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Abstract

Power plants experience distinct dynamic behaviors according to the primary source of energy.

Whereas thermal power plants have a slow dynamic, modern renewables such as wind and

solar PV are subject to very fast variations, due to environmental factors. Therefore, their

availability is not guaranteed.

Consequently, it is opportune to take advantage of the intrinsic flexibility of hydropower plants

for balancing fast variations caused by modern renewable sources, in order to keep stability

and reliability of the power grid. On the other hand, the use of hydropower plants as means of

compensating constant variations between electricity generation and consumption leads to

off-design operation. Such condition may cause instabilities or undesirable oscillations in the

power plant whose origin lies in the hydraulic system. Furthermore, small hydropower plants

play a major role in the development of emerging countries, where they may be frequently

subjected to islanded or isolated operation. In such context, operating conditions are more

critical in terms of reliability and stability.

Considering these factors, one can readily understand the importance of predicting the dy-

namic behavior of power plants under various scenarios and different operating modes. This

requires precise, comprehensive mathematical models and efficient computational tools,

which are appropriate for planning new installations and better exploiting the existing ones.

Thereupon, the purpose of the present work is the development of a novel tool for small-signal

stability analysis of hydroelectric systems, with comprehensive modeling of both electrical

and hydraulic elements of a hydropower plant. This tool is implemented in SIMSEN, a fully

modular, efficient, user-friendly software developed at EPFL, for the simulation of electrical
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power networks and hydroelectric systems.

The originality of this new tool lies not only on the exhaustive and detailed modeling of

electrical and hydraulic systems (a multi-physics representation). It lies also on the fact that

it is a modular tool, capable of treating systems with any given topology, with automatic

generation of the full set of differential equations, based on circuits easily built in an user-

friendly GUI.

Another distinctive characteristic of the present work is that small-signal models of electrical

elements are based on a,b,c-phase variables, different from the traditional d,q,o-axis repre-

sentation. The procedure to be followed for the derivation of such models is presented in this

document.

Furthermore, case studies performed with this tool show that substantial interactions happen

between electrical, mechanical, hydraulic and regulation elements. These interactions can be

either positive or detrimental to the stability of the system. In case of adverse interactions, un-

stable behaviors may occur. Such instabilities cannot be predicted without a comprehensive,

multi-physics model. These conflicting interactions are presented, and their consequences

and possible solutions are discussed in this document.

Keywords: Small-signal stability, eigenanalysis, eigenvalues, eigenvectors, modal analysis,

hydroelectric power, hydropower plants, power system stability, power system dynamics.
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Résumé

Les centrales électriques subissent des comportements dynamiques distincts selon leur source

d’énergie primaire. Alors que les centrales thermiques ont une dynamique lente, les énergies

renouvelables modernes, telles que l’éolienne et la solaire photovoltaïque, sont soumises à

des variations très rapides dues à des facteurs environnementaux. Leur disponibilité n’est

donc pas garantie.

Par conséquent, il est opportun de profiter de la flexibilité intrinsèque des centrales hydroélec-

triques pour compenser les variations rapides causés par les sources renouvelables modernes,

afin de maintenir la stabilité et la fiabilité du réseau électrique. D’autre part, l’utilisation

des centrales hydroélectriques comme un moyen de compenser les variations constantes

entre production et consommation d’électricité conduit à des points de fonctionnement hors

des plages habituelles. Cette condition peut provoquer des instabilités ou des oscillations

indésirables dans la centrale, dont l’origine se trouve dans le système hydraulique. En outre,

les petites centrales hydroélectriques jouent un rôle majeur dans le développement des pays

émergents, où elles peuvent être souvent soumises à des fonctionnements en îlotage ou isolés.

Dans ce contexte, les conditions de fonctionnement sont plus critiques en termes de fiabilité

et de stabilité.

Compte tenu de ces facteurs, l’importance de prévoir le comportement dynamique des cen-

trales, soumises à divers scénarios et à différents modes de fonctionnement, est manifeste.

Pour ce faire, des modèles mathématiques précis et complets sont nécessaires, ainsi que des

outils informatiques performants, appropriés à la planification de nouvelles centrales et à une

exploitation plus efficace des aménagements existants.
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Ainsi, le but de ce travail est le développement d’un nouvel outil informatique d’analyse

de stabilité aux petites perturbations appliqué à des systèmes hydroélectriques, avec une

modélisation exhaustive des éléments électriques et hydrauliques qui composent un amé-

nagement de cette nature. Cet outil est implémenté dans SIMSEN, un logiciel à structure

entièrement modulaire, performant et convivial, développé à l’EPFL pour la simulation des

réseaux électriques et des systèmes hydroélectriques.

L’originalité de ce nouvel outil réside non seulement dans la modélisation exhaustive et

détaillée des systèmes électriques et hydrauliques (une représentation multi-physique). Elle

se situe aussi dans le fait qu’il s’agit d’un outil à structure modulaire, capable de traiter des

systèmes avec des topologies a priori quelconques, avec génération automatique du système

d’équations différentielles correspondant, basé sur des circuits facilement structurés à travers

une interface graphique conviviale.

Une autre caractéristique distinctive de ce travail est que les modèles des éléments électriques

développés pour l’analyse de la stabilité aux petites perturbations sont basés sur les coordon-

nées de phases a,b,c, ce qui diffère de la représentation traditionnelle dans les axes d,q,o. La

procédure à suivre pour la mise en place de ces modèles est présentée dans ce document.

En outre, des études de cas effectuées avec cet outil montrent que d’importantes interactions

ont lieu entre les éléments électriques, mécaniques, hydrauliques et de régulation. Ces interac-

tions peuvent être soit positives, soit nuisibles à la stabilité du système. En cas d’interactions

défavorables, des comportements instables peuvent se produire. Il n’est pas possible de pré-

voir ces instabilités sans un modèle multi-physique complet. Dans ce travail, ces interactions

problématiques sont présentées. De plus, leurs conséquences et solutions possibles sont

étudiées.

Mots clefs : Analyse de la stabilité aux petites variations, valeurs propres, vecteurs propres,

analyse modale, énergie hydroélectrique, centrales hydroélectriques, stabilité des réseaux

électriques, dynamique des réseaux électriques.
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11
Introduction, Context and Purpose

1.1 Power Sector Evolution

The power sector is in constant evolution and the worldwide demand for electricity is in

permanent expansion. Consequently, electricity is the fastest-growing final form of energy

throughout the world, and sustaining the growth of its supply is essential. Nonetheless, the

development of the electricity market is also driven by concerns for environmental issues,

especially reduction of flue-gas emissions from fossil-fuel combustion; furthermore, this

expansion is also affected by the need of replacement of retired power plants along the years.

Current energy policies and investments promote the expansion of renewable power genera-

tion in many OECD countries, while the growth of several emerging economies keeps relying

on traditional sources (fossil fuels). In fact, growth and transformations in the power sector

are fundamental and universal, but the way they happen varies according to current and new

policies, distribution of investments and how authorities tackle the issues, thus driving market

trends.

The "New Policies Scenario"a proposed by the International Energy Agency (IEA) in its World

Energy Outlook 2014 indicates that over the period of 2012-2040 world electricity demand

is forecasted to increase with an average ratio of 2.1% per year. Power capacity additions

correspond to 7200 GW, whereas retirements add up to 2450 GW. As a result, the worldwide

installed capacity rises from 5950 GW in 2013 to 10700 GW in 2040 [37].

aThis scenario admits an evolution of the overall energy market considering policies adopted from mid-2014
and also other pertinent policy proposals yet to be accepted, which establish new targets for factors such as
reduction of carbon emission, development of renewable energy and improved energy efficiency [37].
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Figure 6.7   World electricity generation by source in the  
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Figure 1.1: Worldwide electricity generation forecast by source [37].

This growth is followed by a compelling change in the mix of power sources. Although the use

of coal keeps increasing, its share in the electricity mix decreases considerably. Renewable

sources, hydropower included, almost triple until 2040, and also gas and nuclear have their

participation increased in the mix. As a result, renewable sources tend to surpass coal, turning

into the biggest source of electricity [37, 82] (see figure 1.1).

Nonetheless, these general trends conceal important information about the development

of electricity markets in different regions. Figure 1.2 shows that neither the penetration of

renewable sources nor the reduction of fossil fuel power plants are the same in all regions.

Also, the worldwide fossil fuel share reduction is to be compensated mostly by the adoption

of modern renewable technologies, such as wind, solar PV and others. Simultaneously, hy-

dropower tends to preserve its share, which means that it keeps increasing in terms of absolute

values of installed capacity. Indeed, hydropower has an important role to play in the context

of the modern electricity sector concerning the operational stability of power networks.

1.2 Reliability of Power Networks and the Role of Hydropower

Depending on the source of energy, power plants may present distinct dynamic behaviors.

Thermal power plants (which shall remain as the major contribution to the electricity sector)

have a slow dynamic and are not able to compensate sudden changes in power production or

consumption. On the other hand, modern renewables such as wind and solar PV do not have

guaranteed availability, since they depend on environmental factors. For this reason, they

shall represent a source of disturbances for power networks. Figure 1.3, adapted from [25],

illustrates the high intermittency of wind and solar PV installation in Germany over a period

of seven months in 2010. Despite of an installed capacity of over 36 GW, the maximum peak

power is 20 GW. Also, the volatility of the energy production of both sources is clear.
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Figure 6.9   Share of electricity generation by source and selected region in 
the New Policies Scenario
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Figure 1.2: Share of energy production by source and by region [37].

Consequently, in order to keep the stability and reliability of the power grid, it is opportune to

take profit of the intrinsic flexibility of hydropower plants. Indeed, this type of power plant is

capable of withstanding rapid set-point variations of active and reactive power. Therefore, hy-

dropower plants are able to compensate for fast variations caused by renewable sources, thus

contributing to frequency and voltage stability of the power grid. In addition, excessive power

production can be stored by pump-storage power plants. Furthermore, small hydropower

plants play a major role in emerging countries, where they are used for rural and township

electrification of remote regions [69].

Nevertheless, the exploitation of hydropower plants to counterbalance constant variations

of electricity generation and consumption leads to off-design operation. This condition may

provoke instabilities or undesirable oscillations, as pulsations originated in the hydraulic

system may propagate in the electrical system, deteriorating the dynamic behavior of the

power plant. Thus, care must be taken on the parametrization of controllers of hydropower

units, in order to obtain an effective contribution to the stability of power grids.

Turbine governors, automatic voltage regulators (AVR) and power system stabilizers (PSS)

must correctly interact with the rest of the system, either contributing to frequency and voltage

stability or active and reactive power flow. Consequently, their parameter sets must be in

consonance with the operating mode of the power plant.
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Figure 1.3: Intermittency of wind and solar PV in Germany in 2010 [25].

Three different operating modes are common: (i) interconnected operation – when the power

plant is connected to a large power system; (ii) islanded operation – when the power plant and

its surrounding network have a weak connection (low short-circuit power) with the power grid

and with no tie-line connections to neighboring systems; (iii) isolated operation – when the

power plant is responsible for feeding a local network without any connection with a large

power grid.

Considering all these factors, one can readily understand the importance of predicting the

behavior of power plants under various scenarios of the energy market and different oper-

ating modes. This requires precise mathematical models and efficient computational tools.

Furthermore, if the focus is put on the stability of hydropower plants, hydraulic, mechanical,

electrical and regulation elements must be represented properly, so that phenomena arising

from the interaction of these subsystems are correctly represented.

1.3 Concepts on Power System Stability

1.3.1 Physical and Theoretical Definition of Power System Stability

Power system stability has been a topic of major concern in the context of operation of

electrical networks for almost one hundred years, following the expansion of the first electrical

systems feeding metropolitan areas [24, 99]. Ever since then, a number of forms of instability

have come forth as a consequence of the growth of power networks. They have originated

some distinct fields of investigation in the scope of power system stability.
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As defined by the IEEE/CIGRÉ Joint Task Force on Stability Terms and Definitions, “power

system stability is the ability of an electric power system, for a given initial operating condition,

to regain a state of operating equilibrium after being subjected to a physical disturbance, with

most system variables bounded so that practically the entire system remains intact” [52].

This physically-based definition means that the system does not necessarily recover its initial

equilibrium state. Indeed, disturbances are likely to cause changes in the topology of the

network, thus modifying voltage levels and power flows. However, the final steady state

operating point must lay inside the rated limits of all devices (transmission lines, transformers,

generators, etc.), so that the new equilibrium point is continuously acceptable. Otherwise,

additional disturbances may happen to the system [4].

These conditions are closely related to the definition of asymptotic stability from dynamic

nonlinear systems theory. According to this definition, an equilibrium point is asymptotically

stable if: (a) all solutions starting at nearby points stay nearby; and (b) all solutions starting at

nearby points not only stay nearby, but also tend to the equilibrium point as time approaches

infinity [48]. The first condition intuitively expresses stability in the sense of Lyapunov. These

concepts are dealt with in depth in chapter 3, section 3.1.

1.3.2 Classification of Power System Stability

Even though power system stability is a single problem, it is convenient to divide it in categories

according to three main criteria [51, 52]:

1. The physical nature of the instability, indicated by the variables in which instability is

manifested;

2. The magnitude of the disturbance, which determines the method of calculation and

prediction of stability;

3. The devices, processes and time span that are taken into account in order to determine

stability.

In the sense of criterion 1, the stability problem may be classified as rotor angular stability,

frequency stability and voltage stability. Regarding aspect 2., the stability problem may be

of small disturbance (signal) or large disturbance (signal) type. And considering criterion 3.,

especially with respect to the time span, it can be defined as a short-term or a long-term

phenomenon. Short-term phenomena happen in a time range of several seconds, whereas

long-term phenomena involve events occurring in a time range up to several minutes.
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Rotor Angular or Synchronous Stability

Rotor angular stability is related to the ability of synchronous machines of an interconnected

power system to remain in synchronism following a given disturbance. Instabilities that may

arise can be of two different forms: aperiodic or nonoscillatory instabilities resulting from a

lack of synchronizing torque, and periodic or oscillatory instabilities resulting from a lack of

damping torque [4, 51, 52].

In general, rotor angular stability deals with phenomena in the time frame of a few seconds up

to a few tens of seconds, being a short-term stability problem.

It is convenient to divide the analysis of rotor angular stability in two subcategories:

• Small-disturbance (or small-signal) rotor angle stability deals with the ability of the

power system to maintain synchronism when subjected to disturbances of small ampli-

tudes, frequently resulting from small variations in power consumption and generation.

A small disturbance means that the system can be linearized around its operating point

without major loss of information so that linear systems analysis techniques can be

applied. As a consequence, small-signal stability is strongly dependent upon the initial

equilibrium point of the system.

Small-disturbance stability is mainly a question of damping of oscillations, which may

be of local or global nature. Local problems are related to a specific part of the system

and involve rotor angle oscillations of a power plant against the rest of the system (local

plant mode oscillations) or oscillations between generators close to each other (inter-

machine or interplant mode oscillations). As a whole, these two types of oscillations are

also known as electro-mechanical mode oscillations and their frequency range is most

commonly of 0.7 to 2.0 Hz.

Local problems may also be caused by the presence of control and regulation ele-

ments, either due to inappropriate tuning of parameters (control mode oscillations)

or to improper interactions with the turbine-generator shaft system (torsional mode

oscillations).

Global problems are related to interactions among large groups of generators, thus

involving an extensive part of the system (interarea mode oscillations). Typically, a very

low frequency mode (0.1 to 0.3 Hz) happens, involving all the generators of the system,

which is basically split into two areas swinging against each other. Also, higher frequency

modes (0.4 to 0.7 Hz) may occur, related to subgroups of generators oscillating against

each other [51].

This method of stability analysis is based on the calculation of eigenvalues and eigen-

vectors of the system. The concepts related to small-signal stability are presented in

more detail in chapter 3.
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• Large-disturbance rotor angle stability or transient stability deals with the ability of the

power system to maintain synchronism when subjected to substantial disturbances,

such as short-circuits in a transmission line or close to a generator. In this case, the

system response undergoes large variations and the stability depends not only upon

the initial equilibrium point, but also upon the duration and the severity of the distur-

bance [52].

Frequency Stability

Frequency stability is related to the ability of a power system to maintain steady frequency after

being subjected to a severe disturbance leading to a considerable imbalance between power

consumption and generation. Essentially, the system must be able to recover equilibrium

between load and generation, with minimum loss of load [52].

Several distinct devices and mechanisms with different time characteristics are involved in fre-

quency instabilities. For this reason, frequency stability is distinguished between short-term

and long-term events. The former involves elements such as protections and generator con-

trols, whereas the latter is related to characteristics of prime movers, boilers and reactors [4].

Voltage Stability

Voltage stability is related to the ability of a power system to keep steady voltage levels at all

buses of the system following a disturbance. As it is the case with rotor angular stability, distur-

bances can be large, such as loss of generation and system faults, or small, e.g. incremental

variations in consumption/generation of power [4].

Phenomena related to voltage stability may be of either short-term or long-term nature. Short-

term voltage stability depends on fast dynamics of components such as HVDC converters,

induction motors and other electronically controlled loads. Long-term voltage stability is

affected by components with slower action, as transformers with tap changers and generator

current limiters [51].

Instabilities may occur in the form of gradual uncontrolled rise or fall of voltages of several

buses of the system, possibly resulting in voltage collapse of a large part of it. The development

of such phenomena can happen over a time range of several minutes and may result in loss of

load, outage of components of the network due to tripping of the protection system and even

loss of synchronism of some generators [52].

Aspects exclusively related to frequency and voltage stability analysis are out of the scope of

the present work, since these are two very specific and broad fields of study.
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Figure 1.4 summarizes the classification and definitions of power system stability. Small-signal

angle stability is highlighted in this figure for the reason that it lies on the major scope of the

present work.
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Figure 1.4: Classification of power system stability [52].

1.3.3 Interactions Between Hydroelectric Machinery and the Power Grid

Besides the stability issues described in section 1.3.2, other types of disturbances may be

introduced in the power grid coming from interactions with the dynamic behavior of the

energy source subsystems.

Specifically in the case of hydropower plants when used to compensate for constant variations

of power generation and consumption, instabilities or undesirable disturbances may arise.

This may affect the dynamic behavior of the power plant and lead to troublesome interactions

with the grid, as mentioned in section 1.2. The prediction of these probable interactions,

however, depends on the appropriate modeling of both electrical and hydraulic elements.

Results obtained in this way give more precise information about the stability of the system,

from hydraulic and electrical viewpoints [60, 71].

The Francis turbine is the most employed type of hydraulic machine due to its wide application

range. Francis turbine installations are characterized by complex water flow patterns that

develop in the hydraulic machine, which are three-dimensional, rotational and unsteady. As a

result, pressure fluctuations may arise from such a water flow behavior [69].

Indeed, the water flow entering the turbine runner presents a swirly characteristic that is

induced by its passage through the spiral case, stay vanes and guide vanes. The flow leaving

the turbine is nonetheless almost purely axial at the best efficiency point, i.e., the water flow

entering the draft tube presents hardly no swirl at rated operating condition. This is not the
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case, however, when the turbine operates at off-design conditions. At part load operation,

when the flow rate ranges from 50% to 85% of the flow rate at the best efficiency point, there

exists a swirly pattern in the water flow leaving the turbine due to a circumferential component

on its velocity. Consequently, a helical vortex rope is induced in the draft tube, which has a

precession frequency most commonly between 0.2 and 0.4 times the turbine rotational speed

n [1, 22].

Thus, the vortex rope precession characterizes periodic pressure pulsations in the draft tube

that act as an excitation source for the whole system. Chances exist that the system response to

this excitation may be amplified, possibly resulting in intense pressure surges and mechanical

power fluctuations. Such fluctuations in their turn may interact with the power network,

eventually resulting in considerable electrical power swings.

Indeed, the frequency of part load vortex rope pulsations may coincide with electro-mechan-

ical modes frequency, which ranges from 0.7 to 2.0 Hz. Depending on the stiffness of the

power network, the electrical power swings resulting from the resonance of these modes of

oscillation may be detrimental to the dynamic behavior of the generating unit and to the

stability of the local network. This is particularly the case for hydropower plants operating in

islanded and isolated networks.

Figure 1.5 illustrates the part load vortex rope in the draft tube and gives a comparison

between the electro-mechanical modes range and the part load vortex rope pulsation range

for machines with several distinct rotational speeds n. Considering a network rated frequency

of 50 Hz, the corresponding number of pole-pairs of the generator is given in parentheses.

The upper turbine rotational speed value for which vortex rope pulsations may interact with

electro-mechanical modes under a network frequency of 50 Hz is n = 500 rpm (6 pairs of poles

generator). For this rotational speed, which corresponds to a frequency ftur b = 8.33 Hz, the

lower value of the vortex rope frequency range is fV Rlow = 1.66 Hz (0.2 · ftur b), falling into the

Part load vortex rope pulsations for:

        �  n = 500 rpm (6 pole-pairs)

        �  n = 333 rpm (9 pole-pairs)

        �  n = 300 rpm (10 pole-pairs)

        �  n = 200 rpm (15 pole-pairs)

        �  n = 150 rpm (20 pole-pairs)

        �  n = 120 rpm (25 pole-pairs)

        �  n = 107 rpm (28 pole-pairs)

0.7 1.0 3.0 f   [Hz]

Electro-mechanical modes range

2.0

Figure 1.5: Part load vortex rope in the draft tube and its pulsation frequency range.
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electro-mechanical frequency range.

Indeed, a generating unit with five pairs of poles in a network with frequency of 50 Hz, which

means a rotational speed n = 600 rpm, has the lower value of the vortex rope frequency range

at fV Rlow = 2.0 Hz. This corresponds to the maximum possible value of electro-mechanical

modes frequency. It is very unlikely that both vortex rope pulsations and electro-mechanical

modes happen exactly at this boundary point. For this reason, interactions between vortex

rope pulsations and electro-mechanical modes are impropable in this case.

Conversely, the lower turbine rotational speed value for which vortex rope pulsations may

interact with electro-mechanical modes under a network frequency of 50 Hz is n = 107.14 rpm

(28 pairs of poles generator). In this case, the turbine rotational frequency is ftur b = 1.786 Hz

and the upper value of the vortex rope frequency range is consequently fV Rupp = 0.714 Hz

(0.4 · ftur b). This value lies inside the electro-mechanical frequency range.

The same reasoning can be applied considering an electrical network frequency of 60 Hz. In

this case, the upper and lower turbine rotational speed values for which vortex rope pulsations

may interact with electro-mechanical modes are, respectively, n = 514.3 rpm (7 pairs of poles

generator) and n = 105.9 rpm (34 pairs of poles generator).

Several other types of excitation sources may arise from the hydraulic circuit due to water

flow disturbances in Francis turbines. However, part load vortex rope excitation is the single

one described here for the only reason that under its occurrence, due to the frequency range

in which it happens, important resonance phenomena may occur between hydraulic and

electrical systems (for more information regarding excitation sources in Francis turbines,

see [69], chapter 8). Thus, a precise prediction of the natural modes of a hydroelectric unit

permits both: (i) to avoid dangerous power swings, when detected during design phase [83];

and (ii) to attenuate undesirable oscillations only detected on site, after commissioning the

generating unit.

1.4 Description of the Present Work

1.4.1 Purpose

Considering the facts presented in section 1.1, it is clear that the constant evolution of the

power sector, and the challenges originated by a bigger penetration of modern renewable

energy sources create the need for analysis tools, which are appropriate for planning new

installations and better exploiting the existing ones. Such tools must be capable of both:

(i) predicting the dynamic behavior of electrical power networks due to topology changes and

inclusions of new power plants and other elements; and (ii) simulating undesired behaviors
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in order to give enough information for the solution of problems detected during operation.

Moreover, it is important that these tools be at the same time user-friendly, robust and reliable

for coping with power networks with high complexity levels.

In this regard, a powerful simulation software for complex energy systems, called SIMSEN,

has been developed at EPFL. This is a fully modular, user-friendly simulation software first

developed for the analysis of electrical power networks and adjustable speed drives under

transient phenomena [89]. Models for electrical machines, transmission lines, loads, power

electronic devices, mechanical inertias, and control and regulation functions were accordingly

established. Later on, an extension to SIMSEN was proposed (SIMSEN-Hydro), comprising

models of hydraulic elements such as turbines, valves and pipes [69]. Besides providing

time-domain simulation capabilities for complete hydroelectric installations, there exists the

possibility of performing the calculation of eigenvalues and eigenvectors for hydraulic systems

with Francis turbines using linearized models.

Thus, the main purpose of the present work is to develop a new tool for small-signal stability

analysis of electrical systems to be implemented in SIMSEN, taking advantage of its main

features, which are:

• Treatment of systems with any given topology;

• Easy construction of the topology through the connection and parametrization of all

elements in an user-friendly graphical user interface (GUI);

• Automatic generation of the full set of differential equations of the global system.

The focus is to be put on the small-signal stability analysis of hydropower plants. Therefore,

another goal is to connect the models developed in the framework of the present work to

the existing hydraulic linearized models of SIMSEN, so that all interactions of hydraulic,

mechanical, electrical and control elements can be determined and analyzed.

Given that the method of small-disturbance stability analysis yields information concerning

the stability of the whole system around any operating point (as attested in section 1.3.2),

the results of this work shall be a powerful tool for the detection of instability problems

in hydropower plants, their interaction with the power network and possible solutions for

undesired dynamic behaviors. Moreover, with some treatment of the results, it shall be possible

not only to detect the presence of potential instability modes, but also to identify the elements

of the system that cause the instability and those that are more affected by it.

It is important to observe that small-signal stability analysis taking into account the hydraulic

systems becomes also a long-term problem. Indeed, hydraulic time constants are considerably
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higher than electrical ones. Consequently, hydraulic oscillations may develop in a time frame

of many seconds up to some minutes.

1.4.2 Methodology

Small-signal stability analysis relies on linear (or linearized) models for calculating eigenvalues

and eigenvectors, which give information about the stability of the system under study. There-

fore, in order to fulfill the proposed goals of this work and considering the special interest

in studying the small-signal stability of hydropower plants and the interaction with the grid,

linearized models for several electrical elements comprised in a hydropower plant and in a

network have to be developed.

Figure 1.6 gives a schematic representation of the elements that are necessary in order to

obtain a complete representation, which are: (1) synchronous machine; (2) power transform-

ers; (3) transmission line models; (4) loads (consumers); (5) induction machine (either as

motor or generator); (6) infinite grid representation; (7) automatic voltage regulator (AVR)

models; (8) power system stabilizer (PSS); and (9) mechanical inertia system. The link between

electrical and hydraulic system, which shall establish their interaction, is made through the

mechanical system. Finally, the hydraulic system comprises: (10) reservoirs; (11) surge tanks;

(12) penstock (piping elements); (13) Francis turbine with the corresponding characteristic

curves; and (14) turbine governing system.

Moreover, these models must keep the modularity concept existing in SIMSEN, i.e., any
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Figure 1.6: Elements for the representation of a hydropower plant and the grid.
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topology to be defined by the user comprising these elements must be easy to build in the

GUI, the connection of the elements must be treated automatically and the generation of the

full set of linearized differential equations must be performed with no additional work to the

user.

Therefore, the approach adopted to achieve the proposed goals while respecting these require-

ments is the analytical linearization of the mathematical models of the elements presented in

figure 1.6. These analytical linearized models are then implemented in SIMSEN, yielding a

new small-signal stability tool in this software.

Nevertheless, it is important to observe that all the time-domain electrical models in SIMSEN

are based on a,b,c-phase variables [89]. This differs from traditional models which are based

on the well-known d,q,o-axis representation (Park’s representation). Consequently, in order to

take profit of the modularity of SIMSEN, this characteristic has to be respected also for the

small-signal models. Therefore, a novel approach is presented in the present work for the

analytical development of small-signal models of electrical elements. This approach is based

on a,b,c-phase variables.

1.4.3 Structure of the Document

Following this introductory chapter, this document is organized as follows:

Chapter 2. A description of traditional techniques of eigenvalue calculation and small-signal

stability analysis is presented. Additionally, the most recent publications of eigenanalysis

applied to systems described by multi-physics models are discussed. Special attention is paid

to eigenanalysis of systems containing renewable energy sources.

Chapter 3. Concepts related to eigenanalysis and small-signal stability are explained in detail.

Small-signal stability is associated with the Lyapunov stability concept. Then, an intuitive

example of eigenanalysis is presented, which illustrates clearly how eigenvalues and eigenvec-

tors of a system describe its dynamic behavior. Furthermore, the general eigensolution of a

system is given and its eigenproperties are explained.

Chapter 4. The time-variant (nonautonomous) nature of the time-domain models of SIMSEN

is explained. Considering this characteristic, an extension of eigenanalysis concepts to nonau-

tonomous systems is proposed, founded upon the Floquet Theory. Therewith, a procedure is

developed so as to derive small-signal models based on a,b,c-phase coordinates. This main-

tains compatibility with SIMSEN, thus taking advantage of its main benefits. Subsequently, the

use of this procedure is illustrated by its application to the salient-pole synchronous machine.

Chapter 5. All small-signal models derived through the procedure proposed in the previous
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chapter are introduced and validated. Several illustrative test cases are presented in order to

validate the models. Frequencies and time constants related to the calculated eigenvalues

are validated either through analytical expressions, or through graphical analysis of results

obtained from small-disturbance time-domain simulations. A very good agreement is ob-

tained in all test cases. Thereupon, the small-signal electrical models developed for SIMSEN

are proven to be valid and accurate.

Chapter 6. The hydraulic models existing in SIMSEN are introduced. Modeling principles

applied to piping systems, Francis turbine, surge tanks and turbine governors are explained.

Additionally, the linearization of time-domain hydraulic models is described, highlighting the

peculiarities related to each element.

Chapter 7. A case study of an islanded 75 MW hydropower plant is presented. At first, three

different scenarios are considered for the electrical system. The most critical one is found to

be unstable, due to the very weak connection to the grid. The contribution of a power system

stabilizer (IEEE PSS2B) on damping the unstable eigenmode is analyzed.

Then, eigenanalyses of the hydraulic system without and with turbine governor are performed,

considering a high-order model. The main hydraulic eigenmodes are highlighted and the

influence of the turbine governor over these modes is identified.

Subsequently, the electrical system (considering the most critical scenario without PSS) is

coupled to the hydraulic system with turbine governor, yielding a complete high-order repre-

sentation of the hydropower plant. The interactions between hydraulic and electrical systems

are identified, showing that the speed governor is capable of damping the unstable eigenmode

of the electrical system. The instability is eliminated with an enhanced set of parameters

for the frequency control loop, but it remains badly damped. The PSS is then added to the

system in order to guarantee a better dynamic behavior. Nonetheless, results obtained for the

complete system (with PSS and with the enhanced tuning of the turbine governor) reveal that

hydraulic eigenmodes become far poorly damped, due to adverse interactions between the

turbine governor and the PSS. Finally, a solution is proposed in order to avoid such detrimental

interactions, achieving a good dynamic behavior for the hydropower plant.

Chapter 8. A case study is performed for an existing 1 GW hydropower plant (4×250 MW

generating units). Part load operation is considered, so that disturbances due to vortex rope

precession in the draft tube are studied. Initially, the electrical model is validated by comparing

time-domain simulation and eigenanalysis results with on-site measurements.

Therewith, eigenanalyses considering a part load operating point are carried out for the sys-

tem with 1 up to 4 generators synchronized to the grid. The influence of the number of

synchronized units on the electro-mechanical (local and intermachine) modes is assessed.

Mode shapes of local and intermachine modes are presented in order to illustrate how these

16



1.4. Description of the Present Work

eigenmodes act on the system. Furthermore, the effects of the installation of a power system

stabilizer (IEEE PSS2B) are studied. The intermachine eigenmodes are found to have a fre-

quency very close to the frequency of electrical power swings measured on site.

Subsequently, an eigenanalysis of the high-order model of the hydraulic system is performed,

and the main eigenvalues are presented. Special attention is given to eigenmodes of the draft

tube, since they are likely to interact with vortex rope pulsations. The frequency of the 2nd

elastic mode of the draft tube is also found to be very close to the pulsations measured on

site. Moreover, this eigenmode has a weak damping ratio. Therefore, the risks of interaction

between vortex rope pulsations, draft tube 2nd elastic mode and intermachine modes are

strong.

Thereupon, a complete hydroelectric model for the whole installation is established. The

eigenanalysis of the complete system confirms the proximity of draft tube and intermachine

eigenmodes. Time-domain simulations are then carried out to confirm the interactions. An

excitation source located in the draft tube of generating unit 1 simulates pressure pulsations

due to vortex rope precession. When happening at the frequency of the 2nd mode of the draft

tube, it is verified that these pulsations are amplified and result in significant electrical power

swings. Nevertheless, the amplitudes are considerably reduced if the PSS is active, since it

strongly damps the intermachine eigenmodes.

Chapter 9. The final summary and conclusions are presented in this chapter. Also, the

contributions of the present work are summarized in a specific section. Finally, perspectives

of future developments are outlined.

Appendix A. The linearized equations of the small-signal electrical models developed in the

scope of the present work are presented in this appendix.
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2.1 Eigenvalues Computation Methods for Small-Signal Stability

Eigenvalue-based analysis is a classic method applied in the study of dynamic systems and

it is the foundation of power system small-signal stability analysis. Based on the state-space

representation of the system, its eigenproperties can be extracted.

The most common alternative to obtain the eigenvalues of the system is the application of

the QR factorization algorithm. This factorization was first proposed by Francis, in 1961 [26],

and it is a very robust algorithm. For the most general cases (unsymmetrical matrices),

given a matrix A ∈ Rn×n , the algorithm computes its real Schur canonical form QTAQ = T,

where Q is an orthogonal matrix (QTQ = I)a. Thus, T is similar to A and is also an upper-

triangular matrix. Consequently, the eigenvalues of A are the diagonal entries of T. Once the

eigenvalues have been found, the eigenvectors can be computed through partitioning and

specific algorithms [30]. The advantages of the QR algorithm are that it has good stability and

considerably fast convergence. Moreover, it achieves the calculation of all eigenvalues of the

system, allowing a full eigenanalysis.

On the other hand, the QR algorithm is incapable of incorporating sparsity techniques. For

a system of order n, the number of floating points operations required is approximately

10n3 and the use of memory is proportional to n2 [30]. Consequently, the QR algorithm is

computationally unattractive for systems of very high order, such as large interconnected

power systems. Therefore, its application is frequently limited to systems with several hundred

aIn this work, bold-faced type is used to denote vector quantities. Uppercase letters are used to denote general
matrices, whereas lowercase letters denote vectors.
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up to a few thousand state variables.

Semlyen and Wang (1988 [93] and 1990 [105]) presented developments in order to incorporate

sparse techniques into the algorithm. Also, Henry et al. proposed in 2002 an improvement by

parallelizing the computation of the QR algorithm, increasing its scalabilty [33].

Geist et al. presented in 1999 the BR eigenvalue algorithm, which is better adapted to comput-

ing eigenvalues of large-scale systems represented by sparse matrices, reducing computation

time and memory requirements [28]. This technique can be preceded by a reduction of the

matrix to a similar small-band Hessenberg form (BHESS), as proposed by Howell and Diaa

in 2005, decreasing the computation time to about one-fifth of the time required by the QR

algorithm to perform the same operation [34].

Ma et al. presented in 2006 the first efforts for the application of the BR algorithm in the context

of small-signal stability [61]. Recently, Zhao et al. (2015) presented further improvements to

the BHESS-BR method in order to overcome numerical instabilities that happened in case

of matrices of very high order [108]. Although these efforts made this method more suitable

to small-signal stability analysis, few applications have been published until the present

time. In fact, even though the BHESS-BR method is more efficient than the QR algorithm in

terms of computation time and memory consumption, it also represents a considerably high

computational cost for large-scale systems. This happens because the number of floating

points operations required is quadratically proportional to the order of the matrix [61].

The computational limitations introduced by the algorithms capable of giving the full eigen-

solution (QR and BR algorithms) led to several developments in the field of eigenvalues

computation for small-signal stability. Indeed, large interconnected power networks may be

represented by several thousands of state variables. Thus, most of the achievements were

based on the interest in reducing computation times, memory requirements and simplifying

the interpretation of results.

Byerly et al. presented in 1982 the AESOPS algorithm (Analysis of Essentially Spontaneous

Oscillations in Power Systems) [11]. It is based on a frequency response analysis to obtain the

eigenvalues associated with the generator rotor oscillations. Consequently, it provided limited

analysis capability. Sauer et al. (1991) proposed later a generalization of this algorithm so that

the computation of various modes, either separately or simultaneously, became possible [91].

Later on, Lam et al. (1994) provided a convergence improvement of the AESOPS algorithm by

using a Newton-Raphson iteration scheme [54].

Another technique developed for the simplification of the eigenanalysis of large power systems

is the Selective Modal Analysis (SMA), proposed by Pérez-Arriaga in 1981 [79]. SMA allows to

compute eigenvalues and eigenvectors of the natural modes of interest and also determine
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reduced order models related to and containing these modes [80, 81, 102]. Barquin et al. (2002)

proposed a more general formulation of the algorithms for reduced order eigenanalysis [7]. In

this formulation, the reduced order subspaces are updated in each iteration step, improving

the convergence of the algorithm.

The Modified Arnoldi Method (MAM), proposed by Saad in 1981, was another achievement for

the simplication of the eigenvalue problem of large-scale power systems [88]. This algorithm

is an improvement of the method proposed by Arnoldi, in 1951, for the solution of large

unsymmetrical eigenproblems [6]. MAM is based on a reduction technique in which the

matrix whose eigenvalues are to be computed is reduced to an upper Hessenberg matrix [53].

This allows the computation of some eigenvalues of the system around a specified region of the

complex plane, avoiding arithmetic steps involved in the QR transformation. In 1996, Lehoucq

and Sorensen presented the Implicitly Restarted Arnoldi Method (IRAM), with improved

convergence [58, 59]. And the efforts of Dookhitram et al. (2009) led to a new method for

accelerating the convergence of the IRAM [21].

Rommes and Martins proposed two new techniques dedicated to the computation of domi-

nant eigenvalues of large-scale power systems. The Sensitive Pole Algorithm (SPA), presented

in 2008, computes the eigenvalues most sensitive to parameter changes [84]. In 2010, an algo-

rithm based on the Subspace Accelerated Rayleigh Quotient Iteration (SARQI) was developed

for the automatic computation of rightmost eigenvalues of large-scale matrices [85].

2.2 Small-Signal Multi-Physics Models for Stability Assessment

In addition to its long-established use in the framework of large-scale power systems, eige-

nanalysis is a very powerful tool for stability assessment of multi-physics systems, as well

as for tuning and design of controllers and stabilizers. Many recent publications present

such applications on stability assessment of systems that are much less extensive than large

electrical grids.

Kawkabani (2001) derived small-signal expressions for the electromagnetic torque of syn-

chronous generators for the calculation of complex torque coefficients [47]. This method

was used for studying the effects of the variation of voltage regulators gain on the stability of

power plants. The analysis of the influence of supplementary damping added by power system

stabilizers was also performed through this technique. Comparisons with eigenanalysis results

were performed in order to confirm the effectiveness of the proposed approach. This work was

an extension of the method presented by Canay for the study of torsional interactions between

electrical and mechanical systems [12, 13]. Kamwa et al. (2005) applied small-signal assess-

ment techniques in order to perform the tuning of IEEE PSS2B and PSS4B for single-machine
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infinite-bus and four-machine two-area systems [45]. Martins and Sanches Bossa (2014)

performed eigenvalues calculation for the design of a new modal stabilizer [64]. Since the

purpose of a modal controller is to act on specific eigenmodes of a system without affecting

the other, the knowledge of the eigenvalues is clearly essential. Beza and Bongiorno (2015)

derived a small-signal model for a two-machine system with static synchronous compensator

with energy storage [8]. This model was applied in the design of an adaptive power oscillation

damping controller.

The interactions of power electronic devices with the electrical network has also been studied

through small-signal analysis. Sun (2009) reviewed different small-signal models and meth-

ods for power electronic devices used in AC distributed power systems, coping with their

time-varying nature [100]. Alonso et al. (2013) performed small-signal analysis of high power

factor AC-DC converters [3]. The small-signal model was derived from the averaged large-

signal representation. Kahrobaeian and Mohamed (2014) assessed the small-signal stability

of medium-voltage converter-based microgrids when impacted by dynamic loads such as

induction motors [44]. A complete small-signal model was proposed and low-, medium- and

high-frequency eigenmodes were identified. Chamorro et al. (2014) performed small-signal

analysis of the Nordic electrical grid in order to analyze the impact of the increasing pene-

tration of renewable energy interfaced by back-to-back voltage source inverters [15]. The

influence of such non-synchronous power sources on the damping of electro-mechanical

modes was assessed for different levels of penetration. Issa et al. (2015) presented a small-

signal model of an islanded microgrid with two inverters for the design of a droop control

under islanding conditions [39]. Wang et al. (2015) applied knowledge from Alonso et al. (ref-

erence [3]) to derive small-signal models for line-side converters of electric locomotives [103].

These models were used to assess underdamped low-frequency oscillations due to the interac-

tion between the grid and the locomotive converters.

Several recent publications presented efforts on modeling renewable energy sources together

with electrical elements, allowing for the analysis of interactions between electrical grids and

hydraulic, wind and solar subsystems.

Geng et al. (2011) applied small-signal models on the study of speed and torque oscillations of

permanent magnet synchronous generators when connected to wind turbines without any

damping devices [29]. The small-signal analysis was used on the design of a generator torque

controller in order to damp these oscillations. Huang et al. (2012) presented a complete model

for wind turbines with direct drive permanent magnet (DDPM) synchronous generators, in-

cluding converters and control scheme [35]. The influence of the controllers’ parameters

was then analyzed for a single-machine system. De Oliveira et al. (2012), concerned with the

improvement of small-signal stability margin of wind farms, studied a supplementary control

loop for wind turbine generators based on doubly-fed induction generator (DFIG) [19]. Bu
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et al. (2012) proposed an analytical method for probabilistic analysis of small-signal stability

of power systems when subjected to high penetration of wind power, considering a stochastic

variation of wind generation [10]. He et al. (2013) provided a small-signal stability compar-

ison between three different concepts of wind turbine generators: DFIG, DDPM generator

and squirrel-cage induction generator (SCIG) [32]. The stability of power systems with high

penetration of wind power was also the main interest of this study. Arani and Mohamed

(2015) demonstrated the positive influence of power- and torque-droop controls applied to

DFIG-based wind turbines on the stability of microgrids and weak grids [5]. Jamehbozorg and

Radman (2015) studied the small-signal behavior of a power system containing synchronous

generators, SCIG-based wind power and energy capacitor units, demonstrating the positive

effect of the latter [42].

Small-signal models have also been applied to microgrids containing solar power generation,

more specifically PV installations. Guan et al. (2014) derived a small-signal model of a hybrid

microgrid consisted of a PV station, a small hydropower plant (with simplified representa-

tion) and a battery storage system [31]. Based on this model, the performance of the power

sharing control was analyzed and the influence of the tuning of controller parameters was

demonstrated. Mishra and Ramasubramanian (2015) presented a small-signal model for a

microgrid based on PV generation and diesel engine system, taking into account the presence

of induction motors as a dynamic load [67]. It was demonstrated that the electro-mechanical

oscillation mode of the diesel engine generator tends to become unstable if the power share of

the PV installation is increased. A supplementary controller was then introduced in the PV

control loop in order to overcome this problem.

Regarding eigenanalysis applied to hydropower systems, Kamwa et al. (2002) derived a small-

signal model from a transient stability program (large-disturbance model) of the open-loop

system seen by a hydro-turbine governor [46]. The model was employed to assess the perfor-

mance of three different types of hydro-turbine governors installed in distinct hydropower

plants of the Canadian electrical network. Liu and Liu (2007) presented a comprehensive

small-signal model of a single-machine hydropower plant, including hydraulic elements,

taking into account water compressibility and conduit elasticity [60]. This model was ap-

plied to an existing small hydropower plant located in China, which experienced oscillatory

instabilities since its installation. Different types of interaction were identified and typical

oscillation modes were distinguished. Besides electro-mechanical and control oscillation

modes, the water elasticity mode and the mechanic-water mode were classified. The first one

happened due to the conduit elasticity, whereas the second one was due to the interaction

between the conduit and the mechanical system. The eigenanalysis pointed out a way to

overcome oscillatory instabilities encountered on site by changing the PSS and voltage regu-

lator parameters. Furthermore, Liu and Liu demonstrated the importance of multi-physics
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models for the analysis of small-signal behavior of hydropower plants. Zhou and Wang (2008)

performed eigenanalysis to study the effect of pipe elasticity on the stability of low frequency

oscillation modes [109]. The importance of adopting high-order elastic models for the hy-

draulic system was stressed out in order to correctly predict interactions between hydraulic

and electro-mechanical oscillation modes. Chompoobutrgool et al. (2012) presented a rather

accurate, although simplified, model for hydro turbines and governor and demonstrated the

importance of careful modeling by performing eigenanalysis of the Nordic power grid [17].

Silva et al. presented in 2012 a complete small-signal model of a hydropower plant to analyze

speed governor contributions under load rejection conditions [96]. The small signal modeling

of electrical elements was based on a,b,c-phase variables. Later, Silva et al. proposed in 2014

a generalization of the modeling presented in the work of 2012 and applied it to derive fully

modular models to the small-signal stability analysis of an islanded hydropower plant [95].

The same modeling concept was applied by Alligné et al. further in 2014 for the forced response

analysis of hydroelectric systems [2]. Sarmadi and Venkatasubramanian (2015) presented

in a recent publication the effects of resonance of inter-area oscillation modes with forced

oscillations coming from the hydraulic circuit, particularly from vortex rope pulsations [90].

The interactions of such pulsations with local and inter-area mode are studied through a

two-area system in which a forced oscillation simulating a vortex rope pulsation is introduced.

Small-signal stability analysis is carried out in order to identify eigenmode frequencies and

shapes. Poorly damped oscillation modes likely to interact with vortex rope pulsations were

identified, indicating risks of resonance.

It is important to point out that even though all these efforts are of great value, they present

an important limitation. In general, they are solutions designed for a specific problem or

task. This means that any change in the topology of the systems, such as inclusion of new

generating units or addition of loads, cannot be done in a modular way. In other words, every

modification requires further efforts in order to adapt the mathematical description of the

system, which may be a time-consuming task.

2.3 Power Systems Softwares with Eigenanalysis Capabilities

A number of power system simulation toolboxes and professional softwares incorporate

eigenanalysis capabilities at the present time, namely: PacDyn [14]; DIgSILENT PowerFac-

tory [20]; ETAP small-signal stability module [23]; PST (a toolbox based on MATLAB m-files)

combined with MatNetFlow and MatNetEig [18, 50]; PSAT (also a MATLAB/Simulink-based

toolbox) [65, 66]; NEPLAN® with a small-signal stability module [68]; DSATools™ with SSAT

(small-signal analysis tool) [78, 104]; Mudpack [92]; PSS®E with the eigenvalue and modal

analysis (NEVA) module [94]; Simpow® [97]; and EUROSTAG® (only eigenvalues computa-

tion) with the HERCULES add-on, which incorporates small-signal analysis functions [101].
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Persson et al. (2003) analyzed the linearization methods used in PSS®E and Simpow® [77].

Eigenvalue calculations were performed for two distinct cases and the results were compared.

Whereas Simpow® uses an analytical linearization method, PSS®E uses a numerical lineariza-

tion routine, which is based on disturbing the state vector to obtain the linearized state matrix.

The size of this disturbance was proven to play an important role on the precision of the results.

The extraction of eigenvalues in both programs was performed with the QR algorithm.

Kaberere et al. (2005) provided a comparison between four industrial-grade power system

simulation tools: DIgSILENT PowerFactory, PST, PSS®E and EUROSTAG® [43]. Besides the

linearization (analytical or numerical) and eigenvalues calculation methods (QR algorithm in

all cases), components modeling and software flexibility were also compared. This comparison

was based on the small-signal stability analysis of a classic two-area power system.

It is noteworthy that most of these computer programs are designed to the analysis of large-

scale power systems. The components modeling in all of these tools neglect the transients of

the network and of the rotating machines’ stator, since the focus is put on electro-mechanical

oscillation modes. Additionally, the modeling of the whole system is based on the d,q,o-axis

representation (Park’s representation).

2.4 Eigenanalysis Capabilities in SIMSEN

At the time of the proposal of the present work, the advanced version of SIMSEN incorporated

eigenanalysis capabilities only for hydraulic circuits including reservoirs, pipes, Francis tur-

bines with rotating inertia and PID turbine governors. The linearized models were developed

and validated by Alligné (2011) [1], based on hydroacoustic models presented by Nicolet

(2007) [69]. The analytical linearization method was employed.

The calculation of eigenvalues and eigenvectors is performed through the QR algorithm, which

is perfectly suitable to SIMSEN purposes. Additionally, SIMSEN includes an eigenmodes

visualization tool, which processes the results in order to provide static and dynamic plots the

mode shapes.
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3.1 Lyapunov Stability

As mentioned in chapter 1, section 1.3.1, the physically-based definition of power system

stability proposed by the IEEE/CIGRÉ Joint Task Force on Stability Terms and Definitionsa is

closely related to stability in the sense of Lyapunov. The following theorem combines the

definitions of stability in the sense of Lyapunov for nonautonomous, autonomous and linear

time-invariant systems.

Theorem (Lyapunov stability [48]). Consider the nonautonomous dynamical system defined

as ẋ = f (t , x). Let x(t0) = x0 be an equilibrium point for this system, and D ⊂ Rn a domain

containing x0. Let V (t , x) : [0,∞)×D →R be a continuously differentiable function such that

W1(x) ≤V (t , x) ≤W2(x)

∂V (t , x)

∂t
+∇V (t , x) · f (t , x) ≤ 0

for all t ≥ 0 and x ∈ D, where W1(x) and W2(x) are continuous positive definite functions on

D . Then, x0 is uniformly stable, that is, the equilibrium point is stable for any time t0.

Moreover, if

∂V (t , x)

∂t
+∇V (t , x) · f (t , x) ≤−W3(x)

a“Power system stability is the ability of an electric power system, for a given initial operating condition, to
regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables
bounded so that practically the entire system remains intact” [52].
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for all t ≥ 0 and x ∈ D , where W3(x) is a continuous positive definite function on D . Then, x0

is uniformly asymptotically stable.

In other words, it is possible to say that the equilibrium x0 = x(t0) of ẋ = f (t , x) is

• Stable if, for each ε> 0, there is δ= δ(ε, t0) > 0 such that ‖x0‖ < δ⇒‖x(t )‖ < ε ;

• Uniformly stable if, for each ε> 0, there is δ= δ(ε) > 0 such that ‖x0‖ < δ⇒‖x(t )‖ < ε ;

• Unstable if it is not stable;

• Asymptotically stable if it is stable and there is a positive constant c = c(t0) such that

x(t ) → x0 as t →∞, for all ‖x0‖ < c ;

• Uniformly asymptotically stable if it is uniformly stable, asymptotically stable and c is

independent of t0.

Figure 3.1 gives a geometric interpretation of Lyapunov stability and asymptotic stability for a

two-dimensional system.

Now, consider the autonomous (time-invariant) dynamical system ẋ = f (x). Let x0 be an

equilibrium point and D ⊂Rn be a domain containing x0. Let V (x) : D →R be a continuously

differentiable function such that V (x0) = 0 and V (x) > 0.

• If V̇ (x) =∇V (x) · f (x) ≤ 0, then x0 is a stable equilibrium point;

• If V̇ (x) < 0, then x0 is asymptotically stable.

Finally, consider the linear time-invariant (LTI) dynamical system ẋ(t ) = A ·x(t ). The equilib-

rium point x(t0) = x0 is

• Stable if all eigenvalues (λi ) of A satisfy ℜ{λi } ≤ 0 ;

• Unstable if it is not stable;

• Asymptotically stable if all eigenvalues of A satisfy ℜ{λi } < 0.

x1

x2

δ 
ε 

x0

x(t)

x1

x2

δ 
ε 

x(t) = x0
0 0

c

Figure 3.1: Interpretation of Lyapunov stability (left) and asymptotic stability (right) [56].
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This last definition, related to LTI systems, is the one traditionally applied in small-signal

stability analysis. In the next section, an intuitive example is presented to demonstrate how

eigenvalues and eigenvectors relate to the dynamic behavior of a LTI system.

3.2 Eigenanalysis: An Intuitive Example

In order to illustrate how the eigenvalues and eigenvectors of a system can describe its dynamic

behavior, it is useful to present a practical, intuitive, simple exampleb. It consists in a real

model describing the survival of spotted owls living in the North-American forests in the

Pacific Northwest region.

In 1990, environmentalists realized that the spotted owl was threatened with extinction if the

old-growth forests were not preserved. Logging activities had been happening for years, slowly

reducing the area of the owl’s habitat. In order to better understand the issue, mathematical

ecologists studied the life cycle of the species, dividing the life cycle of the spotted owl into

three stages: juvenile (up to 1 year old), subadult (1 to 2 years) and adult (over 2 years). The

owls begin to breed as adults, live for up to 20 years and each owl pair requires 1000 hectares

for its exclusive home territory.

Demographic studies demonstrated that in the year t +1, the number of new juvenile owls

(αn j ) is equal to 33% of the number of adults in year t . Although 60% of the juvenile owls lived

long enough to become subadults (β j s), only 30% of these survive the search for a new home

territory (βst ). Thus, only 18% of the juvenile owls of year t become subadults in year t +1.

Finally, 71% of the subadults (γsa) and 94% of the adults (γaa) of year t survive to be counted

as adults in year t +1.

Accordingly, the following mathematical model, using the matrix form ẋ(t) = A ·x(t ), can be

used to describe the life cycle of the spotted owls:
ẋ j (t )

ẋs(t )

ẋa(t )

=


−1 0 αn j

β j s ·βst −1 0

0 γsa −1+γaa




x j (t )

xs(t )

xa(t )

 , ∀t ∈N (3.1)

where x j (t ), xs(t ) and xa(t ) are, respectively, the number of juvenile, subadult and adult owls,

and

A =


−1 0 0.33

0.18 −1 0

0 0.71 −0.06


bAdapted from D. C. Lay, Linear Algebra and its Applications, 4th ed., chap. 5, pp. 265–266,307–309 [57].
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The eigenvalues (λi ) and right eigenvectors (vi ) of the matrix A are approximately:

λ1 =−1.02+ j 0.21 ; vT
1 = [ 0.68 −0.06− j 0.59 −0.05+ j 0.43 ]

λ2 =−1.02− j 0.21 ; vT
2 = [ 0.68 −0.06+ j 0.59 −0.05− j 0.43 ]

λ3 =−0.02 ; vT
3 = [ 0.32 0.06 0.95 ]

The general solution of ẋ(t ) = A ·x(t ) has the form:

x(t ) = c1eλ1t v1 + c2eλ2t v2 + c3eλ3t v3 (3.2)

where ci = wi ·x(t0) depends on the initial conditions x(t0) and the (row) left eigenvectors wi .

Given that all eigenvalues have negative real parts, the mathematical ecologists could conclude

that, based on this model, the spotted owls were faded to extinction. The only hope for them

would be the reduction of logging activity.

Indeed, if old-growth forests were preserved so that 50% of the new subadult owls could survive

the search for a new home territory, the (2,1)-entry of matrix A in equation (3.1) would be 0.3

instead of 0.18. In this case, the resulting eigenvalues and right eigenvectors are approximately:

λ1 =−1.03+ j 0.26 ; vT
1 = [ −0.08+ j 0.58 0.66 −0.45− j 0.12 ]

λ2 =−1.03− j 0.26 ; vT
2 = [ −0.08− j 0.58 0.66 −0.45+ j 0.12 ]

λ3 = 0.09 ; vT
3 = [ 0.31 0.09 0.95 ]

From equation (3.2), one can easily conclude that there is a chance for the spotted owls.

As t → ∞, the first two terms tend to zero, whereas the last one increases. Thus, the owl

population has a long-term exponential growth rate determined by λ3. Moreover, v3 describes

the final distribution of the owls by life stage, when the population comes to a balance: for

each 95 adults (70%), there will be 31 juveniles (23%) and 9 subadults (7%).

In brief, it is possible to deduce that the real part of the eigenvalues describes the exponential

growth/decay, whereas the imaginary part determines the frequency of oscillation. The right

eigenvectors define the proportional distribution of the quantities that will be reached in the

long term, and the left eigenvectors determine the share of the initial conditions influencing

each eigenmode.

3.3 Concepts on Small-Signal Stability

In small-signal stability analysis, disturbances are considered to be sufficiently small so that the

system can be linearized around an operating point defining its initial conditions. Moreover,
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given that the electrical components are modeled based on the d,q,o-axis representation (Park’s

representation), all the models are time-invariant. Thus, after linearization, the definition of

Lyapunov stability for LTI systems, given on page 30, can be applied. The eigenproperties are

obtained from the linearized state-space representation of the system.

3.3.1 Linearized State-Space Representation

Any autonomous dynamical system can be described by a set of n nonlinear first-order

ordinary differential equations, known as the state equations. The time derivative of each

state variable is expressed as a function of the n state variables x1(t ), ..., xn(t ) (contained in the

state vector x(t) ∈Rn) and the p system inputs u1(t), ...,up (t) (contained in the input vector

u(t ) ∈Rp ). In the general case, the form of the state equations is:
ẋ1(t ) = f1[x(t ),u(t )]

ẋ2(t ) = f2[x(t ),u(t )]
...

ẋn(t ) = fn[x(t ),u(t )]

(3.3)

Moreover, the outputs of the system are described by a set of q equations also expressed as a

function of the state variables and the system inputs:
y1(t ) = g1[x(t ),u(t )]

y2(t ) = g2[x(t ),u(t )]
...

yq (t ) = gq [x(t ),u(t )]

(3.4)

The system model may as well be summarized in vector notation as: ẋ(t ) = f [x(t ),u(t )]

y(t ) = g [x(t ),u(t )]
(3.5)

The linearization of the system of equations (3.5) is performed through first-order Taylor

expansions (neglecting the terms of higher order) applied to all the n state equations and q

output equations [62], as follows:
∆ẋi = ∂ fi

∂x1

∣∣∣∣
0
∆x1 +·· ·+ ∂ fi

∂xn

∣∣∣∣
0
∆xn + ∂ fi

∂u1

∣∣∣∣
0
∆u1 +·· ·+ ∂ fi

∂up

∣∣∣∣
0
∆up

∆y j =
∂g j

∂x1

∣∣∣∣
0
∆x1 +·· ·+ ∂g j

∂xn

∣∣∣∣
0
∆xn + ∂g j

∂u1

∣∣∣∣
0
∆u1 +·· ·+ ∂g j

∂up

∣∣∣∣
0
∆up

(3.6)

for all i = 1,2, . . . ,n and j = 1,2, . . . , q .
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The partial derivatives of fi [x(t ),u(t )] and gi [x(t ),u(t )] are evaluated at the equilibrium point,

yielding a system of equations with constant linear coefficients that can be expressed in vector

notation as:∆ẋ(t ) = A` ·∆x(t )+B` ·∆u(t )

∆y(t ) = C` ·∆x(t )+D` ·∆u(t )
(3.7)

The system of equations (3.7) gives the linearized state-space representation of a dynamical

system, where:

A` =


∂ f1

∂x1

∣∣∣∣
0

· · · ∂ f1

∂xn

∣∣∣∣
0

...
. . .

...
∂ fn

∂x1

∣∣∣∣
0

· · · ∂ fn

∂xn

∣∣∣∣
0

, A` ∈Rn×n ; B` =


∂ f1

∂u1

∣∣∣∣
0

· · · ∂ f1

∂up

∣∣∣∣
0

...
. . .

...
∂ fn

∂u1

∣∣∣∣
0

· · · ∂ fn

∂up

∣∣∣∣
0

, B` ∈Rn×p

C` =


∂g1

∂x1

∣∣∣∣
0

· · · ∂g1

∂xn

∣∣∣∣
0

...
. . .

...
∂gq

∂x1

∣∣∣∣
0

· · · ∂gq

∂xn

∣∣∣∣
0

, C` ∈Rq×n ; D` =


∂g1

∂u1

∣∣∣∣
0

· · · ∂g1

∂up

∣∣∣∣
0

...
. . .

...
∂gq

∂u1

∣∣∣∣
0

· · · ∂gq

∂up

∣∣∣∣
0

, D` ∈Rq×p

The matrices A` (state matrix) and B` (input matrix) are properties of the system and relate

to the system structure and elements. The matrices C` (output matrix) and D` (feedforward

matrix) depend on the particular choice of output variables. For most physical systems, the

outputs are not directly dependent on the inputs, reason for which commonly D` = 0.

3.3.2 Eigensolution of the Linearized System

The free motion of the linearized system is described by:

∆ẋ(t ) = A` ·∆x(t ) (3.8)

The linearized state matrix A` characterizes the dynamic behavior of the whole system. There-

fore, from its eigenvalues it is possible to predict the small-signal stability of the equilibrium

point corresponding to the linearized system.

The eigensolution of the system can be obtained as follows [63]. Consider a column vector v of

dimension n ×1. The eigenvalues of A` are defined as the scalar λ that satisfies the nontrivial

solution of the equation:

A` ·v =λv → (A`−λI) ·v = 0 (3.9)
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where I is the n-dimensional identity matrix. For a nontrivial solution (v 6= 0), this means that:

∣∣A`−λI
∣∣= 0 (3.10)

The expansion of the characteristic equation (3.10) yields the characteristic polynomial of A`,

whose n roots are also the n eigenvalues λ1, λ2, . . . , λn of A`. The eigenvalues may be either

purely real or complex. In most of the cases A` is real, which means that complex eigenvalues

appear in conjugate pairs of the form σ± jωd . The pulsation ωd represents the damped

frequency of the eigenmode. The inverse of the attenuation σ defines the time constant of the

decay/growth of the response. Two characteristics of the eigenmode can be determined from

these coefficients: the frequency of oscillation ( f ) and the damping ratio (ζ), as follows:

f = ωd

2π
(3.11)

ζ=− σ√
σ2 +ω2

d

(3.12)

The eigenmode is said to be over-damped if ζ> 1, critically damped if ζ= 1, under-damped if

0 < ζ< 1, or undamped if ζ= 0. However, if ζ< 0, that is, if σ> 0, the eigenmode is unstable.

This means that once this mode is excited by any small disturbance, the system cannot recover

its equilibrium. This corresponds to the definition of Lyapunov stability for LTI systems, given

on page 30, which states that instabilities are characterized by eigenvalues with positive real

parts (ℜ{λi } > 0).

For each eigenvalue λi there is a corresponding eigenvector vi that satisfies equation (3.9).

This is the right eigenvector of A` associated with λi . Furthermore, it is possible to define the

corresponding left eigenvector wi , which is a row vector that must satisfy the relation:

wi ·A` =λi wi (3.13)

In principle, left and right eigenvector are not uniquely defined. Hence, they are usually

normalized in such a way that [51, 86]:

wi ·vi = 1 (3.14)

On the other hand, left and right eigenvectors related to two distinct eigenvalues are orthogo-

nal, that is:

wi ·v j = 0 (3.15)
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It is suitable to express equations (3.9) and (3.13) in matrix notation, as follows:

A` ·V = V ·Λ (3.16)

W ·A` =Λ ·W (3.17)

where

Λ = diag(λ1,λ2, . . . ,λn) , Λ ∈Rn×n

V = [ v1 v2 · · · vn ] , V ∈Rn×n

W = [
wT

1 wT
2 · · · wT

n

]T
, W ∈Rn×n

From equations (3.16) and (3.17) it is possible to conclude that:

W = V−1 (3.18)

This corresponds to what is stated by equations (3.14) and (3.15).

Proof. Right- and left-multiplication of equation (3.16) by the inverse of matrix V, as follows:

V−1 ·A` ·V ·V−1 = V−1 ·V ·Λ ·V−1

yields:

V−1 ·A` =Λ ·V−1

This relation fulfills the condition expressed in equation (3.17). This means that V−1 is a matrix

whose rows are the left eigenvectors of A`, proving that relation (3.18) is true.

Finally, it is easy to verify that the time-domain solution of the free motion equation (3.8) can

be given as a function of the initial conditions, and the eigenvalues and eigenvectors of matrix

A`, as follows [51, 86]:

∆x(t ) =
n∑

i=1
[wi ·∆x(t0)]︸ ︷︷ ︸

ci

vi eλi t (3.19)

where ∆x(t0) is the disturbance at instant zero. The constants ci = wi ·∆x(t0) represent the

magnitude of the excitation of the i-th mode resulting from the initial disturbance ∆x(t0) [51].

Equation (3.19) corresponds to the expression (3.2), presented in section 3.2. Some con-

clusions can be drawn from equation (3.19) that confirm the statements and inferences of

section 3.2:
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• The free motion response is a linear combination of n dynamic modes related to the n

eigenvalues of matrix A`;

• The left eigenvectors wi determine the weight of the initial conditions in each mode,

that is, the magnitude of excitation of each mode resulting from the initial conditions;

• The right eigenvectors vi determine the activity or the proportional action of the state

variables in each mode. In other words, the right eigenvectors represent the mode

shape;

• The eigenvalues λi determine the exponential decrease/growth of the response. In case

of complex eigenvalues, the response is oscillatory with frequency determined by ℑ{λi }

and amplitude exponential decrease/growth determined by ℜ{λi };

• Although a specific eigenmode can be unstable (ℜ{λi } > 0), it might not be excited by a

certain disturbance. Nevertheless, the system is still considered unstable since another

combination for the vector ∆x(t0) can excite the unstable mode.

3.3.3 Participation Factors

Although eigenvalues give information on system stability and eigenvectors permit to have

an indication of the shape of modes, the analysis of results is not always straightforward,

especially when the studied systems are of considerable size and complexity. Another difficulty

arises from the fact that eigenvectors depend on the units and on the scaling of the state

variables [51].

A clearer notion of the relationship between state variables and eigenmodes can be obtained

by the calculation of the participation factors as follows [81, 102]:

p j i = wi j v j i (3.20)

where v j i (wi j ) is the j-th entry of the right (left) eigenvector corresponding to the i-th mode.

The participation factor p j i is a dimensionless quantity which denotes the relative involvement

of the j-th state variable in the i-th mode, and vice-versa [81]. Considering the condition

expressed by equation (3.14), it is possible to write:

n∑
j=1

p j i =
n∑

i=1
p j i = 1 (3.21)

Frequently, p j i is a complex number. However, for representation purposes, only its magni-

tude |p j i | is used.

An interesting property of participation factors is that it is possible to define the global partici-
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pation factor of a subsystem S (represented by k states) in one mode i [86]:

pSi =
∣∣∣∣∣ k∑

j=1
p j i

∣∣∣∣∣ (3.22)

The calculation of participation factors can be very useful when the system has poorly damped

or unstable modes. It gives an indication of instability sources, since they will point out

precisely which are the state variables influencing the mode. This way, it is possible to act

directly on the root of the problem, facilitating the definition of stabilizer parameters or

locations, for instance. Moreover, participation factors play a major role in Selective Modal

Analysis (SMA), as mentioned in chapter 2, section 2.1.

3.3.4 Eigenvalue Sensitivity

Eigenvalue sensitivity corresponds to the rate of change of a given eigenvalue λi with respect

to a specific system parameter γ. By right-multiplying equation (3.13) by vi and taking into

account that the normalization given by equation (3.14) is respected, it gives [62]:

λi = wi ·A` ·vi (3.23)

Then, the sensitivity of λi with respect to a parameter γ is:

∂λi

∂γ
= wi · ∂A`

∂γ
·vi (3.24)

If the sensitivity of interest is relative to an entry a j k of matrix A`, then:

∂λi

∂a j k
= wi · ∂A`

∂a j k
·vi = wi j vki (3.25)

If a diagonal entry a j j is considered, the eigenvalue sensitivity corresponds to the participation

factor of the j-th state variable in the i-th eigenvalue [74], as defined in equation (3.20):

∂λi

∂a j j
= wi j v j i = p j i (3.26)

3.3.5 Eigenanalysis and Transfer Functions

Despite the fact that the state-space representation describes the system in terms of its whole

internal and external behavior, it is sometimes useful to represent the system in a simpler

way, regarding the input/output behavior. For this purpose, it is possible to derive the transfer

function of a system from its state-space representation. Considering a single-input single-
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output system whose output is not a direct function of the input, the linearized state-space

representation given in the system of equations (3.7) can be rewritten as follows:

∆ẋ(t ) = A` ·∆x(t )+b`∆u(t ) (3.27)

∆y(t ) = c` ·∆x(t ) (3.28)

And in the frequency domain:

s∆X(s) = A` ·∆X(s)+b`∆U (s) → ∆X(s) = (s I−A`)−1 ·b`∆U (s) (3.29)

∆Y (s) = c` ·∆X(s) (3.30)

By replacing equation (3.29) in equation (3.30), it is possible to obtain the transfer function

G(s), defined as:

G(s) = ∆Y (s)

∆U (s)
= c` · (sI−A`)−1 ·b` (3.31)

It can be shown that the expansion of G(s) in partial fractions yields (see [51], pp. 719-721):

G(s) = R1

s −λ1
+ R2

s −λ2
+·· ·+ Rn

s −λn
(3.32)

where the residues of G(s) are given as Ri = c` ·vi ·wi ·b`. Moreover, equation (3.32) shows

that the poles of G(s) are given by the eigenvalues of A`.

Now that the basic concepts of small-signal stability have been presented, the development

of models for an eigenanalysis tool in the environment of SIMSEN can be tackled. The next

chapter presents the approach developed in order to derive small-signal stability models for

electrical elements based on the time-domain models of SIMSEN, whereas chapter 6 describes

the already existing hydraulic models.
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Small-Signal Modeling of Electrical Elements

4.1 Time-Domain Models of Electrical Elements in SIMSEN

In order to develop small-signal models which maintain compatibility with the principles

of operation of SIMSEN, they must be derived based on the existing time-domain models.

Keeping this compatibility means taking advantage of the benefits of SIMSEN, i.e.:

• Treatment of systems with any given topology;

• Easy construction of the topology through the connection and parametrization of all

elements in an user-friendly GUI;

• Automatic generation of the full set of differential equations of the global system.

On the other hand, it also means respecting the principles of modeling, the state variables and

equations that represent each element.

As mentioned in chapter 1, section 1.4.2, all the time-domain electrical models in SIMSEN are

based on a,b,c-phase variables. This has an important consequence from the viewpoint of

eigenanalysis.

When represented in a,b,c-phase coordinates, rotating electrical machines are nonautono-

mous systems. In other words, this means that the state equations depend not only on the

inputs and state variables themselves, but also on the time: ẋ = f(t ,x,u). Consequently, the

free motion of the system (when u = 0) is also a function of time.

Indeed, the mutual inductances between stator and rotor windings of rotating electrical

machines depend on the angular position of the rotor θ, which in its turn depends on time.
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π / 2 π

Figure 4.1: Self-inductance for phase a of a salient-pole synchronous machine [16].

Moreover, in the specific case of salient-pole synchronous machines, mutual inductances

between stator windings and also their self-inductances depend on θ.

Figure 4.1 represents the variation of the self-inductance Laa of stator phase a as a function of

the rotor angular position θ. It can be decomposed in a constant mean value L, and a periodic

oscillating component of amplitude Lh2 and frequency equal to the double of the angular

frequency of the rotor. This periodic variation is due to the anisotropy of the salient-pole

synchronous machine rotor, which is illustrated in figure 4.2.

This being said, it is important to bear in mind that the Lyapunov stability criterion based on

eigenvalues is applicable exclusively to LTI systems, as it was discussed in chapter 3, section 3.1.

Consequently, for small-signal stability analysis purposes, it is not enough to linearize the

time-domain models of SIMSEN. This procedure would only produce linear time-variant (LTV)

f

f’

a

a’

c’

b’

b

c

Axis of the 

excitation winding f 

Axis of the 

stator phase a

θ

Figure 4.2: Simplified representation of a salient-pole synchronous machine [16].
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systems, whose eigenvalues do not straightforwardly define the stability of the system. Indeed,

it is possible that LTV are stable when they present positive real part eigenvalues, as well as

unstable even though all eigenvalues have negative real parts [73].

Therefore, since the time-domain models of electrical elements available in SIMSEN are

nonautonomous systems, they require more treatment than a simple linearization so as to be

applied in small-signal stability analysis.

4.2 Extension of Eigenanalysis Concepts to Nonautonomous

Systems

The concepts of stability of nonautonomous systems given by the Lyapunov’s stability theorem,

as presented in chapter 3, section 3.1, are based on the definition of boundary functions

W1,2,3(x) and the energetic function V (t , x).

Such way of defining the stability of a system has significant conceptual value. However, it has

little computational significance, as Lyapunov’s theorem does not give any information on

how to define V (t , x). In practice, it is impossible to derive an expression for V (t , x), especially

for complex systems such as power systems.

Considering LTV systems, which have the form ẋ(t) = A(t) ·x(t), a number of concepts have

been proposed to inspect the stability, such as dynamic eigenvalues, specific decomposition

methods and Ricatti equation taking the role of the characteristic equation [73]. However,

the interpretation of the results requires more mathematical efforts and digress from the

traditional eigenanalysis. This is not the objective of this work, since it aims at developing an

eigenanalysis tool for SIMSEN which is uncomplicated and user-firendly.

Finally, considering linear periodic (LP) systems, for which A(t +T ) = A(t), it is possible to

determine the stability using the Floquet Theory [87]. This theory states that every LP system

can be reduced to a LTI system of the form:

ż(t ) = R ·z(t ) (4.1)

by way of a stability preserving variable change defined as:

x(t ) = L(t ) ·z(t ) (4.2)

where L(t) is a continuously differentiable, uniformly bounded, invertible, periodic ma-

trix [110]. By respecting these criteria, L(t) can be defined as a Lyapunov transformation,

which is a coordinate transformation (or variable change) that preserves stability.
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The transformed state matrix R is given by:

R = L−1(t ) · [A(t ) ·L(t )− L̇(t )
]

(4.3)

According to the Floquet Theory, stability properties of the original T -periodic state equation

are equivalent to stability properties of the LTI system represented by equation 4.1 [87]. This

means that the eigenvalues of R, known as the Floquet characteristic exponents, can be used to

determine system stability according to the following theorem.

Theorem (Floquet Theory [87, 110]). A LP system is exponentially asymptotically stable if,

and only if, all Floquet characteristic exponents have negative real parts.

Consequently, the eigenanalysis concepts presented in chapter 3 can be extended to nonau-

tonomous, linear periodic systems by applying the Floquet Theory.

4.3 Small-Signal Electrical Models for SIMSEN based on

a,b,c-Phase Coordinates

As mentioned in section 4.1, the nonautonomous characteristic of the electrical models

available in SIMSEN is due to the time-variant behavior of rotating machines parameters.

Nevertheless, the varying components have a periodic characteristic, as illustrated in figure 4.1.

Therefore, the Floquet Theory can be applied to these models in order to derive small-signal

models which are compatible with SIMSEN characteristics. This means that the state variables

of the small-signal models must correspond to those of the already existing time-domain

models, i.e., the physical a,b,c-phase variables coordinates. This is a crucial criterion to be

respected, since it will allow for the determination of the linearized matrices automatically

from the circuits built in the SIMSEN GUI. In other words, this means taking advantage of the

benefits of SIMSEN, previously listed in section 4.1.

In this regard, a procedure must be followed so as to derive the small-signal models based on

a,b,c-phase coordinates. This procedure is illustrated in figure 4.3.

The inputs are the time-domain electrical models available in SIMSEN that are to be linearized.

The outputs are the corresponding small-signal models based on a,b,c-phase coordinates. All

small-signal models must be derived following the same procedure in order to guarantee a

compatible connection between all elements.

This procedure is divided into three steps, which are explained in the following. Its application

is illustrated further, in section 4.4.
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Figure 4.3: Procedure flowchart for determination of small-signal models for SIMSEN.

Step 1: Transformation of SIMSEN nonautonomous models in time-invariant models

The first step is to transform the a,b,c-phase coordinates time-domain models in time invariant

models. This can be achieved through the well-known Park’s transformation, which preserves

the steady-state phase quantities and can be applied to voltages, currents and flux linkages. It

is defined as:

P = 2

3



cosθ cos

(
θ− 2π

3

)
cos

(
θ+ 2π

3

)

−sinθ −sin

(
θ− 2π

3

)
−sin

(
θ+ 2π

3

)
1

2

1

2

1

2


(4.4)

where θ is the angular position of the rotor.

The relation between d,q,o-coordinates and a,b,c-coordinates state variables is:

xdqo = P ·xabc (4.5)

Matrix P is continuously differentiable, uniformly bounded, invertible and periodic. Therefore,

it can be classified as a Lyapunov transformation. Indeed, it is well-known that the Park’s

transformation preserves the stability of the system, that is, the system is equally stable either

if it is seen from the a,b,c-phase coordinates or from the Park’s representation (d,q,o-axis

representation).
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It is important to note that the matrix representation used in SIMSEN differs from the tra-

ditional state-space representation presented in chapter 3. Each element in SIMSEN cor-

responds to an independent subsystem that is fully represented by a system of first-order

differential equations, which can be described under matrix form as [89]:

A · ẋabc = B ·xabc +C (4.6)

It is worth pointing out that the matrices A, B and C presented here are not the same as those

used in the state-space representation. From this point on any refences to A, B or C are related

to the matrices of the formulation used in SIMSEN. The linearized matrices are followed by

the "`" subscript.

The formulation presented in equation (4.6) is kept even after the Park’s transformation.

Considering the inverse of relation (4.5) and substituting it in equation (4.6) yields:

Adqo · ẋdqo = Bdqo ·xdqo +Cdqo (4.7)

with

Adqo = A ·P−1

Bdqo = B ·P−1 −A · Ṗ−1

Cdqo = C

Step 2: Analytical linearization of the time-invariant models

The models based on d,q,o-axis representation are time-invariant models. Once they are

linearized, the eigenanalysis concepts presented in chapter 3, section 3.3 can be applied.

The analytical linearization is achieved through first-order Taylor expansions applied to the

state equations of the system, as described in section 3.3.1, equation (3.6). This procedure

yields a system of the following form:

A`dqo ·∆ẋdqo = B`dqo ·∆xdqo +C` (4.8)

At this stage, the eigenvalues could be extracted from the d,q,o-state matrix, given by:

A−1
`dqo

·B`dqo

Nevertheless, another step is needed in order to adapt the state variables to those used in

SIMSEN.
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Step 3: Coordinates inverse transformation of the linearized time-invariant models

Even though the first two steps of this procedure are classical operations in the field of electrical

systems and rotating machines, they are not enough to yield small-signal models which are

suitable for SIMSEN.

Consequently, an inverse transformation is necessary and must be judiciously determined.

This transformation ought to be a Lyapunov transformation in the sense that it must preserve

the stability of the system. Moreover, it has to perform a state variable transformation to

adapt the models back to SIMSEN so that the connection of the elements remain modular,

independently of the topology of the system.

At first glance, the inverse Park’s transformation P−1 would seemingly be an elementary choice

capable of conforming to the needed criteria. But if this transformation is applied as such, a

problem remains. Although it preserves system stability and transforms the state variables

back to those used in SIMSEN, modularity is not guaranteed. This happens because the

inverse Park’s transformation when applied to linearized d,q,o-models produce inappropriate

crossed terms between different elements of the system.

In order for modularity to be kept, crossed terms may exist specifically on the interfaces of the

electrical, mechanical, hydraulic and regulation subsystems. These interfaces are either the

regulation blocks or the rotating inertias.

In the first case, the crossed terms are related to the inputs coming from the electrical subsys-

tem (for voltage regulator and stabilizers) or from the mechanical and hydraulic subsystems

(for turbine governors). Also, the regulators outputs introduce crossed terms with the regulated

elements.

In the case of rotating inertias, the crossed terms exist due to the momentum equation that

describes the dynamics of the angular speed ωm of the rotating parts:

J

Pp

dωm

d t
=∑

T = Ttur b +Tem
li near i zati on−−−−−−−−−−−→ J

Pp

d∆ωm

d t
=∆Ttur b +∆Tem (4.9)

where J is the total moment of inertia of the rotating parts, Pp is the number of pairs of

poles of the generator, Ttur b is the turbine torque and Tem is the electromagnetic torque

of the generator. The cross-influence of the hydraulic and the electrical subsystems on the

mechanical one is evidenced by equation (4.9).

Consequently, in order to obtain models which have coherent terms that guarantee modularity,

the inverse transformation must be developed based on the inverse Park’s transformation, as

explained in the following.
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From equation (4.5), it is possible to define the inverse Park’s transformation as:

xabc = P−1 ·xdqo (4.10)

This transformation is only applicable to non-linearized systems. But in order to properly

transform the linearized state variables, it is required to linearize equation (4.10) as follows:

∆xabc =
∂xabc

∂xdqo

∣∣∣∣
0
·∆xdqo +

(
∂xabc

∂P−1 · ∂P−1

∂θ

)∣∣∣∣
0
∆θ

Finally, it yields the only inverse transformation capable of consistently producing small-signal

electrical models based on a,b,c-phase variables:

∆xabc = P−1
∣∣
0 ·∆xdqo +

(
∂P−1

∂θ
·xdqo

)∣∣∣∣
0
∆θ (4.11)

Or, under matrix form:



∆xa

∆xb

∆xc


=



cosθ0 −sinθ0 1

cos

(
θ0 − 2π

3

)
−sin

(
θ0 − 2π

3

)
1

cos

(
θ0 + 2π

3

)
−sin

(
θ0 + 2π

3

)
1


·



∆xd

∆xq

∆xo



−



sinθ0 cosθ0 0

sin

(
θ0 − 2π

3

)
cos

(
θ0 − 2π

3

)
0

sin

(
θ0 + 2π

3

)
cos

(
θ0 + 2π

3

)
0


·



xd0

xq0

xo0


∆θ (4.12)

Only the application of this transformation to the linearized d,q,o-coordinates models converts

them into a,b,c-phase coordinates small-signal models adapted to SIMSEN, while preserving

system stability and respecting the modularity requirement.

4.4 Proposed Modeling Procedure Applied to the Salient-Pole

Synchronous Machine

For the purpose of illustrating step by step the procedure described in section 4.3, an example

is presented in this section. The linearization and inverse transformation of the synchronous

48



4.4. Proposed Modeling Procedure Applied to the Salient-Pole Synchronous
Machine

machine is performed.

For the sake of clarity and ease of reading, only the development for the equation of the voltage

of stator phase a is presented. The full set of equations of the SIMSEN small-signal model for

the salient-pole synchronous machine is presented in appendix A, section A.1.

Step 1: Transformation of a,b,c-phase coordinates model in d,q,o-coordinates model

Applying the Park’s transformation to the a,b,c-phase coordinates model of the synchronous

machinea yields the well-known Park’s model:

ud = Rs id +Ld
did

d t
+L f a

di f

d t
+LDa

diD

d t
−ωm

(
Lq iq +LQa iQ

)
(4.13)

uq = Rs iq +Lq
diq

d t
+LQa

diQ

d t
+ωm

(
Ld id +L f a i f +LDa iD

)
(4.14)

uo = Rs io +Lo
dio

d t
(4.15)

u f = R f i f +
3

2
L f a

did

d t
+L f

di f

d t
+LD f

diD

d t
(4.16)

0 = RD iD + 3

2
LDa

did

d t
+LD f

di f

d t
+LD

diD

d t
(4.17)

0 = RQ iQ + 3

2
LQa

diq

d t
+LQ

diQ

d t
(4.18)

where quantities with the subscripts d are related to the direct axis (d-axis), q to the quadrature

axis (q-axis) and o to the zero phase-sequence axis. The subscript s refers to stator winding

parameters, f to the excitation (field) winding, D to the equivalent damper winding in the

d-axis and Q to the equivalent damper winding in the q-axis.

Step 2: Analytical linearization of the d,q,o-coordinates model

As the second step, the procedure presented in chapter 3, section 3.3 is applied to equa-

tions (4.13)–(4.18). It yields:

aFor the detailed a,b,c-phase coordinates model, please see J. Chatelain, Machines Electriques, chap. 7, pp. 340-
341 [16].
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∆ud = Rs∆id +Ld
d∆id

d t
+L f a

d∆i f

d t
+LDa

d∆iD

d t
−ωm0Lq ∆iq −ωm0LQa∆iQ

− (
Lq iq0 +LQa iQ0

)
∆ωm

(4.19)

∆uq = Rs∆iq +Lq
d∆iq

d t
+LQa

d∆iQ

d t
+ωm0Ld ∆id +ωm0L f a∆i f +ωm0LDa∆iD

− (
Ld id0 +L f a i f 0 +LDa iD0

)
∆ωm

(4.20)

∆uo = Rs∆io +Lo
d∆io

d t
(4.21)

∆u f = R f ∆i f +
3

2
L f a

d∆id

d t
+L f

d∆i f

d t
+LD f

d∆iD

d t
(4.22)

0 = RD ∆iD + 3

2
LDa

d∆id

d t
+LD f

d∆i f

d t
+LD

d∆iD

d t
(4.23)

0 = RQ ∆iQ + 3

2
LQa

d∆iq

d t
+LQ

d∆iQ

d t
(4.24)

Considering steady-state initial conditions: iD0 = 0 and iQ0 = 0.

Step 3: Inverse transformation to a,b,c-phase coordinates applied to the stator phase a

From the inverse transformation defined in the previous section, described by equation (4.12),

it is possible to write:

∆ua =∆ud cosθ0 −∆uq sinθ0 +∆uo −
(
ud0 sinθ0 +uq0 cosθ0

)
∆θ (4.25)

By introducing equations (4.19)–(4.24) in equation (4.25), and considering the following

linearized relations:

∆id = 2

3

[
∆ia cosθ0 +∆ib cos

(
θ0 − 2π

3

)
+∆ic cos

(
θ0 + 2π

3

)]
+ iq0∆θ

∆iq =−2

3

[
∆ia sinθ0 +∆ib sin

(
θ0 − 2π

3

)
+∆ic sin

(
θ0 + 2π

3

)]
− id0∆θ

∆io = 1

3
(∆ia +∆ib +∆ic )

After some analytical manipulations:

50



4.4. Proposed Modeling Procedure Applied to the Salient-Pole Synchronous
Machine

∆ua =
{

2

3

[
Ld cos2θ0 +Lq sin2θ0

]+ Lo

3

}
d∆ia

d t

+
{

2

3

[
Ld cosθ0 cos

(
θ0 − 2π

3

)
+Lq sinθ0 sin

(
θ0 − 2π

3

)]
+ Lo

3

}
d∆ib

d t

+
{

2

3

[
Ld cosθ0 cos

(
θ0 + 2π

3

)
+Lq sinθ0 sin

(
θ0 + 2π

3

)]
+ Lo

3

}
d∆ic

d t

+L f a cosθ0
d∆i f

d t
+LDa cosθ0

d∆iD

d t
+LQa sinθ0

d∆iQ

d t

+
[

Rs − ωm0

3

(
Ld −Lq

)
sin(2θ0)

]
∆ia

− ωm0

3

[(
Ld −Lq

)
sin

(
2θ0 − 2π

3

)
+
p

3

2

(
Ld +Lq

)]
∆ib

− ωm0

3

[(
Ld −Lq

)
sin

(
2θ0 + 2π

3

)
−
p

3

2

(
Ld +Lq

)]
∆ic

−ωm0 L f a sinθ0∆i f −ωm0 LDa sinθ0∆iD −ωm0 LQa cosθ0∆iQ

+ [(
Ld −Lq

)(
iq0 cosθ0 − id0 sinθ0

)−L f a i f 0 sinθ0
]
∆ωm

+ [(
Rs iq0 +ωm0 Lq id0 −uq0

)
cosθ0 +

(
Rs id0 −ωm0 Ld iq0 −ud0

)
sinθ0

]
∆θ

(4.26)

Now, it is possible to adapt the initial conditions and simplify the last two terms of equa-

tion (4.26) considering that:

id0 =
2

3

[
ia0 cosθ0 + ib0 cos

(
θ0 − 2π

3

)
+ ic0 cos

(
θ0 + 2π

3

)]

iq0 =−2

3

[
ia0 sinθ0 + ib0 sin

(
θ0 − 2π

3

)
+ ic0 sin

(
θ0 + 2π

3

)]
and

ud0 = Rs id0 +Ld
did0

d t
−ωm0 Lq iq0 ; with

did0

d t
= 0

=⇒ Rs id0 −ud0 =ωm0 Lq iq0

uq0 = Rs iq0 +Ld
diq0

d t
+ωm0 Ld id0 +ωm0 L f a i f 0 ; with

diq0

d t
= 0

=⇒ Rs iq0 −uq0 =−ωm0 Ld id0 −ωm0 L f a i f 0

51



Chapter 4. Small-Signal Modeling of Electrical Elements

Finally, it yields for the phase a:

∆ua =
{

2

3

[
Ld cos2θ0 +Lq sin2θ0

]+ Lo

3

}
d∆ia

d t

+
{

2

3

[
Ld cosθ0 cos

(
θ0 − 2π

3

)
+Lq sinθ0 sin

(
θ0 − 2π

3

)]
+ Lo

3

}
d∆ib

d t

+
{

2

3

[
Ld cosθ0 cos

(
θ0 + 2π

3

)
+Lq sinθ0 sin

(
θ0 + 2π

3

)]
+ Lo

3

}
d∆ic

d t

+L f a cosθ0
d∆i f

d t
+LDa cosθ0

d∆iD

d t
−LQa sinθ0

d∆iQ

d t

+
[

Rs − ωm0

3

(
Ld −Lq

)
sin(2θ0)

]
∆ia

− ωm0

3

[(
Ld −Lq

)
sin

(
2θ0 − 2π

3

)
+
p

3

2

(
Ld +Lq

)]
∆ib

− ωm0

3

[(
Ld −Lq

)
sin

(
2θ0 + 2π

3

)
−
p

3

2

(
Ld +Lq

)]
∆ic

−ωm0 L f a sinθ0∆i f −ωm0 LDa sinθ0∆iD −ωm0 LQa cosθ0∆iQ

−
{

2

3

(
Ld −Lq

)[
ia0 sin(2θ0)+ ib0 sin

(
2θ0 − 2π

3

)
+ ic0 sin

(
2θ0 + 2π

3

)]

+L f a i f 0 sinθ0

}
∆ωm

−ωm0

{
2

3

(
Ld −Lq

)[
ia0 cos(2θ0)+ ib0 cos

(
2θ0 − 2π

3

)
+ ic0 cos

(
2θ0 + 2π

3

)]

+L f a i f 0 cosθ0

}
∆θ

(4.27)

The complete small-signal model of the salient-pole synchronous machine based on a,b,c-

phase coordinates is composed of three stator equations, three rotor equations (for the ex-

citation and the two equivalent damper windings), plus two mechanical equations related

to angular speed and angular position of the rotor. The full set of equations can be found in

appendix A, section A.1.

The same procedure is applied to all elements for which a small-signal stability model is

to be developed. The detailed equations corresponding to each element are presented in

appendix A. In chapter 5, these models are introduced and validated.
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Validation of the Small-Signal Models

5.1 Small-signal Electrical Models Based on a,b,c-Phase

Coordinates

In this chapter, all the small-signal models based on a,b,c-phase coordinates are introduced

and validated. All these models were developed through the analytical method presented in

chapter 4.

Besides presenting the calculation of the eigenvalues, a validation is performed based either

on comparisons with time-domain simulation results or on analytical demonstrations of the

origin of the eigenmodes.

As previously stated, the detailed equations of each model are presented in appendix A.

5.2 Construction of System Matrices in SIMSEN

Before presenting any results, it is important to briefly understand how the procedures of

SIMSEN perform the construction of the system matrices. In SIMSEN, three-phase elements

are subsystems described by three individual differential equations, one for each phase. When

such elements are interconnected to form a global system, the generation of the matrices

describing the full set of differential equations is accomplished through a specific algorithm

which reuses the models of each element to translate the topology of the circuit, based on a

connection lista.

aFor further details, please see A. Sapin, Logiciel Modulaire pour la Simulation et l’Etude des Systèmes
d’Entraînements et des Réseaux Electriques, chap. 2, pp. 8,16–19 [89].
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3-phase

element

(with floating neutral)

ia

ib

ic – ia – ib

uab

uca

Figure 5.1: Current loops construction in SIMSEN.

If the three-phase elements have floating neutral points, this algorithm performs a simplifica-

tion. Indeed, in this case one of the currents is linearly dependent on the others: ic =−ia − ib .

Consequently, this state variable can be eliminated and phase-to-phase voltage equations are

used, as illustrated in figure 5.1. The order of the matrices describing the global system is then

reduced.

From the viewpoint of eigenanalysis, this has no major consequence on the results. The

elimination of the redundant variable only leads to the elimination of one equally redundant

eigenmode. It was verified that the eliminated eigenmode is always purely real, negative, and

corresponds to the time constant related to the leakage inductances of the corresponding

elements. This eigenmode gives no relevant information about the global system small-signal

stability.

5.3 Salient-Pole Synchronous Machine

In order to exemplify and validate the small-signal model derived for the salient-pole syn-

chronous machine, an example is presented and the results are discussed. In this example,

the synchronous machine (with constant excitation voltage) is connected to an infinite bus, as

illustrated in figure 5.2. The machine ratings are presented in table 5.1

The parameters of the machine are those from its equivalent circuit based on the d,q-axis

representation, depicted in figure 5.3. For this example, the parameters are presented in

table 5.2.

SM

Figure 5.2: Synchronous machine connected to an infinite bus.
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Table 5.1: Synchronous machine ratings.

Rated apparent power SN 83.0 (MVA)

Rated voltage UN 17.5 (kV)

Rated frequency fN 50 (Hz)

Number of pairs of poles Pp 5 ( – )

No-load excitation current I f δ0 578.3 (A)

rs rf if

rD

jxad

jxσd jxσDf jxσf

jxσD

ud uf

id

id + if + iD

iD

rs

rQ

jxaq

jxσq

jxσQ

uq

iq

iq + iQ

iQ

Figure 5.3: Direct- (left) and quadrature-axis (right) equivalent circuit for the synchronous
machine.

Table 5.2: Parameters of the synchronous machine.

Resistance of stator winding rs 1.81 ·10−3 (p.u.)

Leakage reactance of stator winding xσs 0.112 (p.u.)

Magnetizing reactance in the d–axis xad 1.027 (p.u.)

Mutual reactance between excitation and damper D xσD f −0.021 (p.u.)

Resistance of excitation winding r f 4.97 ·10−4 (p.u.)

Leakage reactance of the excitation winding xσ f 0.1968 (p.u.)

Resistance of the equivalent damper winding D rD 0.0101 (p.u.)

Leakage reactance of the damper winding D xσD 0.0829 (p.u.)

Magnetizing reactance in the q–axis xaq 0.6020 (p.u.)

Resistance of the equivalent damper winding Q rQ 0.0161 (p.u.)

Leakage reactance of the damper winding Q xσQ 0.0779 (p.u.)

Inertia of rotating parts Jg 168.3 ·103 (kg ·m2)
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The mechanical part is represented by one rotating mass. The inertia Jg is also given in

table 5.2. This subsystem is described by two differential equations, related to the angular

speed ∆ωm and angular position ∆θ:

Jg

Pp

d∆ωm

d t
=∆Ttur b +∆Tem (5.1)

d∆θ

d t
=∆ωm (5.2)

Consequently, the synchronous machine – infinite bus system is represented by eight differ-

ential equations. Nevertheless, as explained in section 5.2, the equation and state variable

related to the stator phase c are eliminated.

The eigensolution of the system at rated operating conditions yields seven eigenvalues of the

form λi = σ± jωd . More precisely, two pairs of complex conjugate and three purely real

eigenvalues are obtained. The results are given in table 5.3.

Real and imaginary parts are presented separately. In addition, the damping time constant τ

(τ = 1
/|σ|), the damping ratio ζ and the frequency f are calculated based on equations (3.11)

and (3.12), given on page 35. Furthermore, the dominant state variables are indicated. They

were identified using participation factors calculated according to the concept presented

in section 3.3.3. However, the numerical values are not given here in order to simplify the

interpretation of the results. The dominant states indicated in table 5.3 are those that presented

higher values of participation factor related to each eigenvalue.

The first pair of eigenvalues can be identified as the local mode. It has a frequency that lies

in the range of electro-mechanical mode oscillations (0.7 to 2 Hz). Moreover, the dominant

states are the stator currents and the mechanical variables. This corresponds to the effect of

the local mode which is related to rotor angle oscillations of the generator against the network.

It is important to note that the frequency of this mode depends strongly on the operating

Table 5.3: Eigenproperties of the synchronous machine – infinite bus system.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −2.942 10.34 0.340 27.4 1.646 ∆ωm ,∆θ,∆iabc

3,4 −3.484 314.0 0.287 1.11 49.97 ∆iabc

5 −25.83 − 0.039 100 − ∆iQ ,∆iabc

6 −20.59 − 0.049 100 − ∆iD ,∆iabc

7 −0.418 − 2.392 100 − ∆i f ,∆iabc
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point of the machine.

Furthermore, it is also interesting to observe that the damping time constant of this eigenmode

(τ = 0.340 s) is related to the equivalent damper winding D. Indeed, this value of τ is very

close to the short-circuit time constant of the equivalent damper winding D (TD ), which is

equal to 0.344 secondsb.

The effect of this eigenmode can be observed through a time-domain simulation once the

system is disturbed. Figure 5.4 presents the electrical power fluctuation following a +5%

step on the external torque applied to the rotorc. In the oscillating behavior it is possible to

graphically identify a frequency f = 1.654 Hz, which confirms the result presented in table 5.3

with a very strong agreement. Additionally, it is possible to determine a decaying envelope

calculated from two peaks of the oscillating power. The determination of this envelope

yields an attenuation σ = −2.91. This means τ = 0.344 s which is equal to the short-circuit

time constant of the equivalent damper winding D (TD ), thus in good agreement with the

eigenanalysis result.

The second pair of eigenvalues (pair 3,4) is clearly related to the frequency of the network.

Consequently, the dominant states are the stator currents. Additionally, for these eigenvalues

τ= 0.287 s, which is very close to the armature short-circuit time constant Ta = 0.289 s.

The eigenvalue number 5 is a purely real eigenvalue which is closely related to the equiv-

alent damper winding Q, but also to the stator windings. Its corresponding time constant

(τ= 0.039 s) is relatively close to the subtransient short-circuit time constant in the q-axis

T ′′
q = 0.034 s.

The eigenvalue number 6 is of similar nature. It is strongly related to the equivalent damper

winding D and to the stator windings to a less extent. In this case, τ= 0.049 s is relatively close

to the subtransient short-circuit time constant in the d-axis T ′′
d = 0.044 s.

The last eigenvalue is strongly related both to the field winding and to the stator windings. Its

damping has a time constant τ= 2.392 s which cannot be directly compared to any individual

time constant of the machine. Nevertheless, it can be clearly observed through time-domain

simulation results. This eigenmode appears on the exponential decrease of the aperiodic

component happening on the excitation current after the disturbance, as it can be seen in

figure 5.5. Besides the oscillation caused by the local mode, which is quickly damped, it is

easy to observe the exponential decrease of the excitation current. From two reference points

bFor details on how the time constants of the synchronous machine can be determined, please see J. Chatelain,
Machines Electriques, chap. 7, pp. 389-391 [16].

cAccording to the sign convention used in SIMSEN, negative power means generated (delivered) power. In order
to better visualize the local mode and its envelope, the curves of electrical power are presented in this chapter with
a negative sign (−pel ).
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Figure 5.4: Power fluctuation due to the local mode oscillation.
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Figure 5.5: Damping of the excitation current related to the corresponding eigenvalue.
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taken from the curve, a time constant τ= 2.404 s (σ= 0.416), confirming the last eigenmode.

5.4 Wound-Rotor Induction Machine

The small-signal model of the wound-rotor induction machine is composed of eight differ-

ential equations: three for the a,b,c-phases of the stator, three for the A,B,C-phases of the

rotor and the two mechanical equations, related to the angular speed and position previously

described.

In this example, an induction generator with a star-star (Y-Y ) connection and short-circuited

rotor windings is considered connected to an infinite bus, as depicted in figure 5.6. The ratings

of the machine are presented in table 5.4.

IM

Figure 5.6: Induction machine connected to an infinite bus.

Table 5.4: Induction machine ratings.

Rated apparent power SN 83.0 (MVA)

Rated voltage UN 18.0 (kV)

Rated frequency fN 60 (Hz)

Number of pairs of poles Pp 8 ( – )

Stator-rotor turns ratio µ 0.598 ( – )

The parameters of the machine are those from its equivalent circuit, illustrated in figure 5.7.

For this example, the parameters are presented in table 5.5 (obtained from [75]).

The eigensolution of the system at rated voltage and 40% load operating condition yields five

eigenvalues, 2 pairs of complex conjugate and 1 purely real eigenvalue. The results are given

in table 5.6.

The first pair of eigenvalues correspond to the local mode. It is mostly related to the rotor

oscillations against the network, but it also relates to the stator and rotor quantities. It can be

observed through a time-domain simulation in which the external torque applied to the rotor

is disturbed by a +5% step. The mechanical power fluctuations correspond to the action of the
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Figure 5.7: Equivalent circuit of the induction machine.

Table 5.5: Parameters of the induction machine.

Resistance of stator windings rs 1.744 ·10−3 (p.u.)

Leakage reactance of stator windings xσs 0.2604 (p.u.)

Magnetizing reactance xhs 4.198 (p.u.)

Resistance of the rotor windings r ′
r 2.015 ·10−3 (p.u.)

Leakage reactance of rotor windings x ′
σr 0.2721 (p.u.)

Inertia of rotating parts Jg 279.4 ·103 (kg ·m2)

local mode and are depicted in figure 5.8. It is possible to identify a frequency of oscillation

f = 0.963 Hz and an envelope that decreases exponentially with a time constant τ= 1.270 s

(σ=−0.787). This is in very good agreement with the properties of the local mode calculated

through the small-signal model.

The second pair of eigenvalues correspond to the frequency of the network (60 Hz), and

is directly related to the stator currents. The time constant related to these eigenvalues

(τ= 0.785 s) is the transient short-circuit time constant of the stator windings T ′
s = 0.785 sd.

Finally, the eigenvalue number 5 describes a non-oscillatory exponential decrease with τ=
0.728 s. The effect of this eigenvalue can be observed in the behavior of the consumed reactive

power, presented in figure 5.9. Besides the oscillating effect of the local mode, it is possible

dFor details on how the time constants of the induction machine can be determined, please see J. Chatelain,
Machines Electriques, chap. 6, pp. 300-305 [16].

Table 5.6: Eigenproperties of the induction generator machine – infinite bus system.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −0.781 6.073 1.280 12.76 0.967 ∆iabc,ABC ,∆ωm ,∆θ

3,4 −1.274 377.0 0.785 0.338 60.0 ∆iabc

5 −1.374 − 0.728 100 − ∆iabc,ABC
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Figure 5.8: Power fluctuation on induction generator due to the local mode oscillation.
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Figure 5.9: Exponential damping of the aperiodic component in the reactive power.
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to see that there is an aperiodic component which fades away exponentially. The points

describing this component are obtained by taking the mean value between the upper and

lower envelopes of the curve. This exponential behavior has a time constant τ = 0.732 s

(σ=−1.365), validating the calculated eigenvalue.

5.5 Power Transformers

The small-signal model for power transformers are basically composed of six equations, one

for each phase (state variables ∆iabc1 and ∆iabc2, respectively for primary and secondary

sides). If there is a delta connection, then a supplementary equation is added, related to the

circulating current in the delta (∆i∆). The transformer connections available are the vector

groups Yy0, Yd5 and Yd11.

In order to illustrate and validate the small-signal model of the transformer, an example is

presented. Basically, the example of section 5.3 is modified to introduce a transformer of

vector group Yd5 between the synchronous machine and the infinite bus, as presented in

figure 5.10. The ratings of the transformer are given in table 5.7.

The parameters required for the transformer are those from its equivalent circuit, depicted in

figure 5.11. The parameters used in this example are presented in table 5.8.

Before performing the eigenvalues calculation of the system presented in figure 5.10, it’s

interesting to calculate the eigenvalues of the transformer alone, so that they can be better

identified. The results of this calculation are presented in table 5.9. Differently from the

rotating machines, the eigenvalues of the transformer alone are independent of any initial

conditions.

SM

Figure 5.10: Yd5-transformer – generator – infinite bus system.

Table 5.7: Power transformer ratings.

Rated apparent power SN 84.0 (MVA)

Rated primary voltage UN 1 220.0 (kV)

Rated secondary voltage UN 2 17.5 (kV)

Rated frequency fN 50 (Hz)
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Figure 5.11: Equivalent circuit of a power transformer.

Table 5.8: Parameters of the Yd5 power transformer.

Short-circuit resistance (r1 + r2) rcc 3.0 ·10−3 (p.u.)

Short-circuit reactance (xσ1 +xσ2) xcc 0.14 (p.u.)

Three-phase magnetizing reactance xh1 5.0 (p.u.)

The first two pairs present a frequency of exactly 50 Hz. It is important to note that this

frequency does not have a physical meaning in the case of the transformer alone. It appears

as a consequence of the linearization procedure. Indeed, the linearization is applied on the

models at a stage where they are represented in the d,q,o-axis system (Park’s representation).

In order to maintain compatibility with the models of rotating machines, the d,q,o-axis system

is a rotating reference frame for all elements (including transformers, lines, loads, etc.). The

frequency of 50 Hz that appears in eigenvalues 1 to 4 is the rotational frequency of the reference

frame in which the models were linearized. On the other hand, the real part of all eigenvalues

are directly related to the parameters of the transformer.

The first pair has a time constant τ= 21.37 s. This is equal to the time constant related to the

magnetizing inductance of the transformer. This time constant can be obtained when the

equivalent circuit is seen from the magnetizing branch with both terminals short-circuited,

as illustrated in figure 5.12. The magnetizing time constant Th1 of the transformer can be

calculated as:

Table 5.9: Eigenproperties of the power transformer.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −0.0468 314.16 21.37 0.015 50.0 ∆iabc1,abc2

3,4 −6.732 314.16 0.149 2.14 50.0 ∆iabc1,abc2

5 −6.732 − 0.149 100 − ∆i∆
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Figure 5.12: Equivalent circuit of the transformer seen from the magnetizing branch.

Table 5.10: Eigenproperties of the transformer – generator – infinite bus system.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −1.423 8.738 0.703 16.0 1.391 ∆ωm ,∆θ,∆iabc2

3,4 −4.967 314.02 0.201 2.14 49.98 ∆iabc2

5,6 −0.0643 314.16 15.55 0.020 50.0 ∆iabc1,abc2

7 −18.74 − 0.053 100 − ∆iQ ,∆iabc2

8 −16.58 − 0.060 100 − ∆iD ,∆iabc2

9 −6.732 − 0.149 100 − ∆i∆

10 −0.292 − 3.425 100 − ∆i f ,∆iabc2

Th1 =
xh1 +

xσ1 xσ2

xσ1 +xσ2

ωN
r1 r2

r1 + r2

= 21.37 s (5.3)

The second pair and the last eigenvalue have the same time constant τ= 0.149 s. The difference

between them is that the second pair is related to the primary and secondary currents, whereas

the last eigenvalue is related to the circulating current in the delta. This value of τ is equal to

the short-circuit time constant of the transformer Tcc , which can be analytically determined as:

Tcc = xcc

ωN rcc
= xσ1 +xσ2

ωN (r1 + r2)
= 0.149 s (5.4)

Now that the eigenvalues of the transformer are validated, it can be applied to the example

illustrated in figure 5.10. The same operating conditions of the case presented in section 5.3

are considered here. The results are presented in table 5.10.

It is possible to notice that the introduction of the transformer adds three eigenvalues (num-

bers 5, 6 and 9) compared to the example of section 5.3 (see table 5.3). This is due to the

windings of the primary side of the transformer and to the delta connection of the secondary
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side.

Most remarkably, the inclusion of the transformer shifts the eigenvalues already present in

the first example (see table 5.3). This shift makes the system less stiff (damping ratios are

reduced). This is indeed logical since the stiffness of this system is due to the infinite bus.

The transformer increases the electrical distance between the bus and the generator, which

makes it slightly less stable. Without the presence of any regulator, the inclusion of other series

elements between the infinite bus and the machine would make it increasingly less stable,

tending to make the local mode (pair 1,2) unstable in an extreme case. The other eigenvalues

are also shifted indicating that the time constants of the synchronous machine and of the

transformer combine together when these two elements are connected.

It is possible to confirm the eigenmodes calculated for this case as it was done in the first

example. However, since these modes keep the same nature, the validation procedure is not

duplicated here in order to avoid repetition.

5.6 RL and RLC Loads

Electrical loads are modeled by RL and RLC elements. The parameters of the load (values

of RL , LL and CL) can be given either directly or indirectly through the specification of an

operating point of active and reactive power. In this case, the parameters are calculated by the

initialization procedure.

The RL model is composed of three state equations, one for each phase, the last one being

eliminated as explained in section 5.2. Thus, it yields two eigenvalues which are the inverse

of the time constant τ= LL/RL of a RL circuit. It is relevant to note that these values present

also the frequency of the reference frame, as it was the case for the power transformers (this

specific frequency has no physical meaning).

The RLC model is represented by six state equations: three related to the phase currents (∆iabc )

and three to the capacitor voltages (∆uC abc ). After the elimination of the third phase current,

five eigenvalues are obtained.

As a simple illustration, a three phase RLC load connected to a voltage source is considered,

as depicted in figure 5.13. The parameters of the load are given in table 5.11. The results of

the eigensolution of this elementary system are given in table 5.12. Even though it is a simple

example, the interpretation of the results is nonetheless important.

The first two pairs correspond to the two RLC loops formed in SIMSEN. These are oscillatory

modes due to the resonance between the inductive and capacitive elements. However, the

frequency of these modes is somewhat masked due to the reference frame. The values ob-
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Table 5.11: Parameters of the RLC load.

Resistance RL 0.90 (Ω)

Inductance LL 320.0 (mH)

Capacitance CL 18.0 (mF)

Voltage U 17.5 (kV)

Frequency fN 50 (Hz)

Table 5.12: Eigenproperties of the RLC load.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −1.406 301.06 = 314.16−13.1 0.711 0.810 2.085 ∆iabc ,∆uC abc

3,4 −1.406 327.26 = 314.16+13.1 0.711 0.810 2.085 ∆iabc ,∆uC abc

5 0 − − − − ∆uC c

tained (301.06 and 327.26 rad/s) are a combination of the real damped frequency ωd with the

frequency of the reference frame ωa . The actual damped frequency is obtained as follows:

ωd1,2 =−ωλ1,2 +ωa

ωd3,4 =+ωλ3,4 −ωa

This results in ωd = 13.1 rad/s, reason for which this value is highlighted in boldface type in

table 5.12. Additionally, the values of ζ and f are calculated based on this value of ωd .

Both values of σ and ωd can be confirmed analytically. For a RLC circuit, the attenuation σ

and the natural (resonance) frequency ω0 can be calculated based on the parameters of the

system, yielding the following results:

σ= RL

2LL
= 1.406 Np/s

ω0 = 1√
LL CL

= 13.176 rad/s

RL LL CL

Figure 5.13: RLC load.
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Consequently, the damped frequency is:

ωd =
√
ω2

0 −σ2 = 13.101 rad/s

This is an analytical confirmation of the results presented in table 5.12.

It is also possible to observe the effect of the resonance frequency and its damping through a

time-domain simulation which allows for validating the results. A step increase of 5% on the

voltage feeding the load makes the amplitude of the currents oscillate.

Figure 5.14 presents the phase a current for which an oscillating envelope can be determined.

This envelope has an oscillation frequency equal to the resonance frequency. Moreover, it

is possible to identify the damping and the time constant of the mode as it was done in the

previous examples. A very good agreement is found between the eigenvalue results , the

analytical calculation and the time-domain simulation.
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Figure 5.14: Sinusoidal envelope and its exponential damping for a RLC load.

Finally, the last eigenvalue is zero. This happens due to the fact that the state variable ∆ic is

eliminated in the construction of the matrices. The state equation related to the capacitor

voltage is:

CL
d∆uC c

d t
= ic
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Since ic =−ia − ib , there is a linear dependency between this equation and the other capacitor

voltage equations. This causes the pure zero eigenvalue, which has no physical meaning and

does not indicate any unstable condition.

5.7 Transmission Lines

Two models of transmission lines are developed for small-signal stability: (i) a resistive-induc-

tive (RL) model, convenient for the representation of short transmission lines (with lengths up

to 80 km); and (ii) theπ-section model, suitable for the representation of medium transmission

lines (with lengths between 80 km and 160 km).

The RL model corresponds to a three-phase resistive-inductive element as depicted in fig-

ure 5.15. This element is represented by three state variables(∆iabc ) and three corresponding

state equations which describe the voltage drop between the two terminals of each phase.

When applied in a circuit, this element introduces a time constant τ = Lt l
/

Rt l which com-

bines with the time constants of other elements in the same current loop, thus influencing

the damping of some eigenmodes. This model will be applied in the example presented in

the next section (see section 5.8). Moreover, for the purpose of studying the small-signal

stability of hydroelectric power plants, the RL model is sufficient to conveniently represent

the connection of the generator (or its step-up transformer) to the power grid.

Rtl Ltl

uabc,1

ia

ib

ic

uabc,2

Figure 5.15: Resistive-inductive transmission line.

For specific cases when the representation of network parts with longer lines requires more

precision, it is possible to apply the π-section transmission line element. In SIMSEN, this

element takes into account the RL elements (Rt l , Lt l ), including mutual inductances (Lt lm),

single-phase and phase-to-phase capacitances (Cφn and Cφφ, respectively), as depicted in

figure 5.16.

An important point to observe regarding this model is that in order to keep the formulation

presented in equation (4.6), on page 46, residual inductances (Lr es) are added in series with

the capacitive elements. This increases the order of the model to 27. The value of these

inductances is determined based on the value of the capacitances as well as on the integration
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Figure 5.16: Three-phase scheme of a π-section transmission line element.

time step Tstep configured for time-domain simulations, as follows:

Lr es =
(
0.5Tstep

)2

C
(5.5)

Consequently, if the eigenvalues of the π-section model alone are calculated, the LC branches

yield resonance frequencies without any physical meaning, which are equal to:

ω0 = 1√
Lr es C

−→ ω0 = 2

Tstep
(5.6)

This value is the same, regardless of the line parameters. Thus, it has no relation with the

physical representation of transmission lines.

Nonetheless, the value of these residual inductances is small enough to be generally negligible

when the π-section model is combined with other circuit elements that are essentially induc-

tive. This means that when the π-section small-signal model is connected together with other

elements, the interaction between the true inductive parts with the capactive characteristic

of the line will be correctly represented (still, it is necessary to compensate for the reference

frame frequency, as explained in section 5.6).

A simple way to validate the small-signal model of theπ-section transmission line is to connect

it to a basic RL load and extract the eigenvalues. The validation of the results can be achieved

as it was done for the RLC load in section 5.6. The validation procedure must be applied

repeatedly for each LC or RLC loop. However, this is not presented here in order to avoid

repetition.
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5.8 Voltage Regulators

The small-signal models developed for automatic voltage regulators are available under two

different configurations (implemented in two distinct modules): (i) the IEEE ST1A voltage

regulator, as proposed by the standard IEEE Std 421-5 [38]; and (ii) a model based on the

Unitrol® regulator, a commercial AVR broadly known and used worldwide.

The block diagram of the ST1A voltage regulator is presented in figure 5.17. Besides the

standard structure proposed by IEEE, a filter is added to the input VC so that it corresponds

to the filtered value of the measured voltage um of the regulated machine. In the context of

small-signal stability, limitations and discrete elements cannot be taken into account. For

this reason, they are represented in gray. After neglecting such elements, the small-signal

model of the ST1A regulator is described by five time-domain state equations. Moreover, the

linearized expression of the input (∆um) is given as a function of the state variable of the

regulated machine. These expressions are given in appendix A, section A.6.

The other possible configuration corresponds to the model of the commercial voltage regulator

Unitrol®, which has been used in several power plants around the world. Its block diagram is

presented in figure 5.18. Once again, the elements not taken into account in the small-signal

model are represented in gray. The small-signal model of this regulator is described by four

time-domain state equations. The analytical description of the input (∆um) is the same as for

the ST1A regulator.

In order to illustrate the use of a voltage regulator model, an example is presented based on

the test case carried out in section 5.3. A short transmission line (represented by the RL model)

is added and the synchronous generator is regulated by the second configuration of AVR. This

system is presented in figure 5.19. The parameters and operating point of the generator are

kept unchanged, whereas the parameters of the line and the voltage regulator are given in

table 5.13.

The results obtained from the eigensolution of this system are presented in table 5.14.
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Figure 5.17: IEEE ST1A voltage regulator.
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Figure 5.18: Block diagram of the Unitrol® voltage regulator.
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Figure 5.19: Example of synchronous generator with automatic voltage regulator.

Table 5.13: Parameters of RL transmission line and voltage regulator.

Element Parameters

Transmission line
R ′

t l 0.03 (Ω/km)

L′
t l 0.70 (mH/km)

l 5.0 (km)

Voltage Regulator

k 250 (–)

T1 0.10 (s)

T2 0.02 (s)

T3 1.0 (s)

T4 5.0 (s)

Tms 0.04 (s)

Tst 0.005 (s)
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Table 5.14: Eigenproperties of the system with AVR and short transmission line.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −19.74 6.678 0.051 94.7 1.063 ∆iD ,∆i f ,∆ug ,∆uC 1

3,4 −0.790 7.748 1.266 10.1 1.233 ∆ωm ,∆θ,∆iabc

5,6 −28.92 313.64 0.035 9.18 49.92 ∆iabc

7 −200.77 − 0.005 100 − ∆ur eg

8 −47.82 − 0.021 100 − ∆i f ,∆iD ,∆uC 1

9 −14.21 − 0.070 100 − ∆iQ ,∆iabc

10 −2.152 − 0.465 100 − ∆iabc ,∆i f ,∆uC 2

11 −1.516 − 0.660 100 − ∆iabc ,∆i f ,∆uC 1

It is possible to see that the presence of the AVR not only introduces new eigenvalues, but

also generates interactions that give origin to a different oscillatory eigenmode (pair 1,2).

It corresponds to the control mode oscillations which are strongly damped. Due to such a

high damping ratio, it is not possible to observe the effects of this eigenmode through time-

domain simulations. Such a strong damping indicates that the tuning of the AVR parameters

is satisfactory, even though this is not an issue in question here. Nevertheless, it is interesting

to observe that control modes can become less stable if the regulator is not well tuned.

The presence of the short line also influences the stability of the system. Whereas the damping

of the 50 Hz component increases, the local mode (pair 3,4) gets less damped. This is a

consequence of the fact that the line decouples the generator from the infinite grid, increasing

the electrical distance between both. Moreover, the local mode frequency is also shifted. This

indicates that both damping and frequency of the local mode depend on the topology of the

system, on whether regulating elements are present or not and on how they are tuned.

The action of the local mode can once again be observed through a time-domain simulation in

which a +5% disturbance is applied to the external torque. Figure 5.20 presents the behavior

of the electrical power as well as the frequency of oscillation and the damping time constant

obtained graphically. Once again it is possible to conclude that a good agreement is obtained

between the properties extracted through the eigenvalues calculation and those from the

time-domain simulation of a small disturbance.

Finally, the purely real eigenvalues correspond to combinations of time constants of the

elements, indicating other forms of interaction that do not represent any risk of instability.

The eigenvalue number 7 can be particularly identified as the inverse of the time constant Tst

from the voltage regulator. The others cannot be directly related to specific parameters of the

system.
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Figure 5.20: Electrical power pulsation of the system with AVR and short transmission line.

5.9 Power System Stabilizer

A small-signal model was developed for the power system stabilizer IEEE PSS2B, proposed

by the standard IEEE Std 421-5 [38]. Besides the standard structure, the implementation of

this model in SIMSEN includes a filter for each input, as it can be seen in figure 5.21. This

model is described either by fourteen or fifteen time-domain state equations, depending on

the values of the parameters M and N . In SIMSEN, these parameters can assume either the

values M = 4, N = 1; or M = 5, N = 1; or M = 2, N = 2.

Based on the example presented in section 5.5, page 62, a new example is proposed which

includes the PSS2B and the same AVR model presented in the previous section, as depicted in

figure 5.22. The parameters and operating point previously used are kept unchanged. The
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Figure 5.21: IEEE PSS2B power system stabilizer with filtered inputs.
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Figure 5.22: Example of synchronous generator with AVR and PSS2B.

Table 5.15: Parameters of the PSS2B.

Ks1 1.00 (–)

Ks2 1.02 (–)

Ks3 1.00 (–)

Tω 1.00 ·10−4 (s)

Tp 1.25 ·10−2 (s)

Tw1...4 4.965 (s)

T1 0.180 (s)

T2 0.025 (s)

T3 0.330 (s)

T4 0.180 (s)

T6 1.00 ·10−4 (s)

T7 5.00 (s)

T8 0.500 (s)

T9 0.100 (s)

M 5 (–)

N 1 (–)

parameters used for the PSS2B are presented in table 5.15.

It is important to mention that in this illustrative case, the gain of the PSS (Ks1) is intentionally

set to a low value. In this way, it will still be possible to observe at least the local mode

oscillations through a disturbed time domain simulation, so that it can validate the eigenvalues

results.

The results obtained from the eigensolution of this system are extensively presented in ta-

ble 5.16. Where the dominant states are identified as "PSS", it means that internal variables of

the PSS are dominant. The specific variable ∆uPSS corresponds to the output of the stabilizer.

The PSS introduces fifteen state variables in the system. The interpretation of the complete
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Table 5.16: Eigenproperties of the system with PSS, AVR and step-up transformer.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −0.206 0.0015 4.854 100 2.4 ·10−6 PSS

3,4 −42.34 0.250 0.024 100 0.040 ∆i f ,∆iD ,PSS

5,6 −1.270 0.692 0.787 87.8 0.110 ∆i f ,∆ωm ,∆uC 1,2

7,8 −18.83 2.341 0.053 99.2 0.373 PSS

9,10 −7.221 6.061 0.138 76.6 0.965 PSS,∆iQ ,∆ωm

11,12 −20.72 7.587 0.048 93.9 1.208 PSS,∆i f ,∆iD ,∆ωm

13,14 −1.961 8.357 0.510 22.8 1.330 PSS,∆ωm ,∆θ,∆iabc2

15,16 −4.897 314.03 0.204 1.56 49.98 ∆iabc2

17,18 −0.065 314.16 15.38 0.021 50.00 ∆iabc1,abc2

19 −10000 − 10−4 100 − PSS

20 −10000 − 10−4 100 − PSS

21 −200.3 − 0.005 100 − ∆ur eg

22 −82.74 − 0.012 100 − PSS,∆i f ,∆iD

23 −10.00 − 0.100 100 − ∆uPSS ,∆uC 1

24 −6.732 − 0.149 100 − ∆i∆

25 −5.676 − 0.176 100 − PSS,∆ωm

26 −5.505 − 0.182 100 − PSS,∆ωm

27 −0.2014 − 4.965 100 − PSS

28 −0.2014 − 4.965 100 − PSS

29 −0.1924 − 5.198 100 − PSS

list of eigenvalues may become an intricate task. Nonetheless, the indication of the dominant

states through the computation of participation factors proves to be very useful.

Indeed, it is possible to see that several of the new eigenvalues are almost exclusively related

to internal variables of the PSS and have no significant interaction with the rest of the system.

Furthermore, they are either purely real or at least very well damped with a very low frequency.

On the other hand, the presence of the PSS causes the rise of new control modes. Since the

PSS gain has a low value in this example, these modes do not represent any risk to the stability

of the system. However, in real cases the gain is usually set to high values with the aim to damp

inter-area and local oscillations. This decreases the damping of control modes and, in extreme

cases, they might become unstable.

Finally, it is interesting to verify the local mode (pair 13,14). When confronted to the value
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obtained in the case without AVR and PSS, in table 5.10, page 64 (λ=−1.423± j 8.738, with

ζ= 16%), it is easy to see that even with a low gain the PSS acts positively, increasing the

damping ratio. Additionally, the frequency undergoes a slight shift.

A time-domain simulation similar to those performed previously allows for the confirmation

of these values. The results from the eigenvalues calculation with the model of the PSS are

compliant with the properties extracted from the time-domain results, presented in figure 5.23.
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Figure 5.23: Electrical power pulsation with AVR and PSS.

The implementation of these small-signal stability models in SIMSEN allow for the eigen-

analysis of systems of much higher complexity. The coupling of the models described in this

chapter with small-signal models of hydraulic elements in the same tool is a powerful asset for

coherent and comprehensive analyses of hydropower plants and systems.
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6.1 General

This chapter introduces the principle of modeling of the main hydraulic elements available

in SIMSEN. The development of the time-domain models was in reference [69], whereas the

linearized models derived from them were proposed in reference [1]. Only the main aspects

and models that were used in the present work are presented here in a compact form. For

further details, please refer to references [1, 69].

6.2 Hydroacoustic Model of a Pipe

Hydroacoustic modeling is the base of the hydraulic models of SIMSEN. The principle of mass

and momentum conservation is applied to describe the dynamic behavior of a pipe filled with

water. The water flow is considered to be one-dimensional, given that transversal lengths can

be neglected when compared to longitudinal lengths of hydraulic installations. Moreover, it is

assumed that the flow is normal to the cross section of the pipe, and the pressure, the density

and the flow velocity are uniform in a given cross section [69].

Considering an elementary pipe of length dx (see figure 6.1), the two equations describing its

dynamic behavior, based on the conservation of mass and momentum, are [107]:
∂h

∂x
+ 1

g A

∂Q

∂t
+ λ|Q|

2g D A2 Q = 0

∂h

∂t
+ a2

g A

∂Q

∂x
= 0

(6.1)

77



Chapter 6. Modeling of Hydraulic Elements

dx

Piezometric Line

hi
hi+1

Qi

Qi+1

zi zi+1

pi+1

ρg

pi
ρg

Datum

Figure 6.1: Model of a pipe of length dx [69].

where h is the piezometric head (given in meters of water column above a given datum), g is

the gravitational acceleration, A is the cross section of the pipe, Q is the water discharge, λ is

the local loss coefficient, D is the pipe diameter, and a is the wave speed of the water in the pipe.

For the determination of the system of hyperbolic partial differential equations (6.1), it must be

considered that there are no vertical displacements of the pipe and that the convective terms

related to the transport phenomena can be neglected with respect to propagative terms [69].

This is true due to the fact that hydroacoustic phenomena are caracterized by high wave

speeds a and low flow velocities c (c =Q
/

A).

The solution of equations (6.1) is obtained through an analogy with the telegraphist’s equations,

used in the study of electromagnetic wave propagation in conductors and transmission

lines [41, 76, 98]. These equations are given below:
∂u

∂x
+L′

e
∂i

∂t
+R ′

e i = 0

∂u

∂t
+ 1

C ′
e

∂i

∂x
= 0

(6.2)

where L′
e , R ′

e and C ′
e are, respectively, the lineic inductance, resistance and capacitance.

The analogy between the equation sets (6.1) and (6.2) is related to the fact that both systems

are characterized by a potential state variable (h and u) and a flow rate state variable (Q and

i ). Thus, it is possible to identify the lineic hydroacoustic resistance R ′
h , inductance L′

h and

capacitance C ′
h , which are defined as follows:

R ′
h = λ|Q|

2g D A2 (6.3)

L′
h = 1

g A
(6.4)

C ′
h = g A

a2 (6.5)

78



6.2. Hydroacoustic Model of a Pipe

The hydroacoustic resistance R ′
h is related to the head losses through the pipe, the inductance

L′
h is related to inertia effects of the water and the capacitance C ′

h is related to storage effects

due to pressure [69].

The hydroacoustic model represented by the system of equations (6.1) can then be rewritten

as: 
∂h

∂x
+L′

h

∂Q

∂t
+R ′

h(Q)Q = 0

∂h

∂t
+ 1

C ′
h

∂Q

∂x
= 0

(6.6)

Furthermore, it is important to consider the viscoelastic behavior of the pipe due to energy

dissipation during the deflection of the wall, in order to estimate pressure fluctuations and

system stability with more accuracy. This additional dissipation is represented by a resistance

in series with the capacitance C ′
h . This viscoelastic resistance Rve accounts for both fluid and

pipe viscoelasticity and is calculated as [1]:

Rve =
µeq

Aρ g dx
(6.7)

where µeq is the equivalent viscoelastic damping of the fluid and the pipe wall and ρ is the

density of the fluid.

It can be shown that for a pipe segment of length dx, this model may be represented by an

equivalent T-shaped electric circuit (see [69], pp. 42–43) as presented in figure 6.2, where:

Rh = R ′
h dx ; Lh = L′

h dx ; Ch =C ′
h dx

Finally, the equivalent circuit of figure 6.2 is described by the following set of three ordinary

differential equations:

Ch
dhi+1/2

d t
=Qi −Qi+1

Lh

2

dQi

d t
=−hi+1/2 −

(
Rh

2
+Rve

)
Qi +Rve Qi+1 +hi

Lh

2

dQi+1

d t
= hi+1/2 +Rve Qi −

(
Rh

2
+Rve

)
Qi+1 −hi+1

(6.8)

For a pipe of length l , the modeling is done by considering a series of n pipes of length dx.

The number of elements n in which the pipe is discretized influences directly the results.

Increasing n improves the accuracy of calculation of the natural frequencies of the pipe [1, 69].

Spatial and temporal discretisation are linked through the so-called Courant-Friedrichs-Lewy

79



Chapter 6. Modeling of Hydraulic Elements

Rh / 2

Ch

Lh / 2 Lh / 2 Rh / 2

hi hi+1

hi+1/2

Qi

Rve

Qi+1

Figure 6.2: Equivalent scheme of a pipe of length dx [69].

condition (CFL condition) and based on Courant number Cr [107]:

Cr = a ·dt

dx
≤ 1

where dt is the integration time step.

6.3 Francis Turbine Model

Francis turbines are able of converting both potential and kinetic energy of water into me-

chanical work (reaction turbines). Structurally, the rotor of a Francis turbine has fixed blades

and the water flow is controlled by the guide vanes.

As flow developing in hydraulic machines is very complex, no analytical model is available

to represent its dynamic behavior over the four possible quadrants of operation. Therefore,

reduced scale model test data are used to model hydraulic machines through a quasi-static

approach.

From the viewpoint of an equivalent electric model, the turbine is represented by a pressure

source, which converts hydraulic energy into mechanical work. A series equivalent inductance

Lt is used to represent water inertia effects. It is calculated as:

Lt =
leq

g Ā
(6.9)

where leq is the turbine equivalent length and Ā is the turbine mean cross section. In addition,

a series resistance Rt is used to ensure zero discharge when the guide vanes are fully closed.

The equivalent pressure source of the turbine Ht = Ht (y,Ω,Qi ) is driven by the turbine charac-

teristic, which is a function of the guide vanes opening (GVO) y , the angular rotational speed

Ω
(
Ω= 2π

60 n
)

and the discharge Qi [69].

Figure 6.3 presents an example of Francis turbine characteristic curves. These curves are

determined in terms of the speed factor N11, discharge factor Q11 and torque factor T11, which
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Figure 6.3: Turbine characteristics for different guide vane opening values.

are defined as:

N11 =
n Dref

Htur b
; Q11 = Qi

D2
ref

√
Htur b

; T11 = Ttur b

D3
ref Htur b

where n is the rotational speed, Dref is the reference diameter of the turbine, Htur b is the net

head, Qi is the discharge and Ttur b is the turbine torque.

Figure 6.4 presents the model and the equivalent electric circuit representing the Francis

turbine. This circuit is described by the following differential equation:

Lt
dQi

d t
=−Rt Qi −Ht (y,Ω,Qi )+HI −H Ī (6.10)

The full description of the Francis turbine is achieved with the momentum equation, which

describes the dynamics of the angular rotational speedΩ of the rotating parts:

J
dΩ

d t
=∑

T = Ttur b +Tem (6.11)

where J is the moment of inertia of the rotating parts, Ttur b = Ttur b(y,Ω,Qi ) is the turbine

Rt Lt

HI Qi
HI

Ht (y,Ω,Qi)

yΩ

HI

Datum

zref

pI

ρg
pI

ρg

Hydraulic grade line

Qi

HI

Hturb

Figure 6.4: Francis turbine model (left) and equivalent scheme (right) [69].
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torque, as previously defined, and Tem is the electromagnetic torque of the generator, as

defined in chapter 4. As it can be seen in figure 6.3, the turbine torque also depends on the

guide vanes opening (GVO) y , the angular rotational speedΩ and the discharge Qi .

6.4 Model of a Surge Tank

The surge tank is a structure used to protect the hydraulic circuit against waterhammer effect.

It functions as a free surface for wave reflection, whose water level depends on the discharge

time history [69]. The variations of piezometric head hc are related to the stored discharge

Qc , which evidences a capacitive behavior. Thus, the equivalent capacitance of a surge tank

CST is directly its cross section which is a function of the elevation. Also, the stored discharge

is the difference between the upstream QSTi and downstream QSTi+1 discharges. In addition,

the flow Qc of the surge tank undergoes head losses due to cross section changes and to a

diaphragm commonly placed at the surge tank inlet, which is used to increase damping. These

head losses hd are represented by a resistance Rd (Qc ) which is a function of the discharge [69].

Figure 6.5 depicts the electric equivalent circuit that represents the resistive-capacitive behav-

ior of a surge tank. Equation (6.12), obtained as follows, describes this behavior.

hST = hc +hd

hd = Rd Qc

Qc =QSTi −QSTi+1 =CST
dhc

d t

Finally:

Rd CST
dhc

d t
= hST −hc (6.12)

Rd

CST

hST

hc

QST i QST i+1

Qc

hd

Piezometric line

QST i QST i+1

Qc

Datum

hc

hd

hST

Figure 6.5: Surge tank model (left) and equivalent scheme (right) [69].
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6.5 Model of the Turbine Governor

The turbine governor is a regulation device that acts on the guide vanes in order to control

either rotational speed, output power, water discharge or, in some cases, reservoir water level.

Consequently, the turbine governor input varies according to the regulated quantity.

From the modeling point of view, it can be characterized by the series representation of a PID

regulator with filtered input, whose transfer function Gt g (s) is as follows:

Gt g (s) = Y (s)

X (s)
= Kp · 1+ s Ti

s Ti
· 1+ s Td

1+ s T f
(6.13)

where X (s) is the frequency domain input, Y (s) is the frequency domain output that acts

on the guide vanes, Kp is the proportional gain, Ti is the integral time constant, Td is the

derivative time constant and T f is the filter time constant. The block diagram for this transfer

function is represented in figure 6.6.

xm

Kp

sTd

1

sTi

1

sTf–

xset x y

–

Figure 6.6: Turbine governor block diagram.

In SIMSEN, the time-domain behavior of this block diagram is described by the following set

of equations, where x is the input, y1 and y2 are implicit state variables of the regulator, and y

is the output:

T f
d y1

d t
= x − y1

Ti
d y2

d t
= y − y2

y = Kp

(
1+ Td −T f

T f

)
x −Kp

Td −T f

T f
y1 + y2

(6.14)

6.6 Linearization of the Hydraulic Models

The linearization of the time-domain hydraulic models is done through first-order Taylor

expansions, as described in section 3.3.1, equation (3.6). Considering the equivalent models

presented in the previous sections, the mathematical representation of hydraulic elements
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presents less nonlinearities than electrical machines. These nonlinearities are mostly related

to the proportionality of hydraulic resistances to the discharge Qi . Other nonlinearities are

related to the characteristic curves of the Francis turbine.

Considering the model of the pipe represented by the set of equations (6.8), the nonlinearity is

due to the square exponent of the flow rate in the following term [1]:

∆Hr = Rh

2
Qi = 1

2

λdx

2g D A2 |Qi |Qi

Under small disturbances, it is possible to consider that the direction of the water flow does

not change (Qi > 0). Thus, the multiplication |Qi |Qi becomes Q2
i [60]. So:

∆Hr =
R∗

h

2
Q2

i

with

R∗
h = λdx

2g D A2 = Rh

|Qi |

Finally, the linearized set of equations for a viscoelastic pipe of length dx is:

Ch
d∆hi+1/2

d t
=∆Qi −∆Qi+1

Lh

2

d∆Qi

d t
=−∆hi+1/2 −

(
R∗

h

∣∣Qi
∣∣
0 +Rve

)
∆Qi +Rve∆Qi+1 +hi

∣∣
0

Lh

2

d∆Qi+1

d t
=∆hi+1/2 +Rve∆Qi −

(
R∗

h

∣∣Qi+1
∣∣
0 +Rve

)
∆Qi+1 −hi+1

∣∣
0

(6.15)

Regarding the Francis turbine, the equivalent hydraulic resistance introduces a nonlinearity

related to the square of the discharge Qi , in the same way as for the viscoelastic pipe. Further-

more, there are nonlinearities related to the pressure source Ht (y,Ω,Qi ) and to the torque

Tt (y,Ω,Qi ) [1]. The linearization of these quantities is given by:

∆Ht = ∂Ht

∂Qi

∣∣∣∣
0
∆Qi + ∂Ht

∂Ω

∣∣∣∣
0
∆Ω+ ∂Ht

∂y

∣∣∣∣
0
∆y

∆Tt = ∂Tt

∂Qi

∣∣∣∣
0
∆Qi + ∂Tt

∂Ω

∣∣∣∣
0
∆Ω+ ∂Tt

∂y

∣∣∣∣
0
∆y

Thus, the linearized set of equations for the Francis turbine is:
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
Lt

d∆Qi

d t
=

(
−2R∗

t Qi
∣∣
0 −

∂Ht

∂Qi

∣∣∣∣
0

)
∆Qi − ∂Ht

∂Ω

∣∣∣∣
0
∆Ω− ∂Ht

∂y

∣∣∣∣
0
∆y +hI

∣∣
0 −h Ī

∣∣
0

J
d∆Ω

d t
= ∂Tt

∂Qi

∣∣∣∣
0
∆Qi + ∂Tt

∂Ω

∣∣∣∣
0
∆Ω+ ∂Tt

∂y

∣∣∣∣
0
∆y +∆Tem

(6.16)

with

R∗
t = Rt

|Qi |

Therefore, the Francis turbine presents nonlinearities not only related to the resistance term,

but also to the turbine characteristics. For this reason, the calculation of the six gradients of

system of equations (6.16) is a fundamental task.

In the case of unregulated turbines, the guide vanes opening remain constant and are not

a state variable of the system. Therefore, the gradients related to it are not included in the

linearized matrix. Moreover, the linearized electromagnetic torque ∆Tem is obtained from

the electrical machine model. If only the hydraulic circuit is represented, the electromagnetic

torque is considered to be a constant value Tem
∣∣
0.

Finally, concerning the surge tank model, the only nonlinearity is also related to the resistance

term which introduces a quadratic proportionality relative to the discharge. Consequently,

the linearization of this term is identical to the resistance term related to the pipe model. By

applying the same principle to the equations presented in section 6.4, the resulting linearized

model of the surge tank is:

(
2R∗

dQc
∣∣
0

)
CST

d∆hc

d t
= hST

∣∣
0 −∆hc (6.17)

with

R∗
d = Rd

|Qc |

The use of hydraulic models for a complete representation of hydropower plants allows for a

better determination of the eigenmodes of the system. This is very important in cases where

the interactions between the subsystems must be studied, such as output power fluctuations

due to the influence of hydraulic phenomena.
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Stability Issues and Solutions for an

Islanded Hydropower Plant

7.1 Introduction

In a number of countries, the lack of essential electricity infrastructure weakens social and

economic development. Plus, reliability and availability are a major issue for the minority that

has electricity supply. In many cases, however, such countries have sufficient energy potential

to be exploited so that the electricity needs can be met. In sub-Saharan Africa, for example,

hydropower accounts for one-fifth of today’s power supply, but less then 10% of the estimated

technical potential have been exploited [36].

Most frequently, using such hydroelectric potential requires the installation of power plants

in remote areas, where the connection with large-scale power grids is nonexistent or at least,

very weak. Therefore, hydropower plants installed in such conditions must be capable of

withstanding isolated or islanded operation modes. As mentioned in chapter 1, section 1.2,

islanded operation is the condition when the power plant and its surrounding network have a

weak connection (low short-circuit power) with the power grid, and with no tie-line connec-

tions to neighboring systems. Isolated operation happens when the power plant is responsible

for feeding a local network without any connection with a large power grid.

The aim of this chapter is to present a case study that illustrates stability issues for islanded

hydropower plants, and how regulation systems such as turbine governors and power system

stabilizers may contribute to better performance and dynamic behavior. Moreover, this

chapter demonstrates how electrical, hydraulic, mechanical and control subsystems may

interact sometimes in a positive sense, sometimes in an adverse way.

For this purpose, a hypothetical system is proposed in which a hydropower plant runs under

89



Chapter 7. Stability Issues and Solutions for an Islanded Hydropower Plant

islanded operation mode, due to weak connections with the electrical network. Different

scenarios are possible and the most critical one is analyzed. This system is described hereafter.

7.2 Case Study Description

The system studied in this chapter is a 75 MW hydropower plant which operates under islanded

condition. Figure 7.1 presents the layout of this system. The electrical and hydraulic parts,

with corresponding control elements, are described in the following subsections.
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nturb

Figure 7.1: Layout of the islanded hydroelectric power plant.

7.2.1 Electrical Subsystem

The electrical part of the power plant is constituted of an 83 MVA salient-pole synchronous

generator connected to a 220 kV/17.5 kV Yd5 step-up transformer. The generator is equipped

with the ABB Unitrol® excitation system as voltage regulator (see figure 5.18), and there is the

possibility of putting into service a power system stabilizer of type IEEE PSS2B (see figure 5.21).

This power plant is connected to the grid by two parallel feeders but this connection is weak.

Feeder 1 has a short-circuit power Ssc1 = 100 MVA, whereas the feeder 2 has Ssc2 = 150 MVA.

Therefore, the short-circuit power on the point of connection is 250 MVA in the best case, i.e.,

as long as both feeders are energized. Such a low value of short-circuit power can result in

poorly damped electro-mechanical mode oscillations.

Table 7.1 presents the main parameters of the electrical elements of this installation. The

parameters of voltage regulator and PSS are given further, in table 7.3.

90



7.2. Case Study Description

Table 7.1: Main parameters of the electrical installation.

Element Ratings / Parameters

Generator

SN = 83 MVA

UN = 17.5 kV

fN = 50 Hz

Pp = 5 (number of pairs of poles)

I f δ0 = 578.3 A

Jg = 160.3 ·103 kg ·m2

Stator windings connection: Y

Step-up transformer

SN = 84 MVA

UN 1 = 220 kV

UN 2 = 17.5 kV

Vector group: Yd5

Power grid
Ssc = 250 MVA (total short-circuit power)

UN = 220 kV

fN = 50 Hz

7.2.2 Hydraulic Subsystem

The hydraulic installation is composed of an upstream reservoir, an 1100 meter long penstock

feeding a 75 MW Francis turbine, followed by an 100 meter long tailrace tunnel and a lower

reservoir. The main parameters of this system are presented in table 7.2.

The penstock is discretized in twenty elements, whereas the tailrace tunnel is represented

by five pipe elements. The discretization of the piping system follows the CFL condition,

explained in chapter 6, section 6.2. Additionally, the turbine characteristic curves are taken

into account.

Consequently, this high order model takes into account effects of water hammer, mass oscilla-

tion, and transient behavior of the turbine in the four quadrants, linked to the corresponding

rotating inertia.

Furthermore, the hydraulic system is equipped with a turbine governor. Since the connection

to the grid is weak, it can run as a speed/frequency regulator, thus contributing to the frequency

stability of the system. The frequency regulator used is a PID regulator such as presented in

figure 6.6. The corresponding parameters are given in table 7.3.
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Table 7.2: Main parameters of the hydraulic installation.

Element Dimensions

Reservoir Ho = 330 m (gross head)

Penstock
L = 1100 m

D = 3.0 m

a = 1100 m/s

Francis turbine

PN = 75 MW

nN = 600 rpm

HN = 314.2 m

ν= 0.298 (specific speed)

Jt = 8.0 ·103 kg ·m2

Tailrace tunnel
L = 100 m

D = 3.5 m

a = 1000 m/s

Coupling shaft
Ksh = 1.26 ·108 Nm/rad (torsional stiffness)

µsh = 5.0 ·103 Nms/rad (viscous damping)

Table 7.3: Parameters of the control and regulation elements.

Element Parameters

Turbine governor
Kp = 1.0

T f = 0.5 s Ti = 3.7 s Td = 1.0 s

Voltage regulator
k = 150

T1 = 0.1 s T2 = 0.02 s T3 = 1.22 s

T4 = 5.0 s Tms = 0.04 s Tst = 0.005 s

Stabilizer (PSS)

M = 5 N = 1

Ks1 = 20 Ks2 = 0.625 Ks3 = 1.0

Tω = 0.1 ms Tp = 12.5 ms Tw1...4 = 4.96 s

T1 = 0.15 s T2 = 0.09 s T3 = 0.15 s

T4 = 0.09 s T6 = 0.1 ms T7 = 5.0 s

T8 = 1.05 s T9 = 0.21 s
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7.2.3 Possible Scenarios

Considering possible outages of the feeders and the unreliability of weak power grids, three

scenarios are proposed:

1. Regular scenario – both feeders are operational and the short-circuit power is, conse-

quently, 250 MVA;

2. Intermediate scenario – connection with feeder 1 is lost. The power plant remains

synchronized only to feeder 2, with 150 MVA of short-circuit power. Thus, the system is

less rigid;

3. Critical scenario – feeder 2 is out of service and the connection with feeder 1 only

guarantees 100 MVA of short-circuit power. This is the most demanding condition for

the operation of this power plant.

Due to the low short-circuit power, in all these scenarios the power plant is considered to run

under islanded operation condition. Eigenanalyses performed in the following section for the

three cases indicate if these scenarios are stable or not. Instabilities are amended through the

introduction of stabilizing signal from a power system stabilizer.

Further, in section 7.4, the main hydraulic eigenmodes are presented. And finally, in sec-

tion 7.5, eigenanalysis of the most critical scenario is performed considering the complete

representation of the hydroelectric system. Interactions between hydraulic, electrical and

control parts are pointed out.

7.3 Eigenanalysis of the Electrical System

The eigenanalysis of the electrical system is carried out considering an over-excited, full load

operation of the power plant, with power factor equal to 0.90. This means: u = 1.04 p.u.,

pel =−0.90 p.u. and q =−0.436 p.u a. The system is considered first without PSS, which will

be applied later in order to enhance the small-signal stability of the power plant.

7.3.1 The Regular Scenario

As stated previously, the regular scenario corresponds to the condition when the power plant

is connected to the grid through both feeders, meaning a 250 MVA short-circuit power. The

results of the eigensolution of the system under this configuration are given in table 7.4.

aAs stated in chapter 5, section 5.3, according to the sign convention used in SIMSEN, negative power means
generated (delivered) power. In order to keep consistency with the other parts of this document, the curves of
electrical power are presented in this chapter with a negative sign (−pel ).
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Table 7.4: Eigenvalues of the electrical system considering the regular scenario.

Nature of the eigenmode λ ζ (%) f (Hz)

Control mode −19.5± j 5.21 96.6 0.829

Electro-mechanical local mode −0.37± j 6.75 5.47 1.074

Stator windings −9.55± j 314.04 3.04 49.98

Transformer magnetizing branch −0.17± j 314.16 0.05 50.0

Voltage regulator −200.6 100 −
Voltage regulator and rotor windings −48.2 100 −
Damper windings −13.0 100 −
Generator windings and regulator −2.39 100 −
Generator windings and regulator −1.02 100 −

The characteristics of all eigenvalues were described in a detailed way in chapter 5, and will

not be individually analyzed anew.

It is particularly important to observe that the electro-mechanical local mode is relatively

poorly damped. This is due to the weak network. Nonetheless, this represents the best case.

With lower short-circuit powers in the other scenarios, this eigenmode tends to be even less

damped.

7.3.2 The Intermediate Scenario

If the connection with feeder 1 is lost, the short-circuit power drops to 150 MVA. Table 7.5

presents the results of the eigensolution of the system under this condition.

Whereas most of the eigenvalues undergo slight modifications, the local mode clearly ap-

proaches the limit of stability, with a very weak damping ratio (ζ). This indicates that the

critical scenario, the most severe one, shall present instabilities. This is confirmed in the

following subsection.

7.3.3 The Critical Scenario

Considering now a 100 MVA short-circuit power, the results presented in table 7.6 confirm the

expectation that this condition would result in instabilities. The local mode becomes unstable

which means that any small disturbance is sufficient to break the balance of the system.

A time-domain simulation permits to confirm these findings. Figure 7.2 shows that by applying
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Table 7.5: Eigenvalues of the electrical system considering the intermediate scenario.

Nature of the eigenmode λ ζ (%) f (Hz)

Control mode −19.1± j 5.27 96.4 0.839

Electro-mechanical local mode −0.06± j 5.78 1.04 0.920

Stator windings −10.6± j 314.06 3.37 49.98

Transformer magnetizing branch −0.17± j 314.16 0.05 50.0

Voltage regulator −200.6 100 −
Voltage regulator and rotor windings −48.2 100 −
Damper windings −12.0 100 −
Generator windings and regulator −2.91 100 −
Generator windings and regulator −0.98 100 −

Table 7.6: Eigenvalues of the electrical system considering the critical scenario.

Nature of the eigenmode λ ζ (%) f (Hz)

Control mode −18.8± j 5.29 96.3 0.841

Electro-mechanical local mode 0.16± j 4.90 −3.26 0.780

Stator windings −11.4± j 314.08 3.63 49.99

Transformer magnetizing branch −0.18± j 314.16 0.06 50.0

Voltage regulator −200.7 100 −
Voltage regulator and rotor windings −48.1 100 −
Damper windings −11.2 100 −
Generator windings and regulator −3.37 100 −
Generator windings and regulator −0.95 100 −
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a positive 5% step on the external torque of the rotating inertia representing the generator

rotor, the oscillations are slowly damped in the regular scenario. In the intermediate one, the

damping is imperceptible; the system is at the limit of stability. And in the critical scenario, the

system is not capable of damping the oscillations of the rotor, resulting in power fluctuations

that grow continually. For the three cases, the frequency of oscillation corresponds to the

frequencies of the local modes identified through the eigenanalysis.
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Figure 7.2: Electrical power behavior for different values of short-circuit power.

In general, it is possible to conclude that besides the local mode, the other eigenvalues are not

significantly affected by reduction of short-circuit power.

7.3.4 Contribution of the PSS to the Stability of the Local Mode

In order to cope with unstable or badly damped electro-mechanical modes and enhance

the stability of the power plant, power system stabilizers are a suitable solution. In order

to illustrate the effects of the PSS, the critical scenario is considered, since it is unstable.

Enhancing the stability of the power plant for the worst condition will also make it more stable,

for the cases with a higher level of short-circuit power.

A power system stabilizer of type IEEE PSS2B is thus added to the system. The set of parameters

used for the stabilizer, presented in table 7.3, was established based on the parameters given

in reference [45]. They were, nevertheless, adapted for this specific case.

The eigenvalues of the system are recalculated for different values of gain Ks1, ranging

from 0 to 50. As shown in chapter 5, section 5.9, new control modes appear when the PSS

is added. Nevertheless, in this case they are not significant, since they have high damping

ratios (ζ).
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Table 7.7 summarizes the results for the local mode with different values of Ks1. Figure 7.3

depicts a root locus representation of these results. It is possible to see that with Ks1 = 2.775

the limit of stability is reached. A gain Ks1 = 20 adds sufficient damping to the local mode and

is the value chosen for the setting of the PSS. Although higher values could be adopted, this

is not necessary. Moreover, stabilizers with excessively high gains are more likely to induce

harmful undesired interactions. Therefore, Ks1 = 20 seems a good compromise.

Table 7.7: Evolution of the local mode with the PSS gain, considering the critical scenario.

Value of Ks1 Local mode ζ (%) f (Hz)

0.0 0.16± j 4.90 −3.26 0.780

1.0 0.10± j 4.92 −2.03 0.783

2.775 0.0± j 4.95 0.0 0.788

5.0 −0.13± j 5.00 2.60 0.796

10.0 −0.44± j 5.10 8.60 0.812

20.0 −1.10± j 5.32 20.2 0.847

30.0 −1.80± j 5.56 30.8 0.885

40.0 −2.51± j 5.79 39.8 0.922

50.0 −3.21± j 5.91 47.7 0.941
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Figure 7.3: Evolution of local mode with the PSS gain Ks1, considering the critical scenario.
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The complete list of eigenvalues of the electrical system (considering the critical scenario),

after the final setting of the PSS, is given in table 7.8.

Besides, it is possible to confirm the better small-signal stability of the system once again

through a time-domain simulation of the same nature as the previous one. Figure 7.4 illustrates

the effect of the PSS over the local mode. The previously unstable system is now capable of

operating under the most critical condition with a good performance in terms of small-signal

stability.

Table 7.8: Eigenvalues of the electrical system considering the critical scenario, with PSS
(Ks1 = 20).

Nature of the eigenmode λ ζ (%) f (Hz)

Control mode (PSS) −6.50± j 1.55 97.3 0.247

Control mode (PSS) −2.87± j 2.01 81.9 0.320

Control mode (AVR and PSS) −14.4± j 4.58 95.3 0.729

Electro-mechanical local mode −1.10± j 5.32 20.2 0.847

Stator windings −11.4± j 314.08 3.63 49.99

Tansformer magnetizing branch −0.18± j 314.16 0.06 50.0

Power system stabilizer −10000 100 −
Power system stabilizer −10000 100 −
Voltage regulator −200.7 100 −
Power system stabilizer −81.4 100 −
Voltage regulator and rotor windings −47.2 100 −
PSS, excitation and damper windings −17.5 100 −
Damper windings −11.4 100 −
Power system stabilizer −10.5 100 −
Power system stabilizer −6.20 100 −
Power system stabilizer −1.97 100 −
Generator windings and AVR −1.00 100 −
PSS and rotating mass −0.24 100 −
Power system stabilizer −0.20 100 −
Power system stabilizer −0.20 100 −
Power system stabilizer −0.19 100 −
PSS and rotating mass −0.18 100 −
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Figure 7.4: Electrical power response without and with PSS (Ks1 = 20), in the critical scenario.

7.4 Eigenanalysis of the Hydraulic System

The eigenvalues calculation of the hydraulic system permits to identify the eigenmodes that

are more relevant to this analysis, i.e., those that are most likely to interact with the generator

and with the grid. Therefore, the eigenanalysis performed in this section takes into account

the hydraulic subsystem as described in section 7.2.2. The operating point considered here

matches the one for which the calculations of the previous section were performed. This

means that the Francis turbine runs under full load condition.

A reduced list of eigenvalues of the hydraulic system is presented in table 7.9. Since the

representation of this system has a relatively high order (due to the spatial discretization of

the piping system), the extensive list of eigenvalues is not given here. Only the most relevant

modes are presented.

The results are presented for the system without and with active turbine governor in order to

Table 7.9: Most relevant eigenvalues of the hydraulic system.

Nature of the
eigenmode

without turbine governor with turbine governor
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

Hydromechanical −0.207 100 − −0.48± j 0.79 51.9 0.125

Penstock 1st elastic −1.10± j 2.68 38.0 0.427 −1.14± j 3.43 31.5 0.546

Penstock 2nd elastic −0.77± j 5.52 13.8 0.879 −0.98± j 5.71 16.9 0.909

Penstock 3rd elastic −0.49± j 8.46 5.78 1.346 −0.56± j 8.50 6.57 1.353

Penstock 4th elastic −0.25± j 11.33 2.21 1.803 −0.26± j 11.35 2.29 1.806
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ease the identification of the hydraulic eigenmodes. As it can be seen, the activation of the

frequency control loop alters the eigenvalues, especially those with lower frequency values.

The hydromechanical mode corresponds to the interaction between the rotating inertia of

the turbine and the inertia of the water flow through the penstock. The other four modes

indicated in table 7.9 are related to the elastic characteristic of the penstock.

The spatial discretization of the piping system allows for the representation of the hydraulic

mode shapes also in a spatial form. From such representation, it is possible to observe how the

effect of each mode is distributed along the elements of the hydraulic installation. Figure 7.5

depicts the mode shapes of all eigenvalues given in table 7.9 (for detailed information on the

characteristics and behavior of these eigemodes, please see reference [70]).

(a) Hydromechanical mode (b) Penstock 1st elastic mode (c) Penstock 2nd elastic mode

(d) Penstock 3rd elastic mode (e) Penstock 4th elastic mode

Figure 7.5: Most relevant hydraulic mode shapes.

In order to guarantee that hydraulic modes do not affect the dynamic behavior of the electrical

system, and vice-versa, it is important to go further on the analysis. A complete hydroelectric

model is necessary for this purpose.

7.5 Eigenanalysis of the Complete Hydroelectric System

The construction of the complete hydroelectric model is achieved by combining the electrical

and hydraulic models studied in the previous sections. The electrical system is considered to

be in the critical scenario (Ssc = 100 MVA). At first, the PSS is not taken into account so that the

contribution of the hydraulic system to damping the unstable local mode can be assessed. The

PSS is added further to the system and its interaction with other elements is then evaluated.

The interface between hydraulic and electrical subsystems lies in the mechanical coupling

between turbine and generator inertias, through coupling shaft. Consequently, interactions

between hydraulic and electrical subsystems are related to interactions between the mechan-

100



7.5. Eigenanalysis of the Complete Hydroelectric System

ical and the electromagnetic torques. It is known that the mechanical system behaves as a

low-pass filter because of the high value of inertia of the generator [71, 95]. Consequently,

interactions between the hydraulic and electrical elements are expected to happen at a low

frequency range.

7.5.1 Interactions between the Hydraulic and the Electrical Subsystems

Table 7.10 presents the results of the eigensolution of the hydroelectric system with turbine

governor but without PSS. Only the most relevant eigenvalues are given. Hydraulic and

electrical subsystems interact in such a way that the main eigenvalues of the global system are

all modified. As expected, this interaction happens in the low frequency range. For eigenvalues

with frequencies higher than 2 Hz, no significant change occurs.

Table 7.10: Most relevant eigenvalues of the hydroelectric system with turbine governor,
without PSS.

Nature of the eigenmode λ ζ (%) f (Hz)

Hydromechanical mode −1.69 100 −
Penstock 1st elastic mode −0.80± j 2.62 29.2 0.417

Penstock 2nd elastic mode −0.84± j 6.13 13.6 0.976

Penstock 3rd elastic mode −0.60± j 8.54 7.00 1.359

Penstock 4th elastic mode −0.27± j 11.35 2.38 1.806

Electro-mechanical local mode 0.056± j 4.82 −1.16 0.767

Mechanical torsional mode −2.58± j 131.93 1.96 21.00

The hydromechanical eigenmode experiences an important change. In the global represen-

tation, it is no longer an oscillatory mode, differently from the expected behavior estimated

from the purely hydraulic model with turbine governor (see table 7.9).

The inclusion of the electrical model also shows that the first two elastic modes of the pen-

stock are actually slightly less damped. Moreover, the frequency of the 1st elastic mode is

considerably modified. In the case of the 2nd elastic mode, the frequency shift is smaller. On

the other hand, the changes experienced by the 3rd and 4th elastic modes are considerably

less significant. Although their damping ratio (ζ) is increased, the increment is minor. The

frequency shift is also weak. Indeed, as the frequency of the eigenvalue approaches 2 Hz, less

significant are the modifications caused by interactions with the electrical subsystem.

It is also possible to see that the local mode remains unstable. Nonetheless, the inclusion of

the hydraulic model in the global representation shows that the hydraulic subsystem gives
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a contribution in the sense of damping this eigenmode. The damping ratio, which was

−3.26% with the purely electrical representation (see table 7.6), is actually equal to −1.16%.

This indicates that the hydraulic system is capable of adding some damping to the local

mode. Moreover, it is probable that this contribution is stronger if the tuning of the frequency

regulator is better adapted to the islanded condition of the power plant. This is done in the

next subsection, with a new set of parameters for the turbine governor.

The instability of the local mode affects not only the electrical subsystem, but also the hydraulic

installation. This can be confirmed through a time-domain simulation in which a step increase

of 5% is applied on the external torque of the turbine rotating inertia. Figure 7.6 illustrates

the dynamic behavior of both the purely hydraulic and the complete hydroelectric models.

Whereas the hydraulic model suggests that the system is stable, the complete representation

of the system shows that, in reality, the instability of the local mode propagates throughout the

whole system. It can be verified that turbine net head and torque present unstable oscillations

at the frequency of the local mode.
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Figure 7.6: Turbine net head and torque for the hydraulic and hydroelectric models.

Finally, since the rotors of turbine and generator are represented by individual rotating masses,

a new eigenmode appears in the results. It corresponds to the torsional mode between the

two rotating inertias. This eigenvalue depends on the characteristics of the coupling shaft as

well as on the values of inertia of both rotating masses.

7.5.2 Contribution of the Turbine Governor to the Stability of the Local Mode

As mentioned in the previous subsection, the results of the global model indicate that the

hydraulic elements contribute to damp the local mode oscillations, at least for the operating

point considered in this analysis. Moreover, if the tuning of the turbine governor is better
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adapted for a more stable behavior under islanded operation, the contribution of the hydraulic

subsystem can be enhanced.

Generally, increasing the integration time constant of the PID controller yields a more stable

dynamic behavior. On the other hand, this has the effect of deteriorating the performance

of the controller. In other words, although the stability is increased, the peak values of the

first cycles of oscillation are bigger. Therefore, a good compromise between stability and

performance must be found. For a stable islanded operation, the increase of the integration

time constant must be particularly substantial.

Furthermore, for stabilizing the local mode in this case, it is also necessary to increase the

derivative time constant. The derivative term of the PID controller tends to rapidly counter-

weight speed deviations. Thus, the controller can better contribute to damp the deviations

caused by local mode oscillations with a higher derivative time constant. The proportional

gain is also increased in order to boost the contribution of the turbine governor to the small-

signal stability of the global system. Further details on tuning of hydraulic turbine regulators

can be found in references [51, 106].

For the case of the hydropower plant studied in this chapter, the following enhanced tuning

for the turbine governor is sufficient to make the local mode stable. Even though the initial

tuning of the turbine governor is considerably modified (see table 7.3), the parameters of the

enhanced tuning stay in a reasonable, realistic range considering islanded operation:

Kp = 2.3 ; T f = 0.35 s ; Ti = 25 s ; Td = 2.95 s.

Table 7.11 presents the results of the most relevant eigenmodes when calculated with the

enhanced tuning of turbine governor.

Table 7.11: Most relevant eigenvalues of the hydroelectric system with enhanced tuning of
turbine governor, without PSS.

Nature of the eigenmode λ ζ (%) f (Hz)

Hydromechanical mode −1.11± j 0.63 87.0 0.100

Penstock 1st elastic mode −0.10± j 2.44 4.09 0.388

Penstock 2nd elastic mode −0.31± j 7.50 4.13 1.194

Penstock 3rd elastic mode −0.97± j 10.10 9.56 1.608

Penstock 4th elastic mode −0.66± j 11.58 5.69 1.843

Electro-mechanical local mode −0.026± j 4.72 0.55 0.751

Mechanical torsional mode −13.42± j 156.1 8.56 24.84
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These results confirm the expectation of damping the local mode through the turbine governor.

Indeed, the enhancement proposed for the frequency control loop tuning makes the local

mode stable, despite the low value of damping ratio. Nonetheless, besides eliminating the

instability, the action of the turbine governor has some negative effects. This new tuning

considerably decreases the damping ratio of the 1st and 2nd elastic modes of the penstock.

On the other hand, the 3rd and 4th elastic modes become slightly better damped. It is also inter-

esting to observe that especially the 2nd and 3rd penstock eigenmodes undergo considerable

frequency shifts, suffering strong distortions in their shapes. This renders the interpretation of

the eigenmodes more intricate.

Additionally, the hydromechanical mode turns into an oscillatory eigenmode again, with a

strong damping ratio. Finally, the action of the turbine governor over the torsional mode is

remarkable. The increase of both damping ratio and frequency is considerable.

In order to verify the interactions between hydraulic and electrical subsystems, a calculation

of participation factors is performed. Given the relatively high order of this system, a novel

didactic form to present the participation matrix is proposed here, by using a graphical

representation through a color map.

Figure 7.7 gives such representation in which the participation factors are normalized by

column so that the highest value in each column is 1. The eigenmodes are distributed along

the horizontal axis and identified by numbers, according to their nature indicated in the legend

of the figure. The state variables are distributed along the vertical axis and are separated by

groups identified by distinct letters, also described in the legend of the figure.

It can be seen that the low-order penstock elastic eigenmodes (numbers 02 and 05 to 07) have

a considerable degree of interaction with the mechanical variables (group H). This is also the

case for the hydromechanical mode (number 01). It is interesting to observe these eigenmodes

interact also with the electrical system (variables of groups D and E). On the other hand, the

influence of higher-order modes of the penstock (number 08) stays confined in the hydraulic

installation (variables of groups A, B and F).

It is also possible to observe that, in this case, the eigenmodes related to the tailrace (num-

ber 09) have their influence limited to the lower part of the hydraulic installation, i.e., turbine

and lower reservoir – group A – and tailrace tunnel – groups C and G.

Additionally, the interaction of the local mode (number 03) with all the system is clearly

demonstrated in figure 7.7, since it participates in almost all groups of state variables. Con-

versely, the control mode (number 04), which is due to the voltage regulator and is highly

damped, influences only the rotor currents (group E) and the regulator variables (group I).
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Figure 7.7: Participation factors color map plot for the hydroelectric system, with enhanced
tuning of turbine governor, without PSS.
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As an illustration, figures 7.8 and 7.9 show the effect of the new tuning of the turbine governor

over the dynamic behavior of the system. Once again, a 5% step is applied to the external

torque of the turbine rotating inertia.

It is possible to confirm that the instability of the local mode is eliminated, but it remains badly

damped. Therefore, the use of a PSS is still necessary to enhance the small-signal stability of

the power plant.
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Figure 7.8: Turbine net head and torque with initial and enhanced tuning of the governor.
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Figure 7.9: Electrical power response with initial and enhanced tuning of the governor.

7.5.3 Interaction between the Turbine Governor and the PSS

Considering the last results, the PSS is added back to the system in order to finally guarantee a

better dynamic behavior. The parameters for the PSS are the same as used previously, and the

enhanced tuning of the turbine governor is maintained.
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Table 7.12 presents the results of the most relevant eigenmodes calculated for this case. Clearly,

the interaction between the turbine governor and the PSS results in some conflicting effects

that are detrimental to the dynamic behavior of the system.

Whereas the damping ratio of the local mode is greatly increased, the penstock 1st elastic

mode experiences a drastic reduction of damping, approaching the limit of stability. Besides

the damping ratio decrease already caused by the enhanced tuning of the governor in the

previous case, the PSS adds some destabilizing effects to this eigenmode. This is a precarious,

undesirable condition, since disturbances could result in significant pressure oscillations,

causing substantial mechanical torque pulsations, finally resulting in electrical power swings

that could be harmful both to the hydropower plant and to the weak power grid.

Table 7.12: Most relevant eigenvalues of the hydroelectric system with enhanced tuning of
turbine governor, with PSS (Ks1 = 20).

Nature of the eigenmode λ ζ (%) f (Hz)

Hydromechanical mode −0.58± j 0.96 51.7 0.153

Penstock 1st elastic mode −0.025± j 2.07 1.21 0.329

Penstock 2nd elastic mode −0.18± j 4.74 3.79 0.754

Penstock 3rd elastic mode −0.33± j 7.54 4.37 1.200

Penstock 4th elastic mode −0.69± j 11.55 5.96 1.838

Electro-mechanical local mode −2.77± j 5.78 43.2 0.920

Mechanical torsional mode −13.42± j 156.1 8.56 24.84

Consequently, the problem must be solved by adopting a different set of parameters either for

the turbine governor or for the PSS. A plausible solution is to decrease the contribution of the

governor so that the penstock eigenmodes are less affected, while ensuring sufficient damping

of the local mode oscillations and a satisfactory dynamic behavior of the whole installation.

One possibility to achieve this goal is to set the turbine governor back to its initial tuning,

recalled hereafter:

Kp = 1.0 ; T f = 0.5 s ; Ti = 3.7 s ; Td = 1.0 s.

Since under this set up the effect of the turbine governor over the whole system was more

conservative, the tendency is that the hydraulic modes regain a more stable condition, with

the PSS playing the major role of damping the local mode.

Table 7.13 presents the most relevant eigenvalues of the global system, considering this new

set up of regulators. These results show that a more cautious tuning of the turbine governor

reduces the adverse interactions with the PSS, leading to an overall more stable system.
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Table 7.13: Most relevant eigenvalues of the hydroelectric system with initial tuning of turbine
governor (Kp = 1.0 ; T f = 0.5 s ; Ti = 3.7 s ; Td = 1.0 s), with PSS (Ks1 = 20).

Nature of the eigenmode λ ζ (%) f (Hz)

Hydromechanical mode −1.01± j 0.78 79.1 0.124

Penstock 1st elastic mode −0.55± j 2.29 23.4 0.364

Penstock 2nd elastic mode −0.55± j 4.82 11.3 0.767

Penstock 3rd elastic mode −0.61± j 8.53 7.13 1.358

Penstock 4th elastic mode −0.27± j 11.35 2.38 1.806

Electro-mechanical local mode −3.41± j 4.81 57.8 0.766

Mechanical torsional mode −2.58± j 131.93 1.96 21.00

Time-domain simulations of the same nature as the previous ones are carried out, in order to

illustrate the better dynamic behavior of the system under this last configuration. It is clear in

figures 7.10 and 7.11 that the system has a better dynamic behavior if the turbine governor has

a more conservative tuning, when the PSS is active.

Furthermore, it is easy to see the consequences of the badly damped 1st elastic mode of the

penstock. Indeed, pressure pulsations are converted into undesirable electrical power swings.

The solution presented here in order to solve the problem originated by detrimental inter-

actions between regulators, hydraulic and electrical elements is one among several other

possibilities. Certainly, other plausible solutions exist with different parameters tuning for the

turbine governor, PSS and also the voltage regulator, which was not modified along this study.
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Figure 7.10: Turbine net head and torque with initial and enhanced tuning of the governor,
with PSS.
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PSS.

7.6 Concluding Remarks

This case study allowed to apply the small-signal models developed in the present work to

the study of the dynamic behavior of hydropower plants subjected to islanded operation

condition, due to weak connections with the network.

For the electrical model, three problematic scenarios were considered in which electro-

mechanical local mode oscillations were badly damped. In the most critical case, the power

grid was not stiff enough to withstand the oscillations, resulting in an unstable system.

A power system stabilizer of type IEEE PSS2B was then employed in order to overcome the

unstable condition of the most critical scenario. The influence of the PSS gain over the local

mode was studied in order to obtain a stable condition, with the most convenient setting.

Then, an eigenanalysis of the hydraulic system was carried out in order to identify the most

relevant hydraulic eigenmodes. It was also possible to observe how the frequency control loop

of the turbine governor modifies the low-frequency modes of the penstock.

Thereupon, it was possible to combine electrical and hydraulic models in order to build

the complete high-order model of the hydropower plant. Results obtained from this global

model, first without PSS, demonstrated that the system remained unstable, even though the

eigensolution of the purely hydraulic system did not indicate any instability. Nevertheless, it

was shown that the effects of the unstable local mode propagate to the hydraulic installation,

resulting in undamped pressure fluctuations.

On the other hand, the complete representation of the power plant showed that the hydraulic

installation had a positive influence on the damping of the local mode. This observation led

to a modification of the turbine governor tuning to an enhanced set of parameters, more

109



Chapter 7. Stability Issues and Solutions for an Islanded Hydropower Plant

appropriate for islanded operation. It was also observed that this new set of parameters made

the 1st elastic eigenmode of the penstock less damped. But it also permitted the stabilization

of the unstable local mode.

Although stable, the local mode remained badly damped, reason for which the PSS was added

to the complete hydroelectric model. Nevertheless, the effect was adverse. Whereas the local

mode became well damped, interactions between turbine governor and PSS led to a drastic

destabilization of the 1st mode of the penstock. Badly damped oscillations due to this mode

appeared to influence not only the hydraulic circuit, but also the electrical system, since

pressure fluctuations resulted in mechanical torque oscillation, which induced considerable

power swings.

Therefore, it is possible to conclude that significant interactions may happen between hy-

draulic, electrical and control elements that may induce undesirable dynamic behavior of

the system, such as badly damped or even undamped modes of oscillation. These adverse

interactions cannot be anticipated with partial models, like purely hydraulic or purely elec-

trical representations. Consequently, comprehensive, multi-physics small-signal models are

necessary for a complete assessment of the real small-signal stability of a hydropower plant.
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88
Power Fluctuations in an Existing

Hydropower Plant

8.1 Introduction

As mentioned in chapter 1, section 1.3.3, part load operation of Francis turbines is a condition

likely to cause periodic pressure pulsations due to vortex rope precession in the draft tube.

The frequency of this pulsating behavior is most commonly between 0.2 and 0.4 times the

turbine rotational speed. Such phenomenon may also induce torque fluctuations in the

mechanical system that may interact with the generator and the power system, possibly

leading to significant electrical power swings [49, 83]. This is particularly true if the frequency

of the vortex rope precession coincides with the frequency of the electro-mechanical modes

related to the power plant [22, 69]. Furthermore, if the hydropower plant operates in islanded

or isolated networks these power swings may be very detrimental to the dynamic behavior of

the power plant and of the local network.

The purpose of this chapter is to present a case study that illustrates the effects of pressure

pulsations due to vortex rope precession on the draft tube of Francis turbines. The investi-

gated system is an existing 1 GW hydropower plant (4×250 MW Francis turbines) which was

previously analyzed in references [69] and [72].

Whereas these works proposed a methodology for the assessment of part load resonance risk

based on time-domain simulation, the eigenanalysis approach is used here. Furthermore,

the electro-mechanical modes are identified not only for one single generator, but also for

cases where a different number of generators are connected to the grid. Another important

difference is that the grid is not considered here as an infinite bus. This allows for a more

precise representation of the dynamic behavior of the electrical system.
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Moreover, a specific value is calibrated for the draft tube wave speed a to match simulations

and calculations to on-site measurements. In practice, the determination of the wave speed is

a challenging task that requires specific knowledge which is out of the scope of the present

work [55]. Therefore, the wave speed is considered to be a constant parameter.

8.2 Case Study Description

The hydropower plant studied in this chapter is composed of 4×250 MW generating units. The

layout of the power plant is presented in figure 8.1. The electrical and hydraulic subsystems

are described in the following subsections.

Gallery Penstock

AVR

PSS

–

uset

TG
nset

–

Power grid

Ssc = 1750 MVA

UN = 500 kV

Surge tank

Figure 8.1: Layout of the hydroelectric powerplant [72].

8.2.1 Electrical Model

The electrical subsystem of the power plant is constituted of 4× 281.5 MVA synchronous

generators connected to four corresponding 500 kV/18 kV Yd5 step-up transformers. The ABB

Unitrol® excitation system (see figure 5.18) is applied as voltage regulator and a power system

stabilizer of type IEEE PSS2B (see figure 5.21) is available. The four machines are connected to

the power grid through two parallel transmission lines. The model used to represent these

lines is the RL model. The main parameters of the electrical elements are given in table 8.1.
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Table 8.1: Main parameters of the electrical installation.

Element Ratings / Parameters

Generator

SN = 281.5 MVA

UN = 18 kV

fN = 50 Hz

Pp = 9 (number of pairs of poles)

I f δ0 = 777 A

Jg = 2.25 ·106 kg ·m2

Stator windings connection: Y

Step-up transformer

SN = 281.5 MVA

UN 1 = 500 kV

UN 2 = 18 kV

Vector group: Yd5

Transmission line
Rt l = 2.8Ω

Lt l = 120 mH

Power grid
Ssc = 1750 MVA (short-circuit power)

UN = 500 kV

fN = 50 Hz

The short-circuit power of the grid (Ssc ) is actually an unknown parameter in this study. The

value presented in table 8.1 was deduced from comparison between measurements and

simulation results and is validated further, in section 8.3.

8.2.2 Hydraulic Model

The hydraulic installation comprises an 1485 meter long gallery, a surge tank with variable

cross section, an 1396.5 meter long penstock and a manifold feeding 4× 250 MW Francis

turbines. The main parameters of the system are presented in table 8.2.

The penstock is discretized in 116 elements, whereas the draft tube is represented by two pipe

elements. The discretization of the penstock and piping system respects the CFL condition,

explained in chapter 6, section 6.2. Moreover, the turbine characteristic curves are taken

into account. Therefore, this high order model takes into account effects of water hammer,

mass oscillation, and transient behavior of the turbine in the four quadrants, linked to the

corresponding rotating inertia.

In order to simplify the identification of the hydroelectric interactions in the eigenanalysis,

the turbine governor is not taken into account in the model.
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Table 8.2: Main parameters of the hydraulic installation.

Element Dimensions

Gallery
L = 1485 m

D = 9.2 m

a = 1200 m/s

Surge tank AST = 133 m2 (mid tank section)

Penstock
L = 1396.5 m

D = 8.8/7.15 m

a = 1200 m/s

Draft tube
L = 25 m

a = 56 m/s (with vortex rope)

Francis turbine

PN = 250 MW

nN = 333.3 rpm

HN = 352 m

ν= 0.22 (specific speed)

Jt = 1.71 ·105 kg ·m2

Coupling shaft
Ksh = 3.61 ·108 Nm/rad (torsional stiffness)

µsh = 6.7 ·103 Nms/rad (viscous damping)

8.2.3 Problems Encountered During Operation

During the operation of the power plant at part load condition, undesirable electrical power

swings were detected. It was assumed that such oscillations were due to interactions of the

electrical system with draft tube vortex rope. For this turbine (which has a rotation speed

n = 333.3 rpm), the frequency range of part load vortex rope pulsation is 1.11 to 2.22 Hz.

This matches the typical range of electro-mechanical modes (0.7 to 2.0 Hz). Therefore, such

interaction is likely to occur. It depends, however, on the operating point of the generators

and on the topology of the electrical system, since these two factors influence the frequency

and damping of the electro-mechanical modes.

On-site measurements during part load operation (pel =−0.426 p.u.) allowed to record the

pulsating behavior. Figure 8.2 gives an example of it during the operation of one single unit

with active PSS, under part load condition. The low peak-to-peak amplitude can be associated

to the damping contribution of the stabilizer. Although the frequency of oscillation is not

constant, it is possible to graphically estimate that it varies around the value of 1.34 Hz,

approximately. Through eigenvalues calculation of the hydraulic system, it shall be possible to

confirm this value. This is done in section 8.5.
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Figure 8.2: Electrical power swing recorded on-site with active PSS.

Before doing so, however, the parameters of the electrical model are validated in section 8.3

through comparison with on-site measurements. Then, eigenanalyses are performed to deter-

mine the electro-mechanical eigenmodes of the electrical system under different topologies

(1, 2, 3 or 4 generators synchronized to the grid, with and without PSS).

8.3 Validation of the Electrical Model

In order to validate the parameters of the electrical model, time-domain simulations are

compared to on-site measurements, which were performed in order to validate the tuning

of both voltage regulator and PSS. During these tests, only one machine was synchronized

to the grid. The disturbance applied to the system is a ±2% step on the set-point of the

voltage regulator. The reaction of the system is observed on the active (Pel ) and reactive (Q)

powersa, compensated frequency ( fcomp – derived from the rotational speed of the generator),

excitation voltage (u f ) and PSS output (uPSS), in case it is active.

At first, the system is tested with inactive PSS. Figure 8.3 presents measurement and time-

domain simulation results. The very good agreement that can be observed in this com-

parison validates the model, including the proposed short-circuit power of the network

(Ssc = 1750 MVA). It is easy to observe the action of the local mode oscillations. Due to

the relatively low short-circuit power of the grid, these oscillations take some time to be

damped.

To verify the characteristics of the local mode, it is possible to perform the calculation of eigen-

values for this system considering the same operating point of measurements: u = 0.969 p.u.,

pel =−0.85 p.u. and q =−0.02 p.u.

The extensive list of eigenvalues is presented in table 8.3. Real and imaginary parts are

presented separately. In addition, the damping time constant τ (τ = 1
/|σ|), the damping

aAs stated in chapter 5, section 5.3, according to the sign convention used in SIMSEN, negative power means
generated (delivered) power. In order to adapt simulation to measurement results, the curves of electrical power
are presented in this chapter with a negative sign (−Pel ,−Q).
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Figure 8.3: On-site measurement versus time-domain simulation, without PSS.

ratio ζ and the frequency f are calculated based on equations (3.11) and (3.12). Furthermore,

the dominant state variables are indicated. They were identified using participation factors

calculated according to the concept presented in section 3.3.3. For more information on the

meaning of the state variables, please refer to chapter 5, sections 5.3, 5.5 and 5.8.

The characteristics of all eigenmodes are not discussed here, since the nature of each one was

already explained in chapter 5. It is however important to mention that the pair of eigenvalues

5,6 is related to the presence of the power transformer. Its low real part is due to the fact that

the magnetizing reactance of the transformer is approximated by a high relative value, which
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Table 8.3: Eigenproperties of the system with a single machine, without PSS.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −0.524 7.687 1.908 6.80 1.223 ∆ωm ,∆θ,∆iabc2,∆i f

3,4 −23.01 314.02 0.043 7.31 49.98 ∆iabc2

5,6 −0.003 314.16 333.3 0.001 50.0 ∆iabc1,abc2

7 −218.6 − 0.0046 100 − ∆ug ,∆ur eg ,∆i f

8 −178.3 − 0.0056 100 − ∆ug ,∆ur eg ,∆i f

9 −92.40 − 0.011 100 − ∆i∆

10 −40.00 − 0.025 100 − ∆uC 2

11 −14.08 − 0.071 100 − ∆iD

12 −5.562 − 0.180 100 − ∆iabc ,∆i f ,∆iQ

13 −2.225 − 0.449 100 − ∆i f ,∆θ,∆uC 1

14 −1.105 − 0.905 100 − ∆i f ,∆uC 1

does not have any considerable influence on the dynamical behavior of the system.

It is interesting to focus on the local mode (pair 1,2) which is the dominant one, as it was ob-

served in figure 8.3. From the time-domain behavior, it is possible to validate the properties of

this eigenmode. Figure 8.4 presents the behavior of the active power after the first disturbance.
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Figure 8.4: Frequency and attenuation time constant from time-domain results, without PSS.
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It is possible to graphically extract from it the oscillating frequency f , the attenuation σ and

the damping time constant τ. The good match with the eigenvalues result permits to affirm

that a very good agreement exists between measurements, time-domain and small-signal

models.

It is also relevant to validate the electrical model including the power system stabilizer. In

order to perform the same type of validation as in the case without PSS, field data is used from

a test of the same nature, including also the stabilizer with reduced gain.

Figure 8.5 presents measurement and time-domain simulation results for this case. Once

again, the very good agreement that can be observed in this comparison validates the model

with the PSS. The action of the local mode oscillations remains considerable due to the low

setting of the PSS gain in this case.

As in the previous case, the calculation of the eigenvalues of the system containing the

PSS is performed considering the same operating point of measurements: u = 0.987 p.u.,

pel =−0.85 p.u., q =−0.07 p.u.

The exhaustive list of eigenvalues is presented in table 8.4. Indications of dominant states

identified as "PSS" means that internal variables of the PSS are dominant. The specific variable

uPSS corresponds to the output of the stabilizer. For more information on the meaning of the

state variables, please refer to chapter 5, sections 5.3, 5.5 and 5.8.

For a detailed discussion on the nature of these eigenvalues, please refer to chapter 5. Nonethe-

less, it is important to observe that the zero eigenvalue presented in table 8.4 (eigenvalue

number 29) only happens due to the fact that one of the wash-out blocks of the PSS is not

taken into account in the real system, and has to be artificially eliminated in the mathematical

model.

At this point, it is interesting to focus on the local mode, since it is the dominant one also in

this case. From the time-domain behavior, it is possible to validate the properties of the local

mode, given by the pair 1,2 of table 8.4.

The active power behavior after the first disturbance is presented in figure 8.6. The fact that the

first peak does not respect the exponential decay indicates that the first period of the transient

is also influenced by another eigenmode, which is rapidly damped.

Nonetheless, once this influence is damped, the global transient behavior is satisfactorily

described by the oscillating frequency f , the attenuation σ and the damping time constant

τ extracted from this graph. Moreover, they present a good agreement with the eigenvalues

result.
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Therefore, the electrical model including the PSS also gives a good representation of the real

system.
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Figure 8.5: On-site measurement versus time-domain simulation, PSS with reduced gain.
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Table 8.4: Eigenproperties of the system with a single machine, PSS with reduced gain.

Eigenvalue σ=ℜ(λi ) ωd =ℑ(λi ) τ ζ f Dominant

number i (Np/s) (rad/s) (s) (%) (Hz) states

1,2 −0.896 7.955 1.116 11.2 1.266 ∆ωm ,∆θ,∆iabc2,∆i f

3,4 −9.112 0.078 0.110 100 0.012 PSS

5,6 −8.146 1.776 0.123 97.7 0.283 ∆ωm ,∆θ,PSS

7,8 −11.74 3.245 0.085 96.4 0.516 ∆i f ∆iD ,∆ωm ,∆θ

9,10 −49.14 10.09 0.020 97.9 1.606 ∆i f ∆iD ,uPSS ,PSS

11,12 −23.02 313.95 0.043 7.31 49.98 ∆iabc2

13,14 −0.003 314.16 333.3 0.001 50.0 ∆iabc1,abc2

15 −10000 − 10−4 100 − PSS

16 −10000 − 10−4 100 − PSS

17 −10000 − 10−4 100 − PSS

18 −225.8 − 0.004 100 − ∆ug ,∆ur eg ,∆i f

19 −169.1 − 0.006 100 − ∆ug ,∆ur eg ,∆i f

20 −92.34 − 0.011 100 − ∆i∆

21 −40.00 − 0.025 100 − ∆uC 2

22 −13.75 − 0.073 100 − ∆ωm ,∆iD ,∆i f ,PSS

23 −3.231 − 0.310 100 − ∆iQ

24 −1.119 − 0.894 100 − PSS

25 −0.104 − 9.615 100 − PSS

26 −0.100 − 10.0 100 − PSS

27 −0.100 − 10.0 100 − PSS

28 −0.097 − 10.31 100 − PSS

29 0 − − − − PSS

8.4 Eigenanalysis of the Electrical System at Part Load Condition

In order to perform an analysis focused on the understanding of the interactions between

the vortex rope phenomenon and the electrical system, the four units are considered in the

operating point corresponding to the conditions of the measurement presented in figure 8.2.

This means an under-excited, part load condition with: u = 0.97 p.u., pel =−0.426 p.u. and

q =+0.345 p.u.

Although such an operating point may sound implausible most of the time, it should not

be disconsidered. The high flexibility of hydropower plants creates the possibility for them

to be requested to run under many different operating conditions. In some cases, it might

be more advantageous to divide the demand of power among all the machines rather than
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Figure 8.6: Frequency and attenuation time constant from time-domain results, with PSS.

concentrating it all in some of them, while desynchronizing others.

The eigenanalysis performed here aims at revealing the electro-mechanical modes of the

system, since they are those likely to interact with vortex rope pulsations. Consequently, only

the results regarding electro-mechanical modes are presented in this section.

The number of generating units connected to the power grid is considered a variable param-

eter, which is gradually increased in such a way that the eigenvalues are calculated for four

different configurations with one up to four generating units on operation. The calculations

are performed for the cases without and with PSS (with gain implemented on site).

Considering the case with only one generating unit synchronized to the grid, the results of

the eigensolution of the system are given in table 8.5. It can be seen that even without PSS

the system has a rather good damping ratio (approximately 15%). Nonetheless, the activation

of the stabilizer increases the attenuation while shifting down the damped frequency, as it

should be expected.

Additionally, the PSS introduces a new control mode whose frequency is close to the local

mode one. It is, however, very well damped with a damping ratio over 80%. Consequently, it is

less relevant for the dynamic behavior of the system than the local mode. This is the case for

all the control modes introduced by the PSS in the case studied in this section. They all have

damping ratios higher than 80% and are therefore not discussed here.
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Table 8.5: Local mode of one generating unit, with and without PSS.

Nature of the
eigenmode

without PSS with PSS
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

Local −1.06± j 7.00 15.0 1.114 −3.35± j 5.46 52.3 0.869

Table 8.6: Electro-mechanical modes for two generating units, with and without PSS.

Nature of the
eigenmode

without PSS with PSS
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

Local −0.71± j 6.17 11.4 0.982 −2.33± j 5.17 41.1 0.823

Intermachine −1.88± j 8.34 22.0 1.327 −7.28± j 8.53 64.9 1.358

The results for the case with two generating units connected to the grid are presented in

table 8.6. For this case, the local mode is less damped and its frequency is also changed. As

explained previously, this mode represents the oscillations of the whole power plant against

the grid. This means that the rotors of all machines oscillate with the same frequency and

same phase. Therefore, from the point of view of the network, these oscillations can be seen as

the oscillations of one equivalent machine, with larger power and inertia. As the ratio between

the power of this "equivalent machine" and the short-circuit power of the network increases,

the damping ratio of the local mode decreases. Furthermore, the value of the frequency of the

local mode reduces, since the equivalent inertia increases.

A new electro-mechanical eigenmode appears in the system. It corresponds to an interma-

chine mode. The oscillations related to this mode happen mainly inside the power plant, with

one machine swinging against the other. This can be verified with a graphical representation

of the mode shapes. It is important to notice that the PSS considerably increases the damping

of this mode, while slightly shifting its frequency.

Figure 8.7 gives the representation of the shapes of local and intermachine modes on the

rotational speed of both generators. The size of the arrows is normalized to the biggest one

in the representation, while their positions indicate the phase of the modes. Figure 8.7a

reveals clearly that the local mode has the same phase on both machines (G1 and G2), whereas

figure 8.7b shows the phase opposition of the intermachine mode.

Table 8.7 presents the result of the electro-mechanical modes for the case with three machines

connected to the grid. The increase of the total power of the plant leads to a decrease of

damping ratio and frequency of the local mode. On the other hand, the intermachine mode

identified in the case with two machines does not undergo significant changes. However,

a new intermachine mode appears which has very similar eigenproperties to the first one.
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Figure 8.7: Mode shapes of the local mode (a) and the intermachine mode (b), with two
generating units.

Table 8.7: Electro-mechanical modes for three generating units, with and without PSS.

Nature of the
eigenmode

without PSS with PSS
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

Local −0.52± j 5.66 9.15 0.901 −1.85± j 4.87 35.5 0.775

Intermachine 1 −1.88± j 8.36 21.9 1.330 −7.29± j 8.48 65.2 1.350

Intermachine 2 −1.87± j 8.27 22.0 1.316 −7.27± j 8.54 64.8 1.359

Nevertheless, they do not act in the same manner.

Figure 8.8 presents the shapes of the local and intermachine modes. Figure 8.8a depicts the

in-phase characteristic of the local mode. Figure 8.8b shows that the first intermachine mode

corresponds to oscillations of the first unit (G1) against the other two (G2 and G3). On the

other hand, figure 8.8c reveals that the second intermachine mode is related to oscillations of

units two and three in phase opposition.

Finally, the results of the eigenvalue calculation for the electro-mechanical modes after the

introduction of the fourth unit are given in table 8.8. Once again, the local mode undergoes a

reduction of both damping ratio and frequency, as it should be expected.

The intermachine modes, on the other hand, do not suffer any considerable modification with

the introduction of another generator. Nevertheless, a new mode of the same nature appears.

Now, all three intermachine modes are equal in value. Nevertheless, each one of them acts

differently.
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Figure 8.8: Mode shapes of the local mode (a), the first intermachine mode (b) and the second
intermachine mode (c), with three generating units.

Figure 8.9 presents the shapes of the local and the intermachine modes for the case with four

generating units. Figure 8.9a illustrates once again the in-phase characteristic of the local

mode for all four generators. Figure 8.9b shows that the first intermachine mode corresponds

Table 8.8: Electro-mechanical modes for four generating units, with and without PSS.

Nature of the
eigenmode

without PSS with PSS
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

Local −0.41± j 5.35 7.64 0.851 −1.57± j 4.67 31.9 0.743

Intermachine 1 −1.88± j 8.41 21.8 1.338 −7.26± j 8.57 64.6 1.364

Intermachine 2 −1.88± j 8.41 21.8 1.338 −7.26± j 8.57 64.6 1.364

Intermachine 3 −1.88± j 8.41 21.8 1.338 −7.26± j 8.57 64.6 1.364
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Figure 8.9: Mode shapes of the local mode (a), the first intermachine mode (b), the second
intermachine mode (c) and the third intermachine mode (d), with four generating units.

to oscillations of the generator one (G1) against the other three generators (G2, G3 and G4 –

the participation of generator four is very weak). The second intermachine mode is related to

oscillations of generator one against mostly generator two and, in a less extent, generator three

(see figure 8.9c). Finally, the third and last intermachine mode (represented in figure 8.9d) is

involved in oscillations of the generator four against the other three generators.

In all four cases, the effect of the PSS is very clear. Besides considerably increasing the damping

ratio of the local mode, the PSS contributes even more to the damping of the intermachine

modes. Moreover, whereas the local mode frequency is shifted by the PSS, the changes caused

by the PSS in the frequency of the intermachine modes are very small.

It is interesting to observe that the frequency of the intermachine modes, with or without PSS,
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is close to the frequency estimated to the pulsation identified by the on-site measurements,

presented in figure 8.2. This means that some interactions are likely to occur between the

electrical and the hydraulic system around this value of frequency (∼ 1.34 Hz).

Figure 8.10 illustrates the evolution of the local mode on the complex plane (with and without

PSS) with the number of generators connected to the network. The arrows in this figure

indicate an increasing number of generating units synchronized to the grid. Moreover, two

slopes are given (for ζ= 5% and ζ= 15%) as reference values of damping ratio. The reduction

of the damping ratio with the growth of total generated power (more generators synchronized

to the grid) is clear.
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Figure 8.10: Evolution of local mode with the number of generating units.

8.5 Eigenanalysis of the Hydraulic System at Part Load Condition

Following the study of the electrical subsystem, the analysis of the hydraulic one is an impor-

tant step to identify the eigenmodes that are most likely to interact with the generators and

the power grid. Therefore, the eigenanalysis performed in this section takes into account the

hydraulic subsystem as described in section 8.2.2, also including the inertia of the generator

rotor (given in table 8.1). The operating point considered here is the part load condition used

in the previous section (Ptur b = 120 MW).

A reduced list of eigenvalues of the hydraulic system is presented in table 8.9. Given the high
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Table 8.9: Most relevant eigenvalues of the hydraulic system.

Nature of the eigenmode λ ζ (%) f (Hz)

Mass flow oscillation mode −0.002± j 0.052 3.84 0.008

Gallery 1st elastic mode −0.02± j 2.40 0.83 0.382

Penstock 1st elastic mode −1.02± j 2.16 42.7 0.344

Penstock 2nd elastic mode −0.68± j 4.41 15.2 0.702

Draft tube 1st elastic common mode −0.02± j 3.50 0.57 0.557

Draft tube 1st elastic intermach. modes −0.07± j 3.50 2.00 0.557

Draft tube 2nd elastic common mode −0.005± j 8.38 0.06 1.333

Draft tube 2nd elastic intermach. modes −0.01± j 8.39 0.12 1.335

order of the system due to the spatial discretization of the piping system, the extensive list of

eigenvalues is not given here. Only the most relevant modes are presented. On the other hand,

the spatial discretization of the piping system allows for the representation of the hydraulic

mode shapes also in a spatial form. Such representation permits to observe how the influence

of each mode is distributed along the elements of the hydraulic installation.

The mass flow oscillation mode corresponds to interactions between the upstream reservoir

and the surge tank [71]. The pressure mode shape for this eigenmode is presented in fig-

ure 8.11a. The gallery 1st elastic mode is mostly related to the characteristics of the piping of

the gallery and its mode shape is represented figure 8.11b. The mode shapes of the 1st and 2nd

elastic eigenmodes of the penstock are represented in figures 8.12a and 8.12b, respectively.

For detailed information on the characteristics and behavior of these eigemodes, please refer

to reference [70].

(a) (b)

Figure 8.11: Mass flow oscillation (a) and gallery 1st elastic (b) pressure mode shapes.
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(a) (b)

Figure 8.12: Pressure mode shapes of the penstock 1st (a) and 2nd (b) elastic modes.

The two draft tube elastic eigenmodes are also relevant. The mode shapes for the 1st and

2nd elastic modes of the draft tube are depicted in figures 8.13 and 8.14, respectively. The

eigenvalues related to both the 1st and 2nd modes appear four times in the results. For each

of them, in one occurrence the eigenvalue has a weaker damping ratio. These less damped

modes have the same phases in all four generating units. Oscillations due to such modes add

up and their influences go upstream through the penstock, surge tank and gallery. This is the

case of the eigenmode shapes represented in figures 8.13a and 8.14a for the 1st and 2nd draft

tube elastic modes, respectively. Due to their common nature for all four units of the system,

these modes are called here draft tube 1st and 2nd elastic common modes.

Conversely, the other three occurrences of each of the two draft tube elastic modes have a

distinct characteristic. They indicate intermachine oscillations, since their actions in the

four machines happen in phase opposition. Therefore, the superposed contributions of

the four machines cancel each other in the penstock. Consequently, they do not have an

upstream influence. This can be seen in the representation of the eigenmode shapes given in

(a)

 –0.071 ± j3.495  

(b)

Figure 8.13: Pressure mode shapes of the draft tube 1st elastic common (a) and inter-
machine (b) modes.
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(a) (b)

Figure 8.14: Pressure mode shapes of the draft tube 2nd elastic common (a) and inter-
machine (b) modes.

figures 8.13b and 8.14b for the 1st and 2nd draft tube elastic modes, respectively. Taking into

account the phase opposition of these oscillations, these modes are called here draft tube 1st

and 2nd elastic intermachine modes.

The influence of these two modes on the whole hydraulic system can be confirmed through

a forced response analysis, which is performed using the linearized matrices of the model.

Figure 8.15 depicts the forced response of the hydraulic system to an excitation source located

in the draft tube of generating unit 1. The pressures of the penstock, turbine 1 inlet and

turbine 1 draft tube are represented, together with the rotational speed of the mechanical

masses representing the turbine and the generator of unit 1.

Even though the frequency response of the penstock pressure shows the presence of several

resonance frequencies (the elastic modes of the penstock), it is easy to observe that for all

the hydraulic quantities represented in figure 8.15, the strongest resonances happen at the

frequencies of the draft tube elastic modes. Furthermore, the influence of these resonance

frequencies is not restricted to the hydraulic system, since they also happen in the rotational

speeds. Therefore, oscillations at such frequencies are likely to spread to the electrical system

through the mechanical torque behavior.

Finally, it is important to stress that the frequency of the 2nd draft tube elastic mode lies in the

range of 0.2 to 0.4 times the rotational frequency of the turbine in which vortex rope pulsations

are likely to occur (1.1 to 2.2 Hz, since ftur b = nN /60 = 5.5 Hz). Therefore, a risk of resonance

exists. Moreover, the frequency of this eigenmode corresponds to the frequency of the power

fluctuations recorded on-site, which are depicted in figure 8.2. Furthermore, it is very close to

the frequency of the electrical intermachine eigenmodes presented in the previous section.

This indicates that significant interactions may happen between hydraulic, mechanical and

electrical subsystem at least around this frequency value.
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Figure 8.15: Forced response of the hydraulic system.

8.6 Hydroelectric System Eigenanalysis at Part Load Condition

The composition of the complete hydroelectric model is obtained by combining the electrical

and hydraulic models studied in the previous sections. The interface between these two

systems lies in the mechanical coupling between turbine and generator inertias, through

coupling shaft. Consequently, interactions between hydraulic and electrical subsystems are

related to interactions between the mechanical and the electromagnetic torques. Moreover,

because of the high value of inertia of the generator, the mechanical system behaves as a

low-pass filter [71, 95]. Therefore, interactions between the hydraulic and electrical elements

are expected to happen at a low frequency range.

The calculation of eigenvalues is performed for the system both without and with PSS. In

the first case, the order of the complete system is 433, whereas in the latter the order is 493.

Thus, the extensive list of eigenvalues is not given here. The reduced list containing the most

relevant eigenvalues for this case is presented in table 8.10. The letters that identify the nature

of the eigenmodes are specified in the legend below the table.

By comparing these results with those obtained for the purely electrical and hydraulic systems

(see tables 8.8 and 8.9, respectively), it is possible to see that the influence of one system over

the other does not affect all the relevant eigemodes.

The mass flow oscillation (A) and the gallery elastic (B) eigenmodes are not subjected to any

130



8.6. Hydroelectric System Eigenanalysis at Part Load Condition

Table 8.10: Most relevant eigenvalues of the hydroelectric system, with and without PSS.

Nature of the
eigenmode

without PSS with PSS
λ ζ (%) f (Hz) λ ζ (%) f (Hz)

A −0.002± j 0.052 3.84 0.008 −0.002± j 0.052 3.84 0.008

B −0.02± j 2.40 0.83 0.382 −0.02± j 2.40 0.83 0.382

C −0.98± j 2.09 42.5 0.333 −0.97± j 2.10 41.9 0.334

D −0.63± j 4.39 14.2 0.699 −0.66± j 4.33 15.1 0.689

E −0.02± j 3.50 0.57 0.557 −0.02± j 3.50 0.57 0.557

F −0.07± j 3.50 2.00 0.557 −0.07± j 3.50 2.00 0.557

G −0.005± j 8.38 0.06 1.333 −0.005± j 8.38 0.06 1.333

H −0.01± j 8.39 0.12 1.335 −0.01± j 8.39 0.12 1.335

I −0.43± j 5.44 7.88 0.866 −1.59± j 4.83 31.3 0.769

J −1.92± j 8.53 22.0 1.358 −7.20± j 8.34 65.3 1.327

K −0.20± j 47.9 0.42 7.624 −0.22± j 47.9 0.46 7.624

L −0.07± j 47.5 0.15 7.560 −0.07± j 47.5 0.15 7.560

Legend (nature of the eigenmode):

A Mass flow oscillation eigenmode

B Gallery 1st elastic eigenmode

C Penstock 1st elastic eigenmode

D Penstock 2nd elastic eigenmode

E Draft tube 1st elastic common eigenmode

F Draft tube 1st elastic intermachine eigenmodes 1, 2 and 3

G Draft tube 2nd elastic common eigenmode

H Draft tube 2nd elastic intermachine eigenmodes 1, 2 and 3

I Electro-mechanical local eigenmode

J Electro-mechanical intermachine eigenmodes 1, 2 and 3

K Torsional eigenmodes

L High-order penstock elastic eigenmode with strong interaction with torsional modes

modification. The elastic eigenmodes of the penstock (C and D), on the other hand, undergo

slight changes. Both damping ratio and frequency of the 1st penstock mode are decreased. The

modification is more significant in terms of frequency, whereas the reduction of the damping

ratio is weak. For the 2nd penstock mode, the frequency is slightly decreased, whereas the
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damping ratio only drops if the PSS is deactivated. The eigenmodes of the draft tubes of the

four turbines (E, F, G and H) are not modified by the introduction of the electrical system.

Considering the electro-mechanical eigenmodes (I and J), the influence of the introduction of

the model of the hydraulic system has distinct effects if the electrical system is either without

or with PSS. For the local mode (I), in the absence of PSS both frequency and damping ratio

are subjected to a minor increase. If the PSS is activated, the inclusion of the hydraulic model

shows that the damping ratio is slightly weaker (yet high) than the value obtained with the

purely electrical model, whereas the frequency shift is weak. Considering the intermachine

eigenmodes (J), the frequency is increased for the system without PSS, whereas it suffers a

light decrease for the system with PSS. In both cases, the damping ratio has a very subtle

increase.

It is interesting to observe that the representation of the rotors of turbines and generators by

independent mechanical masses introduces torsional eigenmodes (K) in the system, which

are related to oscillations of the turbine rotor against the generator rotor. These modes have

a strong interaction with a high-order mode from the penstock (L) which lies in the same

frequency range.

Reference [71] demonstrated that a stiff network introduces a stabilization effect in the low

frequency range (especially below 1 Hz). In the present case, however, the power grid is not

stiff (it has a limited short-circuit power). Therefore, the effect of the electrical network over

the low-frequency modes is either weak or even imperceptible in some cases. Moreover, it

does not contribute to enhance the damping ratio of the draft tube eigenmodes. Consequently,

hydraulic resonances due to part load vortex rope precession in the draft tube are likely to

affect also the electrical system through torque oscillations.

Indeed, the 2nd draft tube mode has a frequency (1.333 Hz) very close to the electro-mechanical

intermachine mode (1.327 Hz in the case with PSS). This mode is very well damped (ζ= 65.3%)

but if resonances in the draft tube are amplified by turbine head fluctuations, and conse-

quently, by mechanical torque oscillations, the electromagnetic torque will also pulsate,

resulting in significant electrical power swing. The high damping ratio of the intermachine

eigenmode is nevertheless important to limit the amplitude of these oscillations.

It is convenient to perform also time-domain simulations in order to confirm that the inter-

actions predicted by the eigenvalues results are indeed a risk to the power plant. To this end,

time-domain simulations are performed with a pressure excitation source placed in the draft

tube of generating unit 1. The pressure source has a frequency equal to 1.33 Hz and amplitude

equal to 2% (4% peak-to-peak) of the rated turbine head (HN ).

Figure 8.16 shows that such pressure fluctuations, which could be caused by vortex rope
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Figure 8.16: Turbine net head and torque response to vortex rope pulsation of 2% HN .

precession in the draft tube, lead to turbine head peak-to-peak oscillations equal to 38% of

the nominal head, and to mechanical torque peak-to-peak oscillations equal to 34% of the

rated torque of the turbine.

These torque fluctuations are reflected in the electrical system as power swings of high am-

plitude. Figure 8.17 illustrates the oscillatory behavior for the cases without and with PSS. If

the PSS is out of service, electrical power fluctuations reach 62% of the rated power of the

generator (peak-to-peak value). When the PSS is active, the peak-to-peak value drops to 31%.

This reduction is due to the fact that the interactions around 1.33 Hz are better damped by the

high damping ratio of the intermachine mode. Nonetheless, such a level of power swing is

not acceptable and can be very detrimental not only to the power plant, but also to the local

network.

Therefore, it is clear that vortex rope precession must be avoided in order to spare the instal-
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Figure 8.17: Electrical power swing due to vortex rope pulsation of 2% HN .
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lation serious consequences that could result from this resonant behavior. Avoiding vortex

rope precession can be achieved through measures such as compressed air injection in the

draft tube or installation of fins [40]. Compressed air injection modifies the wave speed in

the draft tube, which results in changing the characteristics of the draft tube eigenmodes [27].

Fins installed in the cone of the turbine outlet introduce changes of geometry that shift the

precession frequency of the vortex rope. Another possibility is to tune the PSS parameters or

to condition the PSS power input signal with a filtered draft tube pressure signal in order to

avoid the disturbances [9].

Finally, it is interesting to calibrate the amplitude of the excitation source in order to reproduce

the power fluctuations measured on-site, presented in figure 8.2. Investigations revealed

that the measured 1.1% peak-to-peak electrical power swing can be caused by a very weak

excitation on the draft tube. For the system with the PSS, the amplitude of the excitation was

equal to 0.021% (0.042% peak-to-peak) of the rated turbine head (HN ).

Figure 8.18 presents the electrical power fluctuations caused by such an excitation source. The

unit 1 (where the excitation is placed) oscillates with a peak-to-peak amplitude equal to 1.11%

of the rated power of the generator. The other three units have a peak-to-peak oscillation equal

to 0.4%. Moreover, they oscillate in phase opposition with respect to unit 1 (intermachine

mode 1, illustrated in figure 8.9b).

Such a low value of excitation indicates that very few energy is necessary to cause electrical

power swings in this hydropower plant. This means that the broadband excitation spectrum

in the draft tube is sufficient to cause undesired behavior with considerable power fluctuation

under part load operating condition.
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Figure 8.18: Electrical power swing due to vortex rope pulsation of 0.021% HN .
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8.7 Concluding Remarks

This case study permitted to apply the small-signal models developed in the present work in

the study of a real situation, likely to occur in several existing hydropower plants. Due to its

flexibility, such power plants may be required to repeatedly operate under part load condition

and must keep stability during this mode of operation.

First, the validation of the electrical system was performed through comparison between

on-site measurements, time-domain simulations and eigenvalue calculations. Then, eigen-

analyses of the electrical system at part load were performed in order to identify the electro-

mechanical modes likely to interact with vortex rope pulsations in the draft tube. These

analyses also showed the evolution of the local mode as a function of the number of generat-

ing units synchronized to the grid. Additionally, the intermachine eigenmodes were identified

and representations of the mode shapes showed that each intermachine mode has a distinct

action over the generators, even though their damping ratios and frequencies were equal.

Subsequently, the hydraulic system was studied. The main eigenmodes were presented and

their mode shapes were illustrated. The 2nd draft tube elastic eigenmode was identified as a

possible source of problem, since its frequency is in the range of both draft tube vortex rope

precession and electro-mechanical eigenmodes. Thus, resonant interactions are likely to

occur.

Finally, the complete hydroelectric system was also studied through eigenanalysis. It was

verified that only slight modifications happen to eigenmodes of both hydraulic and electrical

nature. Therefore, the complete system confirmed that the 2nd draft tube mode and the

intermachine mode were very close and likely to interact. Time-domain simulations were

then performed to confirm such interaction and demonstrated that pulsations originated

in the draft tube are largely amplified and result in high power swings, which have harmful

consequences to the power plant and to the local grid. Moreover, very low excitation values

corresponding to the broadband oscillation spectrum were found to be sufficient to cause the

electrical power fluctuations measured on-site.

Therefore, vortex rope precession must absolutely be avoided at this hydropower plant in

order to avoid damages and malfunctioning both in the power plant and in the local grid.

Solutions such as compressed air injection in the draft tube or installation of fins in the cone

of the turbine outlet can be helpful to avoid or to change the characteristics of vortex load

precession, thus reducing pressure fluctuations in the draft tube during part load operation.
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9.1 Summary

As mentioned in chapter 1, section 1.4.1, the main purpose of the present work was to develop a

new tool for small-signal stability analysis of electrical systems to be implemented in SIMSEN,

so that it would be possible not only to build comprehensive small-signal electrical models,

but also to combine them with hydraulic ones.

For this purpose, and in order to take advantage of the main assets of SIMSEN, it was necessary

to respect the modeling principles already existing in this software. This means electrical

models based on a,b,c-phase variables which differ from classical models, based on Park’s

representation (d,q,o-axis).

As stated in chapter 1, section 1.3.2, and chapter 3, section 3.1, small-signal stability anal-

ysis of a system is based on the calculation of its eigenvalues and eigenvectors. For linear

time-invariant (LTI) systems, the characteristics of eigenvalues inform if it is stable around

a given equilibrium point or not. On the other hand, if the system is time-variant (non-LTI),

eigenanalysis techniques cannot be directly applied.

Electrical machines models based on a,b,c-phase variables are time-variant systems. Thus,

it would not be coherent to straightforwardly linearize the time-domain models existing in

SIMSEN, in order to extract their eigenvalues for small-signal stability analysis purposes.

Therefore, a new methodology was developed for the derivation of small-signal models from

non-LTI time-domain models. This new methodology, presented in chapter 4, section 4.3,

guarantees a coherent linearization of the models (by applying the analytical linearization

method), whilst preserving compatibility with the modeling principles of SIMSEN. This means
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that by using this methodology, it is possible to obtain small-signal models of electrical

elements based on a,b,c-phase variables, which are fully compatible with both eigenanalysis

techniques and the SIMSEN environment.

All small-signal electrical models obtained through the proposed methodology were applied

in test cases presented in chapter 5. These test cases allowed for the validation of the models,

since all the results were confirmed either analytically or through comparison with time-

domain simulations. Both frequency and damping ratio of the calculated eigenvalues were

demonstrated to be coherent.

In chapter 6, the modeling principles of hydraulic elements were explained. Time-domain

models for pipes, Francis turbine, surge tank and turbine governor were presented. Then,

peculiarities related to the linearization of hydraulic models for the derivation of small-signal

models were described.

Subsequently, electrical and hydraulic small-signal models were applied in two case studies,

with comprehensive modeling of hydropower plants. In both cases, all the hydraulic, mechan-

ical, electrical and regulation elements were taken into account, so that complete small-signal

models were used in order to assess all possible interactions between these subsystems.

The first case study, presented in chapter 7, analyzed the dynamic behavior of an islanded

hydropower plant. The contribution of power system stabilizers to damp unstable electro-

mechanical eigenmodes was demonstrated. Also, it was shown that in the case of an islanded

power plant, the frequency control loop of the turbine governor is also capable of enhancing

the stability of the electro-mechanical eigenmodes. Nonetheless, this case study also permitted

to reveal adverse interactions that are likely to occur between the turbine governor and the PSS.

These interactions, which depend strongly on the tuning of each regulator, had the tendency

to drastically destabilize eigenmodes related to the hydraulic installation. Even though these

effects are somewhat known and have been observed in practical cases, the use of a complete

multi-physics model allowed for the predictive assessment of such risk, whilst giving a clear

indication of its origin and possible solution. Therefore, a comprehensive model is important

in order to allow a judicious tuning of all regulators, avoiding undesirable on-site problems.

The second case study, presented in chapter 8, focused on the small-signal stability of an

existing 1000 MW hydropower plant (4×250 MW generating units) during part load operation.

Due to their flexibility, hydropower plants may be frequently required to operate under such

condition, which is likely to cause the occurrence of vortex load on the draft tube of the

turbine. The complete hydroelectric model used in this case study showed that pressure

fluctuations due to vortex rope pulsation may coincide with draft tube modes and also with

electro-mechanical modes, leading to considerable power swings on the electrical system.

Therefore, it was possible to conclude that vortex rope pulsation must absolutely be avoided
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at this hydropower plant, in order to prevent damages and malfunctioning both of the power

plant and of the local grid.

9.2 Conclusions

As highlighted in chapter 1, the power sector is in constant evolution. Considering the installa-

tion of new power plants and the constant need to study more flexible modes of operation, it is

clear that reliable, robust and user-friendly tools are necessary to assess the dynamic behavior

of power plants and grid.

Moreover, based on the conclusions withdrawn from the case studies of chapters 7 and 8,

presented in sections 7.6 and 8.7 respectively, it is clear that multi-physics models are necessary

in order to assess the real small-signal behavior of the global system.

The tool developed in the present work meets these needs. By taking advantage of the assets

of SIMSEN, it is a reliable and robust tool, with a user-friendly graphical interface (GUI).

By incorporating electrical, mechanical, hydraulic and regulation elements, it is capable of

providing comprehensive, precise, multi-physics models of hydroelectric systems.

9.3 Contributions of the Present Work

Applications of small-signal stability analysis techniques on multi-physics systems, such as

those presented in chapter 2, section 2.2, are most commonly developed for specific cases or

on very particular purposes. Consequently, the extension of these applications to systems

with any different topological structure requires time-consuming efforts, in order to establish

the new set of differential equations of the new system.

Moreover, the computational tools presented in chapter 2, section 2.3, are dedicated to large-

scale power systems. Small-signal models for several electrical elements are available, espe-

cially those related to transmission networks, as well as generators and loads. On the other

hand, no special attention is paid to the nature of the energy sources. For example, turbines are

often represented by constant torques, which do not correspond to the reality. Furthermore,

these electrical models are based on Park’s representation.

Therefore, one of the contributions of the present work is the new procedure applied to derive

small-signal models for electrical elements, presented in chapter 4. The models derived

by applying this method are based on a,b,c-phase variables, which is a novel approach in

small-signal stability analysis. The innovative aspect of this procedure is related to a new

inverse transformation, which was defined based on the inverse Park’s transformation. This

new transformation is the only one capable of converting the linearized models to a,b,c-
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phase coordinates, whilst correctly taking into account all the supplementary terms due to

linearization and keeping the modular structure of the system. Furthermore, by doing so

the resulting models were compatible with SIMSEN, and after their implementation it was

possible to take profit of the modular characteristic of this software.

Furthermore, once the small-signal electrical models developed in the scope of the present

work were combined with the hydraulic ones already existing in SIMSEN, complete and

detailed modeling of hydroelectric systems, taking into account electrical and hydraulic

subsystems including their control elements was made possible. This means that this is a

truly multi-physics small-signal analysis tool. This is an important contribution, in the sense

that interactions between hydraulic, mechanical, electrical and regulation elements can be

correctly identified, allowing for preventing resonance problems that cannot be detected if

turbines are modeled by a constant torque.

The examples presented in chapters 7 and 8 demonstrated that such a detailed modeling

allows for the identification not only of the instabilities or adverse interactions, but also

of the sources of any undesired phenomena. Once such phenomena and their causes are

clearly detected, adequate solutions can be proposed either to a better exploitation of existing

installations, or to satisfactory adjustments of projects of new installations.

Additionally, another contribution of this work is a new graphical interface, which was devel-

oped in MATLAB in order to treat the calculation and representation of participation factors.

It was applied in all validations and test cases presented in this work. This interface gives

the possibility for a new didactic and intuitive form of representation of participation factors

based on color maps, which facilitates the identification of interactions between subsystems,

characterized by their corresponding state variables. An example of this representation was

given in chapter 7, figure 7.7.

Finally, with the implementation of the small-signal electrical models, it was possible to take

advantage of the main features of SIMSEN in such a way that a novel small-signal stability tool

was obtained. It comprises small-signal models of all elements necessary to build a detailed

representation of power plants and grids (see figure 1.6). The major advantages of this tool are

three of the strongest assets of SIMSEN, namely:

• Treatment of systems with any given topology – a modular tool;

• Simple construction of topologies in an user-friendly GUI, through graphical connection

and parametrization of all elements – easy association and configuration of building

blocks;

• Automatic generation of the full set of differential equations of the global system – rapidly

and safely performed.
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In other words, this means that topological changes in the structure of the system do not re-

quire much effort from the user. Through a graphical modification (in the GUI) of connections

and elements to be changed, the new problem can be solved without any need for the user to

adapt the matrices or equations describing the system. This fastidious, burdensome task is

automatically treated in SIMSEN. This is a considerable advantage over the models presented

in the publications discussed in chapter 2, section 2.2.

9.4 Perspectives

9.4.1 Other Standard Types of Regulators

Considering the large number of standard models for voltage regulators and power system

stabilizers proposed by IEEE [38], one interesting perspective is the inclusion of some new

models in the small-signal stability tool.

Nowadays, advanced versions of SIMSEN also include models ST4B and ST8C for voltage

regulators, and PSS4B for power system stabilizer. Together with the ST1A and PSS2B, these

are well-known models used worldwide, which could make the small-signal stability tool even

more complete.

The derivation of the small-signal model follows the same principles as for the ST1A and

PSS2B, and the linearized expressions for the inputs were already developed.

9.4.2 Parametric Studies through Eigenvalue Sensitivity

High-order models comprising different control and regulation structures may depict several

sources of interactions that have to be avoided, as shown in chapters 7 and 8. The tuning of

regulators play a major role in this context. It may have either a positive or a negative influence

in the dynamic behavior of the system. Consequently, the parameters set of regulators need to

be carefully determined.

A convenient and effective tool for the tuning of regulators is the calculation of eigenvalue

sensitivity. This concept was presented in chapter 3, section 3.3.4. It corresponds to the rate of

change of a given eigenvalue with respect to a specific parameter of the system. Therefore,

eigenvalue sensitivity can give valuable information on how parameters of regulators should

be adjusted, in order to obtain a better dynamic performance of the global system.
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9.4.3 Extension to other Renewable Energy Systems

Considering the growing penetration of new renewable energy sources (other than hydro) in

the power generation mix, and bearing in mind their intermittent characteristic, it can also be

interesting to develop multi-physics small-signal models for wind, tidal and solar PV power

plants.

For this purpose, small-signal models of wind and tidal turbines, photovoltaic panels, pseudo-

continuous power converters and permanent magnet synchronous machines need to be

developed. Such accomplishment shall yield an even more comprehensive small-signal tool.

With such a fully modular, multi-physics, mixed-sources tool, it shall be possible to perform

advanced analyses, with very high level of modeling.
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AA
Small-Signal Models Based on

a,b,c-Phase Coordinates

The equations describing all small-signal models based on a,b,c-phase variables coordinates,

derived during the present work, are presented in this appendix. These models were developed

according to the procedure presented in chapter 4, section 4.3 and validated all along chapter 5.

The actual values of parameters are used instead of per-unit values.

The elements whose models are given here are:

• Salient-pole synchronous machine;

• Wound-rotor induction machine;

• Power transformers (vector groups Yy0, Yd5 and Yd11);

• RL and RLC loads;

• RL and π-section models of transmission lines;

• Voltage regulators (IEEE ST1A and Unitrol®);

• Power system stabilizer IEEE PSS2B.

A.1 Salient-Pole Synchronous Machine

A.1.1 Stator Equations

∆ua =α11
d∆ia

d t
+α12

d∆ib

d t
+α13

d∆ic

d t
+α14

d∆i f

d t
+α15

d∆iD

d t
+α16

d∆iQ

d t

+β11∆ia +β12∆ib +β13∆ic +β14∆i f +β15∆iD +β16∆iQ +β17∆ωm +β18∆θ

(A.1)
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A.1.2 Rotor Equations
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A.1.3 Mechanical Equations
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+L f a i f 0 sinθ0

}

β72 =−Pp

{
2

3

(
Ld −Lq

)[
ia0 sin

(
2θ0 − 2π

3

)
+ ib0 sin

(
2θ0 + 2π

3

)
+ ic0 sin(2θ0)

]
+L f a i f 0 sin

(
θ0 − 2π

3

)}

β73 =−Pp

{
2

3

(
Ld −Lq

)[
ia0 sin

(
2θ0 + 2π

3

)
+ ib0 sin(2θ0)+ ic0 sin

(
2θ0 − 2π

3

)]
+L f a i f 0 sin

(
θ0 + 2π

3

)}

β74 =−Pp L f a

[
ia0 sinθ0 + ib0 sin

(
θ0 − 2π

3

)
+ ic0 sin

(
θ0 + 2π

3

)]
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A.2. Wound-Rotor Induction Machine

β75 =−Pp LDa

[
ia0 sinθ0 + ib0 sin

(
θ0 − 2π

3

)
+ ic0 sin

(
θ0 + 2π

3

)]

β76 =−Pp LQa

[
ia0 cosθ0 + ib0 cos

(
θ0 − 2π

3

)
+ ic0 cos

(
θ0 + 2π

3

)]

β78 =−Pp

{
2

3

(
Ld −Lq

)[
i 2

a0 cos2 (2θ0)+2ia0ib0 cos

(
2θ0 − 2π

3

)
+2ia0ic0 cos

(
2θ0 + 2π

3

)
+ i 2

b0 cos2
(
2θ0 + 2π

3

)
+2ib0ic0 cos(2θ0)

+ i 2
c0 cos2

(
2θ0 − 2π

3

)]
+ 3

2
L f ai f 0

[
ia0 cosθ0 + ib0 cos

(
θ0 − 2π

3

)
+ ic0 cos

(
θ0 + 2π

3

)]}

d∆θ

d t
=∆ωm (A.8)

A.2 Wound-Rotor Induction Machine

A.2.1 Stator Equations

∆ua =α11
d∆ia

d t
+α12

d∆ib

d t
+α13

d∆ic

d t
+α14

d∆i A

d t
+α15

d∆iB

d t
+α16

d∆iC

d t

+β11∆ia +β12∆ib +β13∆ic +β14∆i A +β15∆iB +β16∆iC +β17∆ωm +β18∆θm

(A.9)

Where

α11 = 2Ls +Los

3

α12 = −Ls +Los

3

α13 = −Ls +Los

3

α14 = 2

3
Lsr cosθm0

α15 = 2

3
Lsr cos

(
θm0 + 2π

3

)
α16 = 2

3
Lsr cos

(
θm0 − 2π

3

)
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Appendix A. Small-Signal Models Based on a,b,c-Phase Coordinates

β11 = Rs

β12 =−
p

3

3
ωa0 Ls

β13 =
p

3

3
ωa0 Ls

β14 =−2

3
ωa0 Lsr sinθm0

β15 =−2

3
ωa0 Lsr sin

(
θm0 + 2π

3

)
β16 =−2

3
ωa0 Lsr sin

(
θm0 − 2π

3

)
β17 =−2

3
Lsr

[
i A0 sinθm0 + iB0 sin

(
θm0 + 2π

3

)
+ iC 0 sin

(
θm0 − 2π

3

)]
β18 =−2

3
ωa0 Lsr

[
i A0 cosθm0 + iB0 cos

(
θm0 + 2π

3

)
+ iC 0 cos

(
θm0 − 2π

3

)]

∆ub =α21
d∆ia

d t
+α22

d∆ib

d t
+α23

d∆ic

d t
+α24

d∆i A

d t
+α25

d∆iB

d t
+α26

d∆iC

d t

+β21∆ia +β22∆ib +β23∆ic +β24∆i A +β25∆iB +β26∆iC +β27∆ωm +β28∆θm

(A.10)

Where

α21 = −Ls +Los

3

α22 = 2Ls +Los

3

α23 = −Ls +Los

3

α24 = 2

3
Lsr cos

(
θm0 − 2π

3

)
α25 = 2

3
Lsr cosθm0

α26 = 2

3
Lsr cos

(
θm0 + 2π

3

)

β21 =
p

3

3
ωa0 Ls

β22 = Rs
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A.2. Wound-Rotor Induction Machine

β23 =−
p

3

3
ωa0 Ls

β24 =−2

3
ωa0 Lsr sin

(
θm0 − 2π

3

)
β25 =−2

3
ωa0 Lsr sinθm0

β26 =−2

3
ωa0 Lsr sin

(
θm0 + 2π

3

)
β27 =−2

3
Lsr

[
i A0 sin

(
θm0 − 2π

3

)
+ iB0 sinθm0 + iC 0 sin

(
θm0 + 2π

3

)]
β28 =−2

3
ωa0 Lsr

[
i A0 cos

(
θm0 − 2π

3

)
+ iB0 cosθm0 + iC 0 cos

(
θm0 + 2π

3

)]

∆uc =α31
d∆ia

d t
+α32

d∆ib

d t
+α33

d∆ic

d t
+α34

d∆i A

d t
+α35

d∆iB

d t
+α36

d∆iC

d t

+β31∆ia +β32∆ib +β33∆ic +β34∆i A +β35∆iB +β36∆iC +β37∆ωm +β38∆θm

(A.11)

Where

α31 = −Ls +Los

3

α32 = −Ls +Los

3

α33 = 2Ls +Los

3

α34 = 2

3
Lsr cos

(
θm0 + 2π

3

)
α35 = 2

3
Lsr cos

(
θm0 − 2π

3

)
α36 = 2

3
Lsr cosθm0

β31 =−
p

3

3
ωa0 Ls

β32 =
p

3

3
ωa0 Ls

β33 = Rs

β34 =−2

3
ωa0 Lsr sin

(
θm0 + 2π

3

)
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Appendix A. Small-Signal Models Based on a,b,c-Phase Coordinates

β35 =−2

3
ωa0 Lsr sin

(
θm0 − 2π

3

)
β36 =−2

3
ωa0 Lsr sinθm0

β37 =−2

3
Lsr

[
i A0 sin

(
θm0 + 2π

3

)
+ iB0 sin

(
θm0 − 2π

3

)
+ iC 0 sinθm0

]
β38 =−2

3
ωa0 Lsr

[
i A0 cos

(
θm0 + 2π

3

)
+ iB0 cos

(
θm0 − 2π

3

)
+ iC 0 cosθm0

]

A.2.2 Rotor Equations

∆uA =α41
d∆ia

d t
+α42

d∆ib

d t
+α43

d∆ic

d t
+α44

d∆i A

d t
+α45

d∆iB

d t
+α46

d∆iC

d t

+β41∆ia +β42∆ib +β43∆ic +β44∆i A +β45∆iB +β46∆iC +β47∆ωm +β48∆θm

(A.12)

Where

α41 = 2

3
Lsr cosθm0

α41 = 2

3
Lsr cos

(
θm0 − 2π

3

)
α43 = 2

3
Lsr cos

(
θm0 + 2π

3

)
α44 = 2Lr +Lor

3

α45 = −Lr +Lor

3

α46 = −Lr +Lor

3

β41 = 2

3
(ωa0 −ωm0)Lsr sinθm0

β42 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 − 2π

3

)
β43 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 + 2π

3

)
β44 = Rr

β45 =−
p

3

3
(ωa0 −ωm0)Lr

β46 =
p

3

3
(ωa0 −ωm0)Lr
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A.2. Wound-Rotor Induction Machine

β47 =−2

3
Lsr

[
ia0 sinθm0 + ib0 sin

(
θm0 − 2π

3

)
+ ic0 sin

(
θm0 + 2π

3

)]
β48 = 2

3
(ωa0 −ωm0)Lsr

[
ia0 cosθm0 + ib0 cos

(
θm0 − 2π

3

)
+ ic0 cos

(
θm0 + 2π

3

)]

∆uB =α51
d∆ia

d t
+α52

d∆ib

d t
+α53

d∆ic

d t
+α54

d∆i A

d t
+α55

d∆iB

d t
+α56

d∆iC

d t

+β21∆ia +β52∆ib +β53∆ic +β54∆i A +β55∆iB +β56∆iC +β57∆ωm +β58∆θm

(A.13)

Where

α51 = 2

3
Lsr cos

(
θm0 + 2π

3

)
α52 = 2

3
Lsr cosθm0

α53 = 2

3
Lsr cos

(
θm0 − 2π

3

)
α54 = −Lr +Lor

3

α55 = 2Lr +Lor

3

α56 = −Lr +Lor

3

β51 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 + 2π

3

)
β52 = 2

3
(ωa0 −ωm0)Lsr sinθm0

β53 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 − 2π

3

)

β54 =
p

3

3
(ωa0 −ωm0)Lr

β55 = Rr

β56 =−
p

3

3
(ωa0 −ωm0)Lr

β57 =−2

3
Lsr

[
ia0 sin

(
θm0 + 2π

3

)
+ ib0 sinθm0 + ic0 sin

(
θm0 − 2π

3

)]
β58 = 2

3
(ωa0 −ωm0)Lsr

[
ia0 cos

(
θm0 + 2π

3

)
+ ib0 cosθm0 + ic0 cos

(
θm0 − 2π

3

)]
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Appendix A. Small-Signal Models Based on a,b,c-Phase Coordinates

∆uC =α61
d∆ia

d t
+α62

d∆ib

d t
+α63

d∆ic

d t
+α64

d∆i A

d t
+α65

d∆iB

d t
+α66

d∆iC

d t

+β61∆ia +β62∆ib +β63∆ic +β64∆i A +β65∆iB +β66∆iC +β67∆ωm +β68∆θm

(A.14)

Where

α61 = 2

3
Lsr cos

(
θm0 − 2π

3

)
α62 = 2

3
Lsr cos

(
θm0 + 2π

3

)
α63 = 2

3
Lsr cosθm0

α64 = −Lr +Lor

3

α65 = −Lr +Lor

3

α66 = 2Lr +Lor

3

β61 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 − 2π

3

)
β62 = 2

3
(ωa0 −ωm0)Lsr sin

(
θm0 + 2π

3

)
β63 = 2

3
(ωa0 −ωm0)Lsr sinθm0

β64 =−
p

3

3
(ωa0 −ωm0)Lr

β65 =
p

3

3
(ωa0 −ωm0)Lr

β66 = Rr

β67 =−2

3
Lsr

[
ia0 sin

(
θm0 − 2π

3

)
+ ib0 sin

(
θm0 + 2π

3

)
+ ic0 sinθm0

]
β68 = 2

3
(ωa0 −ωm0)Lsr

[
ia0 cos

(
θm0 − 2π

3

)
+ ib0 cos

(
θm0 + 2π

3

)
+ ic0 cosθm0

]

A.2.3 Mechanical Equations

J

Pp

d∆ωm

d t
=∑

∆T =∆Tem +∑
∆Tmec (A.15a)
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A.3. Power Transformers

With

∆Tem =β71∆ia +β72∆ib +β73∆ic +β74∆i A +β75∆iB +β76∆iC +β78∆θm (A.15b)

Where

β71 =−2

3
Pp Lsr

[
i A0 sinθm0 + iB0 sin

(
θm0 + 2π

3

)
+ iC 0 sin

(
θm0 − 2π

3

)]
β72 =−2

3
Pp Lsr

[
i A0 sin

(
θm0 − 2π

3

)
+ iB0 sinθm0 + iC 0 sin

(
θm0 + 2π

3

)]
β73 =−2

3
Pp Lsr

[
i A0 sin

(
θm0 + 2π

3

)
+ iB0 sin

(
θm0 − 2π

3

)
+ iC 0 sinθm0

]
β74 =−2

3
Pp Lsr

[
ia0 sinθm0 + ib0 sin

(
θm0 − 2π

3

)
+ ic0 sin

(
θm0 + 2π

3

)]
β75 =−2

3
Pp Lsr

[
ia0 sin

(
θm0 + 2π

3

)
+ ib0 sinθm0 + ic0 sin

(
θm0 − 2π

3

)]
β76 =−2

3
Pp Lsr

[
ia0 sin

(
θm0 − 2π

3

)
+ ib0 sin

(
θm0 + 2π

3

)
+ ic0 sinθm0

]
β78 =−2

3
Pp Lsr

[
(ia0 i A0 + ib0iB0 + ic0iC 0)cosθm0

+ (ia0 iC 0 + ib0i A0 + ic0iB0)cos

(
θm0 − 2π

3

)
+ (ia0 iB0 + ib0iC 0 + ic0i A0)cos

(
θm0 + 2π

3

)]

d∆θm

d t
=∆ωm (A.16)

A.3 Power Transformers

A.3.1 Vector Group Yy0

Primary Side

∆ua1 = L11
d∆ia1

d t
−L11m

d∆ib1

d t
−L11m

d∆ic1

d t
+L12

d∆ia2

d t
−L12m

d∆ib2

d t

−L12m
d∆ic2

d t
+R1∆ia1 −

p
3

3
ωa0 (L11 +L11m)∆ib1

+
p

3

3
ωa0 (L11 +L11m)∆ic1 −

p
3

3
ωa0 (L12 +L12m)∆ib2 +

p
3

3
ωa0 (L12 +L12m)∆ic2

(A.17)
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Appendix A. Small-Signal Models Based on a,b,c-Phase Coordinates

∆ub1 =−L11m
d∆ia1

d t
+L11

d∆ib1

d t
−L11m

d∆ic1

d t
−L12m

d∆ia2

d t
+L12

d∆ib2

d t

−L12m
d∆ic2

d t
+
p

3

3
ωa0 (L11 +L11m)∆ia1 +R1∆ib1

−
p

3

3
ωa0 (L11 +L11m)∆ic1 +

p
3

3
ωa0 (L12 +L12m)∆ia2 −

p
3

3
ωa0 (L12 +L12m)∆ic2

(A.18)

∆uc1 =−L11m
d∆ia1

d t
−L11m

d∆ib1

d t
+L11

d∆ic1

d t
−L12m

d∆ia2

d t
−L12m

d∆ib2

d t

+L12
d∆ic2

d t
−
p

3

3
ωa0 (L11 +L11m)∆ia1 +

p
3

3
ωa0 (L11 +L11m)∆ib1

+R1∆ic1 −
p

3

3
ωa0 (L12 +L12m)∆ia2 +

p
3

3
ωa0 (L12 +L12m)∆ib2

(A.19)

Secondary Side

∆ua2 = L12
d∆ia1

d t
−L12m

d∆ib1

d t
−L12m

d∆ic1

d t
+L22

d∆ia2

d t
−L22m

d∆ib2

d t

−L22m
d∆ic2

d t
−
p

3

3
ωa0 (L12 +L12m)∆ib1 +

p
3

3
ωa0 (L12 +L12m)∆ic1

+R2∆ia2 −
p

3

3
ωa0 (L22 +L22m)∆ib2 +

p
3

3
ωa0 (L22 +L22m)∆ic2

(A.20)

∆ub2 =−L12m
d∆ia1

d t
+L12

d∆ib1

d t
−L12m

d∆ic1

d t
−L22m

d∆ia2

d t
+L22

d∆ib2

d t

−L22m
d∆ic2

d t
+
p

3

3
ωa0 (L12 +L12m)∆ia1 −

p
3

3
ωa0 (L12 +L12m)∆ic1

+
p

3

3
ωa0 (L22 +L22m)∆ia2 +R2∆ib2 −

p
3

3
ωa0 (L22 +L22m)∆ic2

(A.21)

∆uc2 =−L12m
d∆ia1

d t
−L12m

d∆ib1

d t
+L12

d∆ic1

d t
−L22m

d∆ia2

d t
−L22m

d∆ib2

d t

+L22
d∆ic2

d t
−
p

3

3
ωa0 (L12 +L12m)∆ia1 +

p
3

3
ωa0 (L12 +L12m)∆ib1

−
p

3

3
ωa0 (L22 +L22m)∆ia2 +

p
3

3
ωa0 (L22 +L22m)∆ib2 +R2∆ic2

(A.22)
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A.3. Power Transformers

A.3.2 Vector Group Yd5

Primary Side

∆ua1 = L11
d∆ia1

d t
−L11m

d∆ib1

d t
−L11m

d∆ic1

d t
+L12m

d∆ib2

d t
+2L12m

d∆ic2

d t

− (L12 −2L12m)
d∆i∆

d t
+R1∆ia1 −

p
3

3
ωa0 (L11 +L11m)∆ib1

+
p

3

3
ωa0 (L11 +L11m)∆ic1 +

p
3

3
ωa0 (L12 +L12m)∆ib2

(A.23)

∆ub1 =−L11m
d∆ia1

d t
+L11

d∆ib1

d t
−L11m

d∆ic1

d t
−L12

d∆ib2

d t
− (L12 −L12m)

d∆ic2

d t

− (L12 −2L12m)
d∆i∆

d t
+
p

3

3
ωa0 (L11 +L11m)∆ia1 +R1∆ib1

−
p

3

3
ωa0 (L11 +L11m)∆ic1 +

p
3

3
ωa0 (L12 +L12m)∆ic2

(A.24)

∆uc1 =−L11m
d∆ia1

d t
−L11m

d∆ib1

d t
+L11

d∆ic1

d t
+L12m

d∆ib2

d t
− (L12 −L12m)

d∆ic2

d t

− (L12 −2L12m)
d∆i∆

d t
−
p

3

3
ωa0 (L11 +L11m)∆ia1 +

p
3

3
ωa0 (L11 +L11m)∆ib1

+R1∆ic1 −
p

3

3
ωa0 (L12 +L12m)∆ib2 −

p
3

3
ωa0 (L12 +L12m)∆ic2

(A.25)

Secondary Side

∆ua2 =−L12 +L12m

3

d∆ia1

d t
+ L12 +L12m

3

d∆ib1

d t
− L22 +L22m

3

d∆ib2

d t

− L22 +L22m

3

d∆ic2

d t
+
p

3

9
ωa0 (L12 +L12m)∆ia1 +

p
3

9
ωa0 (L12 +L12m)∆ib1

− 2
p

3

9
ωa0 (L12 +L12m)∆ic1 −

[
R2

3
+
p

3

9
ωa0 (L22 +L22m)

]
∆ib2

−
[

R2

3
−
p

3

9
ωa0 (L22 +L22m)

]
∆ic2

(A.26)
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Appendix A. Small-Signal Models Based on a,b,c-Phase Coordinates

∆ub2 =−L12 +L12m

3

d∆ib1

d t
+ L12 +L12m

3

d∆ic1

d t
+ L22 +L22m

3

d∆ib2

d t

− 2
p

3

9
ωa0 (L12 +L12m)∆ia1 +

p
3

9
ωa0 (L12 +L12m)∆ib1

+
p

3

9
ωa0 (L12 +L12m)∆ic1 +

[
R2

3
−
p

3

9
ωa0 (L22 +L22m)

]
∆ib2

− 2
p

3

9
ωa0 (L22 +L22m)∆ic2

(A.27)

∆uc2 = L12 +L12m

3

d∆ia1

d t
− L12 +L12m

3

d∆ic1

d t
+ L22 +L22m

3

d∆ic2

d t

+
p

3

9
ωa0 (L12 +L12m)∆ia1 − 2

p
3

9
ωa0 (L12 +L12m)∆ib1

+
p

3

9
ωa0 (L12 +L12m)∆ic1 + 2

p
3

9
ωa0 (L22 +L22m)∆ib2

+
[

R2

3
+
p

3

9
ωa0 (L22 +L22m)

]
∆ic2

(A.28)

Circulating Current of the∆-Connection

0 =− (L12 −2L12m)
d∆ia1

d t
− (L12 −2L12m)

d∆ib1

d t
− (L12 −2L12m)

d∆ic1

d t

+ (L22 −2L22m)
d∆ib2

d t
+2(L22 −2L22m)

d∆ic2

d t
+3(L22 −2L22m)

d∆i∆
d t

+R2∆ib2 +2R2∆ic2 +3R2∆i∆

(A.29)

A.3.3 Vector Group Yd11

Equations representing power transformers of vector group Yd11 are the same as those for Yd5

transformers. Nonetheless, the polarity between primary and secondary sides is inverted, due

to the windings connection.

Therefore, the sign of mutual inductances L12 and L12m must be inverted, so that this effect is

taken into account.
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A.4. Electrical Loads

A.4 Electrical Loads

A.4.1 RL Series Load

∆ua = LL
d∆ia

d t
+RL∆ia −

p
3

3
ωa0 LL∆ib +

p
3

3
ωa0 LL∆ic (A.30)

∆ub = LL
d∆ib

d t
+
p

3

3
ωa0 LL∆ia +RL∆ib −

p
3

3
ωa0 LL∆ic (A.31)

∆uc = LL
d∆ic

d t
−
p

3

3
ωa0 LL∆ia +

p
3

3
ωa0 LL∆ib +RL∆ic (A.32)

A.4.2 RLC Series Load

∆ua = LL
d∆ia

d t
+RL∆ia −

p
3

3
ωa0 LL∆ib +

p
3

3
ωa0 LL∆ic +∆uC a (A.33)

∆ub = LL
d∆ib

d t
+
p

3

3
ωa0 LL∆ia +RL∆ib −

p
3

3
ωa0 LL∆ic +∆uC b (A.34)

∆uc = LL
d∆ic

d t
−
p

3

3
ωa0 LL∆ia +

p
3

3
ωa0 LL∆ib +RL∆ic +∆uC c (A.35)

∆ia =CL
d∆uC a

d t
−
p

3

3
ωa0 CL∆uC b +

p
3

3
ωa0 CL∆uC c (A.36)

∆ib =CL
d∆uC b

d t
+
p

3

3
ωa0 CL∆uC a −

p
3

3
ωa0 CL∆uC c (A.37)

∆ic =CL
d∆uC c

d t
−
p

3

3
ωa0 CL∆uC a +

p
3

3
ωa0 CL∆uC b (A.38)
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A.5 Transmission Lines

A.5.1 RL Transmission Line

Rtl Ltl

uabc,1

ia

ib

ic

uabc,2

Figure A.1: Resistive-inductive transmission line.

∆ua1 = Lt l
d∆ia

d t
+Rt l ∆ia −

p
3

3
ωa0 Lt l ∆ib +

p
3

3
ωa0 Lt l ∆ic +∆ua2 (A.39)

∆ub1 = Lt l
d∆ib

d t
+
p

3

3
ωa0 Lt l ∆ia +Rt l ∆ib −

p
3

3
ωa0 Lt l ∆ic +∆ub2 (A.40)

∆uc1 = Lt l
d∆ic

d t
−
p

3

3
ωa0 Lt l ∆ia +

p
3

3
ωa0 Lt l ∆ib +Rt l ∆ic +∆uc2 (A.41)

A.5.2 π-Section Model of Transmission Line

uabc,1

ia1

ib1

ic1

uabc,2

C ϕn

iCa1 iCb1 iCc1

iCbc1

iCab1

iCca1

Cϕϕ

Cϕn

iCa2 iCb2 iCc2

iCbc2

iCab2

iCca2

Cϕϕ

ia2

ib2

ic2

Rtl Ltl

Ltlm

Ltlm

Figure A.2: Three-phase scheme of a π-section transmission line element.
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Voltage Drop on RL Series Element

∆ua = Lt l
d∆ia

d t
+Lt lm

d∆ib

d t
+Lt lm

d∆ic

d t
+Rt l ∆ia

−
p

3

3
ωa0 (Lt l −Lt lm)∆ib +

p
3

3
ωa0 (Lt l −Lt lm)∆ic

(A.42)

∆ub = Lt lm
d∆ia

d t
+Lt l

d∆ib

d t
+Lt lm

d∆ic

d t
+
p

3

3
ωa0 (Lt l −Lt lm)∆ia

+Rt l ∆ib −
p

3

3
ωa0 (Lt l −Lt lm)∆ic

(A.43)

∆uc = Lt lm
d∆ia

d t
+Lt lm

d∆ib

d t
+Lt l

d∆ic

d t
−
p

3

3
ωa0 (Lt l −Lt lm)∆ia

+
p

3

3
ωa0 (Lt l −Lt lm)∆ib +Rt l ∆ic

(A.44)

Phase-to-Ground Voltages on First End of the Line

∆ua1 =∆uC a1 +Lr es
d∆iC a1

d t
−
p

3

3
ωa0 Lr es∆iC b1 +

p
3

3
ωa0 Lr es∆iC c1 (A.45)

∆ub1 =∆uC b1 +Lr es
d∆iC b1

d t
+
p

3

3
ωa0 Lr es∆iC a1 −

p
3

3
ωa0 Lr es∆iC c1 (A.46)

∆uc1 =∆uC c1 +Lr es
d∆iC c1

d t
−
p

3

3
ωa0 Lr es∆iC a1 +

p
3

3
ωa0 Lr es∆iC b1 (A.47)

Phase-to-Phase Voltages on First End of the Line

∆uab1 =∆uC ab1 +Lr es
d∆iC ab1

d t
−
p

3

3
ωa0 Lr es∆iC bc1 +

p
3

3
ωa0 Lr es∆iC ca1 (A.48)
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∆ubc1 =∆uC bc1 +Lr es
d∆iC bc1

d t
+
p

3

3
ωa0 Lr es∆iC ab1 −

p
3

3
ωa0 Lr es∆iC ca1 (A.49)

∆uca1 =∆uC ca1 +Lr es
d∆iC ca1

d t
−
p

3

3
ωa0 Lr es∆iC ab1 +

p
3

3
ωa0 Lr es∆iC bc1 (A.50)

Phase-to-Phase Voltages on Second End of the Line

∆uab2 =∆uC ab2 +Lr es
d∆iC ab2

d t
−
p

3

3
ωa0 Lr es∆iC bc2 +

p
3

3
ωa0 Lr es∆iC ca2 (A.51)

∆ubc2 =∆uC bc2 +Lr es
d∆iC bc2

d t
+
p

3

3
ωa0 Lr es∆iC ab2 −

p
3

3
ωa0 Lr es∆iC ca2 (A.52)

∆uca2 =∆uC ca2 +Lr es
d∆iC ca2

d t
−
p

3

3
ωa0 Lr es∆iC ab2 +

p
3

3
ωa0 Lr es∆iC bc2 (A.53)

Phase-to-Ground Voltages on Second End of the Line

∆ua2 =∆uC a2 +Lr es
d∆iC a2

d t
−
p

3

3
ωa0 Lr es∆iC b2 +

p
3

3
ωa0 Lr es∆iC c2 (A.54)

∆ub2 =∆uC b2 +Lr es
d∆iC b2

d t
+
p

3

3
ωa0 Lr es∆iC a2 −

p
3

3
ωa0 Lr es∆iC c2 (A.55)

∆uc2 =∆uC c2 +Lr es
d∆iC c2

d t
−
p

3

3
ωa0 Lr es∆iC a2 +

p
3

3
ωa0 Lr es∆iC b2 (A.56)

Phase-to-Ground Currents on First End of the Line

∆iC a1 =Cφn
d∆uC a1

d t
−
p

3

3
ωa0 Cφn∆uC b1 +

p
3

3
ωa0 Cφn∆uC c1 (A.57)
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∆iC b1 =Cφn
d∆uC b1

d t
+
p

3

3
ωa0 Cφn∆uC a1 −

p
3

3
ωa0 Cφn∆uC c1 (A.58)

∆iC c1 =Cφn
d∆uC c1

d t
−
p

3

3
ωa0 Cφn∆uC a1 +

p
3

3
ωa0 Cφn∆uC b1 (A.59)

Phase-to-Phase Currents on First End of the Line

∆iC ab1 =Cφφ
d∆uC ab1

d t
−
p

3

3
ωa0 Cφφ∆uC bc1 +

p
3

3
ωa0 Cφφ∆uC ca1 (A.60)

∆iC bc1 =Cφφ
d∆uC bc1

d t
+
p

3

3
ωa0 Cφφ∆uC ab1 −

p
3

3
ωa0 Cφφ∆uC ca1 (A.61)

∆iC ca1 =Cφφ
d∆uC ca1

d t
−
p

3

3
ωa0 Cφφ∆uC ab1 +

p
3

3
ωa0 Cφφ∆uC bc1 (A.62)

Phase-to-Phase Currents on Second End of the Line

∆iC ab2 =Cφφ
d∆uC ab2

d t
−
p

3

3
ωa0 Cφφ∆uC bc2 +

p
3

3
ωa0 Cφφ∆uC ca2 (A.63)
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d t
+
p

3

3
ωa0 Cφφ∆uC ab2 −

p
3

3
ωa0 Cφφ∆uC ca2 (A.64)

∆iC ca2 =Cφφ
d∆uC ca2

d t
−
p

3

3
ωa0 Cφφ∆uC ab2 +

p
3

3
ωa0 Cφφ∆uC bc2 (A.65)

Phase-to-Ground Currents on Second End of the Line
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d t
−
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3
ωa0 Cφn∆uC b2 +

p
3

3
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∆iC b2 =Cφn
d∆uC b2

d t
+
p

3

3
ωa0 Cφn∆uC a2 −

p
3

3
ωa0 Cφn∆uC c2 (A.67)

∆iC c2 =Cφn
d∆uC c2

d t
−
p

3

3
ωa0 Cφn∆uC a2 +

p
3

3
ωa0 Cφn∆uC b2 (A.68)

A.6 Voltage Regulators

A.6.1 IEEE ST1A

Vset

EFD

–

sKF

1+ sTF

(1+ sTC) (1+ sTC1)

(1+ sTB) (1+ sTB1)
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1+ sTA

HV

GATE
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um 1
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VC

VS VUEL

– LV

GATE

VOEL

HV

GATE

VUELVS

IFD

ILR

KLR

0
–

–

ureg1

y2 y3

VA

Figure A.3: IEEE ST1A voltage regulator.

TR
d∆VC

d t
=∆um −∆VC (A.69)

TB
d∆y2

d t
+TC

d∆VC

d t
+TC

d∆ur eg 1

d t
−k1 TC

d∆VS

d t
=−∆y2 −∆VC

−∆ur eg 1 +k1∆VS

(A.70)

TB1
d∆y3

d t
−TC 1

d∆y2

d t
=∆y2 −∆y3 (A.71)

TA
d∆VA

d t
= K A∆y3 −∆VA (A.72)

TF
d∆ur eg 1

d t
−KF

d∆VA

d t
−k2 KF

d∆VS

d t
+ KF KLR

I f δ0

d∆i f

d t
=−∆y2 −∆VC

−∆ur eg 1 +k1∆VS

(A.73)

The linearized output ∆EF D is:

∆EF D =∆VA +k2∆VS − KLR

I f δ0
∆i f (A.74)
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Which is applied to the excitation voltage as:

∆u f = R f I f δ0∆EF D (A.75)

The value of k1 and k2 vary according to the use of a PSS. If the PSS is inactive, k1 = k2 = 0.

If the PSS is active, k1 and k2 are either equal to 0 or 1 according to the following relation:

k2 = 1⊕k1.

The analytical expression of the input ∆um in given in section A.6.3.

A.6.2 Unitrol®

um

k
uset ureg

–

1

1+ sTms

(1+ sT1) (1+ sT3)

(1+ sT2) (1+ sT4)

1

1+ sTst
ug

uC1 uC2

Figure A.4: Block diagram of the Unitrol® voltage regulator.

Tms
d∆ug

d t
=∆um −∆ug (A.76)
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d t
=∆uset −∆ug −∆uC 1 (A.77)
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T1 T3

T2 T4
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T1 T3

T2 T4
∆ug −k

T3 (T1 −T2)

T2 T4
∆uC 1

+
(

T4 −T3

T3 T4
−1

)
∆uC 2

(A.78)

Tst
d∆ur eg

d t
= k

T1 T3

T2 T4
∆uset −k

T1 T3

T2 T4
∆ug −k

T3 (T1 −T2)

T2 T4
∆uC 1

+ T4 −T3

T3 T4
∆uC 2

(A.79)

The output ∆ur eg is applied to the excitation voltage as:

∆u f = R f I f δ0∆ur eg (A.80)
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If a PSS is active, its output is added to the set-point ∆uset .

The analytical expression of the input ∆um in given in section A.6.3.

A.6.3 Voltage Input (∆um)

∆um =−
p

2p
3UN

{
sin(δo +θ0)∆ua + sin

(
δo +θ0 − 2π

3

)
∆ub + sin

(
δo +θ0 + 2π

3

)
∆uc

+
[

sin(δo +θ0)ua0 + sin

(
δo +θ0 − 2π

3

)
uv0 + sin

(
δo +θ0 + 2π

3

)
uc0

]
∆θ

} (A.81)

The analytical expressions for ∆ua , ∆ub and ∆uc were defined in section A.1.

A.7 Power System Stabilizer IEEE PSS2B

The stabilizer PSS2B is described either by fourteen or fifteen time-domain state equations,

depending on the values of the parameters M and N . In SIMSEN, these parameters can

assume either the values M = 4, N = 1; or M = 5, N = 1; or M = 2, N = 2. The system of

equations presented here correspond to the case with M = 5, N = 1 (fifteen equations).
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Figure A.5: IEEE PSS2B power system stabilizer with filtered inputs.
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Tw1
d∆us2

d t
−Tw1

d∆us1

d t
=−∆us2 (A.83)
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170



A.7. Power System Stabilizer IEEE PSS2B
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The input ∆pel of equation (A.86) is defined as:

∆pel =− 1

SN
(ia0∆ua +ua0∆ia + ib0∆ub +ub0∆ib + ic0∆uc +uc0∆ic ) (A.97)

The analytical expressions for ∆ua , ∆ub and ∆uc were defined in section A.1.
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xσ f Leakage reactance of excitation winding [p.u.]

xσQ Leakage reactance of damper winding Q [p.u.]

xσs Leakage reactance of stator winding [p.u.]

xad Magnetizing reactance in the d–axis [p.u.]

xaq Magnetizing reactance in the q–axis [p.u.]

xcc Power transformer short-circuit reactance [p.u.]

xh1 Power transformer three-phase magnetizing reactance [p.u.]

xhs Magnetizing reactance [p.u.]

y Guide vanes opening [–]

y2 Internal variable of the AVR IEEE ST1A [p.u.]

y3 Internal variable of the AVR IEEE ST1A [p.u.]

Matrices and Vectors

A` Linearized state matrix of a system

A State matrix

B` Linearized input matrix of a system

C` Linearized output matrix of a system

D` Linearized feedforward matrix of a system

I Identity matrix

Λ Matrix containing the eigenvalues of a system (Λ= diag(λ1, . . . ,λn))

P Park’s transformation

Q Orthogonal matrix involved in the QR factorization algorithm

T Upper-triangular matrix involved in the QR factorization algorithm

u(t ) Input vector of a system
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V Matrix containing the right eigenvectors of a system (V = [ v1 v2 · · · vn ])

vi Right eigenvector related to the i-th eigenvalue (λi ) of a matrix

W Matrix containing the left eigenvectors of a system (W = [
wT

1 wT
2 · · · wT

n

]T
)

wi Left eigenvector related to the i-th eigenvalue (λi ) of a matrix

x(t ) State vector of a system (x = [ x1 x2 · · · xn ]T )

y(t ) Output vector of a system

Subscripts

0 Equilibrium point

1 Power transformer primary side

2 Power transformer secondary side

ABC Induction machine rotor windings

abc Phase (abc) coordinates

a Stator phase a

b Stator phase b

c Stator phase c

D Equivalent damper winding in the d-axis

d Direct axis (d-axis)

dqo Park’s (dqo) coordinates

f Excitation (field)

` Linearized

o Zero phase-sequence axis

Q Equivalent damper winding in the q-axis

q Quadrature axis (q-axis)

s Stator

set Set-point

t l Transmission line
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