. In both cases the growth rate σ and amplitude A are the

leading parameters to capture the nonlinear saturation from the base flow UB to the marginally

stable mean flow U∗, while the frequency is free to vary.
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Figure 3.12 – Evolution of the transient growth rate (a) and frequency (b) with time. Compari-
son between the linear stability prediction around the instantaneous DNS mean (triangles,
labeled as linear), the fully nonlinear instantaneous growth rate and frequency of the DNS fluc-
tuation evolution u′ (solid line labeled as nonlinear DNS) and Self-consistent approximation
of the frequency and growth rate (dashed line) at Re = 100.

The Reynolds stress divergence evolution of the DNS and the self-consistent model is com-

pared in Fig. 3.13 for three different linear growth rates σ1 = 1.27,0.66,0 at their associated

times tSC = 0,40,150 and tDN S = 0,50,150. Since the same linear growth rate is obtained at

different equivalent times, the self-consistent model and the full DNS nonlinear saturation

do not follow exactly the same dynamical paths. However, the close matching encountered

in the evolution of the spatial structure (Fig. 3.13) suggests a physical relation underlying the

Reynolds stress amplitude convergence of the self-consistent model A f and the transient DNS

evolution in the slow time scale. The quasi-steady evolution of the perturbation based on

the growth-rate of the unstable eigenmode which is coupled back to the mean flow through

the Reynolds stress is enough to capture the slow time evolution of the fully nonlinear DNS

saturation. Independently of the exact path of the instantaneous mean flow, the growth rate

decreases accompanied by a frequency increase as oscillations grow and saturate.

3.7 Conclusions

We have presented and characterized the self-consistent model (3.12) that describes the

saturation process of the vortex shedding instability by coupling the mean flow and the linear

perturbation equation. The model provides an excellent prediction of the mean flow and

its associated vortex street in terms of frequency, amplitude and spatial structure. This fully

nonlinear fluctuating field is approximated by a single harmonic given by the most unstable

eigenmode around the mean, which at the same time creates the Reynolds stress that forces

back onto the aforementioned mean flow closing the system. The obtained Reynolds stress

divergence of the coupled model estimates very well the structure of the exact solution of

the full DNS, unlike the one constructed by the most unstable eigenmode of the DNS mean

flow since it is largely decoupled. From the vorticity fields it can be inferred that the vertical
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Figure 3.13 – Reynolds stress divergence in x-direction component; (a,c,e) for the Self-
consistent model 2A2ℜ ((ū1 ·∇)u1) and (b,d,f) for the full DNS 〈(u′ · ∇)u′〉, comparison of
the transient evolution for σ1 = 1.27 (a) self-consistent and (b) DNS, for σ1 = 0.66 (c) self-
consistent and (d) DNS and for σ1 = 0 (e) self-consistent and (f) DNS at Re = 100.

alternation of the wake vortices is gathered in the second harmonic and thus missing in the

symmetric wake of the model. Therefore, it seems to be a secondary effect not required to

capture the saturation process.

In addition to the saturated periodic flow, we have extended the model to describe the tran-

sient of the saturation process from the unstable base flow to the marginally stable mean

flow. The comparison reveals that the self-consistent model provides the same trends of the

instantaneous mean flow as the fully nonlinear DNS obtained by averaging on the phase.

The similarities in the evolution of the growth rate, frequency, fluctuation amplitude and

Reynolds stress strongly suggest a physical relation between the perturbation amplitude A of

the quasi-steady solution of the model and the time evolution of the DNS nonlinear saturation.

The model shows that even with a single harmonic linear perturbation the flow evolves to

similar saturation structures as the full DNS thanks to the retained Reynolds stress nonlinearity.

Furthermore, assuming a simple relation between the growth rate and the fluctuation ampli-

tude, we found a simple and predictive estimate of the characteristic time of the transient that

compares well to the exact DNS.

Inspired by the scale separation of the weakly nonlinear theory (Sipp & Lebedev (2007))

the present model formalizes in a self-consistent coupled system the physical picture of

an instability saturation process. The perturbation, given by the most unstable eigenmode,

grows around the mean flow and modifies it by the Reynolds stress forcing, saturating at the

point when the mean flow is marginally stable. This physical picture, which has been put

forward in the past by various authors (Maurel et al. (1995); Stuart (1958); Barkley (2006)),

is mathematically formalized by the present model. The similarities between DNS and the
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predictions of the model strongly support the relevance of this saturation mechanism. The

predictive capacity of the present model is in no way expected to make it significant as a

substitute for the Navier-Stokes equations, rather, it is significant since it shows that this

simplified model contains all the essential ingredients to provide a fairly accurate description

of the physics. This substantiates the importance of the model.

As already mentioned, the idea of marginal stability of the mean flow was suggested in the 50’s

by Malkus (1956) for turbulent flows, and by Stuart (1958) for the saturation of supercritical

instabilities. The dynamical significance of the mean flow was further suggested by accurate

frequency predictions from the stability of mean flows for the vortex shedding instability

(Triantafyllou et al. (1986); Barkley (2006); Hammond & Redekopp (1997); Pier (2002); Mittal

(2008)), making it the obvious test case for our model. But these are also interesting questions

for other limit cycles arising from oscillatory instabilities. Recently, the questions of the

mean-flow’s marginal stability and of frequency prediction from the mean flow have been

considered by Turton et al. (2015) in a very different case, namely, thermosolutal convection

driven by opposing thermal and solutal gradients. Turton et al. (2015) study two different

types of limit cycles existing in such system, travelling and standing waves. Remarkably, they

find that for travelling wave solutions the mean flow (or mean fields in this case involving

two extra scalar fields) is nearly marginally stable and the frequency of its leading eigenmode

almost matches that of the limit cycle. For the standing wave solutions, on the contrary, the

frequency predicted by the mean flow’s leading eigenvalue differs considerably from that

of the limit cycle, and the mean flow is unstable, which is perhaps not surprising since the

standing wave solution is also unstable. More importantly, they show that the key difference

between travelling and standing wave solutions lies in their temporal spectra, strongly peaked

for travelling waves but not so for standing waves. Moreover, they provide a general discussion

for systems with limit cycles and quadratic nonlinearities, and show that when the limit cycle

has (almost) a single temporal frequency, the leading eigenvalue of the mean flow necessarily

has (almost) the right frequency with (almost) zero growth rate. This points to a broader

applicability of our model, although their attempt to implement it based on our previous

report (Mantič-Lugo et al. (2014)) did not converge (Turton et al. (2015)).

In any case, the relevance of this type of self-consistent quasilinear models, which couple a

perturbation equation linearized around a mean flow which is itself determined simultane-

ously from the Reynolds stress of the perturbations, goes well beyond limit cycles. A recent

study derives a similar model in order to compute exact coherent structures in the transitional

regime of a parallel shear flow (Beaume et al. (2015)). Another important application of such

models involves the study of turbulent flows by modeling the nonlinear effects of turbulent

fluctuations as a stochastic forcing on the linearized fluctuation equations. This has been used,

for example, for obtaining statistical solutions leading to analytical expressions of the mean

flow for wall bounded turbulence (Nazarenko et al. (2000)), or for describing the appearance

of coherent structures as a bifurcation of the statistical solution(Farrell & Ioannou (2012);

Bouchet et al. (2013)). Further development of these ideas may open interesting possibilities

for optimization and flow control.
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4 Saturation mechanism of the re-
sponse to harmonic forcing

The nonlinear dynamics of oscillators has been analysed in the two previous chapters by

introducing a semi-linear model to describe its saturation. Although amplifiers are linearly

stable and therefore do not present intrinsic dynamics, they exhibit very large amplifications

to external perturbations, or noise, which irremediably trigger a saturation mechanism that

restricts the amplitude of the response to forcing. The purpose of this chapter is to answer

the question if the self-consistent semi-linear model successfully applied to the cylinder wake

flow can also elucidate the saturation of harmonically forced stable amplifier flow, like the

backward-facing step flow.

Paper: Self-consistent model for the saturation mechanism of the
response to harmonic forcing in the backward-facing step flow
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Self-consistent model for the saturation mechanism of the response
to harmonic forcing in the backward-facing step flow
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Submitted to Journal of Fluid Mechanics

Certain flows denominated as amplifiers are characterised by their global linear stability while

showing large linear amplifications to sustained perturbations. As the forcing amplitude

increases, a strong saturation of the response appears when compared to the linear prediction.

However, a predictive model describing the saturation of the response to higher amplitudes of

the sustained forcing is still missing. An asymptotic analysis based on the weakly nonlinear

theory is first proposed showing how the saturation process is governed by the Reynolds stress

nonlinear interaction, thus motivating the introduction of a simple self-consistent model.

The model consists of a decomposition of the full nonlinear Navier-Stokes equations in a mean

flow equation together with a linear perturbation equation around the mean flow, which are

coupled through the Reynolds stress. The full fluctuating response and the resulting Reynolds

stress are approximated by the first harmonic calculated from the linear response to the forcing

around the aforementioned mean flow. This closed set of coupled equations is solved in an

iterative manner as partial nonlinearity is still preserved in the mean flow equation despite

the assumed simplifications.

The results show an accurate prediction of the response energy when compared to Direct

Numerical Simulations (DNS). The approximated coupling is strong enough to retain the main

nonlinear effects of the saturation process. Hence, a simple physical picture is formalised,

wherein the response modifies the mean flow through the Reynolds stress in such a way that

the correct response energy is attained.

Keywords: Shear layers, Nonlinear instability, Separated flows

4.1 Introduction

Over the years linear stability theory has been the most classical approach applied to under-

stand and describe bifurcations, instability and eventually transition to turbulence in fluid dy-

namics (Schmid & Henningson (2001)). It predicts the asymptotic long term response to small

initial perturbations and yields a successful estimation of the critical control parameter where

the first bifurcation occurs in many flows (Drazin & Reid (2004)), e.g. Rayleigh-Benard convec-

tion, Taylor-Couette flow between rotating cylinders, or the flow past a cylinder. Nonetheless,
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some flows exhibit bifurcations well below the critical Reynolds number Recr predicted by the

linear stability analysis: parallel flows e.g. Couette and Hagen-Poiseuille (Schmid & Henning-

son (2001)), as well as non-parallel configurations like jets (Garnaud et al. (2013)) or the flow

above a backward-facing step (Barkley et al. (2002)), among many others.

In the famous Reynolds pipe flow experiment (1883) and other examples, the critical Reynolds

number of the bifurcation and eventual transition to turbulence is strongly dependent on

the level of external noise. This dependency is interpreted by the non-normality of the

Navier-Stokes system of equations, which is thus able to amplify perturbations by means

of non-modal mechanisms (Trefethen et al. (1993), Chomaz (2005), Schmid (2007)). The non-

normality allows the flow to escape from linearly stable solutions by means of large temporal

amplification of initial conditions (transient growth) as well as strong response to harmonic

forcing, characterized by large gains.

A substantial body of work has therefore been devoted to the understanding of subcritical

flows. While modal analysis focusing primarily on eigenvalues cannot predict the bifurcation

threshold, other non-modal techniques stemming from classical linear algebra have shed

light on the strong amplification potential of linearly stable flows. These techniques allow

to find the optimal perturbations that enforce the largest possible amplification, in other

words, the specific perturbation distribution resulting in the maximal transient growth or

harmonic gain. Calculations on transient growth in parallel flows have been performed among

others by Butler & Farrell (1992), Corbett & Bottaro (2000) and Schmid (2007) and in non-

parallel 2D flows by Akervik et al. (2008) or Monokrousos et al. (2010); Sipp & Marquet (2012);

Alizard et al. (2009) for spatially developing boundary layers and Blackburn et al. (2008) for

the backward-facing step among others. Optimal harmonic forcing structures that produce

the largest amplifications in response (Farrell & Ioannou (1996), Schmid (2007)) have been

for instance studied in parallel plane Couette applying wave number expansion by Jovanović

& Bamieh (2005). For several spatially developing open flows Akervik et al. (2008); Alizard

et al. (2009); Sipp & Marquet (2012) have determined the optimal harmonic gain curves, which

systematically displayed a preferred frequency. The harmonic response of the shear layer shed

by the corner of the 2D backward facing step was then determined by Marquet & Sipp (2010)

and later by Boujo & Gallaire (2015) among others.

A related but different approach is the study of the response to white noise, as was introduced

for parallel flows by Farrell & Ioannou (1993). For non-parallel flows Dergham et al. (2013)

present a low dimensional model to approximate the linear response of white noise for the

2D backward-facing step, while Boujo & Gallaire (2015) study the sensitivity and control of

the response amplification under stochastic forcing. Whilst most of the non-modal studies

presented rely on the linearisation around the stable steady solution of the NSE (Navier-Stokes

equations), defined as base flow, an attempt to describe more precisely the actual physics

involved in the strong noise amplification exhibited in turbulent jets has been pursued by

Garnaud et al. (2013), who applied the optimal gain analysis on a model mean flow for globally

stable jets.
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All these studies rely on the linear response to perturbations, either intrinsic (instability) or

externally driven (forcing) and are not able to describe saturation processes or the nonlinear

interaction existing between the mean flow and fluctuating coherent structures, thus driving

the need of characterizing the nonlinear effects involved. A well known description of the

physical mechanism that takes place in the saturation of a supercritical instability close to

threshold is presented by the Stuart-Landau amplitude equation introduced back in the

60’s (Stuart (1960)). It comes as a result of an earlier Stuart’s attempt (Stuart (1958)) to capture

the saturation mechanism introducing the mean flow modification through the Reynolds stress

constructed by the most unstable eigenmode. In a similar nonlinear spirit, Farrell and Ioannou

propose the SSST theory (Farrell & Ioannou (2003)). It consists in writing the linear response

to white noise forcing as a Lyapunov equation, and coupling it to the ensemble average mean

flow by means of the Reynolds stress. The theory is able to describe the appearance of large

coherent fluctuating structures in turbulent atmospheric flows (Farrell & Ioannou (2003)), as

well as in the 3D Couette flow (Farrell & Ioannou (2012)), all of them being linearly stable.

Motivated by the work of Farrell and Ioannou and the weakly nonlinear theory used in the

amplitude equation, we propose herein a model that captures the saturation of the response

at increasingly higher amplitudes of sustained harmonic forcing. The model is specifically

applied to the well known backward-facing step case study in 2D since it is globally stable at

Re = 500 presenting the threshold for 3D global instability at Recr ∼ 748 (Barkley et al. (2002)

and Lanzerstorfer & Kuhlmann (2012)). First, an asymptotic expansion based on the weakly

nonlinear theory is applied around the stable base flow, showing the Reynolds stress as the key

nonlinear term in the saturation process, at least close to the threshold. Then, the asymptotic

results serve as a base to propose a model where the mean flow is coupled with the linear

response to harmonic forcing by means of the Reynolds stress, neglecting higher harmonics

generation. The results present an accurate prediction of the saturation as much as of the

structure of the response and mean flow. The introduced model relates to the model recently

proposed by Mantič-Lugo et al. (2014), formalizing the importance of the Reynolds stress in

the saturation process of unstable supercritical flows, as already discussed by Barkley (2006),

Mittal (2008) and Turton et al. (2015) among others.

The paper is organized as follows. In section 5.2 the flow configuration is described and the

numerical method is explained. Secion 4.3 presents the classical linear response calculation

and reveals the difference with the exact DNS. Section 4.4 introduces the weakly nonlinear

theory with the asymptotic method around the base flow that motivates the self-consistent

model described in section 4.5. Finally the results of the model are compared to the exact DNS

in section 4.6 and the conclusions are summarized in section 4.7.
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 −1

0

1

Figure 4.1 – Sketch of the flow configuration superimposed onto the velocity field x-direction
of the base flow for the backward facing step at Re = 500.

4.2 Problem formulation

4.2.1 Flow geometry and governing equations

The case study selected is the 2D incompressible laminar flow around the backward facing

step. The configuration is sketched in Fig. 4.1. It consists of an inlet channel of height h

and length Li = 5h followed by a step of height h entailing a sudden expansion of height

H where H = 2h hence the expansion ration is Γ = h/H = 0.5 as depicted in Fig. 4.1. The

Reynolds number is defined as Re = hU∞/ν, where h is the inlet channel height, U∞ the

centerline (maximum) velocity of the plane Poiseuille inlet boundary condition and ν the

kinematic viscosity. The non-dimensional frequency defined by the Strouhal number is given

by St = f h/(U∞) =ω/(2π). Throughout the article, all the variables are non-dimensional using

length h, density ρ∞ and velocity U∞ as reference scales.

The flow is governed by the forced 2D incompressible Navier-Stokes equations (NSE),

∂t u +N (u) = f , (4.1)

where

N (u) ≡ (u ·∇)u +∇p −Re−1∆u (4.2)

corresponds to the advective, pressure gradient and diffusive terms. The pressure field p

is such that the velocity fields are divergence free ∇ ·u = 0 following the incompressibility

condition. The term f represents a harmonic body forcing of the form f (x, t ) = f1(x)e iωt +cc.

with a given fixed frequency St =ω/(2π).

4.2.2 Linear transfer function

The steady solution of NSE

N (UB ) = 0, (4.3)

is called the base flow UB and it is linearly stable for the 2D backward-facing step with ex-

pansion ratio Γ= 0.5 at Re = 500 with its first unstable mode appearing in 3D for Recr ∼ 748
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(Barkley et al. (2002) and Lanzerstorfer & Kuhlmann (2012)). The classical approach is to study

the linear response to harmonic forcing around this stable base flow. Fig. 4.1 shows the outline

of the base flow of the backward-facing step at Re = 500.

The exact nonlinear response can be approximated by the linear response, assuming a small

amplitude of the harmonic forcing,

[∂t u′
1B +LUB (u′

1B )] = f , (4.4)

where higher order nonlinear terms are neglected as a first approximation, and the operator

LU (u′) is the corresponding operator for the NSE linearized around U , i.e.

LU (u′) ≡ (U ·∇)u′+ (u′ ·∇)U +∇p ′−Re−1∆u′. (4.5)

Furthermore, since the forcing is harmonic, the corresponding response u′(x, t ) will also be

harmonic u′(x, t) ' u′
1B (x, t) = u1B (x)e iωt + cc. and oscillate purely at the forcing frequency,

due to the linearity and stability of the operator (4.4).

The linear equation (4.4) can be rewritten formally as u1B =R(ω) f1 where R(ω) = (iω+LU )−1

is the resolvent operator. The amplitude of the response in general can be measured as the

square root of the kinetic energy of the purely time dependent fluctuation averaged over one

period T ,

B =
√

1

T

∫ T

0

∫
Ω

u′2dΩd t . (4.6)

Consequently, the amplitude of the linear response u′
1B corresponds to the L2 norm

B =
√

1

T

∫ T

0

∫
Ω

u′2
1B dΩd t =p

2‖u1B‖ (4.7)

as it is sinusoidal, defining the L2 norm as determined by the Hermitian inner product (a|b) =∫
Ωa ·bdΩ= ∫

ΩaH ·bdΩ, for complex fields in the domainΩ. In the same fashion, the forcing

amplitude is calculated as the L2 norm of the harmonic forcing

A =
√

1

T

∫ T

0

∫
Ω

f 2dΩd t =p
2‖ f1‖. (4.8)

A natural way of measuring the amplification is the gain,

G(ω) = B/A, (4.9)

which is defined as the ratio between the amplitude of the response and the amplitude of the
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input. Subsequently, for the linear case of harmonic forcing it reads

G(ω) = ‖u1B‖/‖ f1‖. (4.10)

In particular, it is relevant to determine the largest energy amplification possible at a given

frequency or optimal gain Gopt (ω) which is associated to the optimal forcing fopt .

Gopt (ω) = max
f1

‖u1B‖
‖ f1‖

= ‖R(ω) fopt‖
‖ fopt‖

. (4.11)

Introducing the adjoint of the resolvent operator, the gain can be rewritten as a Rayleigh

quotient of the resolvent operator and the forcing,

G2(ω) = (R f1|R f1)

( f1| f1)
= (RHR f1| f1)

( f1| f1)
. (4.12)

Subsequently, the optimal gain and forcing correspond to the leading eigenvalue λ1 = G2
1

and eigenvector f̂1 of the symmetrical eigenvalue problem RHR f̂k =λk f̂k . The undertaken

procedure to obtain the optimal gain is described in more details in Garnaud et al. (2013)

and Boujo & Gallaire (2015). Thus, we obtain for each forcing frequency an optimal forcing

spatial distribution with its associated gain. A comparison of the optimal gains at different

frequencies enables to obtain the overall optimal gain Gopt with its corresponding forcing

fopt . Notice that this optimization is achieved only for the linear equation, and not for the full

nonlinear gain of the DNS.

4.2.3 Numerical methods

The linear and nonlinear Navier-Stokes equations are solved applying the Finite Element

Method representing the spatial discretization of the flow fields (ux ,uy , p) by Taylor-Hood

(P2,P2,P1) elements. The software FreeFEM++ is used to generate the domainΩ triangulation

and to build all the required operators. The linear operators are solved by a Sparse solver

implemented directly in FreeFEM++ while the singular value decomposition is solved in

Matlab. The nonlinear systems as the steady state solutions are solved by the iterative Newton–

Raphson method. The time integration of the DNS (Direct Numerical Simulation) of NSE is

calculated applying a time scheme based on Characteristics-Galerkin method as described

in Benitez & Bermudez (2011).

The computational domain under consideration is defined in Cartesian coordinates with the

origin at the step edge. The nominal domain spans from x = −5h to x = 50h with an inlet

y = (0,h) and an outlet y = (−h,h) as depicted in Fig. 4.1 being the same size as in Boujo

& Gallaire (2015). A 2D plane Poiseuille profile is imposed as the inlet Dirichlet boundary

condition xi =−h. No-slip conditions are imposed at the upper y = h and lower boundary

y =−h and outflow boundary condition is imposed at the outlet xo = 50h.
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Mesh Li xbr xt s xtr

Barkley et al. (2002) - 1 10.87 8.71 17.49
M2 1 10.9 8.7 17.5

present M1 5 10.8 8.6 17.4
M3 10 10.8 8.6 17.4

Table 4.1 – Comparison of the recirculation bubble position for different domain geometry,
variation of inlet length Li .

Mesh Li Lo Gopt Difference % Mesh Li Lo Gopt Difference %

M4 5 40 7089 5% M2 1 50 7030 6%
M1 5 50 7453 - M1 5 50 7453 -
M5 5 60 7464 0.1% M3 10 50 7493 0.5%

Table 4.2 – Comparison of the linear optimal gain at St = 0.075 for different domain geometry.

The size of the domain was chosen after thorough validation. The length of the domain is

selected such that the base flow outlet profile reaches the fully developed Poiseuille profile,

presenting an relative error between the base flow and the parabolic profile of less than 1%

in L2 and L∞ norm. The influence of the entrance length on the recirculation bubble is

summarized in Tab. 4.1 and compared to Barkley et al. (2002), to ensure that the chosen length

is large enough and the solutions obtained are general and independent of further increase in

domain size. In addition, the length of the recirculation bubble shows an excellent match for

the whole range of Reynolds number compared to Barkley et al. (2002) and Blackburn et al.

(2008).

The nominal domain and mesh M1 is of 33814 cells and 155691 DoF (degrees of freedom)

obtaining a gain of 7453, which compares quantitatively well to the optimal Gopt = 7480

computed by Marquet & Sipp (2010) ensuring the quality of the methodology and mesh used.

Furthermore, mesh independence is verified by doubling the number of cells by a uniform

refinement obtaining M6 with 338247 DoF and 73982 cells, which provides a gain of 7456, thus

a relative variation of less than 0.05%.

First and second order methods (Benitez & Bermudez (2011)) are compared for the time

integration scheme of the DNS in Tab. 4.3. The second order method is chosen as it presents

a much more robust results in terms of gain when compared to the first order in spite of a

small increase in the computational time. The DNS time step is chosen by achieving time step

independent results in terms of nonlinear gain as sumarized in Tab. 4.3. The selected time step

δt = 0.02 is deemed to be small enough as a trade off between accuracy and computational

time since it is located in the time step independent region.
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Order δt = 0.005 δt = 0.02 δt = 0.04 δt = 0.05 δt = 0.1

Gain 1st Order 1622 1563 1492 1456 1276
Gain 2nd Order 1643 1642 1653 1663 -

Table 4.3 – Nonlinear saturated gain G of the DNS for different time step δt . The nonlinear
solution is forced by the optimal harmonic forcing of amplitude A = 4 ·10−4 for Re = 500. The
selected time scheme is second order and the time step is δt = 0.02 marked in black.
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Figure 4.2 – (a) Linear optimal forcing in the x-direction and (b) linear optimal response in
the x-direction at overall optimal frequency St = 0.075. (c) Linear gain optimal at each forcing
frequency St comparison to Marquet & Sipp (2010). All results at Re = 500.

4.3 Linear and non-linear response to harmonic forcing

Applying the linear formulation described in Section 5.2.2 to the 2D backward facing step flow,

the optimal forcing and response are calculated. The associated optimal gain obtained around

the base flow is very large, with an overall optimal gain of Gopt = 4780 at Re = 500, obtained for

a non-dimensional frequency of St = 0.075 the same as that reported by Marquet & Sipp (2010)

and Boujo & Gallaire (2015). This optimal forcing at 0.075 will be used throughout the paper

unless stated otherwise f1 = fopt , although the methodology is independent of the shape and

frequency of the forcing and any body or boundary harmonic forcing could be used. We chose

Re = 500 for simplicity of comparison to literature (Boujo & Gallaire (2015), Blackburn et al.

(2008), Barkley et al. (2002), Marquet & Sipp (2010)).

The large optimal gain implies that linear prediction has a small region of validity since the

nonlinear effects enter at small forcing amplitudes A as illustrated in Fig. 4.3(a), where the

nonlinear gain decreases rapidly with an increase of the forcing amplitude. This effect is

exacerbated because the chosen forcing is optimal f1 = fopt and presents a complex structure
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(Fig. 4.2) that can be attained only numerically. Therefore, in any real experiment the forcing

would project poorly on the optimal yielding a much weaker linear gain and thus requiring

larger forcing amplitude A to achieve such nonlinear saturation.

The same saturation process is represented differently through the response amplitude in

Fig. 4.3(b) defined as the square root of the energy of the fluctuation. Note how the strong

saturation of the DNS response for large forcing amplitudes A entails a discrepancy of orders

of magnitude as compared to the linear response. The insets in Fig. 4.3(b) show snapshots of

the fluctuating velocity at different forcing amplitudes. The energy maximum of the response

experiences a clear migration upstream during the saturation process reducing the mean

recirculation bubble. A similar tendency has been previously encountered in the cylinder

flow and described by Zielinska et al. (1997). This migration is enforced by the modification

of the base flow into the mean flow due to the forcing of the Reynolds stress as described

by Barkley (2006) and thoroughly examined in Mantič-Lugo et al. (2014). Fig. 4.3(a) illustrates

how the Reynolds stress forcing moves also upstream with an increase in harmonic forcing

amplitude A along with the modifications of the response that creates it. In other words,

increasingly stronger harmonic forcing entail stronger response which in turn creates stronger

Reynolds stresses that modify the mean flow and yield saturation which reduces the response

in comparison to its linear prediction.

4.4 Asymptotic expansion around the base flow

We introduce an asymptotic expansion keeping terms of higher order in an attempt to capture

the dynamics of the response saturation where the classical linear approach fails (Fig. 4.3).

The asymptotic expansion is carried around the base flow UB =U0 in the same fashion as the

one used to obtain the amplitude equation for the cylinder flow described in Sipp & Lebedev

(2007). In the amplitude equation the small parameter ε corresponds to the departure from

threshold by the Reynolds number modification. While on the contrary, in the present case

the Reynolds number is fixed and the selected small parameter ε= A is the amplitude of the

normalized forcing f1 (Section 5.2.2).

For the sake of clarity we separate the steady terms U = ∑∞
n=0 ε

nu0,n and unsteady terms

u′ =∑∞
n=0

∑∞
p=1 ε

nup,ne i pωt of the asymptotic expansion relating them to mean flow and fluc-

tuation modifications. We use the following notation for up,n ; the first subindex p corresponds

to the frequency and the second subindex n corresponds to the order. Then we need to

introduce the Reynolds decomposition u(x , t ) =U (x)+u′(x , t ) =UB (x)+∆U (x)+u′(x , t ). The

instantaneous flow is expressed as a mean flow U = 〈u〉 plus a pure fluctuation u′ verifying

〈u′〉 = 0, where 〈〉 denotes time-averaging and ∆U corresponds to the base flow modification.

Injecting the Reynolds decomposition in the full NSE we obtain a set of two coupled equations,
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Figure 4.3 – (a) Gain and (b) response of the linear prediction around the base flow compared
to the nonlinear saturated DNS for the optimal forcing at St = 0.075 and Re = 500. The insets
show the Reynolds stress divergence in the x-direction and the response or, in other words,
the pure fluctuating velocity u′ in the y-direction.

N (U ) =−〈(u′ ·∇)u′〉 (4.13a)

∂t u′+LU (u′) =−(u′ ·∇)u′+〈(u′ ·∇)u′〉+ f (4.13b)

The mean flow U arises as a result of the steady mean flow equation (4.13a) while the pertur-

bation or forced response equation (4.13b) governs the time dependent field u′. Through this

decomposition it is possible to isolate easily two significant nonlinear terms of the fluctuation

interacting with itself. First, the right hand side (RHS) of (4.13a), which corresponds to the

Reynolds stress forcing 〈(u′ · ∇)u′〉, a mean momentum addition on U due to the nonlin-

ear interaction of the time dependent fluctuation u′. Second, the nonlinear RHS of (4.13b),

(u′ ·∇)u′−〈(u′ ·∇)u′〉, represents the time dependent, zero mean, momentum addition from

the nonlinear interactions of different harmonics in u′. Note that the coupled equations are

exact as no simplification was performed at this stage, and the time dependent perturbation

u′ does not have to be small compared to the mean U .

65



Chapter 4. Saturation mechanism of the response to harmonic forcing

4.4.1 Zeroth order

The zeroth order corresponds to the base flow u0,0 =UB solution of the steady nonlinear NS,

N (u0,0) = 0 (4.14)

4.4.2 First order

The 1st order solution corresponds to the classical linear response εu1,1 = u1B (Section 5.2.2)

or first harmonic with the same frequency as the forcing f1 = ε f1,1 with amplitude ε= A,

ε[iω+LUB ]u1,1 = ε f1,1 (4.15)

Note that there is no mean flow contribution at first order, u0,1 = 0

4.4.3 Second order

The 2nd order has two terms, one steady and one unsteady. Both terms are forced by the

interaction of the first order response with itself,

ε2LUB u0,2 =−ε2 (
(ū1,1 ·∇)u1,1 + (u1,1 ·∇)ū1,1

)=−ε2Fu1 (4.16a)

ε2[i 2ω+LUB ]u2,2 =−ε2(u1,1 ·∇)u1,1 (4.16b)

The steady term (4.16a) corresponds to the modification of the base flow to the mean flow due

to the steady Reynolds stress forcing Fu1,1 . Whilst, the unsteady term (4.16b) corresponds to

the second harmonic u′
2,2 = ε2u2,2e i 2ωt +cc. oscillating at double frequency 2ω. It appears as a

solution of the linear system slaved by the forcing of the first harmonic interacting with itself,

4.4.4 Third order

The third order presents two unsteady equations,

ε3[iω+LUB ]u1,3 =−ε3 (
(u0,2 ·∇)u1,1 + (u1,1 ·∇)u0,2

)
−ε3 (

(u2,2 ·∇)ū1,1 + (ū1,1 ·∇)u2,2
)

(4.17a)

ε3[i 3ω+LUB ]u3,3 =−ε3((u2,2 ·∇)u1,1 + (u1,1 ·∇)u2,2) (4.17b)

The first equation (4.17a) oscillates at the harmonic forcing frequency corresponding to an

adjustment of the first harmonic response. This 3rd order nonlinear adjustment is enforced

by two terms which entail two independent physical meanings. The first term in (4.17a),

−ε3
(
(u0,2 ·∇)u1,1 + (u1,1 ·∇)u0,2

)
, relates to the mean flow modification due to the Reynolds

stress, in other words, it accounts for the nonlinear interaction on the r.h.s. of the mean

flow steady equation (4.13a). The second forcing term −ε3
(
(u2,2 ·∇)ū1,1 + (ū1,1 ·∇)u2,2

)
corre-
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sponds to the interaction of the first harmonic u1,1e iωt with the second u2,2e i 2ωt .

The second equation (4.17b) at 3rd order corresponds to the third harmonic oscillating at

three times the forcing frequency 3ω. It is slaved by the interactions of the first ω and second

harmonic 2ω.

4.4.5 Synthesis

Stopping at the third order our asymptotic expansion can be summarized as

U (x) 'u0,0(x)+ε2u0,2(x) (4.18a)

u′(x, t ) 'εu1,1(x)e iωt +ε2u2,2(x)e i 2ωt +ε3
(
u1,3(x)e iωt +u3,3(x)e i 3ωt

)
+ cc. (4.18b)

The linear equations at each order can be solved one after another to obtain the different

terms. Introducing the expansion in the gain definition of the response, we obtain at lower

order the modified gain

G2
3Or d = ‖u′‖2

‖ f ‖2 =G2
1

(
1+ ε2

G2
1

(K2,2 +K1,3)

)
, (4.19)

where

K2,2 =
∫
Ωu2

2,2dΩ

‖ f1,1‖2 > 0 and K1,3 =
∫
Ω2u1,1 ·u1,3dΩ

‖ f1,1‖2 . (4.20)

K2,2 is the gain correction due to the energy of the second harmonic while, K1,3 relates to

energy modification due to the correction of the first harmonic at 3rd order (4.17a). In Fig. 4.4

are compared the linear gain G1, the saturation of the fully nonlinear DNS gain GDN S and

the weakly nonlinear gain correction at 3rd order G3Or d . As one could expect, the weakly

nonlinear theory predicts well the initial saturation trend for small forcing amplitudes ε, and

it starts failing for larger forcing amplitudes. Fig. 4.4 illustrates how the influence of the

second harmonic is small compared to the first harmonic modification at 3rd order, since the

elimination of its correction factor K2,2 does not produce any change on the saturation curve,

|K2,2| << |K1,3|. We thus neglect the influence of the second and third harmonic of (4.18b) and

restrict our attention to the response at the same frequency as the forcing (4.15)-(4.17a). We

observe that K1,3 < 0, indeed accounting for the saturation.

As expressed above, the 3rd order adjustment of the response results from two different

physical phenomenons. We can separate them and account independently for their role in

the saturation process thanks to the linearity of the problem. The 3rd order term forced only

by the mean flow modification reads

ε3[iω+LU0 ]u0
1,3 =−ε3 (

(u0,2 ·∇)u1,1 + (u1,1 ·∇)u0,2
)

, (4.21)
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Figure 4.4 – Gain of the response for the optimal forcing at frequency St = 0.075 and Re = 500.
Linear prediction (dash dot line), 3rd order weakly nonlinear correction (solid thick line), 3rd
order weakly nonlinear correction of the first harmonic only at the forcing frequency (dot line),
3rd order weakly nonlinear correction only by mean flow modification (thin solid line) and
DNS results (thick solid line with triangles).

and thus a new gain modification factor K 0
1,3

K 0
1,3 =

∫
Ω2u1,1 ·u0

1,3dΩ

‖ f1,1‖2 (4.22)

can be retrieved accounting solely for the mean flow modification effect. Fig. 4.4 shows how

the new gain adjusted exclusively by the mean flow modification follows precisely the curve of

the full 3rd order gain. It therefore appears that the nonlinear saturation process is captured

mainly by the Reynolds stress modification and not by the second harmonic interaction,

raising the importance of the mean flow in the saturation process in a similar way as for the

cylinder flow (Barkley (2006) and Mantič-Lugo et al. (2014)).

4.5 Self-consistent model.

The results of the weakly nonlinear analysis summarised in Fig. 4.4 suggest that the energy

transfer between different frequencies gathered in the RHS of (4.13b) is of less importance to

capture the saturation process than the Reynolds stress nonlinearity. Therefore, we move one

step further in nonlinearity and present a model that keeps the Reynolds stress nonlinear term

RHS of (4.13a), while it neglects the interaction between higher harmonics RHS of (4.13b).

The model is composed by the mean flow equation, which is forced by the Reynolds stress,

connected to the linearized perturbation equation. Thus, the full instantaneous response

is approximated by one single harmonic u(x , t) = U (x) + u′(x , t) ' U (x) + u′
1(x , t), where

u′
1(x, t) = u1(x)e iωt + cc.. The higher harmonics are neglected also because the fluctuating

response signal u′(x, t ) is dominated by the first harmonic even for a strongly saturated DNS

response to high amplitude forcing A. Extracting the different harmonics of the nonlinear

DNS response u′(x, t) by Fourier series, we have indeed obtained an energy of the second

harmonic less than 3% of the fundamental frequency for a forcing amplitude A = 0.01. The first
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harmonic approximation of a nonlinear response has been recently used for the description

of combustion instabilities, where Noiray et al. (2008) have applied the concept of describing

function (i.e. a nonlinear extension of the linear transfer function) to flames.

Notice that the weakly nonlinear solution arises from decoupled equations that are solved one

after another, postulating an explanation for its limitation to small forcing amplitude A = ε.

This limitation is overcome in the present model by coupling the mean flow and perturbation

equation. The coupled equations of the self-consistent model for harmonically forced flows

can be written as

N (U ) =−2ℜ ((ū1 ·∇)u1) , (4.23a)

iωu1 +LU (u1) = f1, (4.23b)

where the amplitude of the response is dictated linearly by the forcing through the mean flow

resolvent operator R(ω) = (iω+LU )−1 and ultimately the gain. Conceptually the model is

the forced counterpart of the self-consistent model presented recently for amplifiers (Mantič-

Lugo et al. (2014)) where the linear equation corresponded to an eigenvalue problem and

the amplitude was dictated by the marginality criterion of the system, σ= 0. It also relates

closely to the SSST theory presented by Farrell & Ioannou (2012) for turbulent flows, where

the linear response to white forcing is coupled to the mean flow modification through the

Reynolds stress. However, in the present case the forcing is harmonic and not uncorrelated

like white noise, thus the linear response to forcing can be used and the Lyapunov equation

is not required. Furthermore, the semi-linear model assumes a steady saturated mean flow

while the SSST theory is characterised by a slowly varying ensemble averaged mean flow. The

self-consistent model presents a simplified and more transparent system than the DNS while

still capturing the saturation process.

4.5.1 Model solution

The coupled equations (4.23) of the self-consistent model need to be solved in an iterative way

for a given target amplitude of the harmonic forcing A. There are two options, both starting

the iterative process from the steady flow base flow UB with its corresponding linear response

u′
1B (4.15).

Amplitude stepping

The system (4.23) is solved for a given target forcing A subdividing it in intermediate amplitude

steps 0 < Ak < A and coupling the nonlinear system at each amplitude step using a fixed point

method. The same methodology was applied on the cylinder flow in Mantič-Lugo et al. (2014).

The stepping is required due to the important variation of the spatial structure between the

initial base flow UB and the corresponding final mean flow U , as clearly illustrated in Fig. 4.3

caused by the recirculation region variation. For a mean flow guess U (n)
g (starting with the base
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flow) the linear forced response u(n)
1g is calculated. Then it is used to construct the Reynolds

stress forcing in (4.23a) to obtain an updated mean flow Uc , calculated nonlinearly using

the Newton–Raphson method. This mean flow update Uc serves to generate a new guess

U (n+1)
g = γUc + (1−γ)U (n)

g using a relaxation factor 0 < γ< 1 to ensure convergence. Finally,

the new guess U (n+1)
g is coupled back to the linear forcing equation (4.23b) to obtain the new

response u(n+1)
1g , closing the loop. The convergence is very fast for small forcing amplitudes but

the computational time increases substantially for larger amplitudes, reaching a maximum

forcing amplitude that can be achieved (Mantič-Lugo et al. (2014)).

Pseudo time relaxation

The steady mean flow equation is modified to a pseudo time τ dependent equation, which

represents the variation of the instantaneous mean flow from base flow UB to the saturated

mean flow U . The amplitude of the forcing is a smooth ramp function of time A(τ) that goes

from 0 to the objective forcing amplitude A, staying at A until the variations in the flow fields

are negligible. At each pseudo time step k of the instantaneous mean flow U k the linear forcing

equation is solved and the new linearly forced response uk
1 is updated into the Reynolds stress

for the next time step. The time integration is performed by a semi-implicit backward Euler

method, summarized as

U k+1 −U k

δτ
+LU k (U k+1)− (U k ·∇)U k =−2ℜ

(
(ūk

1 ·∇)uk
1

)
(4.24a)

[iω+LU k ]uk
1 = A(τ) f1,1, (4.24b)

where k + 1 represents the solution for the next step. Notice how the standard nonlinear

equation for k+1 is approximated by its linear counterpart and a nonlinear term of the previous

time step k is subtracted to retrieve exactly the nonlinear mean flow equation (4.13a) when

the steady mean flow at the saturation is reached Uk =Uk+1, hence LU k (U k+1)− (U k ·∇)U k =
N (U k ).

This methodology is similar to the Amplitude stepping previously described, but reducing the

amplitude step between iterations to a very small value δA and adding an extra dynamical term

(U k+1 −U k )/δτ. The advantages of this method are two fold. First, the nonlinear equation of

the mean flow is replaced by a linear system requiring, however, a reduction in the amplitude

step. Second, the mean flow is not locked to a steady solution for each amplitude Ak , we

replace the relaxation parameter by a pseudo time step allowing for physical advection of

disturbances and thus stabilizing the convergence until a purely steady solution is attained.

Independently of the objective forcing amplitude A, a minimum of iterations is required thus

making the method not suitable for small amplitudes. The pseudo time method should not

be confused with a DNS, instead it is part of possible iterative methods that could be used to

obtain a steady solution to the present nonlinear system (4.23).
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Figure 4.5 – (a) Gain and (b) response saturation as function of forcing amplitude A for DNS
(triangles) compared to self-consistent results (solid line with circles) and linear response
u1DN S around the saturated mean flow from DNS (squares). Forcing with optimal structure at
frequency f = 0.075 and Re = 500.

4.6 Results: Gain saturation and mean flow distortion

The self-consistent model predicts accurately the response and gain of the exact DNS capturing

the strong nonlinear effects of the saturation as depicted in Fig. 4.5. The coupling between

the mean flow and response equation inherent to the semi-linear model allows to overcome

the limitations of the weakly nonlinear theory. Fig. 4.5 confirms the picture of the proposed

semi-linear model where the Reynolds stress plays the main role in the saturation process

while higher harmonic interactions are negligible.

In many cases reported in literature, linear stability analysis applied to the mean flow pre-

dicted the accurate frequency and structure of the fluctuations (Barkley (2006)). We therefore

calculate the linear response of the harmonic forcing (4.4) around the saturated DNS mean

flow UDN S at each forcing amplitude A, as reported in Fig. 4.5 with squares. Surprisingly, it

overpredicts the saturation (Fig. 4.5(b)), providing a poorer estimation of the gain and response

amplitude when compared to the present semi-linear model. This discrepancy could be in

large part because the linear response is calculated a posteriori and decoupled from the mean

flow equation, suggesting that the coupling between the mean flow and perturbation equation

present in the self-consistent model and also in the exact DNS is relevant.

The spatial distribution of the saturated response calculated by the self-consistent model

accurately predicts the full nonlinear DNS as presented in Fig. 4.6 for a forcing A = 0.01. The

wavelength and the position of the largest amplification of the self-consistent response match

the exact DNS solution for both u′
x and u′

y fluctuations. The linear response around the DNS

mean flow also resembles the full DNS structure, despite its less accurate approximation of

the saturated gain (Fig. 4.5(b)). It should be noted that the discrepancies are minimal when

compared to the structure of the linear response around the base flow as illustrated in Fig. 4.3.

As illustrated above in Fig. 4.3, the Reynolds stress varies strongly with the forcing amplitude,
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Figure 4.6 – Comparison of the response structure in x and y direction for the self-consistent
model u1 (a,d), snapshot of the DNS u′ (b,e), and linear response around the DNS mean flow
u1DN S (c,f). High saturation level with a forcing amplitude A = 0.01, frequency St = 0.075 and
Re = 500.

however, thanks to the coupling present in the semi-linear model, the structure of the Reynolds

stress divergence of the DNS and self-consistent model compare very closely as depicted in

Fig. 4.7. In this case, the Reynolds stress divergence calculated from the linear prediction

around the mean flow differs substantially from the exact DNS solution. The Reynolds stress

forcing is crucial to obtain the accurate mean flow with the correct recirculation region and

thus, through a proper coupling, the corresponding response.
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Figure 4.7 – Comparison of the Reynolds stress divergence structure in x and y direction for the
self-consistent model 2ℜ ((ū1 ·∇)u1) (a,d), exact average from the DNS 〈(u′ ·∇)u′〉 (b,e), and
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Figure 4.8 – Position of the recirculation bubbles, (a) bottom and (b) top, as a function of the
forcing amplitude A for the DNS and self-consistent model for the optimal forcing frequency
St = 0.075 and Re = 500.

A more quantitative comparison between the self-consistent model and DNS mean flow is

summarized in Fig. 4.8, where the positions of the recirculation regions are depicted as a

function of the forcing amplitude. The self-consistent model approximates precisely the

exact recirculation bubbles of the nonlinear DNS, this results from the accurate calculation

of the Reynolds stress by the self-consistent model which allows to obtain the correct mean

flow. At high forcing the saturation is very strong and higher order nonlinear effects which

are neglected in the semi-linear model start playing a more important role, explaining the

slight divergence between the self-consistent model results and the DNS. Nevertheless, the

self-consistent model captures even the non-monotonous trend of the recirculation bubble

position present in the exact DNS solutions, which would be missed by a linear prediction

around the base flow.

The frequency dependence of the saturation process of the gain starting from the linear

prediction to a forcing amplitude A = 0.001 is presented in Fig. 4.9. The comparison of the self-

consistent saturated gain and the DNS for A = 0.001 in Fig. 4.9 shows a very accurate prediction

at all frequencies, with only a slight shift in the optimal frequency. More generally, Fig. 4.9

demonstrates that the most responsive frequency does not change much when nonlinear

effects are included, as pointed out by the preliminary results of Marquet et al. (2010) using

random noise forced DNS.

4.7 Discussion and conclusions

We presented an asymptotic expansion around the base flow, inspired by the weakly nonlinear

theory applied in the Stuart-Landau amplitude equation for oscillators. The gain correction at

third order enforced by the mean flow modification approximates accurately the exact DNS

saturation, while the correction due to the interactions between higher harmonics appears to

be negligible. A thorough interpretation of the results highlights the Reynolds stress as the key

nonlinear term in the saturation process. However, the asymptotic expansion remains valid
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Figure 4.9 – Gain saturation as function of frequency for several forcing amplitudes A. The DNS
results are compared to the self-consistent and linear response around the base flow, from
literature. The forcing applied has its optimal structure at each frequency and the Re = 500.

only for small amplitude forcing.

A self-consistent model (SC) is introduced motivated by the weakly nonlinear results where

the mean flow equation is coupled to the linear response through the Reynolds stress. Both

equations are coupled by an iterative method. The linear response, around its correspond-

ing coupled mean flow, approximates accurately the fully nonlinear response of the exact

DNS simulations in terms of gain and structure. Contrary to the weakly nonlinear theory,

the self-consistent model solution is not restricted to a small amplitude harmonic forcing.

Furthermore, the self-consistent model calculates the precise Reynolds stress forcing which

in turn allows to obtain the correct mean flow as compared to the exact DNS predicting an

accurate recirculation bubble shortening related to the saturation mechanism.

The self-consistent model results highlight the Reynolds stress as the driving force for the

response saturation in a forced backward-facing step flow, in the same fashion as the case of

the cylinder wake flow reported in Mantič-Lugo et al. (2014), where a conceptually similar

model is applied to the unstable cylinder flow with the saturation mechanism of the insta-

bility dominated by the most unstable eigenmode as suggested by Malkus (1956) and Stuart

(1958). These oscillators and amplifiers share conceptually a similar saturation mechanism;

the increasingly growing fluctuation, which could be accurately approximated by the most

unstable eigenmode or the linear response respectively, saturates through the modification of

the mean flow by the forcing of the Reynolds stress.

A fundamental aspect of the model is that the full nonlinear response of the DNS is approxi-

mated by only the first harmonic, neglecting the higher frequency generation. Nevertheless,

the self-consistent model is still capable to approximate accurately the nonlinear gain, re-
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sponse and mean flow at different forcing frequencies and amplitudes. While reminiscent of

the nonlinear transfer function (the so-called describing function) used to assess the stability

of flames in combustion in Noiray et al. (2008), it should be highlighted that the self-consistent

solution is calculated a priori, without resorting to any DNS or experiments results, clarifying

the different physical mechanisms involved in the saturation process.

It remains to be seen whether the present semi-linear model works for other globally stable

laminar flows excited by harmonic forcing; i.e. jets, etc. However, it is not expected to work

directly for turbulent or chaotic flows unless a separation of scales is applied and turbulent

and coherent Reynolds stress terms are calculated independently.
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5 Saturation mechanism of the re-
sponse to stochastic forcing

In the previous chapters the self-consistent model was applied to a prototype oscillator

flow and a harmonically forced amplifier flow. In both cases a clear quasi-monochromatic

fluctuation was involved. However, in general, flows are subjected to random noise. Therefore,

it is of relevance to study and describe the dynamics of flows under more natural settings,

like stochastic noise. Amplifiers are well known for exhibiting large response under external

excitations in a particular frequency range. In general a linear study of the response describes

the flow behaviour for very small amplitude of the noise. Nonetheless, once the noise or

external stochastic disturbance starts to be important, the response becomes nonlinear.

In this context, this chapter presents the nonlinear dynamics of the response to noise in the

two-dimensional backward-facing step flow. The previously introduced nonlinear concepts

applied for harmonically oscillating flows are expanded to a stochastically forced flow. The

response to stochastic forcing has been widely treated in literature with the use of the covari-

ance matrix of the stochastic response (Farrell & Ioannou (1993, 1996, 2012)) and its dynamical

behaviour governed by the linear Lyapunov equation. However, in the present approach the

forcing and response are treated in the frequency domain, linking the stochastic response to

its harmonic counterpart. This chapter aims at understanding, by means of the self-consistent

model, if the dynamics of the non-linear response to white noise forcing remains governed

mainly by the mean flow-linear response coupling, through the Reynolds stress nonlinearity,

even in a stochastic setting with broad band spectrum of the excitation and response.

Paper: The saturation of the response to stochastic forcing in the
backward-facing step flow described by a self-consistent model
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The saturation of the response to stochastic forcing in the
backward-facing step flow described by a self-consistent model

Vladislav Mantič-Lugo1 and François Gallaire1

1) LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

To be submitted to Physics of Fluids

Selective noise amplifiers are characterised by presenting large linear amplifications to external

perturbations in a particular frequency range despite their global linear stability. Applying

a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear

saturation when compared to the linear estimation. Rewriting conveniently the stochastic

response and forcing in the frequency domain and building upon our previous work, we

introduce a predictive model that describes this nonlinear dynamics and apply it to a canonical

example of a selective noise amplifier: the backward-facing step flow. The model consists in

a mean flow equation coupled to the linear response to forcing at each frequency by means

of the Reynolds stress, which is constructed by the integral in frequency of the independent

responses. We generalise the model for a response to a white noise forcing δ-correlated in

space and time restricting the flow dynamics to its most energetic patterns calculated from the

optimal harmonic forcing and response of the flow. The results show an accurate estimation of

the response saturation when compared to Direct Numerical Simulations (DNS), while at the

same time, the model describes the structure of the response and the mean flow modification.

A physical picture emerges wherein the response to white noise modifies the mean flow by the

Reynolds stress in the exact manner to attain the correct response amplitude as proposed by

the self-consistent model.

Keywords: Shear layers, Instability, Laminar flows, Nonlinear stability, Separated flows,

Stochastic

5.1 Introduction

A wide variety of open flows are characterised by their stable nature while presenting high

sensitivity to background disturbances. Typically, this behaviour is encountered in boundary

layers, mixing layers, jets or separated flows even in the laminar regime at low and intermediate

(pre-turbulent) Reynolds numbers. Such behaviour is produced by the convective instabilities

and interpreted by the non-normality of the Navier-Stokes system of equations, which is able to

amplify perturbations while being advected downstream by means of non-modal mechanisms

(Trefethen et al. (1993), Chomaz (2005), Schmid (2007)). These flows are sometimes denoted as

selective noise amplifiers due to their ability to amplify perturbations in a particular frequency
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ranges.

A substantial body of work has been devoted to the study of amplifiers. Nonetheless, classical

modal analysis focuses on the eigenvalues and eigenmodes of the linear operator L that

describe the linearised dynamics of the flow around a steady solution. Modal analysis fails

however to describe the flow behaviour due to the subcritical nature of the amplifiers. Thereby,

other non-modal techniques derived from classical linear algebra are used to characterise the

physical behaviour and amplification potential in linearly stable flows. One of the standard

approaches to characterise the amplifier dynamics is to look at initial disturbances which lead

to the maximum growth and follow the time evolution of this perturbations, described by the

leading singular vectors of the time propagator eL t (Trefethen et al. (1993); Farrell & Ioannou

(1996); Schmid & Henningson (2001)). Studies of optimal initial perturbation in parallel flows

have been carried out by Butler & Farrell (1992); Corbett & Bottaro (2000); Schmid (2007)

among others. Caluculations of optimal growth in non-parallel flows have been carried out

in spatially developing boundary layers in the works of Akervik et al. (2008); Monokrousos

et al. (2010), Sipp & Marquet (2012); Alizard et al. (2009), and in the backward-facing step by

Blackburn et al. (2008), among others. Another alternative consists in finding the optimal har-

monic forcing structures that at frequencyω lead to the most energetic responses. The optimal

forcing and corresponding response are described by the singular vector of the resolvent oper-

ator R(ω) = (iω+L )−1, see Farrell & Ioannou (1996); Schmid (2007); Garnaud et al. (2013);

Dergham et al. (2013); Boujo & Gallaire (2015). Optimal forcing/response structures have been

assessed in plane Couette by Jovanović & Bamieh (2005), while in spatially developing open

flows by Akervik et al. (2008); Alizard et al. (2009); Sipp & Marquet (2012) and particularly for

the backward-facing step in Marquet & Sipp (2010); Marquet et al. (2010); Boujo & Gallaire

(2015); Mantič-Lugo & Gallaire (2015). A slightly different approach is undertaken by Garnaud

et al. (2013) where, in an attempt to describe more precisely the actual physics involved in the

strong noise amplification exhibited in turbulent jets, they apply the optimal gain analysis on a

model mean flow instead of the stable steady solution of the NSE (Navier-Stokes equations) as

in the previously mentioned studies. In general, both time and frequency approaches describe

the most energetic instability mechanisms at play.

Realistic flows are in general subject to unpredictable noise created from different possible

sources such as residual turbulence, acoustic disturbances, geometrical defects, etc. In this

context Farrell & Ioannou (1993) have studied the response to white noise forcing for parallel

flows, reformulating the linear problem as a Lyapunov equation for the covariance matrix

that describe the statistically steady state of the response. Following these steps, Farrell &

Ioannou (2001) have described a low order approximation of the linear dynamical system for

a Couette flow forced by white noise, by extracting the energy ranked coherent structures of

the stochastic response and forcing, the so-called empirical orthogonal functions (EOFs) and

stochastic optima (SOs), respectively. Dergham et al. (2013) introduced a low dimensional

model to describe the linear behaviour of the flow around the backward-facing step forced

by white noise. The low dimensional model is constructed by the mentioned EOFs and

SOs, which in this case are extracted from the most energetic harmonic forcing/response
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structures, relating the stochastic structures to the harmonic optima. Another study of the

response to white noise forcing is reported in Blackburn et al. (2008) for an inlet forcing in the

backward-facing step and it shows that the exact stochastic response from the direct numerical

simulation (DNS) is well characterised by the optimal perturbances. A relevant description

is provided by the study of the sensitivity and control of the response amplification under

stochastic forcing. This approach is undertaken by Boujo & Gallaire (2015) in the particular

case of the backward-facing step.

The studies introduced above are limited to the linear characterisation of the flow behaviour,

thus failing to describe saturation processes or the nonlinear interactions involved in the tran-

sition to turbulence in stable flows. A well known example is the saturation of the supercritical

instability in the cylinder wake which can be characterised by the nonlinear interaction of

the mean flow with the linear perturbation by the Reynolds stress forcing as described in the

model introduced by Mantič-Lugo et al. (2014, 2015) and initially suggested by Stuart (1958).

In other cases, the non-normality of the NSE allows the flow to escape from linearly stable

solutions by means of the large amplification of external disturbances, as can be encountered

in the transition to turbulence. Thereby, similar models with a coupling between the mean

flow and the linear perturbation equation are also used to describe the coherent structures

appearing in the transition to turbulence, as in the work of Beaume et al. (2015) for parallel

shear flow. In a similar nonlinear spirit, the stochastic structural stability theory SSST has

been introduced by Farrell & Ioannou (2003, 2012), consisting in a system of equations where

the linear response to white noise forcing written as Lyapunov equation (Farrell & Ioannou

(1993)) is coupled to the slowly varying ensemble average mean flow by means of the Reynolds

stress. The theory is able to describe sustained coherent structures that appear during the

transition to turbulence in the three-dimensional Couette flow (Farrell & Ioannou (2012)) as

well as in turbulent atmospheric flows described in Farrell & Ioannou (2003), among many

others. Most of the piece of work applying these nonlinear models have been devoted to

the study of coherent sustained structures in turbulent flows, bu a formalised quantitative

physical description of the dynamics involved in the saturation of strong amplifiers under

stochastic excitations is still missing.

Motivated by the SSST and the low order modelling based on harmonic optima of Dergham

et al. (2013), we propose a model to describe the nonlinear dynamics of the response to

white noise forcing in a flow with strong amplification and hence capturing its saturation

with an increasing forcing amplitude. The model is applied to a canonical amplifier flow, the

incompressible backward-facing step, which is an archetypical flow in fundamental studies

used to understand separation in abrupt changes of geometry. The flow is globally stable

at the two Reynolds numbers considered in this study Re = 500 and Re = 700 presenting

the threshold for three-dimensional global instability at Recr ∼ 748 (Barkley et al. (2002);

Lanzerstorfer & Kuhlmann (2012)), staying stable in two-dimensional for Reynolds at least up

to Re ∼ 1500 and presenting mainly a two dimensional response to white noise as described

by Blackburn et al. (2008), supporting the two dimensional analysis. The work presented

herein comes as an extension to white noise forcing of the model introduced in Mantič-Lugo

80



5.2. Problem formulation

& Gallaire (2015) that describes the nonlinear saturation of the response to harmonic forcing.

Where the mean flow is coupled to a linear response to harmonic forcing around the mean

flow by means of the Reynolds stress. The term in the response equation that represents

the nonlinear interaction of the response with itself is neglected following the results of

asymptotic analysis. First, we reformulate the self-consistent model in the frequency domain

to account for the stochastic nonlinear response to a band limited white noise forcing with a

fixed spatial structure. The results illustrate an accurate estimation of the saturation as much

as they describe the main structure of the response and mean flow. Finally, we generalise the

approach to a δ-correlated white noise in space and time restricting the flow dynamics to its

most energetic patterns extracted from the harmonic optimal forcing/response pairs at each

frequency. The results show that the nonlinear stochastic response can be well treated in the

frequency domain even for complex nonlinear settings and it emphasises the Reynolds stress

as the key nonlinear term to describe correctly the saturation mechanism. It highlights the

importance of the mean flow and its relation to the fluctuation as discussed by Barkley (2006);

Mittal (2008); Turton et al. (2015); Mantič-Lugo et al. (2014) and Mantič-Lugo et al. (2015),

among others.

The paper is structured as follows. Section 5.2 introduces the physical domain and the lin-

ear description of the response. Section 5.3 describes the temporal stochastic forcing, in-

troduces the model and provides comparison with DNS results. The model rewritten for

spatio-temporal stochastic forcing is introduced in Section 5.4, before conclusions are drawn

in Section 5.5.

5.2 Problem formulation

5.2.1 Flow configuration and governing equations

We consider the response to forcing of a laminar incompressible flow around the two- dimen-

sional backward-facing step. The flow configuration is depicted in Fig. 5.1. An inlet channel

with height h and legth Li = 5h encounters a step of height h and expands into a wider channel

of height H = 2h and length Lo , hence determining an expansion ratio Ξ= h/H = 0.5. The

inlet boundary condition at Γ is a plane Poiseuille profile upoi s with a centerline (maximum)

velocity U∞ plus a general inlet forcing f . The centerline velocity U∞ defines the Reynolds

number Re =U∞h/ν, where h is the inlet height and ν is the kinematic viscosity. A non-slip

boundary condition is imposed on the side walls boundary Γw and an outflow condition at

the end of the domain Γo . The non-dimensional frequency is defined by the Strouhal number

St = fH z h/U∞ and related to the non-dimensional angular frequency as St =ω/2π.
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 −1
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Figure 5.1 – Sketch of the flow configuration superimposed onto the velocity field x-direction
of the base flow for the backward facing step at Re = 500. The flow presents two recirculation
bubbles, one at the top and one at the bottom.

The flow is governed by the two-dimensional incompressible Navier-Stokes equations (NSE),

∇·u = 0,

∂t u +N (u) = 0,

u = upoi s + f on Γ , u = 0 on Γw

 (5.1)

where

N (u) ≡ (u ·∇)u +∇p −Re−1∆u (5.2)

corresponds to the advective, pressure gradient and diffusive terms. The pressure field p is

enforced by the incompressibility condition entailing divergence free velocity fields ∇·u = 0,

for the seek of simplicity we will not write it explicitly in the following.

The Navier-Stokes equations are solved using the Finite Element Method with the flow fields

(ux ,uy , p) spatially discretised by Taylor- Hood (P2,P2,P1) elements. The software FreeFEM++

is used to generate the domainΩ triangulation and to build all the required operators. The

steady solutions of the nonlinear systems of NSE are computed using the Newton-Raphson

method, while the time varying DNS (Direct Numerical Simulations) of the NSE are integrated

using a second order Characteristics-Galerking method. Further details on the numerical

approach can be found in Mantič-Lugo & Gallaire (2015).

5.2.2 Linear transfer function

The steady solution of NSE defines the base flow UB ,

N (UB ) = 0, (5.3)

illustrated in Fig. 5.1 for the backward-facing step at Re = 500. The two-dimensional backward-

facing step is linearly stable due to the convective nature of the shear layer. For an expansion

ratio Ξ= 0.5, the first unstable mode appears in three-dimensions at Recr ∼ 748 (Barkley et al.

(2002); Lanzerstorfer & Kuhlmann (2012)). First we chose Re = 500 relating to the past works by

Boujo & Gallaire (2015); Blackburn et al. (2008); Barkley et al. (2002); Marquet & Sipp (2010).
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5.2. Problem formulation

Assuming a small amplitude of the forcing, the exact nonlinear response can be approximated

by its linear response[
∂t u′

1B +LUB (u′
1B )

]= 0,

u′
1B = f on Γ , u′

1B = 0 on Γw

}
(5.4)

where higher order nonlinear terms are neglected, and the operator LU (u′) is the correspond-

ing operator for the NSE linearized around U , i.e.

LU (u′) ≡ (U ·∇)u′+ (u′ ·∇)U +∇p ′−Re−1∆u′, (5.5)

The focus of the study is on the response to stochastic forcing, we however first describe the

harmonic response to help understanding and be able to predict in which frequency range

larger amplifications are more likely to be observed, see for example Schmid & Henningson

(2001); Farrell & Ioannou (1996); Dergham et al. (2013); Boujo & Gallaire (2015); Mantič-Lugo

& Gallaire (2015). For a harmonic forcing f (y, t) = f1(y)e iωt + cc. with a spatial distribution

f1(y) and frequency St =ω/(2π) the corresponding linear response u′(x, t ) is also harmonic

u′(x, t ) ' u′
1B (x, t ) = u1B (x)e iωt +cc. and oscillates at the forcing frequency, due to the linearity

of the operator (5.4). The linear equation (5.4) can be rewritten formally as u1B =RB (ω) f1

where R(ω) = (iωI +LU )−1 is the resolvent operator for any steady U and RB (ω) = (iωI +
LUB )−1 is the resolvent operator for the base flow.

A natural way of measuring the amplification of the nonlinear dynamical system is the gain,

which is defined as the ratio between the amplitude of the output response and the amplitude

of the input forcing, and is related to the ratio of the energy of the output response to the

energy of the input forcing. For the specific linear case of harmonic forcing it reads

GB (ω) = ‖u1B‖Ω
‖ f1‖Γ

= ‖RB (ω) f1‖Ω
‖ f1‖Γ

, (5.6)

where the L2 norm ‖.‖ is determined by the Hermitian inner product (a|b) = ∫
Ωa ·bdΩ =∫

ΩaH · bdΩ, for complex fields in the domain Ω, with straightforward restriction on the

boundary Γ.

The linear gain GB (ω) around the base flow is function of the forcing frequencyω, as illustrated

in Fig. 5.2(a), where the gain GB (ω) describes a bell-shaped curve with a maximum at Stopt =
ωopt /2π= 0.075. Furthermore, not only the amplitude of the response depends on the forcing

frequency ω but also the shape of the response as shown in the velocity contours presented

in Fig. 5.2(b) for the response to a forcing in the form of a Poiseuille profile f1 = y(1− y).

The structure of the response presents a correlation between the wave number and the

frequency and shows how the response structures migrates downstream for larger gains. The

linear response to white noise forcing would correspond to a combination of all the different

response structures multiplied by their corresponding amplitudes since a pure white noise

forces all the frequencies with the same energy.
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Figure 5.2 – (a) Linear gain GB (ω) around the base flow and (b) contours of the velocity in y-
direction of the linear response as function of the forcing frequency St =ω/2π for a harmonic
forcing of the form of a Poiseuille profile f1 = y(1− y). The maximal gain is attained at the
optimal frequency St =ωopt /(2π) = 0.075. Plots for the backward facing step at Re = 500.

5.3 Temporal stochastic forcing

5.3.1 Forcing definition and white noise response

In more realistic cases the external disturbances are more likely characterized by a broadband

frequency rather than being harmonic. Thereby, to model this physical perturbations we

excite the flow by a random noise, characterised by its statistical properties. Nonetheless,

there are advantages in addressing the study of the response to stochastic forcing in the

frequency domain as described in Farrell & Ioannou (1996); Dergham et al. (2013) and whose

concepts will be used herein. The power spectral density function (PSD) characterises the

energy distribution of the input signal in the frequency domain. With the aid of a truncated

Fourier transform for a time signal x(t ) of length [0,T ],

x̂T (ω) = 1p
T

∫ T

0
x(t )e−iωt d t (5.7)

the PSD is defined as

Sxx (ω) = |x̂T (ω)|, (5.8)

and in the limit T →∞ the PSD converges to the expected value of x̂(ω), limT→∞ Sxx (ω) =
E (|x̂T (ω)|2). In general, a white noise signal ξ(t) is δ-correlated 〈ξ(t)ξ†(s)〉 = δ(t − s) and

defined by a constant PSD Sξξ(ω) = |ξ̂|2 = S with infinite power P . Indeed, the power is defined

as

P = lim
T→∞

1

T

∫ T

0
|ξT (t )|2d t = 1

π

∫ ∞

0
|ξ̂|2dω=σ2 (5.9)

thanks to the Parseval’s theorem and to the definition of the variance σ. Because S > 0, a pure

white noise has infinite power and is not physically realisable being an idealisation of physical
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5.3. Temporal stochastic forcing

noises. Physical systems usually are band-limited and are affected by the noise within this

band.

A digital random signal ξd (t) has a natural band limiting frequency given by its time step,

ωd /(2π) = 1/2δt . In order to obtain time step independent results, the signal is filtered to a

band limiting frequency ωb yielding a power and variance Pb = σ2
b = |ξ̂b |2ωb/π. Fig. 5.3(a)

compares a realisation of the white noise signal with unit variance and power, without filtering

and filtered with a band limiting frequency ωb/2π= 1, while Fig. 5.3(b) compares the PSD for

the actual signals and their theoretical value. The PSD is estimated using a Welch method in

matlab.
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Figure 5.3 – (a) Realisation of white noise signal with unit power P = 1 comparing a signal
without filtering ωb/2π= 1/(2δt ) = 25 and filtered with a band limiting frequency ωb/2π= 1.
(b) Comparison of the power spectral density for these two signals.

The inlet forcing used in the study is defined as f = A f1(y)ξb(t), stochastic in time by the

function ξb(t ), a band limited white noise, δ-correlated with zero mean, and unit power and

variance σ= 1, with constant PSD 2|ξ̂b |2 = 2π/ωb that depends only on the band imitating

frequency. For the sake of simplicity we start with a fixed spatial distribution in the form of a

Poiseuille profile f1(y) =p
30y(1− y), such that

∫
Γ f1(y)2dΓ= 1 and A is the amplitude of the

forcing. Defining 〈·〉 = 1
T

∫ T
0 ·d t as the time average over a time span T long enough to achieve

T independent results, the power of the forcing relates to its amplitude as

〈
∫
Γ

f 2dΓ〉 = 1

π

∫ ωb

0
‖ f̂ ‖2

Γdω= 1

π

∫ ωb

0
‖ f1‖2

Γ|ξ̂b |2 A2dω= A2. (5.10)

The amplitude of the response or variance is defined in general as

B 2 = 〈
∫
Ω

u′2dΩ〉 = 1

π

∫ ωb

0
‖û‖2

Ωdω= 1

π

∫ ωb

0
G2(ω)‖ f̂ ‖2

Γdω, (5.11)

where u′ is the pure fluctuating velocity with zero mean 〈u′〉 = 0, G(ω) is the gain at each

frequency, and B can be interpreted as the amplitude of the response.
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Figure 5.4 – (a) Amplitude of the linear response B and (b) total linear Gain Gtot as function of
the band limiting frequency ωb for a band limited white noise with constant PSD 2|ξ̂b(ω)|2 = 1
and varying power P (ωb) (5.9), where the spatial distribution is in the form of a Poiseuille
profile f1 = y(1−y). The response amplitude and total gain are computed from the integration
of the linear gain GB (ω) around the base flow for the backward facing step at Re = 500.

For the sake of clarity we describe a complementary view, which consists in fixing the PSD

of the white noise forcing 2|ξ̂b |2 = S = cst ., and thus allowing the power P (ωb) to vary with

the band limiting frequency ωb (5.9). In this setting, the amplitude and variance of the linear

response B tends asymptotically to a constant value for the infinite limit of the band frequency

ωb →∞, as shown in Fig. 5.4(a), and thus yielding infinite power P . This asymptotic behaviour

to a constant limit follows from the gain curve G(ω) which tends to zero limω→∞G(ω) = 0 as

described by Farrell & Ioannou (1996) and illustrated in Fig. 5.2, where large amplifications

are only concentrated at low frequencies ω. It should be highlighted that this behaviour

persists also in nonlinear systems, which can be described by a nonlinear gain, since in

general, physical systems damp high frequencies. The study and modelling of the response

of dynamical systems under white noise forcing is standard in literature due to its generality,

e.g. Farrell & Ioannou (1996, 1993, 2012); Dergham et al. (2013) among others. The asymptotic

response to pure white noise forcing ωb →∞ can be accurately approximated by means of

a more physical forcing with a band limited white noise, providing that the band limiting

frequency ωb is far enough from the low frequency amplification (Fig. 5.2), as for ωb/(2π) = 1

that will be used in all the following calculations.

The total nonlinear gain for the stochastically forced system reads as the ratio between the

amplitude of the response and the amplitude of the forcing, which is related to the ratio of the

power of the fluctuating response u′ to the power of the forcing f ,

G2
tot =

〈∫Ωu′2dΩ〉
〈∫Γ f 2dΓ〉 = 1

ωb

∫ ωb

0
G2(ω)dω. (5.12)

The total gain tends to zero limωb→∞Gtot = 0 for the limiting case of white noise as illustrated

in Fig. 5.4(b), since an increase of the band limiting frequency ωb entails an increase in the

power spent at higher frequencies which have small amplification G(ω) (see Fig. 5.2) and do

86



5.3. Temporal stochastic forcing

not contribute to the power of the response B 2, while spending power in the forcing A2.

The backward-facing step presents a strong linear amplification of the forcing due to the

non-normality of the linear operator LUB (Marquet & Sipp (2010); Boujo & Gallaire (2015);

Mantič-Lugo & Gallaire (2015)) as can be seen also in Fig. 5.2. This strong amplification limits

the validity of the linear response to very small amplitude of the forcing. Thereby, one would

expect a saturation mechanism to occur with an increase of the forcing amplitude, restraining

the amplitude of the response. This nonlinear saturation of the flow under stochastic forcing

calculated running DNS can be appreciated in Fig. 5.5, where the total nonlinear gain Gtot

strongly reduces as the amplitude of the forcing A increases. Along with the amplitude satura-

tion, the response exhibits a change in structure with a migration upstream corresponding to

an increase in the forcing amplitude. This migration is connected to a shortening of the mean
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Figure 5.5 – Nonlinear total gain from DNS Gtot and linear total gain GB tot as function of
the amplitude of the forcing A. The figure shows the saturation in the gain and the variation
of the response structure. The insets show the perturbation velocity in y-direction and the
perturbation energy. Re = 500.

recirculation bubble, which is reminiscent of a similar tendency associated to a reduction of

instability in the cylinder flow as described in Zielinska et al. (1997).

5.3.2 Self-consistent model for a temporal stochastic forcing

Saturation problems of similar nature as illustrated in Fig. 5.5 have been modelled by means

of a coupled system of mean flow and linear fluctuation equations in Mantič-Lugo & Gallaire

(2015) for the case of the response to harmonic forcing, and in Mantič-Lugo et al. (2014, 2015)

for an unstable flow. Another related approach is undertaken in the SSST introduced by Farrell

& Ioannou (2012) where also the slowly varying ensemble averaged mean flow, rather than

a time average mean flow, is coupled to a linear response to white noise. Following the use

of averaged flows in the described works we introduce the Reynolds decomposition u(x , t ) =
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U (x)+u′(x , t ) =UB (x)+∆U (x)+u′(x , t ). The instantaneous flow is expressed as a mean flow

U = 〈u〉 plus a pure fluctuation u′ with zero mean 〈u′〉 = 0 and where ∆U corresponds to the

base flow modification. Inserting the Reynolds decomposition in the full NSE we obtain a set

of two coupled equations,

N (U ) =−〈(u′ ·∇)u′〉
U = upoi s on Γ , U = 0 on Γw

}
(5.13a)

∂t u′+LU (u′) =−(u′ ·∇)u′+〈(u′ ·∇)u′〉
u′ = f on Γ , u′ = 0 on Γw

}
(5.13b)

the mean flow U arises as a result of the steady mean flow equation (5.13a), while the forced

response equation (5.13b) governs the time dependent fluctuating field u′. Note that no

simplification has been carried out so far.

The asymptotic analysis described in Mantič-Lugo & Gallaire (2015) for the backward-facing

step suggests that the nonlinear interaction of the fluctuation with itself gathered in the term

−(u′ · ∇)u′+〈(u′ · ∇)u′〉 has a negligible influence in the saturation process. Thereby, this

nonlinear interaction is dropped in the self-consistent model while keeping the nonlinearity

gathered in the Reynolds stress, since the studies by Mantič-Lugo et al. (2014, 2015); Mantič-

Lugo & Gallaire (2015) propose the Reynolds stress as the main nonlinear term required for

the flow saturation. Furthermore, this idea is supported by the results obtained using SSST of

Farrell & Ioannou (2012) and in Beaume et al. (2015), where the fluctuation equation (5.13b)

is also approximated as linear while keeping the nonlinear Reynolds stress term.

The time varying fluctuation u′ of the coupled system (5.13) is rewritten in the frequency

domain using (5.7) and (5.9) for a band limiting frequency ωb . The incompressibility of the

velocity field allows to rewrite the Reynolds stress as (u · ∇)u = ∇ · (u ⊗u). Therefore, the

total Reynolds stress forcing that modifies the mean flow equation (5.13a) is composed by

the frequency integral of the independent Reynolds stress forcings 2ℜ(
( ¯̂u ·∇)û

)
build by the

response at each frequency ω, in the same fashion as the amplitude of the response (5.11).

The cross terms between different frequencies disappear in the Reynolds stress forcing thanks

to the orthogonality of the frequency basis. Hence, the self-consistent system is formalised

neglecting the nonlinear interaction of the fluctuation with itself, RHS in (5.13b),

N (U ) =− 1

π

∫ ωb

0
2ℜ(

( ¯̂u ·∇)û
)

dω

U = upoi s on Γ , U = 0 on Γw

 (5.14a)

iωû +LU (û) = 0

û = f̂ on Γ , û = 0 on Γw

}
(5.14b)

It is composed by a set of independent linear equations (5.14b) that describe the response to

noise at each frequencyω coupled to the mean flow equation (5.14a) by means of the Reynolds

stress forcing.
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The integral in the frequency domain of the Reynolds stress forcing and the total response is

approximated by a discrete integral in a given set of discrete frequencies ωi , thus the Reynolds

stress forcing is rewritten as

1

π

∫ ωb

0
2ℜ(

( ¯̂u ·∇)û
)

dω' 2
n f∑

i=1
αi 2ℜ(

( ¯̂ui ·∇)ûi
)

, (5.15)

and the amplitude of the response,

B 2 = 〈
∫
Γ

u′2dΓ〉 ' 2
n f∑

i=1
αi‖ûi‖2

Ω = 2π

ωb

n f∑
i=1

αi G2(ωi ) A2, (5.16)

where αi denote appropriate quadrature coefficients, n f represents the number of discrete

frequencies and A is the forcing amplitude previously defined in (5.10). The total nonlinear

response is then approximated as

u′ '
n f∑

i=1

p
αi (ûi e i (ωt+φi ) + cc.), (5.17)

where φi is an unknown phase that is not obtained from the truncated Fourier transform of

the random noise.

In order to minimise the number n f of discrete frequencies and well enough approximate the

response (5.16) we have to select appropriately the discrete frequencies ωi and weights αi ,

since the gain G(ωi ) varies strongly with the frequency (Fig. 5.2). Therefore, we rewrite the

nonlinear gain as

G2
tot =

∫ ωb

0
G2

B (ω)

(
G2(ω)

G2
B (ω)

)
dω' 2π

ωb

n f∑
i=1

γi
G2(ωi )

G2
B (ωi )

, (5.18)

and use a weighted Gaussian quadrature rule for
(

G2(ω)
G2

B (ω)

)
with weight function G2

B (ω) (Press et al.

(2007)). For a given frequency integration interval, this yields optimal quadrature coefficients

γi and abscissas ωi , from which the αi in (5.15)- (5.16) are easily deduced αi = γi /G2
B (ωi ).

This formulation provides a fast convergence rate when (G2(ω)/G2
B (ω)) is close to a constant,

in other words when the saturated gain around the mean flow G(ω) has a similar shape as the

linear gain round the base flow GB (ω).

The Reynolds stress forcing is built by the response structures ûi multiplied by their corre-

sponding gains G(ωi ). This approximation strongly depends on the selected discrete frequen-

cies ωi , since there is a strong variation in the gain G(ωi ) and response structure ûi with the

frequency, as illustrated clearly in Fig. 5.2 for the linear case. The frequencies should therefore

be selected clustered around optimal gain ωopt /2π= 0.075 while spread enough to ensure

a rich family of response structures ûi from which the Reynolds stress forcing is calculated.

This optimal distribution is achieved by selecting the optimal frequency as the endpoint for

a Gauss-Radau quadrature rule which is applied to the two intervals that appear at the right
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and left side of the optimal frequency. Referring in anticipation to Fig. 5.7(b) and looking only

at the evolution of the overall gain Gtot with n f (squares), we see that this scheme converges

very quickly, achieving convergence for a very small number of discrete frequencies n f ' 15.

It should be highlighted that the coupled system has to be solved iteratively, in order to obtain

the correct mean flow U and responses ui for a given forcing f that couples the system.

The details on the procedure undertaken to solve the self-consistent system (5.14) can be

encountered in Mantič-Lugo & Gallaire (2015) for a system with harmonic forcing. The unique

difference with the present case is that the linear responses at each frequency have to be

computed together to obtain the total Reynolds stress forcing in (5.14a). Nevertheless, note

that the process is parallelizable since all the linear equations are decoupled and are computed

independently, implying that the computational time is mainly independent on n f provided a

correct parallelisation.

The introduced approximation scheme (5.18) can be pushed to the limit n f = 1 by approximat-

ing the nonlinear gain G(ω) just with a single abscissa point atωopt . In this case, the nonlinear

gain G(ω) at the rest of frequencies is obtained from the weighting function GB (ω) (see Fig. 5.2)

scaled with the saturated gain around the mean flow G(ωopt ) forcing at the optimal frequency

ωopt : G2(ω) ∼ κG2
B (ω) with κ=G2(ωopt )/G2

B (ωopt ).

The system (5.14) models the nonlinear behaviour of the flow as response to stochastic forcing.

It emerge as an extension of the SC model presented in Mantič-Lugo & Gallaire (2015) for

harmonic forcing. It is the forced counterpart of the self-consistent model introduced first for

unstable flows (Mantič-Lugo et al. (2014, 2015)) where the linear equation corresponds to an

eigenvalue problem and the amplitude is dictated by the criterion of marginally stable with

eignemode σ= 0.

5.3.3 Results: dynamics of the flow subject to temporal stochastic forcing

Applying the SC model to the backward-facing step with increasing forcing amplitude A, the

model is able to capture the saturation behaviour with a remarkably accurate prediction of the

gain variation as illustrated in Fig. 5.6(a) and response amplitude Fig. 5.6(b), where the DNS

results are compared to the SC model. Note how the SC model with a frequency integrated

Reynolds stress exhibits a slightly better prediction when compared to the SC model with the

unique frequency ωopt approximation of the Reynolds stress forcing, mainly due to the more

restrictive construction of the latter with the information from the response field solely at the

optimal frequencies. These results suggest that the findings obtained for harmonic forcing in

Mantič-Lugo & Gallaire (2015) extrapolate to white noise forcing. Thereby, Fig. 5.6 confirms a

picture where the mean flow modification due to the nonlinear forcing of the Reynolds stress

is crucial to capture the energy saturation for the flow under white noise forcing. In other

words, a larger forcing entails a larger response, which in turn generates stronger Reynolds

stresses that force and modify the mean flow, shortening the recirculation bubble see Fig. 5.2

and enforcing a saturation, which reduces the response in comparison to its linear prediction.
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Figure 5.6 – (a) Gain and (b) response as function of the forcing amplitude A of the band
limited white noise for the DNS (circles), SC model with n f = 21 (triangles), SC model with
n f = 1 at ωopt (squares) and the linear estimation (dash dotted line). Re = 500.

Additionally, the nonlinear interaction of the response fluctuation with itself gathered in the

term −(u′ ·∇)u′+〈(u′ ·∇)u′〉 does not seem to play a relevant role in the saturation and can be

neglected as assumed in the SC model.

Restricting our attention to a saturated case for a forcing amplitude A = 0.1, Fig. 5.7(a) depicts

the gain as a function of frequency for the DNS and SC model. The SC model integral in

frequency with n f = 21 and n f = 9 marked with squares and circles show an acceptable

prediction of the exact DNS gain distribution marked as continuous thick line, presenting a

peaked optimal very close to the DNS optimal frequency but slightly smaller and differing

only at very low frequencies. The exact DNS gain distribution is computed from a PSD of the

time varying simulation at different points and then integrated over the whole domainΩ at

each frequency ω. While, in the cylinder wake case, a linear stability analysis around the mean

flow describes well the dynamics of the flow with an accurate estimation of the frequency

and structure of the fluctuations (Barkley (2006)). In the present case, the linear response

computed around the DNS mean flow (thin solid line) under-predicts the amplitude and gain

of the exact DNS and the SC model, yielding a lower total gain Gtot = 9.7 which differs from the

exact DNS Gtot = 12. This discrepancy could be interpreted by the lack of coupling between

the mean flow and perturbation equation in the linear response suggesting that the Reynolds

stress coupling is essential for a correct estimation of the saturation dynamics.

The gain distribution of the base flow scaled by the gain at the optimal frequency of the SC

model at G(ωopt ) (thick dashed line) does not approximate well the exact DNS distribution,

although it is used to weight the response and the Reynolds stress (5.18) and estimates correctly

the saturation (Fig. 5.7) with an integral in frequency Gtot = 10.3 rather close to the exact DNS

one. One of the reasons why a single frequency approximation of the response captures the

nonlinear saturation in terms of its energy is because the optimal frequency of the linear gain

and the saturated gain do not differ markedly.
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Figure 5.7 – (a) Gain distribution function of the frequency and total gain values for the DNS
and SC model saturated with a forcing amplitude A = 0.1. The exact DNS total gain is Gtot = 12
(thick solid line) and Gtot = 9.7 for the linear prediction around the DNS mean flow (thin solid
line). The SC model integrated in frequency has a total gain Gtot = 12.7 (squares) for n f = 21 ,
Gtot = 12.5 for n f = 9 (circles) and Gtot = 10.3 (thick dashed line). (b) Total gain of the exact
DNS (solid line), linear response aroun the DNS mean flow (dashed line) and SC model as
function of the number of discrete frequencies ωi given by n f for the base flow and saturated
mean flow with a forcing amplitude A = 0.1. Re = 500.

The nonlinear total gain is reminiscent of the idea of nonlinear transfer function, with a gain

at each frequency G(ω) that depends on the amplitude of the forcing and the frequency. The

concepts of nonlinear transfer function and nonlinear gain are well described in Noiray et al.

(2008) dealing with the study of nonlinear stability of flames in burners.

Fig. 5.7(b) presents the variation of the total gain of the self-consistent model with different

number n f of discrete frequencies ωi showing a clear decrease in accuracy with a decrease

in the number of points n f . It shows that n f as small as 9 is enough to obtain an accurate

estimation of the total gain.

The local kinetic energy of the response fluctuation and the velocity in the x-direction for

the DNS and the SC model are compared in Fig. 5.8. The energy distribution of the SC

model approximates acceptably the exact DNS capturing most of the upstream migration

when compared to the linear response structure around the base flow Fig. 5.2. Nonetheless,

the SC model exhibits a more elongated structure compared to the compact DNS energy

distribution between the two recirculation bubbles. As one could expect the SC model with

only single frequency approximation of the response, depicted in Fig. 5.8(c), presents a poorer

approximation than its frequency integrated counterpart (Fig. 5.8(b)).

The DNS snapshot of the fluctuating velocity u′
x shows in Fig. 5.8(d) a very clear streamwise

wave length. This means that in spite of a response composed by a mix of streamwise wave-

lengths excited at all frequencies (Fig. 5.2) inside the band ωb , there is a clear selective process

governed by the gain curve Fig. 5.7(a) promoting strongly the optimal frequency and its re-
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Figure 5.8 – Energy distribution of the response fluctuation for (a) DNS, (b) SC with n f = 21
and (c) SC with single frequency approximation ωopt . Fluctuation velocity in the x-direction,
u′

x (d) DNS snapshot, (e) SC with n f = 21 constructed with arbitrary φi in (5.17) and (f) SC
with n f = 1, single frequency approximation at ωopt . Forcing amplitude A = 0.1 and Re = 500.

sponse structure. This selective process is well captured by the SC model results specially by

the optimal frequency approximation Fig. 5.8(e) that approximates well the streamwise wave

length when compared to the DNS snapshot Fig. 5.8(d).

A more quantitative comparison is gathered in Fig. 5.9 where the recirculation bubble lengths

are compared for the DNS and SC model as function of the forcing amplitude. The SC model

integrated in frequency (circles) predicts accurately the bubble positions, for the top as much

as for the bottom, even capturing very closely the non-monotonous trend of the bubble at the

bottom. This is of great relevance because it implies that the SC model is able to characterize

properly the flow where linear estimations around the base flow would fail. The SC model

with optimal frequency approximation (triangles) also follows the migration of the bubbles of

the DNS solution (squares) although not as closely as the integrated form mainly describing

the non-monotonous behaviour. This difference appears probably due to the restricted

construction of the Reynolds stress forcing by only the optimal response structure.

The migration upstream of the response with an increase of the amplitude of the forcing

illustrated in Fig. 5.5 is described in a quantitative form by the position of the maximum xEmax

of the fluctuation energy and plotted in Fig. 5.10(a). Although the SC model estimates very

closely the trend of the DNS response migration, there is a constant difference of δxEmax ∼
3h, which is slightly larger for the single frequency approximation (triangles) and is in line

with the results shown in Fig. 5.8. It should be noted that the SC model is able to describe
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Figure 5.9 – Position of the recirculation bubbles (a) bottom and (b) top for the DNS (squares),
SC integrated in frequency (circles) and SC with optimal frequency approximation (triangles)
as function of the forcing amplitude A. Re = 500.

more accurately the response saturation in terms of amplitude Fig. 5.6 than its structure and

position.

Fig. 5.10(b) presents the Power Spectral Density (PSD) of the DNS response to forcing with

amplitude A = 0.1 at different positions x along the centreline of the domain (y = 0) where

the response is stronger. An interesting feature is that the optimal frequency is constant at all

positions, showing that there is not any zone with a strong competition between oscillating

responses at different frequencies and hence the whole response oscillates mainly as a unique

coherent structure with a preferred frequency as it is illustrated above for the streamwise wave

length in Fig. 5.8.

5.4 Spatio-temporal stochastic forcing

Realistic disturbances to flows generally do not present a clear spatial distribution, therefore,

the temporal forcing is now generalised by imposing a white noise forcing f uncorrelated

in space and time (Dergham et al. (2013); Farrell & Ioannou (2012)). The inlet forcing f is

modelled as f = Aξ(t ) where ξ(t ) is now a column vector of nk random variables, and ξ(t ) is

normalised in such a way that the power of f is A2. The stochastic vector ξ(t) is a Gaussian

random process that represents the band limited white noise which is δ-correlated in space

and time, has zero mean and unit variance.

Instead of using the finite element basis to represent the spatial noise distribution, it is conve-

nient to use the orthogonal basis resulting from the SVD analysis of the resolvent operator.

Introducing the adjoint of the resolvent operator, the linear gain can indeed be rewritten as a
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Figure 5.10 – (a) Position in the x coordinate of the maximum of the energy of the perturbation
xmax for SC and DNS as function of the forcing amplitude A. (b) PSD as function of the
frequency for different positions x at the centreline, (y = 0), for the DNS fluctuating velocity
field for A = 0.1 and Re = 500.

Rayleigh quotient of the resolvent operator and the forcing,

G2
1(ωi ) = (R f̂1|R f̂1)

( f1| f̂1)
= (RHR f̂1| f̂1)

( f̂1| f̂1)
. (5.19)

Subsequently, the optimal gain and forcing on the base flow UB correspond to the leading

eigenvalue λ1 =G2
1 and eigenvector f̃1 of the symmetrical eigenvalue problem R†R f̃k =λk f̃k

computed at each frequencyωi . The family of eigenmodes and eigenvalues constitute a spatial

orthogonal basis for the forcing f̃k = f̂i ,k and corresponding response ûi ,1 for each frequency

ωi sorted by their associated gain Gk (ωi ) as G1(ωi ) > G2(ωi ) > G3(ωi ).... Since the different

structures of optimal and suboptimal forcing are equally energetic, they can be normalised

such that ‖ f̂i ,k‖Γ =π/nkωb . The amplitude of the forcing comes as

〈
∫
Γ

f 2dΓ〉 =
n f∑

i=1
αi

nk∑
k=1

2A2‖ f̂i ,k‖2
Γ = A2 (5.20)

The total gain corresponds to an integral in the frequency domain and accounts at each

frequency for the different possible response structures with their corresponding gains, all of

them forced with equally energetic forcing. In analogy to (5.18) the total gain is written as

G2
tot '

2π

ωb

n f∑
i=1

αi
1

nk

nk∑
k=1

Gk (ωi )2, (5.21)

where αi are quadrature coefficients previously introduced.

Truncating the flow dynamics to its most energetic patterns is common in turbulence studies

(Berkooz et al. (1993)). Thereby, we reduce the complexity of modelling a whole spatio-
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Chapter 5. Saturation mechanism of the response to stochastic forcing

temporal stochastic forcing by extracting the most amplified structures of the response û1

with their corresponding forcing f̂1 at each frequency in a set of selected frequencies ωi . At

each frequency ωi , the optimal gain G1(ωi ) retrieves the most amplified structures. Hence,

knowing that the suboptimal gains are orders of magnitude lower (Boujo & Gallaire (2015);

Dergham et al. (2013)), we approximate the full response by the most amplified one. The total

gain is approximated as

G2
tot '

2π

ωb

n f∑
i=1

αi
1

nk

(
nk∑

k=1

G2
B ,k (ωi )

G2
B ,1(ωi )

)
G2

1(ωi ) = 2π

ωb

n f∑
i=1

αi
βi

nk
G2

1(ωi ), (5.22)

where energy weights βi are calculated at the base flow, where they are known in order

to obtain the relation of gains and assuming a constant ratio of the suboptima along the

saturation. This procedure recalls (Dergham et al. (2013)) where a low rank approximation

of the covariance matrix is built by the most energetic responses integrated discretely in the

frequency domain. The amplitude of the response is then approximated as

B 2 '
n f∑

i=1
αiβi 2‖ûi ,1‖2

Ω, (5.23)

and the coupled system of equations of the self-consistent model is rewritten as

N (U ) =−
n f∑

i=1
αiβi 2ℜ(

( ¯̂ui ,1 ·∇)ûi ,1
)

U = upoi s on Γ , U = 0 on Γw

 (5.24a)

iωi ûi ,1 +LU (ûi ,1) = 0

ûi ,1 = f̂i ,1 on Γ , ûi ,1 = 0 on Γw

}
(5.24b)

In general, nk depends on the spatial number of the degrees of freedom (NDOF) of the white

noise, for our simulations nk = 80 coinciding with the NDOF of the mesh at the inlet Γ.

Changing the underlaying mesh while maintaining the nk number yielded the same total gain

Gtot , showing that nk is equivalent to the frequency band limit but in space, it represents the

band limit of the spatial distribution of the noise, limiting it to a restricted base of nk degrees of

freedom. Similarly to what happens in the frequency domain in (5.12), increasing the number

nk decreases the total gain because energy is spent in finer spatial structures with higher wave

number that do not provide large response. Thereby, to obtain a large amplification given a

fine enough spatial resolution we need to increase the Reynolds number from Re = 500 to

Re = 700, since the gain increases rapidly with the Reynolds number (Boujo & Gallaire (2015)).

5.4.1 Results: dynamics of the flow subject to spatio-temporal stochastic forcing

The self-consistent model is applied to the backward-facing step problem forced at the inlet

Γwith white noise δ-correlated in space and time, with an increasing amplitude A. The SC
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Figure 5.11 – (a) Gain and (b) response as functions of the forcing amplitude A of the band lim-
ited white noise for the DNS (circles), SC model integral in frequency with n f = 21 (triangles),
SC model with n f = 1 at ωopt (squares) and the linear estimation (dash dotted line). Re=700.

model estimates distinctively well the saturation of the gain and response as illustrated in

Fig. 5.11. The SC with the optimal frequency approximation presents a slightly lower response

when compared to DNS, but a minimal difference when compared to the linear prediction,

which is incorrect in orders of magnitude for a strong saturation. It should be highlighted

that the Reynolds stress coupling in the self-consistent model allows to capture the nonlinear

response to white noise approximating the whole stochastic response that varies in space and

time with the structure of the response solely at the optimal frequency.

A more quantitative comparison of the flow features between the SC model and the exact

DNS reveals that the SC model captures the main trends in the variation of the flow config-

uration as presented in Fig. 5.12, however, surprisinigly not as accurately as the estimation

of the global energy of the response. Focusing on the recirculation bubbles of the mean flow
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Figure 5.12 – Position of the recirculation bubbles (a) bottom and (b) top for the DNS (squares),
SC model integrated in frequency (circles) and SC model with optimal frequency approxima-
tion (triangles) as function of the forcing amplitude A. (c) Position maximum of the energy
of the perturbation xEmax for the SC model and DNS as function of the forcing amplitude A.
Re=700.

Fig. 5.12(a)-(b), the frequency integrated SC model follows approximately the DNS capturing
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the non-monotonous behaviour, however, the SC model with a single frequency approxima-

tion provides only a very coarse estimation of the recirculation bubble migration failing to

capture the non-monotonous trend. In terms of the position of the maximum of the fluctuat-

ing energy, depicted in Fig. 5.12(c), the SC model captures well the migration upstream but

maintaining a mismatch for large saturations. As one could expect, this mismatch is stronger

for the SC model with a single frequency approximation of the response. It should be noted

that the self-consistent model is able to approximate considerably well the flow behaviour

given the strong assumptions involved, consolidating the Reynolds stress as the key nonlinear

term implicated in the saturation process.

5.5 Discussion and conclusions

The backward-facing step is a well known example of an amplifier, where small perturbations

to the steady base state produce large amplifications due to the non-normality of the lin-

earised equations. This amplifications depend strongly on the frequency of the perturbations

(Marquet & Sipp (2010); Boujo & Gallaire (2015)) showing a low frequency band pass filtering

with an optimal frequency. In the present work the backward-facing step is forced at the inlet

with a band limited white noise to model disturbances that appear naturally in flows. We apply

a semi-linear model to describe the nonlinear dynamics of the filtering, and the saturation of

the response with an increasing amplitude of the stochastic forcing.

The study of the stochastic forcing and response is addressed in the frequency domain, intro-

ducing the self-consistent model (5.14) which consists in a coupled system of the mean flow

equation and the linear response equation around the aforementioned mean flow at different

frequencies. The coupling is attained by the Reynolds stress that forces the mean flow and it is

constructed from the integration of the different responses in the frequency domain using a

proper energy weighting by the linear gain distribution at the base flow. The model is applied

to the nonlinear saturation problem, starting with a forcing with fixed Poiseuille structure

but stochastic in time, obtaining a remarkably accurate prediction of the global saturation of

the response when compared to the DNS results. A more quantitative comparison describes

an accurate estimation of the shortening of the mean recirculation bubble, capturing the

non-monotonous trend. In addition, the comparison of the fluctuating response shows that

the model predicts considerably well the upstream migration of the response, while providing

an estimation of the streamwise wave length despite the stochasticity of the response. An

interesting feature of the DNS response is that it presents the same optimal frequency at

different stages in the streamwise direction and thus it is governed mainly by a single coherent

structure oscillating at the preferred frequency.

The response to a more realistic disturbances, described by a stochastic forcing δ-correlated

in space and time, is modelled by extracting the most energetic structures (Dergham et al.

(2013)) as commonly used in turbulence studies (Berkooz et al. (1993)). Based on this optimal

structures, the SC model is rewritten (5.24) using the optimal forcing and corresponding

98



5.5. Discussion and conclusions

response at each frequency with their proper energetic weights. The reformulated model is

able to estimate accurately the saturation of the response and considerably well the decrease

of the mean recirculation bubble and migration of the response, despite a purely stochastic

forcing.

The results obtained suggest that the nonlinear dynamics of the saturation process in the

backward-facing step is mainly governed by the nonlinear Reynolds stress forcing even for a

stochastically forced flow, and that the nonlinear interaction of the fluctuation with itself has a

secondary effect. Besides, it should be noted that the full response to stochastic noise is well

approximated by the most energetic structure at the optimal frequency. The presented model

follows as an extension to stochastic flows of the self-consistent model proposed for harmonic

fluctuations. It was applied to an amplifier to calculate the saturation of the response to

harmonic forcing on the backward-facing step (Mantič-Lugo & Gallaire (2015)), and to an

oscillator, the unstable cylinder wake (Mantič-Lugo et al. (2014, 2015)), where the instability

is dominated by the most unstable eigenmode, and its saturation is dictated by the unstable

eigenmode marginality criterion (Malkus (1956); Stuart (1958); Barkley (2006)). Thereby, a

common physical picture is revealed; as the fluctuations grow due to an increasing response

to forcing or an instability mechanism respectively, it creates a Reynolds stress forcing that

modifies the mean flow reducing its amplification and thus saturating the flow response.

One of the fundamental aspects behind the self-consistent model is that the full nonlinear

response to stochastic forcing is approximated by a linear response at different forcing fre-

quencies, still being capable to estimate the non-linear transfer function of the system, and

approximate the nonlinear filtering of the white noise forcing, flat in the frequency domain,

into a low frequency band pass with a preferred frequency and response structure. This con-

cept of nonlinear transfer function named describing function is defined for the first harmonic

approximation of the nonlinear response in Noiray et al. (2008) and applied to the stability

behaviour of flames in burners Nevertheless, it should be highlighted that the solutions of

the self-consistent model are obtained a priori without using any DNS or experimental data.

Similar models where the mean flow is coupled to the linear perturbation equations through

the Reynolds stress forcing can be found in the study of turbulent flows, as for example in

Beaume et al. (2015) to compute coherent structures that appear during the transition in

a parallel shear flow. Another example is the stochastic structural stability theory (SSST)

introduced by Farrell & Ioannou (2003, 2012) where the ensemble average mean flow equation

is coupled to the linear response formulated in the terms of covariance matrix and governed

by the Lyapunov equation. The SSST has been applied to parallel turbulent flows describing

well the nonlinear behaviour that produces sustained coherent structures. Nonetheless, the

requirement of solving a Lyapunov equation limits the domain size and geometry due to the

computational cost. In this sense, low order approximation to the covariance matrix have

been proposed to approximate the linear response (Farrell & Ioannou (2001); Dergham et al.

(2013)) and in which case our present model is an extreme case with strong assumptions but

still being able to capture the main nonlinear behaviour of the system.
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As a final note, the present model is not conceived as a substitute for the Navier-Stokes

equations. In contrast, its significance lies on the integration of only the essential ingredients

required to provide a fairly accurate description of the physics. It remains to be seen whether

the present self-consistent model works in other globally stable laminar flows excited by

stochastic forcing.
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6 Discussion

6.1 Mean flow and base flow: Marginal stability criterion and influ-

ence of higher harmonics

Linear stability analysis around a steady solution of a general dynamical system has been a

well known tool to study and describe the dynamical behaviour of systems. In this context,

stability analysis of the linearised Navier-Stokes equations around a steady solution has been

adopted many times to describe the dynamics of different flow configurations. Restricting

our attention to oscillators, and specifically to the cylinder wake flow, we have seen that the

linear stability analysis around the base flow does not provide an accurate prediction of the

flow dynamics, in terms of frequency and structure of oscillations.

Why base flow linear stability analysis is condemned to fail?

To clarify, the standard global linear stability analysis around the steady NSE comes from the

solution of the system

N (UB )UB = 0, (6.1a)

∂t u′
1B +L (UB )u′

1B = 0 ⇐⇒λ1u1B +L (UB )u1B = 0, (6.1b)

where N and L are the nonlinear and linear operators described before in (2.1), UB is the

base flow or steady solution of the NSE. The linearized Navier-Stokes equations around the

base flow UB (6.1a) are rewritten as a standard eigenvalue problem where the perturbation

can be expanded into the basis of its eigenmodes u′
nB = AunB eλn t + cc., with u1B being the

unstable eigenmode with complex eigenvalue λ1 =σ1+ iω1, cc. is the complex conjugate, and

the amplitude A is an unknown and free.

In previous sections the discrepancy between linear stability analysis around the base flow

and mean flow has been highlighted, however, this issue is addressed here in more detail. We

start by using the Reynolds decomposition as applied previously in Section 2.2. Thus, the full
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velocity field u is decomposed as

u =U +u′ =UB +∆U +u′, (6.2)

where we define U as the time averaged mean flow U = 〈u〉, where 〈·〉 denotes the time

average, u′ denote the pure fluctuating field which has zero mean 〈u′〉 = 0 by construction,

UB denotes the base flow, steady solution of the NSE (6.1a), and ∆U represents the steady

modification between the mean flow and base flow. Using this Reynolds decomposition the

NSE are rewritten as

N (U ) =−〈(u′ ·∇)u′〉, (6.3a)

∂t u′+L (U )u′ =−(u′ ·∇)u′+〈(u′ ·∇)u′〉. (6.3b)

Note that no simplification has been performed and that the fluctuation u′ does not have to

be small compared to the mean U . The system (6.3) is composed of two coupled equations.

The mean flow U is not a solution of the NSE, as remarked by Barkley (2006) but instead a

solution of the steady mean flow equation (6.3a) forced by the Reynolds stress divergence

〈(u′ ·∇)u′〉. The second fluctuation equation (6.3b) describes the fluctuating field u′.

The linear global stability analysis performed around the mean flow can be written in the

following system of equations

N (U ) =−〈(u′ ·∇)u′〉, (6.4a)

∂t u′
1 +L (U )u′

1 = 0 ⇐⇒λ1u1 +L (U )u1 = 0, (6.4b)

where u1 represents the most unstable eigenmode, and the nonlinear interactions between

the different harmonics have been neglected.

Looking in detail at (6.1) and (6.2) we can see that the linear stability around the base flow

approximates the flow behaviour as u ' UB +u′
1B , where u′

1B is a purely time dependent

fluctuation like u′. Therefore, there is little chance that this approximation can estimate

correctly the flow behaviour unless ∆U is zero, or at least much smaller than u′
1B , which is

only true at the onset of the instability since the mean flow modification ∆U grows along with

the perturbation u′
1 due to the Reynolds stress divergence (6.4a), see also Chapter 3 for more

details. In contrast, the stability analysis around the mean flow (6.4) approximates the flow

as u =U +u′ 'U +u′
1, which means that the full fluctuating velocity is approximated by the

most unstable mode. This comparison is illustrated in Fig. 6.1 where the full multidimensional

state variables of the unsteady attractor u that represents the limit cycle solution of the exact

NSE is projected in two-dimensions to clarify the concept. We can see that, unless ∆U = 0, or

at least negligible when compared to u′, the eigenmode u1B of the base flow (in blue) would

not approximate correctly the full velocity field u′. However, the eigenmode around the mean

flow u1 (in red) is just a one frequency approximation of the full fluctuating field u′.
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Figure 6.1 – Illustrative sketch of the phase portrait of a supercritical oscillator during the
saturation into a limit cycle. The multidimensional state variable that defines the system
is projected into two-dimensions for the sake of clarity. The attractor of the limit cycle that
represents the exact periodic solution is represented by u (black) and obtained from Direct
Numerical Simulation (DNS) of the time varying Navier-Stokes equations. The unstable steady
solution of the Navier-Stokes equation is denoted as the base flow UB (blue), along with its
unstable eigenmode u1B (blue) from linear stability analysis around the base flow (6.1). The
time averaged solution is represented by the mean flow U (red), along with its most unstable
eigenmode u1 (red) from linear stability analysis around the mean flow (6.4). Notice that the
amplitude A of the eigenmodes is unknown.

Particularly for the unstable cylinder wake the difference between the base flow and mean

flow is very strong as depicted previously in Fig. 1.5 -2.2–3.5, thus explaining the obvious

failure of the base flow stability analysis to describe the dynamical behaviour of the limit cycle.

Furthermore a phase portrait of the velocity field at the point (x = 2, y =−1) is presented in

Fig. 6.2, where the saturation to the limit cycle from the base flow steady unstable solution

to the mean flow limit cycle is clear. The mean flow marginally stable mode represents a

good approximation of the limit cycle but missing the amplitude of the fluctuating term.

Nonetheless, the fluctuation amplitude is estimated by the self-consistent model, a priori,

without resorting to the DNS mean flow, approximates the structure of the vortex shedding

even better than the linear stability analysis around the mean flow, see Chapter 3, highlighting

the relevance of the model. It should be noted, that the mean flow is not a steady solution

of the NSE as seen in the phase portraits Fig. 6.1 and Fig. 6.2. The description presented

above seems natural to other flows exhibiting supercritical bifurcations, although its generality

should be verified.

Mean flow stability and one harmonic approximation

As described in Section 3.2, the complex nonlinear interactions of the full NSE is decomposed

into several different nonlinear effects in the coupled equations (6.3). The mean flow linearised
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Figure 6.2 – Phase portrait of the velocity in (ux ,uy ) at the point (x = 2, y =−1) for the cylinder
wake flow at Re=100. The DNS exact path of the full velocity u during the transient to the limit
cycle is in black. The linear fluctuation approximated by the linear stability around the mean
flow u′

1 is represented in red. The linear fluctuation approximated by the stability around the
base flow is in blue. The self-consistent model approximation is in dotted green.

fluctuation equation neglects the RHS of (6.3b), (u′ · ∇)u′ − 〈(u′ · ∇)u′〉, and thus restricts

the fluctuation to one harmonic approximation which is described by the most unstable

eigenmode u′ ' u′
1, since the rest of eigenmodes would eventually decay. In several oscillators,

such as the cylinder flow, this approximation holds very well and the most unstable mode

provides a very good description of the flow behaviour, in terms of fluctuating structure and

frequency in many cases (Triantafyllou et al. (1986); Hammond & Redekopp (1997); Pier (2002);

Barkley (2006); Sipp & Lebedev (2007)). A particular feature is that the mean flow is marginally

stable, also called the real-zero imaginary-frequency (RZIF) property (Barkley (2006); Sipp &

Lebedev (2007); Turton et al. (2015)), which means that the flow is purely fluctuating, neither

growing nor decaying, as appropriate for a limit cycle.

Reynolds stress and higher harmonics in linearly unstable mean flows

The described linear stability approximation does not hold for all configurations, and many

flow, standing waves (Turton et al. (2015)) or turbulent cases (Meliga et al. (2012)), present

an unstable mode around the mean flow. This means that the fluctuation equation around

the mean flow (6.3b) is linearly unstable with σ > 0 (Meliga et al. (2012)), but nonlinearly

stable oscillating in a limit cycle. In other words, the nonlinearity retained in the Reynolds

stress is not enough to obtain a pure fluctuation and therefore, the neglected nonlinear term

in the RHS of (6.3b), which accounts for the higher harmonic interactions, plays a relevant

role in the saturation into a limit cycle. In Turton et al. (2015) the authors provide a general

demonstration that the behaviour of a flow with peaked temporal power spectrum, that is
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to say a quasi-monochromatic oscillation dominated by the fundamental frequency, can be

predicted well from the linear global stability around the mean. In contrast, flows where the

nonlinear interactions of the different harmonics is relevant to the saturation process into

a limit cycle present in general a broad spectrum, and thus the mean flow linear stability

would exhibit a positive growth rate and would not predict the correct nonlinear frequency.

Therefore, the self-consistent model presented in Chapters 2, 3 and 4 is restricted to quasi-

monochromatic flows.

It is of interest to highlight that simple models that are used to describe the nonlinear flow

behaviour in limit cycles, like the Stuart-Landau amplitude equation, do indeed account

for the neglected nonlinear interactions of harmonics, at least at leading order. To explore

this in details, let us start by recalling the asymptotic expansion introduced in Section 4.4 for

amplifiers that can be also extrapolated to oscillators with the small parameter ε corresponding

to the amplitude of the linear perturbation u′
1 with eigenvalue λ1 =σ1 + iω1 around the base

flow UB . The first non-linear terms appear at second order ε2 from the two nonlinearities

described above;

• The mean flow modification U0: LUB U0 =− ((ū1 ·∇)u1 + (u1 ·∇)ū1) ∝|u1|2

• The second harmonic u2: [i 2ω1 +LUB ]u2 =−(u1 ·∇)u1 ∝|u1|2

both proportional to the square of the perturbation and where the overbar represents complex

conjugate. The saturation dynamics appears at third order ε3 from the correction of the per-

turbation u1, with the interactions of the second order nonlinear terms with the perturbation

itself,

[iω1 +LUB ]u1 = ((U0 ·∇)u1 + (u1 ·∇)U0)+ ∝ |u1|2u1 (6.5a)

((u2 ·∇)ū1 + (ū1 ·∇)u2) ∝|u1|2u1 (6.5b)

and thus there are two main sources of non-linear saturation; first, the mean flow modification

and, second, the interaction with the second harmonic. The degenerate nature of the linear

operator for the unstable mode with eignenvalue λ=σ+iω can be circumvented by assuming

the correction of the perturbation u1 as a response to a forcing at frequency ω1, which is

natural for σ 6= 0.

These two non-linear saturation mechanisms are accounted in the cubic term of the Stuart

Landau amplitude equation (Stuart (1960)),

d A

d t
=λA− (µ+ν)|A|2 A, (6.6)

in the coefficients µ for the mean flow correction and ν for the second harmonic interaction,

that can be extracted from a weakly nonlinear analysis around the base flow at critical Reynolds

number; see Sipp & Lebedev (2007) for more details. It should be noted that the amplitude

equation does not provide any information about the spatial structure of the oscillations.
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When the mean flow linear stability analysis is performed, only the term µ is accounted,

since it represents the mean flow modification by the Reynolds stress forcing, and the ν

coefficient is neglected. Therefore, this approach works when ν is small and the higher

harmonic interaction is negligible in the saturation process. The self-consistent model suffers

from the same pathology.

A simplified approach, as an alternative to solving the full nonlinear fluctuation equation,

could be to slave the higher harmonics to the fundamental unstable mode, following the

asymptotic expansion of Section 4.4 and build a coupled set of equations for the harmonic

interactions. Nonetheless, this coupling is not obvious since the amplitude of the most

unstable mode is not set uniquely in absence of the equivalent of the marginal stability

criterion for an unstable mean flow with σ > 0, see Chapters 2 and 3. In contrast, in the

case of amplifiers, the amplitude of the fluctuation is not a free parameter, thus allowing the

introduction of higher harmonics, as addressed in the following.

Amplifiers, white noise and higher harmonics

Similar reasoning as explained for oscillators in Fig. 6.2 applies to amplifiers, in terms of

the base flow modification to the mean flow, when looking at the response to forcing. The

steady mean flow modification ∆U is required to obtain a correct description of the flow by

the linear response to forcing, which in this case substitute the linear stability equation. The

main difference is related to the mean flow dependency on the amplitude of the forcing, and

that there is not a unique limit cycle given by the saturation of the unstable mode as in the

oscillators. In contrast, for each amplitude of the forcing there is a different response, in terms

of structure and amplitude as seen in Fig. 4.3.

It should be highlighted that in general, a broad band frequency of the response to forcing

does not imply directly that the nonlinear terms of RHS of the fluctuating equation (6.3b) are

relevant. For example, as seen in Chapter 5, the backward-facing step flow is forced by white

noise presenting a broad band spectrum of the response, however, a coupling between the

mean flow and a linear response equation at each frequency captures the nonlinear saturation

in terms of energy and structure, thus suggesting that at least in this case the nonlinear

terms of the RHS of the fluctuation equation are negligible. Nonetheless, in the case where

there is a fundamental harmonic driven by the response to harmonic forcing or by a unique

unstable mode, the fundamental harmonic grows and can interact, creating higher harmonics,

which, when large, exhibit a broad band frequency spectrum and influence the flow behaviour

revealing the nonlinear harmonic interaction as important.

When the nonlinear interaction of the different harmonics plays an important role in the

nonlinear behaviour of the flow, the self-consistent model can be expanded to account for

these interactions for amplifiers. In contrast to oscillators where the amplitude of the response

is unclear, for the amplifiers the amplitude of the different harmonics is slaved to the response

to forcing. For example, introducing the second harmonic in the self-consistent model, it is
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formalised as

N (U ) =−2ℜ ((ū1 ·∇)u1)−2ℜ ((ū2 ·∇)u2) , (6.7a)

iωu1 +LU (u1) = ((u2 ·∇)ū1 + (ū1 ·∇)u2)+ f1, (6.7b)

i 2ωu2 +LU (u2) =−(u1 ·∇)u1, (6.7c)

where the harmonic forcing is given by f1. Note that for the numerical solution there is an

extra iterative loop to couple the first and second harmonic equations before they retroact in

the mean flow through the Reynolds stress. In addition, the increase in order of harmonics

hampers the numerical accuracy since their interaction introduces large order of derivatives

requiring a very fine mesh or high order polynomials in the discretisation, not to increase the

numerical errors.

6.2 Self-consistent model for turbulent flows

So far, the introduced model has been applied only to laminar flows at low or moderate

Reynolds numbers. However, the self-consistent formalism can be formally expanded to

turbulent flows at high Reynolds numbers. Following the approach proposed by Reynolds &

Hussain (1972); Viola et al. (2014), the unsteady flow u(x, t ) is decomposed into a steady time

average mean flow u =U , a coherent motion ũ that describes the slowly varying structures,

and the fast fluctuating turbulent motion u′,

u =U + ũ +u′, (6.8)

where the sum of coherent structure plus the time averaged mean flow coincide with ensemble

averaged flow, < u >=U + ũ. The nonlinear evolution of the coherent structures is described

by

N (U ) =−(ũ ·∇)ũ − (u′ ·∇)u′, (6.9a)

∂t ũ1 +L (U )ũ1 =−[(ũ ·∇)ũ − (ũ ·∇)ũ]− [〈(u′ ·∇)u′〉− (u′ ·∇)u′], (6.9b)

where L (U ) and N (U ) are the linear and Nonlinear NS operators around the steady mean

flow U . The stability analysis of the flow is verified by the modal analysis of the linearised

dynamics of the coherent structures, given by the tendency of ũ to grow or decay, as described

in the literature, e.g. Meliga et al. (2012); Viola et al. (2014). For this purpose, the nonlinear

term [(ũ ·∇)ũ − (ũ ·∇)ũ] of the coherent interaction with itself is neglected as usual in linear

stability analysis, however, the system of equations is not closed and the coherent turbulent

fluctuation [〈(u′ · ∇)u′〉− (u′ ·∇)u′] need to be modelled by using the standard Boussinesq

hypothesis and a turbulence model (Reynolds & Hussain (1972); Pope (2000); Cossu et al.

(2009); Meliga et al. (2012); Viola et al. (2014)).

Subsequently, the self-consistent model is constructed to describe the coherent linear equa-
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tion and couple it to the mean flow equation, through the Reynolds stress. The full nonlinear

coherent fluctuation ũ is approximated by a unique harmonic ũ1 that comes from stability

analysis or linear response to forcing as described in Chapters 2, 3 and 4 for laminar flows. An

important point is that the Reynolds stresses of the coherent ũ and the turbulent fluctuations

u′ are not mixed, and are independent (6.9a). This independence can be interpreted by the

different averaging methods, ensemble and time average, or also by the frequency indepen-

dence as described in Chapter 5. Thus, different approaches can be applied to calculate

separately each term of the Reynolds stresses. The turbulent Reynolds stress divergence is

calculated using the Bousinessq hypothesis and any standard turbulence model, while the

coherent Reynolds stress divergence is computed by the unique harmonic ũ1 as described in

Chapters 2, 3 and 4 .

Extending the linearisation of (6.9b) described in Viola et al. (2014) or Meliga et al. (2012) the

self-consistent model can be formalised to describe the dynamics of the coherent structures ũ

in the following form

N ∗(U )−∇· (νt [∇+∇T ]U
)=−(ũ1 ·∇)ũ1, (6.10a)

∂t ũ1 +L (U )ũ1 =∇· (νt [∇+∇T ]ũ1
)+∇· ((∇Uνt · ũ1)[∇+∇T ]U )

)
, (6.10b)

νt = TM(U ), (6.10c)

where ũ1 represents the most unstable eigenmode, and N ∗ is the standard nonlinear NS

operator but written for the corrected pressure p∗ that takes into account the isotropic term of

the turbulent Reynolds stress tensor, while the turbulence model TM(U ) models the deviatoric

part. Whether this extended self-consistent model provides a correct approximation of the

coherent structures in turbulent flows remains an open issue and a natural extension of my

work.

6.3 Is the Reynolds stress forcing always staturating?

All the examples proposed in this work dealt with cases in which the interaction of the fluc-

tuation and the mean flow resulted in a stabilisation (saturation) of the fluctuation. In other

words, the nonlinear interaction of the mean flow and the linear approximation of the fluctu-

ating part inherent to the self-consistent model yielded a nonlinear saturation. In oscillators,

particularly in the cylinder flow (Chapters 2 and 3), this interaction resulted in a stabilisation

of the unstable mode, until marginal stability was achieved and the flow was saturated in a

pure periodic limit cycle. In amplifiers, as the backward-facing step flow (Chapters 4 and 5), it

resulted in a saturation of the amplification of the response to forcing in both cases; harmonic

and stochastic.

There are flows like Poiseuille or Couette flow that are linearly stable, but undergo a tran-

sition into different flow configurations once sufficiently forced or even exhibit unsteady

self-sustained coherent structures that are present in the transition to turbulence and con-
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tinue to exist even once the initial forcing is eliminated. This nonlinear evolution has been

captured by different semi-linear models where the averaged mean flow is coupled to a linear

fluctuating equation through the Reynolds stress, as described in Chapter 1, see for example,

Farrell & Ioannou (2012); Beaume et al. (2015); Thomas et al. (2014).

I hypothesise that the non-linear behaviour that accounts for the appearance of self-sustained

coherent structures in stable flows like Poiseuille or Couette could also be described by the

self-consistent model since it maintains key similarities to the above models. The following

picture can be evoked: the linear response to a strong enough forcing entails such a variation

in the mean flow, due to the Reynolds stress, that the linear operator of the response to forcing

would change from linearly stable to unstable and thus explaining the appearance of self-

sustained coherent structures. This idea can be viewed also in the context of subritical flows,

where, as already reviewed in Godreche & Manneville (1998) and described in Ehrenstein &

Koch (1991), nonlinear travelling waves can appear below the critical Reynolds number in

plane Poiseuille flow. This would mean that open flows can be categorised into two groups

depending on their nonlinear dynamics.

• Reynolds stress forcing stabilisation: The nonlinear interactions of the Reynolds stress

and the linear fluctuation result in a saturation of the fluctuation, reducing he insta-

bility growth rate in oscillators or its gain in amplifiers. This would correspond to a

supercritical bifurcation.

• Reynolds stress forcing destabilisation: Stable flows where the nonlinear interaction of

the Reynolds stress and the linear fluctuation results in a destabilisation, increasing the

growth rate of unstable flows and the gain of the nonlinear response when compared

to the linear response and eventually leading to a new dynamical setting. This would

correspond to a subcritical bifurcation.

This conjecture is supported by the preliminary results obtained by applying the self-consistent

model in two-dimensional parallel flows. The full flow field u(x, y, t) is decomposed by a

streamwise averaged mean flow only in the streamwise x-direction Ux (y), plus a linear ap-

proximation of the full nonlinear fluctuation in the form of u′(x, y, t ) ' Au1(y)e i kx+λt +cc., for

λ=σ+ iω and where a wave number expansion with spatial real wave number k is applied in

the streamwise direction as standard of linear local analyses, see Schmid & Henningson (2001)

for more details. The self-consistent model is constructed following the same philosophy of

Chapters 2 and 3 under the parallel flow restrictions,

− 1

Re

d 2Ux

d y2 + dP

d x
=−A2

(
ū1y

du1x

d y
+u1y

dū1x

d y

)
, (6.11a)

λ1u1 +LU (u1) = 0. (6.11b)

where u1 = [u1x ,u1y ] is the most unstable eigenmode, P is the fixed base flow pressure and

L is the reformulated linear operator around the parallel mean flow. Two different flows are
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Figure 6.3 – Categorisation of flows depending on whether the Reynolds stress forcing stabilises
or destabilises the flow. Sketch of a supercritical Hobf bifurcation (a), nonlinear travelling wave
in a subcritical Poiseuille for k = 1.02 (b) (Godreche & Manneville (1998); Ehrenstein & Koch
(1991)). Applying the self-consistent model to 2D parallel flows; a stabilising case, an unstable
synthetic wake (c) for Re = 100 and wavenumber k = 0.3, similar to the one studied in Pier &
Huerre (2001), (left), and a destabilising case, the stable Poiseuille flow (e) at Re = 3000 and a
wavenumber k = 1.2, (right). The evolution of the growth rate as function of the amplitude is
shown in (d,f). The eigenspectrum of the mean flow and base flow is shown in (g,h).

studied: a synthetic wake at Re = 100 similar to the one presented in Pier & Huerre (2001)

and the well known Poiseuille flow at Re = 3000. The wave number is fixed and chosen

from the most unstable combination from the linear dispersion relation of the base flow.

The wake base flow is described by Ux = 0.84−0.54 sech(0.35y)2 and it is linearly unstable

at Re = 100 for the selected wavenumber k = 0.3 with an eigenvalue λ1B = σ1B + iω1B =
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6.3. Is the Reynolds stress forcing always staturating?

0.183+0.0285i . In contrast, the Poiseuille flow Ux = (1− y2) is linearly stable at Re = 3000, the

selected wavenumber from the dispersion relation is k = 1.2 with a least stable eigenvalue

λ1B =−0.1+0.38i . Note that the first linearly unstable mode of the parallel Poiseuille appears

at Re = 5772 for k = 1.02 and ω= 0.2639 see for instance Schmid & Henningson (2001).

The comparison between the wake and the Poiseuille flow illustrated in Fig. 6.3 shows a clear

opposite behaviour. The unstable wake becomes more and more stable as the amplitude of the

most unstable eigenmode increases (Fig. 6.3(d)), while the stable Poiseuille is destabilised by

an increase in the mode amplitude (Fig. 6.3(f)). It is interesting to remark the minimal change

of the Poiseuille profile (Fig. 6.3(e)) between the base flow and the increasingly unstable

instantaneous mean flow, probably related to the high sensitivity of the non-normal linear

operator L as reported by Bottaro et al. (2003), while for the wake the mean flow modification

is significant (Fig. 6.3(c)). It is very important to highlight that the coupling of the most unstable

eigenmode u1 in the stable Poiseuille is equivalent to couple the optimal response to forcing

at each stage, since the most unstable eigenmode and the optimal response are practically

the same as can be seen in Fig. 6.4(c,d).The frequency of the most unstable eigenmode also

coincides with the optimal forcing frequency (Fig. 6.4(b)). Furthermore, as seen in Chapter 5

the structure of the response to white noise can be well approximated by the optimal response,

therefore, in this context, approximating the full fluctuation by the most unstable eigenmode

u1 provides a good estimation of the structure that would appear when forcing the flow

with white noise. The evolution of the optimal gain is depicted in Fig. 6.4(a) presenting a

very pronounced increase with the fluctuating amplitude. The presented results suggest

the following physical picture for flows like Poiseuille, in which the Reynolds stresses are

destabilising: the background noise generates a response that modifies the mean flow through

the Reynolds stress, and make it more unstable increasing the gain and thus the response to

background noise and hence destabilising it further.

Contrary to the plane Poiseuille case, there are stable flows like plane Couette flow that do not

present a bifurcation point at finite control parameter, and thus do not exhibit any preferred

mode but are victim of stronger non-normality. Therefore, the nonlinear fluctuation, which is

a response to a presumably white noise excitation, cannot be approximated by the linearly

most unstable mode, and should instead be approximated by a stochastic linear response, in

the spirit of the existing works of Farrell & Ioannou (2012); Thomas et al. (2014). In the context

of the self-consistent model this stochastic response could in turn be approximated by a sum

of modes at different frequencies as introduced in Chapter 5. Whether this approximation

would hold for flows with no preferred mode, and the generality of the presented hypothesis

remain open questions and a promising research perspective.
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Figure 6.4 – (a) For the Poiseuille stable case, the optimal gain increases with an increase of
the Reynolds stress amplitude A f . (b) Optimal gain as function of the forcing frequency ω,
comparing the base flow and mean flow. Comparison of the most unstable eigenmode, the
optimal response u1 and the optimal forcing of the x-component for the mean flow (c) and
the base flow (d). Plane Poiseuille flow for k = 1.2 and Re = 3000.
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7 Conclusions and future perspectives

This thesis formalises a simplified physical description that accurately accounts for the non-

linear saturation of the instability in unstable flows as well as the saturation of the response

to disturbances in stable flows. A semi-linear or self-consistent model (SC) is introduced

inspired by the weakly nonlinear analysis and mainly by the works of Stuart (1960); Sipp &

Lebedev (2007); Pier & Huerre (2001); Farrell & Ioannou (2003); Barkley (2006), in an attempt

to generalise the existing descriptions close to threshold (Stuart (1958, 1960); Waleffe (1995))

The model consists of the mean flow equation coupled to the linear fluctuation through

the Reynolds stress divergence, which is solved iteratively. One of the fundamental aspects

behind the present model is that the full nonlinear fluctuating motion is approximated by a

linear equation. This simplification is encountered in other works where non-linear dynamics

of flows are studied as well (Farrell & Ioannou (2003, 2012); Beaume et al. (2015); Thomas

et al. (2014)). The model provides a simple description of the saturation mechanism for

oscillators and amplifiers and quantitatively predicts the saturated amplitude and flow fields,

a priori, without resorting to any numerical or experimental data in contrast to, for example,

standard stability around mean flows. Thus, the self-consistent model describes the physical

picture of the nonlinear interaction between the fluctuating fields and the mean flow, where

the fluctuation, approximated linearly, grows around the mean flow and modifies it by the

Reynolds stress forcing. This mean flow modification reduces the fluctuation growth until it

saturates in a limit cycle.

The model is successfully applied to an oscillator, the unstable laminar cylinder wake, describ-

ing even the fully nonlinear dynamics of the saturation process. Furthermore, the model is also

applied to an amplifier, the backward-facing step, describing the saturation of the response

to harmonic and stochastic forcing. Despite the difference in the dynamics of oscillators

and amplifiers, similar saturation dynamics appear to happen in both cases. The present

model is in no way envisioned as a substitute for the Direct Numerical Simulations; instead, its

significance lies in the clarification and formalisation of all the essential ingredients to provide

a fairly accurate description of the physics.
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It remains to be seen whether the present semi-linear model works also for other oscillators

and amplifiers which would generalise the ideas and concepts behind the non-linear satu-

ration process as suggested in this work. The flows studied herein are all two-dimensional

although there is not any restriction for the model to be conceptually expanded to three-

dimensional problems. As a simplified first attempt, periodic boundary conditions can be

used in the third dimension with Fourier expansion, since the linearity of the fluctuation allows

the treatment of each wave number independently. In general, it would be very interesting

to address different flow configurations and geometries, like the flow behind airfoils, shear

layers, boundary layers, or axisymmetric geometries like jets, nozzles, etc.

In the case of unstable oscillators, the model in principle should be able to describe any quasi-

monochromatic fluctuations. However, it would be interesting to try to expand the model to

account for different harmonics that could describe the dynamics of oscillators with broad

band temporal spectrum. In addition, the study of the response to noise can be enhanced

by including higher harmonics for cases where the linear approximation of the response to

forcing fails.

Regarding turbulence, the model can be generalised by applying scale separation to the

description of the coherent fluctuations in turbulent flows, that are typical, for example, in

turbulent wakes.

A preliminary study of the model in the stable Poiseuille flow shows that there are certain flows

for which the Reynolds stress nonlinearity is destabilising the flow, in contrast to the wake and

backward-facing step. This suggests a classification of flows as Reynolds stress stabilising or

destabilising and has a natural link with the supercritical/subcritical bifurcation classification.

Thus, it is of interest to extend the preliminary study presented of the self-consistent model to

the dynamics of the coherent structures that appear during the transition to turbulence in

Poiseuille (Tuckerman et al. (2014)) and Couette flows, as Rolls and Streaks, in the same spirit

as the works performed with other semi-linear theories, e.g. Farrell & Ioannou (2012); Thomas

et al. (2014); Beaume et al. (2015), which would shed some light on the nonlinear dynamics

that come into play during the transition.

As a final note, the self-consistent model sets a new framework for the linearisation around

the mean flow, where the influence of the fluctuation and the mean flow modification are

taken into account in the coupled equations, which eventually can be useful in optimisation

and control. Furthermore, the self-consistent model may open new possibilities as a model

reduction for flow control, since the coupled mean flow-perturbation equations are solved as

a closed system independent of time.

114



A Critical aspects of the self-consistent
model

As described in Chapters 2, 3, 4, the self-consistent model consists in a coupled set of equations

that have to be solved iteratively through a double nested iterative loop.

Inner loop: Equation coupling for fixed A. For a chosen amplitude A of the fluctuations, there

is an inner loop that couples both equations: mean flow and perturbation.

Outer loop: Amplitude A∗. It parametrises the evolution of the instantaneous mean along the

external parameter amplitude A in Chapter 3 or represents the external forcing strength

in Chapter 4.

In the case of amplifiers the inner loop can be replaced by a pseudo time integration, for any

arbitrarily large final amplitude A of the outer loop, for details see Section 4.5.1. Different

initial conditions and iterative procedures have been tried, always converging to the same

mean flow and fluctuation solution, showing that the solution to the coupled system is robust

and not path dependent. However, the iterative coupling of this system of equations does not

come without difficulties, which are discussed below.

A.1 Sensitivity of the model

The fact that the model describes unsteady dynamics of flows that are strongly advected

downstream by coupling two steady equations, strongly restricts the solution of the unsteady

dynamical system in steady equations. This restriction for steady solutions creates a very

sensitive setting for the iterative process, hindering its convergence.

This sensitivity is clear since it requires the use of a relaxation factor γwhen coupling the inner

loop as described in details in Tab. 3.2, see Chapters 2, 3 and 4 for more details. In addition, the

steps in amplitude A of the outer loop are also restricted and related to the relaxation factor γ.

Thus, the relaxation factor γ and amplitude A can be varied to ensure quick convergence to the

correct solution that couples both equations of the model, and to overcome the oscillations

and other difficulties that might appear.
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As described in Section 3.4 there is a clear increase in difficulty to attain convergence for an

increasing Reynolds number, enforcing a reduction of the relaxation factorγ and increasing the

number of iterations. Eventually, at Re = 120 the model did not converge. Similar difficulties of

converging to steady solutions of the NSE for an increasing Re have been previously reported

(Fornberg (1980)). Furthermore, in the backward-facing step problem, a limitation in the

amplitude of the forcing was also encountered; see details in Section 4.5.1. The reasons for

this increase in difficulty could be interpreted by two related factors:

• First, the sensitivity of the linear L and nonlinear N operators to disturbances as

described in Section 1.2;

• Second, the similarity of the structures of the Reynolds stress forcing which are solutions

of the coupled system at increasing amplitude as can be seen in Fig. 3.3.

Due to these two factors, as the Reynolds number increases together with the amplitude of

the fluctuation, the coupled system is locking itself into a nonlinear solution that is more and

more sensitive to variations in its structure, thus making it more and more difficult to obtain a

converged solution. In order to avoid this locking, a pseudo time was introduced, as described

in Section 4.5.1. However, it can only be used in amplifiers where the flow is linearly stable. In

addition, the high sensitivity of the Reynolds stress forcing with a very fine structure suggests a

need of a very fine mesh to approximate correctly the space derivatives. Therefore, the source

of the problem could be attributed to the approach presented to solve the coupled equations

or the nature of the equations itself, which may produce an ill posed problem that is difficult

to solve numerically even though a physical and mathematical solution should exist. It is

possible (and desired) that a different method or approach to solve the coupled equations

might allow to a more robust, quick and efficient solution solving the issue of large number of

iterations at high Reynolds number, or the amplitude restriction of the forcing.

The described problems can be a drawback when implementing the model in different flows,

as a certain tuning and familiarisation of the iterative procedure for each flow configuration is

required and in certain cases the sensitivity of the coupled system might prevent the model

from converging. As an example, the attempt of Turton et al. (2015) to implement the model to

describe the dynamics of the thermosolutal convection for a linearly marginally stable mean

flow was unsuccessful.

A.2 Reynolds stress forcing normalisation

It is important to emphasise another relevant restriction, which is related to the normalisation

of the Reynolds stress as discussed in Section 3.4. For oscillators such as the cylinder wake, the

inner iterative loop converges robustly to a solution if the system is controlled by fixing the

amplitude of the Reynolds stress forcing A f ≡ A2‖2ℜ ((ū1 ·∇)u1)‖ instead of the amplitude A

of the perturbation.
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Figure A.1 – Comparison of the unstable eigenmode u1 and the Reynolds stress divergence
in the x-direction for two different steps during the iterations to converge to the solution of
the self-consistent model for the cylinder flow at Re = 100. The modes are both normalised
as ‖u1‖ = 1 and show how very similar structures of the Reynolds stress divergence yield very
different norms due to the derivatives involved in the advective term ·∇.

To explain this idea in depth, let us imagine that one naively controls the system convergence

by the amplitude A of the approximated fluctuation by the unstable eigenmode u′ ∼ Au1e iωt +
cc., with u1 of unit L2 norm determined by the Hermitian inner product (a|b) = ∫

Ωa ·bdΩ=∫
ΩaH ·bdΩ, for complex fields in the domainΩ, and where cc. is the complex conjugate.

For a fixed amplitude A the convergence of the inner loop consists in computing the Reynolds

stress divergence A22ℜ ((ū1 ·∇)u1), which forces and modifies the mean flow in each iteration,

see Tab. 3.2, and updating the modified mean flow into the linear equation. Thus, between

each iteration the mean flow U n and thus the most unstable eigenmode u1 have different

structures. This different structures imply that for a fixed amplitude A and normalised mode

u1 the Reynolds stress forcing varies its norm in each iteration and thus changes the strength

with which it forces the mean flow U . This variation of Reynolds stress forcing for a fixed norm

u1 can be seen in Fig. A.1, where for two very similar structures of the normalised mode u1

and Reynolds stress divergence, the norm of the Reynolds stress forcing varies drastically, in a

manner similar to that encountered between iterations. The variation in the norm is related

to the spatial derivatives included in the advective term ·∇ in the Reynolds stress divergence

2‖ℜ ((ū1 ·∇)u1)‖; although it scales as ∝‖u1‖2 its exact value depends strongly on the spatial

distribution of the eigenmode u1. Summarising, a fixed amplitude A implies a variation of the

norm of the forcing in the mean flow equation on top of a variation in its spatial shape at each

iterative step, which was found to result in a destabilising effect in the iterative process.

One way to prevent these oscillations in the forcing of the mean flow is to control the forcing

amplitude by the amplitude of the Reynolds stress forcing A f , which is related to the amplitude
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of the mode as

A f
2ℜ ((ū1 ·∇)u1)

‖2ℜ ((ū1 ·∇)u1)‖ = A22ℜ ((ū1 ·∇)u1) , (A.1)

for a normalised mode ‖u1‖ = 1. Fixing A f , the norm of the RHS of the mean flow equation

is kept constant despite the changes in the structure of u1. It should be highlighted that this

change in normalisation of the Reynolds stress forcing does not have any influence on the

physics of the results, since there is a unique relation between A and A f for the converged

system at a given A f as the mode structure u1 is unique thus fixing the relation (A.1).

A.3 Model algorithmic convergence and limitations

The relaxation factor γ and the steps in amplitude A f are two parameters that can be varied to

ensure a quick and stable convergence of the double iterative procedure to close the coupled

equations of the self-consistent model, leading to two distinct approaches for enhanced

converging speed:

• Large steps δA f in the amplitude A f in the outer loop and small relaxation factor γ in

the inner loop as described in Fig. A.2(a).

• Small steps δA f in the amplitude A f of the outer loop large relaxation factor, soft

damping in the inner loop as described in Fig. A.2(b).

Both procedures are illustrated in Fig. A.2 for the residual convergence during one step in the

outer loop or amplitude δA f . Their comparison shows that the most efficient approach is to

use a large amplitude stepping δA f of the outer loop with a strong relaxation factor γ in the

inner loop. Since a step in δA f = 1e−3 of Fig. A.2(a) converges approximately with the same

number of iterations as in Fig. A.2(b) for a step 10 times smaller, δA f = 1e−4.

Newton-Raphson method for the non-linear mean flow equation

The amplitude steps δA f are bounded by the convergence capability of the Newton-Raphson

method of the nonlinear mean flow equation for a given Reynolds stress (which acts as forcing)

amplitude A f which is related directly to the forcing amplitude through the perturbation

equation. There is a maximum amplitude of the forcing (and therefore of the Reynolds

stress) for which the Newton-Raphson method converges in the mean flow equation. Picard’s

method for nonlinear mean flow equation works worse than a Newton-Raphson scheme and

converges much more slowly, and for smaller amplitude steps ceases to converge. An internal

amplitude loop was attempted inside the Newton method loop to be able to converge for

larger amplitudes. However, it was found, since an increase of less than 50% of the threshold

amplitude step δA could be achieved. Therefore, having in mind the complexity of the

automatic internal amplitude loop in the Newton-Raphson method in the mean flow equation
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Figure A.2 – Residuals for different forcing amplitude steps and relaxation factors, for the step
flow described in Chapter 4 at Re = 500. a) Forcing A f = 1.5e−3,γ = 0.2, amplitude step is
δA f = 1e−3, b) Forcing A f = 1.5e−3,γ= 0.8 and amplitude step δA f = 1e−4.

and the lack of robustness, including a much higher computational time, does not justify a

slightly larger amplitude steps δA f in the outer loop. An extra relaxation factor inside the

Newton Raphson method of the mean flow equation, does not allow either for a relevant

increase in the amplitude step δA f , allowing only for a very slight increase in the amplitude

step δA f while entailing a huge cost in computational time.

Amplitude step δA f

Probably the problem of not being able to converge the mean flow equation for higher ampli-

tude steps δA f is related to the fact that the spatial structure of the Reynolds stress forcing

2‖ℜ ((ū1 ·∇)u1) is that of the previous amplitude, and therefore, it is difficult to accommodate

a new velocity field U that would close the steady mean flow equation for a much larger forcing

A f +δA f with an incorrect structure. This explains why the cost of solving the nonlinear mean

flow equation by the Newton-Raphson method increases. There is a trade off between the

number of iterations required to solve the mean flow equation for higher amplitude steps δA f

and the number of iterations in the outer loop due to smaller amplitude steps.

Most efficient parameters

The relaxation factor of the inner loop γ also influences the amplitude steps δA f of the outer

loop. The relaxation factor used is the same for the convergence of the inner loop for a fixed

amplitude A f and when the amplitude is changed, A f +δA f , since varying the relaxation factor

automatically is not convenient. Based on different tests, the most efficient way to achieve

higher total amplitude A f is to take the biggest steps in amplitude δA f and small relaxation

factor γ, to ensure that the method does not blow up quickly, Fig. A.2(a). If smaller amplitude

steps are tried with higher relaxation factor, the iterative method blows up more quickly,

Fig. A.2(b). The restricting parameter for the convergence in amplitude is the relaxation factor
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Figure A.3 – Comparison of the mean flow velocity variation δU n
x =U n −U n−1 for two different

consecutive steps a) for iteration it= 1908 and b) it= 1909. Convergece of the backward facing
step flow (Chapter 4) for A f = 0.034,γ= 0.2 and δA f = 1e−3. The steps are just the first two
steps after changing amplitude from A f = 0.033 to A f = 0.034; this occurs at step 1907-1908.

γ, not the amplitude steps.

Comments on convergence

The problem when the coupled system of loops ceases to converge for a given forcing am-

plitude A f seems to be related to the relaxation factor γ used. In the backward-facing step

for example, when a step δA f in amplitude is performed in the outer loop, the velocity field

oscillates between two close solutions, as illustrated in Fig. A.3, where the velocity field of

the mean flow solutions U of two consecutive iterations (i t = 1908,1909) are compared, just

after a change in amplitude A f +δA f , that is to say, one step in the outer loop. Eventually,

due to the relaxation factor γ, the velocity fields start to converge to a unique solution and

allow the closure of the internal loop for a given amplitude A f . When an amplitude step δA f

is performed with a given relaxation factor γ and the relaxation factor is not small enough, the

method starts oscillating between two solutions, preventing the desired convergence.
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MANTIČ-LUGO, V. & GALLAIRE, F. 2015 Self-consistent model for the saturation mechanism of

the response to harmonic forcing in the backward-facing step flow. Submitted to J. Fluid

Mech. .

MARQUET, O., LOMBARDI, M., CHOMAZ, J.-M., SIPP, D. & JACQUIN, L. 2009 Direct and adjoint

global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid

Mech. 622, 1–21.

MARQUET, O. & SIPP, D. 2010 Global sustained perturbations in a backward-facing step flow.

IUTAM Bookseries, vol. 18. Dordrecht: Springer Netherlands.

MARQUET, O, SIPP, D & JACQUIN, L 2008 Sensitivity analysis and passive control of cylinder

flows. J. Fluid Mech. 615, 221–252.

MARQUET, O., SIPP, D. & LESSHAFFT, L. 2010 Global stability analysis of open shear flows

without global modes. Tech. Rep..

MAUREL, A., PAGNEUX, V. & WESFREID, J. E. 1995 Mean-flow correction as non-linear satura-

tion mechanism. Europhys. Lett. 32, 217–222.

124



Bibliography

MELIGA, P., CHOMAZ, J.-M. & SIPP, D. 2009a Global mode interaction and pattern selection in

the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.

MELIGA, P., CHOMAZ, J. M. & SIPP, D. 2009b Unsteadiness in the wake of disks and spheres:

Instability, receptivity and control using direct and adjoint global stability analyses. J. Fluids

Struct. 25, 601–616.

MELIGA, P., PUJALS, G. & SERRE, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped

cylinder using global stability. Phys. Fluids 24, 061701.

MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2009c Elephant modes and low frequency unsteadiness

in a high Reynolds number, transonic afterbody wake. Phys. Fluids 21, 054105.

MITTAL, S. 2008 Global linear stability analysis of time-averaged flows. Int. J. Numer. Methods

Fluids 58, 111–118.

MONOKROUSOS, A., AKERVIK, E., BRANDT, L. & HENNINGSON, D. S. 2010 Global three-

dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers.

J. Fluid Mech. 650, 181–214.

NAZARENKO, S., KEVLAHAN, N. K. & DUBRULLE, B. 2000 Nonlinear RDT theory of near-wall

turbulence. Phys. D 139, 158–176.

NICHOLS, J. & LELE, S. 2010 Global mode analysis of turbulent high-speed jets. Annu. Res.

Briefs .

NOACK, B. R., AFANASIEV, K., MORZYNSKI, M., TADMOR, G. & THIELE, F. 2003 A hierarchy of

low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech.

497, 335–363.

NOIRAY, N., DUROX, D., SCHULLER, T. & CANDEL, S. 2008 A unified framework for nonlinear

combustion instability analysis based on the flame describing function. J. Fluid Mech. 615,

139–167.

PIER, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder

wake. J. Fluid Mech. 458, 407–417.

PIER, B. & HUERRE, P. 1998 Fully nonlinear global modes in spatially developing media. Phys.

Fluids 10, 2433–2435.

PIER, B. & HUERRE, P. 2001 Nonlinear self-sustained structures and fronts in spatially develop-

ing wake flows. J. Fluid Mech. 435, 145–174.

POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. & FLANNERY, B. P. 2007 Numerical Recipes

3rd Edition: The Art of Scientific Computing, , vol. 1. Cambridge: Cambridge University

Press.

125



Bibliography

PROVANSAL, M., MATHIS, C. & BOYER, L. 1987 Bénard-von kámán instability: transient and

forced regimes. Journal of Fluid Mechanics 182, 1–22.

REYNOLDS, W.C. & HUSSAIN, A. K. M. F. 1972 The mechanism of an organized wave in

turbulent shear flow. Part 3. Theoretical models and comparison with experiments. J. Fluid

Mech. 54, 263–288.

SCHMID, P. J. 2007 Nonmodal Stability Theory. Annu. Rev. Fluid Mech. 39, 129–162.

SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and transition in shear flows. Springer.

SCHNEIDER, T. M., GIBSON, J. F. & BURKE, J. 2010 Snakes and ladders: Localized solutions of

plane couette flow. Phys. Rev. Lett. 104, 1–4.

SIPP, D. & LEBEDEV, AN. 2007 Global stability of base and mean flows: a general approach and

its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.

SIPP, D. & MARQUET, O. 2012 Characterization of noise amplifiers with global singular modes:

the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27, 1–19.

STRYKOWSKI, P. J. & SREENIVASAN, K. R. 1990 On the formation and suppression of vortex

shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107.

STUART, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. Journal of Fluid

Mechanics 4, 1–21.

STUART, J. T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable

parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353–370.

TADMOR, G., LEHMANN, O., NOACK, B. R., CORDIER, L., DELVILLE, J., BONNET, J.-P. &
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