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Abstract

In the past few years, fusing NIR and color images has been explored in general
computational photography and computer vision tasks, where traditionally only
color images are used. The additional information provided by the differences of light
and scene reflections in the visible and NIR bands of the electromagnetic spectrum
is used in several applications such as image denoising, image dehazing, shadow
detection and removal, and high dynamic-range imaging.

In this thesis, we study a system that simultaneously captures color and NIR
images on a single silicon sensor. Such a camera could be manufactured with minor
changes in the hardware of consumer color cameras and it could be integrated inside
small devices such as cell phones. We address two main challenges in color and NIR
acquisition. First, we study the spatial and spectral sampling of the scene, which is
inevitable in single-sensor acquisition of multiple spectral channels. We then focus
on chromatic aberration distortions.

Similarly to color imaging, we use a color filter array (CFA) to sample the scene
in visible and NIR bands. We address two main challenges regarding the CFA:
(1) designing the CFA, and (2) developing a demosaicing algorithm to reconstruct
full-resolution images from the subsampled measurements. We consider a general
CFA with filters that transmit different mixtures of color and NIR channels. We
develop a framework that, by exploiting the spatial and spectral correlations of color
and NIR images, computes the transmittance of each filter and the demosaicing
matrix. Our optimized CFA and demosaicing outperform other solutions developed
for single-sensor color and NIR acquisition. We also investigate a CFA that is
formed by one blue, one green, one red, and one NIR-pass filter. We call it the
RGBN CFA and assume that, similarly to color cameras, it uses dye filters that
do not have sharp cut-offs. Hence, color and NIR radiations leak into NIR and
color filters, respectively. We devise an algorithm that reconstructs full-resolution
images from mixed and subsampled sensor measurements. The RGBN CFA and our
reconstruction algorithm perform as well as or even better than other single-sensor
acquisition techniques that use more complicated hardware components.

The problem of chromatic aberration is caused by deficiencies of optical elements.
A simple lens converges light rays with different wavelengths at different distances
from the lens. Hence, if the color image is in focus and sharp on the sensor plane,

v



vi

the NIR image captured with the same focus settings is out of focus and blurred. We
propose an algorithm that retrieves the lost details in NIR using the gradients of the
sharp color image. As the high-frequency details of color and NIR images are not
strongly correlated in all image patches, our method locally adapts the contribution
of color gradients in deblurring. To achieve this, we develop a multiscale scheme that
iterates between deblurring NIR and estimating the correlation between color and
NIR high-frequency components. Our algorithm outperforms both blind and guided
deblurring approaches. We also design a method that estimates a dense blur-kernel
map when the severity of chromatic aberration changes as the depths of objects vary
across the image. Our method performs better than the competing methods both
in estimating the blur-kernel map and in deblurring.

Keywords: color and NIR imaging, spatial correlation, spectral correlation, color
filter array, spatial and spectral sampling, demosaicing, chromatic aberration, de-
blurring.



Résumé

Ces dernières années, la fusion de NIR et des images couleurs a été explorée en
photographie computationnelle pour les tâches de vision informatique, là où tradi-
tionnellement seules les images couleurs étaient utilisées. Les informations addition-
nelles obtenues à partir des différences de lumière et des réflectances des surfaces
entre les bandes visibles et NIR du champ électromagnétique, sont utilisées dans
plusieurs applications comme le débruitage des images, détection et suppresion des
ombres, et dans l’imagerie à grande gamme dynamique.

Dans cette thèse, nous étudions un système qui prend simultanément des images
couleur et NIR sur un seul capteur silicone. Un appareil photo de ce type peut être
fabriqué avec des changements mineurs dans le hardware d’appareils photo couleur
du commerce et peut être intégré dans de petits appareils tels que les téléphones
portables. Nous résolvons deux challenges importants en acquisition des images
couleur et NIR. Premièrement, nous étudierons l’échantillonnage spatial et spec-
tral de la scène, ce qui est inévitable dans l’acquisition avec un capteur unique des
canaux multi spectre. Ensuite nous nous focaliserons sur les aberrations chroma-
tiques causées par les carences des éléments optiques.

De façon similaire à l’imagerie couleur, nous utilisons une matrice de filtre de
couleur (CFA) pour échantillonner les scènes dans les domaines visible et NIR. Nous
résolvons deux principaux challenges concernant les CFA : (1) concevoir les CFA
et (2) développer un algorithme de démosaiçage pour reconstruire les images en
pleine résolution avec des mesures sous-échantillonnées. Nous considérons un CFA
général avec des filtres qui transmettent différents mélanges de canaux de couleur et
NIR. Nous développons une structure qui, en exploitant les corrélations spatiale et
spectrales des images couleur et NIR, calcule la transmittance de chaque filtre et la
matrice de démosaiçage. Notre CFA optimisé et notre matrice de démosaiçage sur-
passent les autres solutions développées pour l’acquisition de couleur et NIR par un
capteur unique. Nous étudions aussi le CFA formé de filtres bleu, vert, rouge et NIR.
Nous appelons ce CFA “CFA RGBN” et supposons que, comme pour les appareils
photo couleur, il utilise des filtres teintés qui n’ont pas de fréquences de coupures
parfaites. Par conséquent, les radiations couleur et NIR passent respectivement à
travers les filtres NIR et couleur. Nous concevons un algorithme qui reconstruit des
images en pleine résolution avec les mesures des capteurs sous-échantillonnées et
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mélangés. Le CFA RGBN et notre algorithme de reconstruction fonctionnent aussi
bien ou même mieux que les autres techniques d’acquisition avec un seul capteur
qui utilisent des composants de hardware plus compliqués.

Nous analysons le problème des aberrations chromatiques dans l’acquisition
couleur et NIR. Une simple lentille fait converger les rayons de lumière avec des
longueurs d’onde á différentes distance de la lentille. Par conséquent, si l’image
couleur est focalisée précisément dans le plan du capteur, l’image NIR captée avec
les mêmes paramètres de mise au point n’est pas focalisée et floue. Nous proposons
un algorithme qui récupère les détails perdus du NIR en utilisant les gradients de
l’image couleur nette. Comme les détails haute-fréquences des images couleur et
NIR ne sont pas fortement corrélés dans tous les patchs d’images, notre méthode
adapte localement la contribution des gradients de couleur dans le déflouage. Pour
atteindre cela, nous avons développé une méthode multi-échelle qui alterne entre le
déflouage du NIR et l’estimation de la corrélation entre les gradients de couleur et
NIR. Notre algorithme surpasse aussi bien les approches de déflouage guidé et aveu-
gle. Nous avons aussi créé une méthode qui estime le noyau dense de flouage quand
la sévérité des aberrations chromatiques changent avec la profondeur des divers ob-
jets dans l’image. Notre méthode surpasse les méthodes concurrentes aussi bien
pour estimer le noyau de flouage que pour le déflouage.

Mot clef: imagerie couleur et NIR, corrélation spatial, corrélation spectrale, matrice
de filtre de couleur, échantillonnage spatial et spectral, dématriçage, aberration
chromatique, déflouage.
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Chapter 1

Introduction

The quality and functionalities of digital cameras have made immense progress in the
40 years since 1975 when the first prototype was built by Steve Sasson at Kodak [2].
As a result of rapid developments in this market, since 2003 digital cameras have
outsold their analog ancestors. According to Tomi Ahonen [7], in 2014 alone, 1.8
billion digital consumer cameras were sold.

Despite extensive developments in digital cameras, in some cases the quality of
captured images is still much lower than what is perceived by the human eye (See
Figure 1.1). More importantly, the algorithms that aim to understand the contents
of the scene by analyzing images are prone to failure in many cases. See one example
in Figure 1.1-(c) and (d).

An effective approach to overcoming these limitations is to capture several images
representing the scene. The captured images are fused either to create a high-quality
image or to extract more information about the scene (see Figure 1.2). In the
examples illustrated in Figure 1.2 several color images, representing the scene in the
visible band with the wavelength range of 400-700 nm, are fused.

Combining color and near-infrared (NIR) images of the scene has also proven
beneficial both in improving the quality of color images and in understanding the
scene. NIR is a part of the electromagnetic spectrum next to the red band with
the wavelength range of 700 nm to approximately 1100 nm. Figure 1.3 shows two
pairs of color and NIR images. Although the spatial information (object shapes and
boundaries) contained in these images are generally similar, there are many inherent
differences between the color and NIR representations of the scene. For instance,
the first example in Figure 1.3 shows that vegetation usually reflects more strongly
in NIR, hence it appears brighter in this image. Whereas water absorbs NIR and
looks dark in the NIR image, while, depending on the depth, what is beneath water
could be visible in the color image. Reflection in the NIR band is mostly material
dependent and the objects made of the same material reflect more or less the same
in NIR. Figure 1.3-(c) and (d) illustrates an example.

1
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(a) Low-light imaging (b) High dynamic-range scene

(c) Input image (d) Shadow mask

Figure 1.1: This figure illustrates some of the limitations of digital cameras in cap-
turing the scene and the deficiencies of an algorithm in extracting information from
color images. (a) The image captured in a low-light environment without flash con-
tains strong noise [117]. (b) A picture representing a high dynamic-range scene
does not preserve the details in the dark regions. The details on the wall (red ar-
row) are completely lost. (c) Input image [123], and (d) shadow mask computed by
the algorithm of Guo et al. [53]. White pixels mark shadow regions. Notice that
no shadow pixels are detected on the tree in the upper-left part of the image (red
arrow), although it is under the shadow.
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(a) High dynamic-range imaging

(b) Flash/no-flash photography

Figure 1.2: (a) In high dynamic-range imaging, several pictures with different ex-
posure times are recorded and fused into one image that contains rich details in
both dark and bright regions of the scene [36, 101]. Left: several pictures that
are captured with different exposure times. Right: the details of both dark and
bright regions are visible in the final image produced by the algorithm of Meylan
et al. [101]. (b) Petschnigg et al. [117] propose to capture a pair of images—with
and without flash—to obtain a clean image in low-light conditions. The clean flash
image is used to denoise the no-flash image that preserves the ambient illumina-
tion. From left to right: no-flash image, the clean image captured with flash,
and the denoised image. These images are made available by authors at http:
//research.microsoft.com/en-us/um/redmond/projects/flashnoflash/.

http://research.microsoft.com/en-us/um/redmond/projects/flashnoflash/
http://research.microsoft.com/en-us/um/redmond/projects/flashnoflash/
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(a) Color image (b) NIR image

(c) Color image (d) NIR image

Figure 1.3: (a) and (b) Vegetation usually looks brighter in the NIR image, and
sky is darker in NIR. Water absorbs NIR and appears dark in this image, while,
the stones beneath water are visible in the color image. (c) and (d) The scarf in
the middle looks more or less the same in the NIR image, despite having different
colors.

Multispectral data captured in the NIR band of the spectrum has been conven-
tionally used in specialized areas such as security and surveillance, food industry,
medical applications, and remote sensing [41, 133, 155], where imaging systems spe-
cially designed for industrial and scientific purposes are employed. The additional
information provided by the differences between color and NIR images is recently
used in several computational photography and computer vision tasks such as high
dynamic-range imaging [158], image denoising [152, 103], dehazing [132], shadow de-
tection [123], material-based segmentation [131], and semantic segmentation [129].
Figure 1.4 illustrates some of these applications.

Despite the success of fusing color and NIR images in the above applications, an
affordable and convenient approach to capturing these images is not yet available.
Capturing color and NIR images is currently possible by two main techniques that
use commercially available products. The first approach uses a beam splitter to di-
vide the incoming light to visible and NIR radiations that are, respectively, captured
by a visible and an NIR detector. This acquisition system is expensive and bulky. It
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is also possible to capture both color and NIR images by a silicon sensor, as silicon
is sensitive to visible and NIR bands of the spectrum (see Figure 1.5). Silicon is the
light-sensitive material in sensors of most current color cameras. However, in color
cameras the NIR light is blocked by an interference filter called “hot mirror”. The
second technique for capturing color and NIR images is to use a color camera, after
removing its hot-mirror, in two sequential shots, when NIR-blocking and visible-light
blocking filters are placed in front of the lens. This approach is time-consuming and
movements of the camera or scene between two shots might introduce severe regis-
tration issues. It is specifically impractical for scenes with moving objects, similar
to the one shown in Figure 1.6.

Combining color and NIR images benefits consumer-level photography, where
none of the above acquisition systems is acceptable. In this thesis, we study the
simultaneous acquisition of color and NIR on a single silicon sensor. This approach
would not suffer from the shortcomings of current acquisition systems. As it requires
only one sensor, it is affordable and has the potential to be integrated inside small
devices such as cell phones. Moreover, perfect alignment is achieved as both images
are captured jointly.

We address two main challenges in the single-sensor capture of color and NIR. We
first study spatial and spectral sampling of the scene (Chapters 3 and 4). We then
focus on the distortions caused by deficiencies of the optical elements, specifically
the phenomenon of chromatic aberration (Chapters 5 and 6). In the following we
describe these challenges and briefly review our solutions to these problems.
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(a) Skin smoothing [43]

(b) Image dehazing [132]

(c) Shadow detection [123]

Figure 1.4: Some applications of fusing color and NIR images in “everyday” pho-
tography. For each row, from left to right: the color image, the NIR image, and the
result.
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Figure 1.5: The quantum efficiency of typical CCD and CMOS sensors made of
silicon. Both sensors are sensitive to visible (400-700 nm) and NIR (700-1100 nm)
bands. Data for the CCD sensor is obtained from [119], and data for the CMOS
sensor is provided by [95].

(a) Color image (b) NIR image

Figure 1.6: Capturing color and NIR images in two sequential shots leads to regis-
tration issues. When there are moving objects in the scene, this acquisition approach
is unfeasible.
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Figure 1.7: (a) The Bayer color filter array that is used in most color cameras. (b)
The overall sensitivities of a silicon sensor and color filters in Bayer, measured for a
consumer color camera.

1.1 Spatial and Spectral Sampling

In single-sensor color imaging a color filter array (CFA) spectrally samples the scene.
Each filter in the CFA transmits part of the visible light and blocks the rest. The
most popular CFA in color imaging, called the Bayer CFA [13], is shown in Fig-
ure 1.7-(a). The overall sensitivities of the silicon sensor and the Bayer filters in
a consumer color camera are shown in Figure 1.7-(b). As this figure shows, each
filter in the CFA strongly transmits the corresponding band (for instance middle
wavelengths for the green filter) and almost blocks the rest of the spectrum.

The image captured using a single sensor and a CFA is a gray-scale image that
carries the information about only one color channel at each pixel. This image is
usually called the CFA image or the mosaiced image. After acquisition, an algorithm
called “demosaicing” estimates the missing color values at each pixel by using the
sensor measurements. The output of demosaicing is referred to as the full-resolution
image or the demosaiced image. Figure 1.8 is a schematic of CFA sampling and
reconstruction in a single-sensor color camera.

Similar to color imaging, we assume that color (red, green, and blue) and NIR
channels are sampled by a CFA. We address two main questions regarding this
sampling: (1) designing the color filter array, and (2) developing a demosaicing
algorithm customized to color and NIR acquisition. To answer these questions,
we first study the correlation characteristics of natural color and NIR images. We
analyze the correlation in different frequency bands and show that, although not
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Figure 1.8: A schematic of CFA sampling and demosaicing in a single-sensor color
camera.

as strongly as color channels, color and NIR images are mostly correlated in high
frequencies. The details of this study and the results of our analysis are explained
in Chapter 3.

We exploit the results of the spatio-spectral analysis to custom design a color
filter array for color and NIR acquisition. Our algorithm is based on the work of
Lu et al. [91], in which each filter in the CFA is assumed to transmit a different
mixture of all channels (red, green, blue, and NIR). To reconstruct full-resolution
images, using a linear demosaicing is proposed. The optimum transmittance for
different filters of the CFA and the optimum demosaicing are estimated by solving
an optimization problem that minimizes the error of reconstructing full-resolution
images.

We change the optimization problem of Lu et al. [91] by adding a regularization
term that enforces the reconstructed color and NIR images to comply with the
results of our spatio-spectral analysis. More specifically, our approach designs CFA
and demosaicing by minimizing the error of reconstructing color and NIR images,
and the difference between the high-frequency components of these images. We
call the CFA and demosaicing designed by this method the optimized CFA and the
optimized demosaicing. In Chapter 3, we describe this algorithm and compare its
performance with the method of Lu et al. [91].

As we will show in Chapter 4, the optimized CFA and the optimized demosaicing
outperform all other color and NIR demosaicing methods. However, implementing
the optimized CFA is more complicated than the CFAs currently used in color
imaging, which causes additional manufacturing costs. To reduce these costs, we
study a CFA similar to the Bayer CFA (Fig. 1.7-(a)) that is already placed in most
color cameras. The only difference between our proposed CFA and the Bayer CFA
is that one of the two green filters is replaced with an NIR-pass filter. Our proposed
CFA, called the RGBN CFA, is shown in Figure 1.9-(a).

We assume that, similar to most CFAs in color imaging, inexpensive dye filters
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Figure 1.9: (a) The RGBN CFA proposed to sample color and NIR channels. (b)
The overall sensitivities of color and NIR filters and a silicon sensor. Each color
filter transmits one color channel and part of the NIR band as the NIR-blocking
filter is removed. The NIR filter transmits both NIR and red channels. The visible
range: 400-700 nm, the NIR band: 700-1100 nm.

are used in the RGBN CFA. The main difficulty in using these filters is that, without
significantly increasing the price, it is unfeasible to have a sharp cut-off and narrow
transition regions between the filter pass-band and its stop-band. Figure 1.9-(b)
shows the overall sensitivities of a silicon sensor and dye filters without the hot
mirror. All color filters in the RGBN CFA partly transmit the NIR light, and the
NIR filter transmits the visible radiation, especially the red light.

As a result of using such filters, the sensor measures a mixture of one color
channel and NIR intensities at each pixel. This further complicates the task of
reconstructing full-resolution images, as the channels are not only subsampled but
are also mixed together. We develop an algorithm that separates color and NIR
intensities given only the mixed subsampled sensor measurements. As the separation
problem is highly underconstrained, incorporating prior knowledge about the target
signals (color and NIR channels) is required. Once again, we exploit the spatial
and spectral correlations of these images. For this problem, however, we adopt the
tools developed in compressive sensing and sparse reconstruction, where a high-
dimensional signal is recovered from only a few measurements. In Chapter 4, we
detail the use of the RGBN CFA and our reconstruction algorithm in the joint
acquisition of color and NIR.
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1.2 Chromatic Aberration

Multispectral imaging systems that use a single sensor for the joint acquisition of
different channels suffer from chromatic aberration (CA) distortions introduced by
the imperfections of optical elements. Chromatic aberration occurs as the refractive
index of a simple lens changes with wavelength, which causes the light rays with
different wavelengths to be focused at different distances from the lens. This phe-
nomenon results in the image of only one channel being sharp on the sensor, while
the images of other channels are blurred depending on their wavelength difference
to the sharp channel. See Figure 1.10-(a) for an illustration.

Chromatic aberration distortions are wavelength-dependent and are amplified as
the captured wavelength range increases. In joint acquisition of color and NIR, a
range of approximately 700 nm (400-1100 nm) is captured, which is more than twice
the range captured in color imaging (400-700 nm). This leads to severe distortions
that cannot be completely removed by the solutions used for correcting chromatic
aberration in color imaging. Figure 1.10-(b) shows a pair of color and NIR images
captured with the same lens and focus settings. The lens, corrected for visible
wavelengths, results in sharp color channels, while the NIR image is significantly
blurred.

We consider the scenario where the color image is in focus and sharp, and the
NIR image captured with the same focus settings is out of focus and blurred. We
formulate the task of correcting for chromatic aberration as deblurring the NIR
image. Nonetheless, our deblurring methods can be modified for the case where the
NIR image is in focus and the color counterpart is blurred. In Chapter 5, we propose
a deblurring algorithm that first estimates the amount of blur in NIR. In the next
step, the algorithm uses the gradients of the sharp color image to recover the high-
frequency details of the NIR image. As the gradients of color and NIR images are not
strongly correlated in all patches, our algorithm locally adapts the contribution of
color gradients in deblurring. To achieve this performance, we develop a multiscale
deblurring scheme that estimates the correlation between color and NIR gradients.
In Chapter 5 we show that the proposed algorithm is successful in retrieving the lost
details of the NIR image and in preserving the inherent differences between color
and NIR.

The amount of out-of-focus blur introduced by chromatic aberration is depth-
dependent. In Chapter 5, we study the cases where the blur does not change signif-
icantly across the image because the focus plane is located further than the hyper-
focal distance of the lens. In this case, the blur can be assumed uniform. However,
in some situations, for instance when the depth of field is shallow, the blur intro-
duced by chromatic aberration is spatially variant. Figure 1.11 shows one example
where the amount of defocus blur changes across both color and NIR images. As
NIR wavelengths are longer than the visible band, the focus plane of NIR is further
away from the camera compared with the focus plane of color channels. Hence, the
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(a)

(b)

Figure 1.10: (a) A simple lens converges light rays with different wavelengths at
different distances. If the sensor is placed at the focus plane of the green light, only
the image of scene information with this wavelength is sharp. The disks on the right
illustrate the lens blur kernels on the sensor for other wavelengths. The black rays
represent NIR radiation. (b) A pair of color and NIR images that represent the same
scene. The color image is in focus and all color channels are sharp, whereas the NIR
image, captured with the same lens and focus, suffers from chromatic aberration
and is blurred.
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objects further away from the visible focus plane appear less blurred in the NIR
image, and vice versa (see the background in Figure 1.11).

In Chapter 6, we address the case of spatially varying blur kernels, assuming
that the blur is uniform in small local patches. In each local patch, we perform
an optimization to find the kernel that best describes the blur either in NIR or in
the color patch. As uniform patches are indifferent to blur, it is not possible to
estimate the blur kernel for these patches. We propagate the kernels estimated in
textured patches to uniform patches by solving an optimization that promotes a
smooth change of blur kernels across the image. This results in a blur-kernel map
that contains the amount of blur in each local patch. Once the blur-kernel map
is estimated, we separately deblur each region of the image that is distorted by a
uniform blur kernel, using the algorithm presented in Chapter 5.

Figure 1.11: As the defocus blur is depth dependent, the amount of blur in the NIR
image with respect to the color image changes from foreground to the background
plane. The foreground object (insets with green borders) is in-focus in the color
image and blurred in NIR. Whereas, the background region (insets with red borders)
is sharper in the NIR image.
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1.3 Image Acquisition

All the images used for the experiments of this thesis are captured by a Canon Rebel
T1i camera. We removed the hot-mirror filter, hence the camera is capable of sensing
both visible and NIR radiations. The color and NIR images representing each scene
are recorded in sequential shots when, respectively, NIR-cut and visible-light-cut
filters are placed in front of the lens. For outdoor scenes, the same exposure time is
used for both color and NIR images. For indoor scenes, the exposure time is usually
increased for the NIR image, as some of the common indoor light sources such as
fluorescent do not radiate strongly in the NIR range. To reduce misalignment errors
between color and NIR images, we avoid photographing scenes with moving objects,
and all the images are captured while the camera is fixed on a tripod. The remaining
registration issues are resolved by aligning color and NIR images using feature-point
matching.

The image set used in Chapters 3 and 4 contains 60 pairs of color and NIR images
that represent diverse indoor and outdoor scenes. To avoid chromatic aberrations,
the camera is differently focused for color and NIR images of each scene. We simulate
the process of CFA sampling and demosaicing for these images.

For the experiments of Chapter 5 and 6, one color and two NIR images are
captured for each scene. The camera and lens are adjusted such that the color
image is in focus and sharp. By maintaining the same lens and focus settings, the
first NIR image is captured. This image, as a result of chromatic aberration, is
out of focus and blurred. The algorithms presented in Chapters 5 and 6 deblur the
NIR image by using the sharp color image as the guide. The second NIR image is
captured after re-focusing for the NIR shot, resulting in a sharp image that is used
as the visual ground-truth in our comparisons.

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2 we review the literature on CFA
sampling and demosaicing in color imaging. We explain the techniques proposed for
single-sensor acquisition of multispectral images. We discuss chromatic aberration
correction in color imaging and deblurring algorithms as a general approach for
reducing chromatic aberration distortions.

We analyze the correlation characteristics of color and NIR images in Chap-
ter 3, and explain the algorithm that exploits these characteristics in designing the
optimum CFA and the optimum demosaicing.

In Chapter 4 we study the use of the RGBN CFA in the joint acquisition of color
and NIR images. We present an algorithm that separates color and NIR channels
sampled by the RGBN CFA. As our method is similar to the solutions proposed in
compressive sensing, we briefly review the basic principles in this field and discuss
the main differences between our algorithm and conventional compressive sensing
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algorithms. In this chapter, we thoroughly compare different color and NIR joint
acquisition techniques with our proposed methods.

We devote chapters 5 and 6 to analyzing chromatic aberration in joint acqui-
sition. In Chapter 5, we present our deblurring algorithm for the cases where the
chromatic aberration distortions are assumed to be uniform across the image. We
compare the NIR images deblurred by our algorithm with those produced by the
general method used in color imaging for correcting chromatic aberration. We then
extend our blur kernel estimation and deblurring algorithms for spatially varying
chromatic aberrations in Chapter 6.

We conclude the thesis in Chapter 7 by discussing other issues in designing a
consumer color-and-NIR camera. Furthermore, we explain how our algorithms and
the results of our studies are beneficial in designing a more general multispectral
acquisition systems.
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Chapter 2

Related Work

As we study the joint acquisition of color and NIR images by using a single silicon
sensor, our work is similar to single-sensor color imaging. We review major color
demosaicing techniques in Section 2.1. The research community has mainly focused
on demosaicing the images sampled by the Bayer CFA, however, in the past few
years the design of the CFA has also been investigated. In Section 2.2 we review
these studies.

Color and NIR acquisition is also related to multispectral imaging where several
spectral bands are captured. Although not as extensive as color imaging, single-
sensor multispectral imaging has received some attention in the past few years. In
Section 2.3, we describe the main techniques in this field and a few studies that
address the joint capture of color and NIR.

In Section 2.4, we explain the principles of chromatic aberration reduction. We
start by reviewing the algorithms designed to remove chromatic aberration in color
imaging in Subsection 2.4.1. In Chapter 5, we formulate the task of chromatic
aberration correction as deblurring the NIR image. Thus, in Subsection 2.4.2, we
introduce the problem of deblurring and review the literature in this field.

2.1 Color Demosaicing

Color demosaicing has been extensively studied, with numerous solutions available
from basic interpolation techniques to more sophisticated methods based on the
graph theory, statistical and probabilistic frameworks, sparse recovery, etc. Despite
all differences, the fundamental principle used in most color demosaicing algorithms
is that color channels are usually strongly correlated. Different algorithms mainly
vary in the approach they follow for exploiting the intra-channel correlation. In
Subsections 2.1.1-2.1.5, we review five main categories of techniques explored in the
literature. Table 2.1 summarizes the main assumptions in each of these categories
and presents a brief overview of the demosaicing approaches.

17
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2.1.1 Constant-Hue Assumption

Many demosaicing algorithms assume that the ratio of color channels, or their dif-
ference, is constant [45, 84, 54, 49, 112, 150, 87]. This observation is called the
constant-hue assumption. Following this assumption, usually the green channel,
with the highest sampling frequency in the Bayer CFA and least amount of aliasing,
is first interpolated. Afterwards the color difference signals, R − G and B − G,
are interpolated. As the color difference is assumed to be constant inside each ob-
ject, R −G and B−G contain less high-frequency content compared with the red
and blue channels. Hence, interpolating color differences results in higher accuracy
estimations compared with interpolating the red and blue channels.

The main difference between these algorithms is the interpolation technique
used to reconstruct full-resolution green and color-difference channels. Usually, edge
adaptive techniques that interpolate the samples along the edges are used [62, 148,
140, 28, 114, 115, 27, 88, 26]. To preserve the details and avoid blurring when es-
timating the missing value, these methods do not use the samples across the edge,
where the constant-hue assumption is not valid.

To detect the direction of edges in each local neighborhood, usually the difference
in the intensities of observed samples in both horizontal and vertical directions are
computed. In [62], Hirakawa and Parks take a different approach, where instead of
the gradients in a local neighborhood, they measure homogeneity in both horizon-
tal and vertical directions. They define homogeneity as the number of pixels in a
local neighborhood that have similar luminance and chrominance intensities. The
interpolation is performed in the direction that has the highest homogeneity.

In [52], Gunturk et al. use a filter-bank scheme to decompose color channels into
base and detail bands. In the first step of their algorithm, the detail bands of the
missing green values are replaced with high-frequency details of red and blue channels
in the corresponding pixels. Afterwards, to establish the correlation between the
high frequencies of color channels, the detail subbands of red and blue are replaced
by those of the reconstructed green channel. This process is iteratively followed
by projecting the estimated red and blue channels into observed samples. The
convergence analysis and a fast one-step implementation of Gunturk’s algorithm is
presented by Lu et al. in [92].

2.1.2 Luminance-Chrominance Decomposition

Several demosaicing techniques decompose the CFA image into luminance and chromi-
nance channels and estimate the full-resolution image by separately reconstructing
these channels [9, 35, 34, 85, 89]. The luminance channel is usually calculated as a
weighted average of color channels and contains spatial information about the scene,
whereas, chrominance channels are expressed as the differences of color channels and
convey low-frequency color information.

Alleysson et al. analyze the frequency representation of the CFA image in [9].



20 Chapter 2.

They express the Fourier spectrum of the CFA image based on the frequency repre-
sentations of color channels as follows:

ÎCFA(fx, fy) =
∑

i∈{R,G,B}
αiĈi(fx, fy)

+ 1
8

1∑
r,s=−1
r 6=0,s 6=0

ĈR(fr, fs)− ĈB(fr, fs)

+ 1
16

1∑
r,s=−1
r 6=0,s 6=0

ĈR(fr, fs)− 2ĈG(fr, fs) + ĈB(fr, fs).

(2.1)

In the above equation, ÎCFA is the frequency representation of the CFA image, Ĉi

represents the Fourier spectrum of the i color channel. fx and fy are, respectively,
horizontal and vertical frequencies. fr = fx − r/2 and fs = fy − s/2. For the Bayer
CFA, αR = 1/2, αG = 1, αB = 1/2.

Figure 2.1 shows the frequency spectrum of an example image sampled by the
Bayer CFA. The central part corresponds to the first term of (2.1) that contains the
luminance information of the scene. The second and third terms of (2.1) express the
chrominance channels modulated to high frequencies (named C1 and C2 in Fig. 2.1).

As the luminance information is concentrated at low frequencies of the CFA
image, it is estimated by applying a lowpass filter to CFA samples.

The subsampled chrominance channels, expressed as differences of color chan-
nels, are calculated by subtracting the luminance channel from the CFA image. As
a result of strong correlation between the high-frequency details of color channels,
the chrominance channels are mainly lowpass. Hence, even a simple bilinear inter-
polation results in a high-quality estimation of these channels.

Following the same idea, Chaix de Lavaréne et al. in [35] adopt a Wiener filter-
based demosaicing to reconstruct luminance and chrominance channels, and in [34],
they generalize the luminance-chrominance demosaicing algorithm to be applicable
to any CFA pattern.

In [85], Leung et al. propose a method for designing optimum filters for luminance-
chrominance demultiplexing. They analyze different filters in terms of their compu-
tational complexity and demosaicing performance over a set of training images.

Lian et al. [89] modify the algorithm of Alleysson et al. [9] by estimating the
luminance in green pixels by applying a passband filter to the CFA samples. As the
Bayer CFA samples the green channel in every row and column of the image, there is
no horizontal and vertical aliasing in the samples of this channel. Hence, estimating
the luminance channel by a simple linear filter can be performed accurately. In
contrast, a linear filter is not suitable for estimating the luminance channel at red
and blue pixels. Lian et al. propose an iterative scheme for this task. First, initial
estimates of red and blue channels are obtained by bilinear interpolation. These
estimates guide the reconstruction of the luminance channel, which in the next
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(a) Input image (b) The CFA image sampled by the Bayer CFA

(c) Frequency spectrum of the CFA
image

Figure 2.1: (a) Input image. (b) The CFA image shown in color. As the sam-
pling frequency of the green channel is the highest, the image looks greenish. (c)
The Fourier spectrum of the CFA image. The central part contains luminance in-
formation and chrominance channels (here shown as C1 and C2) are modulated to
high-frequencies.

iteration is used to refine red and blue intensities. In this process, an edge-adaptive
interpolation is used. After estimating the luminance channel, they apply a bilinear
interpolation to calculate the full resolution chrominance channels (the difference of
the CFA image and luminance).

2.1.3 Probabilistic Demosaicing

Similar to other estimation problems, the task of demosaicing can be formulated
as the maximum a-posteriori probability (MAP) framework, where the following
optimization is solved to reconstruct the full-resolution image [18]:

I = argmax
I

p(I|ICFA), (2.2)
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where I is the full-resolution color image, and p(.) denotes the probability density
function (PDF). Following Bayes’ rule, the above optimization is re-written as:

I = argmax
I

p(ICFA|I)p(I) (2.3)

As probability functions in the above optimization are usually modeled by normal
distributions, the optimum solution is obtained by minimizing the negative logarithm
(− log) of the above cost function:

I = argmin
I
− log(p(ICFA|I))− log(p(I)). (2.4)

− log(p(ICFA|I)) is called the data term that forces the intensities of the estimated
image to be similar to the observations (ICFA).

The task of reconstructing a full-resolution color image from CFA samples is ill-
posed, as one measurement is available at each pixel and two unknown color values
are estimated. Hence the problem does not have a unique solution, unless there
are additional constraints. The second term in (2.4), − log(p(I)), is a regularization
term that constrains the ill-posed problem of demosaicing by modeling the statistical
characteristics of natural images.

In [18], Brainard models the color image as a linear combination of several sinu-
soidal basis functions, where the weights are normal random variables. Mukherjee
et al. [108] model the smoothness of natural images and the strong correlation be-
tween different color channels by a Markov random field (MRF), which is used as a
regularization term in (2.4). Hel-Or and Keren use steerable wavelet coefficients to
impose the smoothness only along edges at appropriate scales [60].

Portilla et al. model the task of demosaicing as an LMMSE (linear minimum
mean squared error) estimation [118]. They learn the spatio-chromatic joint corre-
lation characteristics of natural color images. The covariance matrices of training
data are used to form local linear filters that are applied to demosaic the image.

In [128], Saito and Komatsu employ the total variation (TV) regularization in
demosaicing, where they explore spatial and chromatic correlations, respectively, by
minimizing the TV terms of each color channel and color differences. This idea is
combined with the luminance-chrominance decomposition by Menon and Calvagno
in [99] and Condat in [31]. They minimize the total variations for the difference of
color channels and the luminance channel.

Another popular class of regularization terms is the sparsity measure of natural
color images. In the next subsection, we review the demosaicing algorithms that are
based on sparse recovery.

2.1.4 Demosaicing Based on Sparse Decomposition

In compressive sensing [37], ill-posed inverse problems are constrained assuming
that the target signal has a sparse representation in some transform domain. For
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instance, natural images are shown to be sparse when represented by transforms
such as DCT or wavelet [47]. The transform domain that sparsely represents a class
of signals is usually called “dictionary”. The sparse-recovery algorithms are used in
different image processing tasks such as denoising [39], inpainting [40], and super-
resolution [153]. We explain the problem of sparse reconstruction in more detail in
Chapter 4.

Mairal et al. develop a sparse-recovery technique for the general problem of color
image reconstruction [96]. Their method is a generalization of the gray-scale image
denoising algorithm [39] that uses the K-SVD algorithm [6]. K-SVD is proposed
for training sparsifying transforms for specific classes of signals including gray-scale
images. Mairal et al. first modify K-SVD such that it learns the correlation between
different color channels. They also change the K-SVD algorithm in a way that it
removes nonhomogeneous noise. Modeling the CFA sampling as the color image
being corrupted by strong nonhomogeneous impulse noise that results in missing
some color information at every pixel, they use this method in color demosaicing.

Wu et al. [151] propose a novel dictionary for the task of demosaicing. They first
calculate an initial estimate of the full-resolution image using one of the available
demosaicing algorithms. Using the principal component analysis (PCA), a dictio-
nary is trained for each local neighborhood. These local dictionaries are used to
refine the estimate of the full-resolution image by solving a sparse recovery problem.

Another demosaicing algorithm based on sparse decomposition is proposed by
Moghadam et al. in [105]. In this paper, the spatial correlation between neighboring
pixels and the spectral correlation between color channels are explored separately.
Moreover, their demosaicing method is not limited to the Bayer CFA only. In [122],
Rossi and Calvagno first estimate the luminance channel using all color samples.
They modify the sparsity-based demosaicing approach proposed in [105] such that
the recovered color image respects the luminance channel estimated in the first step.

Zhang and Tao explore using a super overcomplete dictionary in color demo-
saicing [157]. The dictionary is formed as a collection of L sparsifying transforms
each representing a different class of image patches. Each patch in the training set
is classified, based on its sparsity level, into one of the L classes, and is used to
train the corresponding sparsifying transform. The L transforms are then used to
reconstruct each mosaiced patch, based on its sparsity level.

2.1.5 Graph-Based Demosaicing

Hu et al. in [64] propose a graph-based optimization for color demosaicing. They
represent the image as a weighted graph, when each pixel is a node and similarity
between two adjacent pixels is the weight of the connecting edge. The similarity
metric is a combination of intensity similarity and spatial proximity of two pixels.
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The Laplacian matrix of the graph is defined as

L(u, v) =


∑
w(u, v) u = v

−w(u, v), u ∼ v
(2.5)

where u and v are two vertices of the graph, w(u, v) denotes the weight of the edge
that connects u and v, and ∼ represents adjacency. Each channel in the demosaiced
image is estimated by solving the following optimization problem that enforces the
smoothness on the channel:

ĉi = argmin
ci

cTi Lc, i ∈ {R,G,B}, (2.6)

where ci is obtained by stacking the columns of the corresponding color channel into
a vector.

As discussed in this section, color demosaicing algorithms usually benefit from
the strong correlation between color channels. This points to one of the main chal-
lenges in color and NIR joint acquisition, compared with color imaging. We will
demonstrate in Chapter 3 that the correlation between color and NIR channels is
not as strong as color correlation. Hence, color demosaicing algorithms would not
perform well in color and NIR acquisition. Moreover, many of these methods as-
sume that the Bayer CFA samples the scene that cannot be directly used in joint
acquisition, thus limiting the applicability of color demosaicing approaches in our
problem.

2.2 Color Filter Array Design

As mentioned before, the most commonly used CFA in color imaging is the Bayer
CFA shown in Figure 2.2-(a). In the following we review other CFAs designed and
studied by camera manufacturers and the research community.

The CFA used in the Kodak DSC620x camera is formed by subtractive primary
filters, cyan, magenta, and yellow (CMY) [100] (Fig. 2.2-(b)). Some cameras such as
Nikon Coolpix 990 use a CMYG CFA1 to achieve an acceptable compromise between
light efficiency and color acuity (Fig. 2.2-(c)). Compton and Hamilton propose to
add to the CFA a white filter that transmits the whole visible spectrum [30]. This
increases the CFA light efficiency. This idea is implemented in some of Kodak CFAs
(Fig. 2.2-(d)).

Hirakawa and Wolfe in [63] study different designs for the CFA by representing
the CFA image in the Fourier domain as explained in Subsection 2.1.2. They show
that using subtractive filters (such as cyan and magenta) leads to less artifacts
compared with sampling the scene with primary color filters (Fig. 2.2-(e)).

Lu and Vetterli propose a CFA that samples a linear combination of different
color channels at each pixel [93]. The optimum coefficients for each combination

1The CMYG CFA uses cyan, magenta, yellow, and green filters.
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(a) The Bayer
CFA

(b) The CMY
CFA

(c) The CMYG
CFA

(d) One of the
Kodak CFAs

(e) Hirakawa’s
CFA [63]

(f) Lu’s CFA [93] (g) Hao’s CFA
[56]

(h) Condat’s CFA
[32]

(i) Wang’s CFA
[147]

Figure 2.2: Different color filter arrays proposed for color imaging.

are computed by solving an optimization problem that minimizes the demosaicing
error. Figure 2.2-(f) shows a CFA optimized by Lu and Vetterli’s algorithm.

Hao et al. formulate the frequency structure of a general CFA, which determines
the frequency arrangement of the CFA image [56]. Using this structure, they intro-
duce two rules for selecting a good CFA: (1) the aliasing between luminance and
subsampled chrominance channels should be minimized (see central and corner lobes
in Figure 2.1-c), (2) the correlation between multiplexed chrominance channels (the
high-frequency lobes in Figure 2.1-c) should be maximized. The first condition en-
sures that multiplexed components can be effectively separated, and the second one
offers the opportunity of using one chrominance channel to guide the reconstruction
of the other one. Based on these criteria, they select a few good CFAs and find
the one that results in the highest accuracy when reconstructing benchmark images
(Fig. 2.2-(g)).

Following the same idea, Condat analyzes the CFA in the frequency domain [32].
He uses the criteria similar to those suggested in [63] and [56] for designing the CFA.
Moreover, to increase robustness to noise, he maximizes the transmittance of each
filter in the CFA. Figure 2.2-(h) shows the CFA proposed by Condat.

In [147], Wang et al. study the trade-off between the light efficiency of the CFA
and the demosaicing accuracy. They propose to include several white pixels in the
CFA and arrange the color filters such that the aliasing between luminance and
chrominance channels is minimized. These criteria result in a CFA that consists of
40% white filters, 20% red, 20% green, and 20% blue filters (Fig. 2.2-(i)), which is
shown to perform better than the Kodak RGBW CFA.
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2.3 Single-Sensor Multispectral Acquisition

Primarily designed for fields such as remote sensing, agriculture, product quality
assessment, and security and surveillance, most multispectral acquisition systems
are only suitable for professional and industrial use. These systems either use a filter
wheel or a beam splitter with several detectors to capture different spectral channels
of the scene [83]. See Figure 2.3 for an illustration. By using a filter wheel [46] or
tunable filters such as liquid crystal filters [48], each spectral channel is recorded
in one shot while the corresponding filter is placed in front of the sensor. In a
system that uses a beam splitter, the incoming light is divided into different spectral
channels, each measured by a different detector. These multispectral acquisition
systems are usually too expensive, bulky, and very time consuming.

Some studies, however, address the simultaneous acquisition of multiple spectral
channels on a single sensor. The array of filters that samples the scene is, by some
researchers, called the multispectral filter array (MSFA). In some single-sensor mul-
tispectral acquisition studies this array is, similar to color imaging, called the color
filter array (CFA). In the following, when explaining each technique we use the term
used by its developers.

Miao et al. in [102] propose an algorithm that designs the arrangement of differ-
ent spectral filters such that both spatial and spectral consistencies are guaranteed.
The algorithm uses the probability of appearance (POA) for each spectral channel.
The POA is a sampling rate of each band; for instance, in the Bayer pattern, the
POAs for red, green and blue channels are, respectively, 1/4, 1/2 and 1/4. Figure 2.4
shows the process of designing MSFA for the case of five spectral bands denoted by
{R,G,B,C,M} with POAs of {1/4, 1/4, 1/4, 1/8, 1/8}, respectively. A binary tree
is used to determine the arrangement of filters. The POAs corresponding to nodes at
each level are half the POAs of their parents. Constructing the tree continues until
the leaf with the smallest POA in the set (1/8 in this example) appears. To assign
the location of each spectral band in the MSFA, the scheme shown in Figure 2.4-(b),
which corresponds to the binary tree, is generated. Starting from the root, in each
node the pattern is decomposed to two complementary patterns that are the down-
sampled versions of the upper-level arrangement by a factor of 2. For instance, in
Fig. 2.4-(b), R and B patterns are generated by downsampling the pattern marked
by 2s. The decomposition process continues until the corresponding pattern for each
leaf is generated. Combining patterns for all leaves, the MSFA is obtained as shown
in Figure 2.4-(c).

The demosaicing algorithm proposed in [102] is customized to the designed MSFA
and consists of three main steps: band selection, pixel selection, and interpolation.
As the bands with highest POAs (highest sampling rates) are least aliased, the best
approach is to first demosaic these bands (similar to green demosaicing in the color
imaging). Full resolution images of these bands can be used in reconstructing other
channels. Therefore, demosaicing starts with the band corresponding to the upper-
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(a) (b)

Figure 2.3: (a) A multispectral camera that uses a filter wheel [3]. (b) A schematic
of a multispectral acquisition system that uses a beam splitter and several detectors.

most leaf in the binary tree. In the example shown in Figure 2.4, the highest POA
corresponds to channels R, G, and B, and the demosaicing process might start with
any of these channels.

One of the difficulties in demosaicing multispectral images is that in each spectral
band very few known pixels are available, which are insufficient for approximating
missing pixels with acceptable accuracy. To address this problem, Miao at al. sug-
gest to sequentially approximate the missing pixels for each band. In each iteration
of the proposed algorithm, some missing pixels are estimated using the MSFA sam-
ples and the pixels interpolated in previous iterations at the same channel. For the
example of Figure 2.4, to reconstruct the full resolution M channel, first the M
missing values at C pixels are estimated. In the next step, missing pixels at posi-
tions of the M channel parent’s sibling (G channel in this case) are interpolated.
The algorithm then moves one level up and considers the sibling of node 1 (node 2).
As node 2 is an internal node, M values at the pixels of this node’s children (i.e.,
R and B bands) are computed. If the algorithm continues one more iteration, it
reaches the root of the tree, meaning the M channel is completely demosaiced. At
each iteration of demosaicing a channel, missing pixels are estimated as a weighted
average of the four closest neighbors. Similar to most color demosaicing techniques,
weights are inversely proportional to the magnitude of gradient in the corresponding
direction.

Miao et al. mention that the edge locations of different channels in a multispec-
tral image are the same, and the edge information of high-resolution bands with the
highest sampling rate can be used to refine the estimations of channels with lower
sampling frequencies. However, they do not use this information in the proposed
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(a) Binary tree (b) Checkerboard decomposition (c) MSFA

Figure 2.4: (a) The binary tree used to design the MSFA for acquisition of five
spectral bands. (b) The corresponding checkerboard decomposition. (c) The multi-
spectral filter array (MSFA) is obtained by superposing the patterns in leaves of the
checkerboard decomposition [102].

algorithm.
Brauers and Aach propose using a 3 × 2 CFA to record six spectral channels

in the visible range [19]. To reconstruct the full-resolution image, they first apply
bilinear interpolation to each spectral channel. Afterwards, assuming a strong cor-
relation between different channels, an improved estimate of the image is obtained
by interpolating the channel-difference signals. This algorithm is similar to color
demosaicing algorithms that rely on the constant-hue assumption.

Baone and Qi in [12] formulate the task of demosaicing a multispectral image
sampled with any MSFA as a MAP estimation, similar to (2.4). They form the reg-
ularization term of (2.4) assuming that multispectral images follow a multivariate
Gaussian distribution. The parameters of this distribution are computed on an ini-
tial estimate of the full-resolution multispectral image obtained by a simple bilinear
interpolation.

Hershey and Zhang propose a 2 × 2 CFA, where blue, green, red, and invisible
filters sample the scene [61]. The invisible filter could be an ultraviolet or an NIR
filter. To estimate the missing channels at each pixel, they propose applying a
bilinear interpolation to the samples in the corresponding spectral channel. In [142],
Tang et al. study a similar CFA for color and NIR acquisition. They formulate the
task of reconstructing full-resolution images as a MAP framework. They propose
using quadratic regularizers such as a Gaussian prior for image gradients to constrain
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(a) (b) (c)

Figure 2.5: (a) The MSFA presented in [107] for the acquisition of five spectral
channels in the visible band. (b) The hybrid CFA proposed in [75] for capturing
color channels and one additional band (colored black). (c) The MSFA proposed
in [4] for sampling k spectral channels denoted as {C1, C2, · · · , Ck}.

the reconstruction problem.
Lu et al. design a generic CFA for the joint acquisition of color and NIR im-

ages [91]. Each filter in this CFA transmits NIR and a weighted average of color
channels. The optimum weights for each filter in the CFA are calculated by solv-
ing a spatial optimization problem that minimizes the error of reconstructing full-
resolution color and NIR images. By solving this optimization, Lu et al. also obtain
an optimum linear demosaicing, formulated as a demosaicing matrix. This algo-
rithm is explained in more detail in Chapter 3, where we propose its extension by
taking into consideration the spatial and spectral correlation characteristics of color
and NIR images.

Monno et al. present a five-band MSFA that samples the visible part of the
electromagnetic spectrum [107]. Their proposed MSFA is shown in Figure 2.5-(a).
As the green channel is sampled with the highest rate in the MSFA, this channel is
first interpolated. The full-resolution green channel is then used as a guide image in
the guided image filtering algorithm [57] to reconstruct the other four channels.

Kiku et al. [75] use a 10×10 hybrid CFA, shown in Figure 2.5-(b), to capture three
color channels and one additional band. To demosaic the image, they assume no
correlation between color channels and the additional band, hence they reconstruct
this band separately by applying the super-resolution algorithm of [98]. To demosaic
the color channel, the full-resolution green channel is estimated. The interpolated
green channel is then used to guide the demosaicing of red and blue channels. This
step is performed by the guided image filtering proposed by He et al. in [57].

Aggarwal and Majumdar address the single sensor acquisition of multispectral
images in [4]. They propose a uniform MSFA in which spectral channels are sam-
pled on diagonal stripes. Figure 2.5-(c) illustrates this MSFA for sampling k spectral
channels denoted as {C1, C2, · · · , Ck}. The missing intensities at each pixel are esti-
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mated as the weighted average of observed samples in a 3× 3 neighborhood around
the corresponding pixel. The weights for each specific MSFA are trained by mini-
mizing the error of reconstructing full-resolution images over a set of multispectral
images.

Wang et al. address the demosaicing of multispectral visible images where k
different channels are uniformly sampled by a k × k MSFA [146]. They train a
demosaicing matrix over a set of multispectral images to perform an initial linear
demosaicing. In the next step, they compute the residual error in each channel
by subtracting the initial estimate from the MSFA samples in that band. The
residual channels are interpolated and added to the initial estimate to obtain the final
demosaicing result. This algorithm is an extension of Monno’s color demosaicing
algorithm presented in [74].

Lapray et al. design a multispectral camera that captures seven spectral channels
in the visible band and one NIR band [83]. Their multispectral filters are built by
SILIOS Technologies using the COLOR SHADES technology. According to Lapray
et al. this technology combines the thin-film deposition and micro-/nano-etching
processes. Figure 2.6 shows the spectral transmittance of these filters. They propose
two different MSFA arrangements for these eight filters, shown in Figure 2.7. The
MSFA of Figure 2.7-(a) has the highest sampling frequency for channel P5 (green
wavelengths) and NIR channel, and is recommended for applications that require
high spatial resolution in both visible and NIR bands. The second MSFA in this
figure is designed by the binary tree algorithm of Miao et al. [102] assuming that
the sampling frequency for all channels is 1/8. In [83], the authors focus mostly
on transmittance and sensitivity properties of the designed filters and sensor. To
reconstruct full-resolution images, they explore bilinear interpolation and also the
channel-differences interpolation.

In Chapter 4, we compare the performance of some of the aforementioned al-
gorithms that are applicable to the joint acquisition of color and NIR. Table 2.2
summarizes the single-sensor multispectral acquisition techniques discussed in this
section.
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Figure 2.6: The relative response of the multispectral camera developed by Lapray
et al. [83]. The camera captures one NIR (C8) and seven visible channels. The plot
is produced based on the data provided by the authors of [83].

(a) (b)

Figure 2.7: The two MSFA filter arrangements used by Lapray et al. [83]. Spectral
channels C1 to C7 represent the scene in the visible band and C8 is the NIR channel.
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2.4 Chromatic Aberration

We review the studies that address the longitudinal chromatic aberration in color
imaging in Subsection 2.4.1. Furthermore, as we formulate the task of reducing
chromatic aberration in color and NIR acquisition as deblurring the NIR image, our
work is closely related to the field of deblurring. We review the main algorithms
developed in this field in Subsection 2.4.2.

2.4.1 Chromatic Aberration in Color Imaging

Chromatic aberration in color imaging is usually corrected assuming that the edges
of color channels are co-located when the image is not distorted by CA. The green
channel is usually considered to be in focus on the sensor plane, whereas other
channels are out of focus and blurred. Based on these assumptions, some stud-
ies [144, 145, 79] propose to simply replace the high-frequency components of the
blurred channels with those of the sharp color channel. For instance, the image of
the red channel is reconstructed as follows:

R̂ = hLP(R) + hHP(G), (2.7)

where hLP(.) and hHP(.), respectively, apply low-pass and high-pass filters to the
image. R and G are observed red and green images, and R̂ is the reconstructed
sharp image of the red channel.

In [72], Kang considers the green channel to be the reference image and computes
the blur kernel of red and blue channels, with respect to the green image. He assumes
that the edges of blue and red channels are located in a 5× 5 neighborhood around
the location of the corresponding edge in the green channel and uses this information
to retrieve the lost details of these channels.

Several algorithms correct for chromatic aberration by removing the purple color
fringes caused partly by chromatic aberration [71, 76, 21, 67, 68]. Figure 2.8 shows
an example of purple fringes. Most of these approaches search for pixels corrupted
by purple fringes around the edges. Those pixels with high intensities in three color
channels (bright regions of the image), and higher blue and red intensities compared
with their green value are detected as purple fringes. To correct for this effect, the
color intensities of these pixels are replaced by an average of the color values for
the same pixel. It is also possible to replace the color of the corrupted pixel by an
average of intensities in its local neighborhood.

In [24], Chang et al. argue that although the most common, the purple color
fringes are not the only false colors caused by chromatic aberration. Thus, their
algorithm detects and corrects any type of color fringes in the image. They apply
a transition-improvement operator to chrominance channels in order to reduce the
blurring effects of longitudinal CA. Such an operator sharpens the image and bounds
the values around the edge to maximum and minimum intensities in a close neigh-
borhood to avoid halo artifacts caused by sharpening. In the next step, the color
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Figure 2.8: Purple fringes, partly caused by chromatic aberration, are mainly visible
around bright edges in the image.

fringes are corrected for by replacing the intensities on the edges with an average of
intensities in a small neighborhood around the corresponding pixel.

In [29], Chung et al. assume that if the image does not suffer from chromatic
aberration, the transition area for an edge is co-located in all color channels. Based
on this, they define the color difference condition for normal edges. According to this
condition, the color difference in a transition region either monotonically increases
or decreases, hence the color difference is bounded by the minimum and maximum
of color difference on both sides of the transition region. Mathematically speaking,
if DR = R −G, then around a vertical edge

min {DR(l),DR(r)} ≤ DR(j) ≤ max {DR(l),DR(r)}, (2.8)

where l and r are the leftmost and rightmost locations in the transition area, re-
spectively, and j is every pixel in between. Such a transition region is shown in
Figure 2.9. The above condition holds for the difference between blue and green
channels as well. The algorithm of [29] detects edges that are distorted by chromatic
aberration as those that do not respect the above condition. To remove distortions
in these regions, Chung et al. propose replacing the color difference by the color
difference of the closest neighborhood that does not violate the normal edge color
difference condition. The final red and blue channels are computed by adding the
green intensities to the corrected color differences.

Kang et al. correct CA distortions in a luminance-chrominance color space such
as YCbCr [70]. They first detect the edges and a neighborhood around each edge in
the luminance channel. They measure the degree of chromatic aberration distortion
as the difference between the gradients of red and green channels (and also between
blue and green channels). The color of the distorted pixel is then replaced by a
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Figure 2.9: The arrows show the boundaries of the transition region around the
edge. The triplet values are the RGB code values of leftmost and rightmost pixels
of the transition region.

weighted average of colors in neighboring pixels. The weights are defined as the
degree of chromatic aberration distortion in each direction.

Kang et al. in [69] assume that mainly strong edges are affected by chromatic
aberration. Hence, they correct for these distortions where a strong edge is detected
in the image of the green channel, assuming that this channel is in focus. Distorted
regions are reconstructed by minimizing the difference between the gradients of red
and green channels. By the same process, the gradients of the blue channel are also
matched to those of the green band.

In [139], Singh and Singh formulate the effects of chromatic aberration and CFA
sampling as one linear transform. They propose reconstructing the full-resolution
aberration-free image by computing the pseudo-inverse of this linear transform. The
correlation between color channels is exploited by performing the operations in a
luminance-chrominance color space such as YCbCr.

2.4.2 Deblurring

One approach to reducing the effects of longitudinal chromatic aberration is to deblur
the spectral channels that are not in focus on the sensor plane. As this technique is
closely related to the field of deblurring, in this section, we review the main trends
in this field.

The blurring process of an image I is often modeled as follows:

Ib = k ∗ I + N, (2.9)

where, Ib is the observed blurred image. k is called the blur kernel or the point
spread function (PSF) of the system. ‘*’ denotes the convolution operator, and N
is the acquisition noise.
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The deblurring algorithms that estimate both k and I, given only the blurred
image, are called blind deblurring. Most of these algorithms formulate the task of
estimating the blur kernel and deblurring as the following optimization:

{Î, k̂} = argmin
I,k

‖Ib − k ∗ I‖2F + λ1Pr (I) + λ2Pr (k) (2.10)

In this optimization, the first term is the data fidelity term that enforces the esti-
mated blur kernel and the deblurred image to respect the observed blurry image.
As the problem of deblurring is ill-posed, the second and third terms constrain the
problem, where Pr stands for prior knowledge, and λ1, λ2 are regularization weights
defining the importance of each term. Pr(I) explains the plausible set of sharp im-
ages and is usually inspired by natural image characteristics. Pr(k) incorporates the
prior information about the blurring process.

The main constraints considered for the blur kernel are that the kernel elements
be non-negative, and they must sum up to one to preserve the energy. The norm of
the kernel can be minimized through the following Tikhonov regularization [154]:

Pr(k) = ‖k‖22. (2.11)

Moreover, it might be assumed that the kernel changes slowly and hence the norm
of the kernel gradients, ‖∇k‖, is minimized.

To regularize the deblurring problem with respect to the sharp underlying image,
I, usually the distributions for gradients of natural images are used. For instance,
it is known that the gradients follow heavy-tailed distributions such as Laplacian
or hyper-Laplacian. Figure 2.10 shows the distribution of horizontal and vertical
gradients for one example image, where similar to [42], we plot the log2 of probability
density. A heavy-tailed distribution is modeled by imposing sparsity on gradients of
the deblurred image, expressed as Pr(∇I) = ‖I‖pp, for p ∈ (0, 1] [81]. The `p norm
for vector x is defined as:

‖x‖p = p

√∑
i

|xi|p. (2.12)

In [82], Krishnan et al. argue that assuming sparsity for the gradients favors the
blurred image and the no blur solution where k = δ(m,n) (the blur PSF is the delta
function). To solve this issue, they propose the following normalized sparsity as the
regularization term:

Pr(I) = ‖∇I‖1
‖∇I‖2

. (2.13)

Most deblurring algorithms use only one blurred image to estimate the sharp
representation of the scene [86, 82, 73, 137]. However, there are few studies that
use a guide image in deblurring. He et al. [58] propose the guided filtering for the
general problem of image restoration, including image deblurring. The algorithm
of Yuan et al. [154] uses a noisy color image to guide the deblurring of a blurred
color image of the same scene. Similarly, Zhang et al. [156] propose using multiple
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(a) Input image

(b) Probability density of horizontal gradients (c) Probability density of vertical gradients

Figure 2.10: The gradients of natural images have heavy-tailed distributions as the
ones shown here.

blurred images of the scene to produce a sharp representation. The main similarity
between these algorithms is that both guide and target images represent the scene
in the visible band, hence their gradients are strongly correlated and can be used to
retrieve the lost details in the blurred image.

Many deblurring algorithms are designed for gray-scale images. To deblur color
images they either deblur the luminance channel or treat each color channel sepa-
rately. As opposed to these methods, Schuler et al. in [134] develop an algorithm
that jointly deblurs color channels specifically to correct for different lens aberra-
tions. To reduce chromatic aberration distortions, they assume that each color chan-
nel is blurred with a different blur kernel. They explore the correlation between color
channels by formulating the regularization terms in the YUV color space, where the
total variations of U and V channels (containing chromatic information) are more
strongly penalized. They calibrate the lens used in their experiments for a specific
set of zoom, aperture, and focus parameters, and use the measured blur kernels to
deblur the image. Schuler et al. also incorporate demosaicing into their deblurring
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framework and show that this approach slightly outperforms deblurring the already
demosaiced color image (0.4 dB improvement over synthetic experiments performed
on the Kodak dataset).

In [135], Schuler et al. extend their previous algorithm to a blind approach where
the blur kernels are also estimated. To estimate spatially varying blur kernels caused
by chromatic aberration, they make some assumptions about the symmetry of the
blur kernel with respect to the image center, and smoothness of spatial variations in
blur kernels. These assumptions constrain the ill-posed problem of estimating blur
kernels. Once the kernels are estimated, they use a non-uniform version of Krishan
and Fergus’s algorithm [81] to deblur the image.

Heide et al. in [59] use a simple lens that introduces different optical aberrations,
including chromatic aberration. Similar to [134], they first calibrate the lens by
estimating the lens blur kernels at different patches across the image and use these
estimations to deblur the image. They assume that the edges of color channels are
co-located and regularize the deblurring process by the difference of color gradients
normalized by the absolute intensity of each channel in the corresponding pixel.

The common assumption of all the chromatic aberration algorithms explained
above is that the gradients of color channels are always strongly correlated. This
assumption is not valid for color and NIR images. Figure 2.11 shows an example
where the high-frequency details of color and NIR images are not correlated. Because
of the differences between the gradients of color and NIR, the algorithms proposed
for correcting chromatic aberration cannot be directly applied to our problem. In
Chapter 5, we illustrate the effect of assuming a strong correlation between color
and NIR gradients in reducing chromatic aberration distortions.

2.5 Discussion

By capturing a multi-channel image using a single sensor, both CFA sampling and
deficiencies of optical lenses result in loss of information, specifically high-frequency
details. In color imaging, the techniques developed for estimating the missing infor-
mation benefit mainly from the high correlation between the high-frequency com-
ponents of color channels.

The correlation between color and NIR images is not as strong as are the similari-
ties between color channels. This makes the joint acquisition of color and NIR images
on a single sensor more challenging, compared with color imaging, and causes diffi-
culties both in demosaicing and in correcting for chromatic aberration. Throughout
the thesis, we propose different algorithms to tackle these difficulties.
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Figure 2.11: A pair of color (left) and NIR (right) images. The color pigments on the
pen are transparent in NIR, resulting in differences between the gradients of color
and NIR images. Note that the text in the book looks the same in both images, as
carbon black used in modern ink absorbs light in both visible and NIR wavelength
ranges.

2.6 Summary

In this chapter, we have reviewed CFA sampling, chromatic aberration distortions,
and the solutions proposed for these problems in single-sensor color and multispectral
imaging. Both these tasks are ill-posed, and additional constraints are required to
find plausible solutions.

In demosaicing, different regularization terms are used such as constant-hue as-
sumption, sparsity of natural images in a proper transform domain, low-pass nature
of chrominance channels, and small total variations in color channels. All these ad-
ditional constraints exploit two types of correlations in color images: inter-channel
and intra-channel correlations. Inter-channel or spatial correlation is the result of
strong dependencies between the intensities of neighboring pixels, except at the
edges. Intra-channel or spectral correlation models the similarities between different
color channels.

To reduce chromatic aberration distortions, the strong correlation between the
high-frequency details of color channels is assumed. Hence, the lost high frequencies
of blurred channels are retrieved, guided by the sharp details of the in-focus channel.

In the next chapter, we will study the correlation characteristics of color and NIR
images, and we present an algorithm that explores these characteristics to design an
optimum CFA and demosaicing for the joint acquisition of color and NIR images.
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Chapter 3

Optimized CFA

In this chapter, we first study the correlation characteristics of color and NIR images.
The results of our analysis are presented in Section 3.1. We use these results in the
design of the optimum CFA and the optimum demosaicing. Our method is based
on the work of Lu et al. [91] and is presented in Section 3.2. The simulation results
comparing the performance of our algorithm with the method of Lu et al. [91] are
reported in Section 3.3.

3.1 Correlation Characteristics of Color and NIR Images

Due to differences in light and scene reflections in visible and NIR bands, there are
usually many differences between intensities of color and NIR images. Figure 3.1
illustrates some examples of differences in intensity. Despite these differences, the
object boundaries and shapes are usually preserved in both representations. This
suggests that the correlation between color and NIR depends on the frequency band.
Based on these observations, we hypothesize that the low-frequency components of
NIR and color images are not strongly correlated, whereas, the high-frequency details
are usually shared between these images. In the following subsections, we take two
approaches for analyzing the correlation in natural color and NIR images and testing
this hypothesis.

3.1.1 Filter-Bank Analysis of Correlation

In this subsection, inspired by the work of Gunturk et al. [52], we analyze the
correlation between NIR and color channels in a filter-bank domain. Gunturk et al.
study the correlation between different color channels in the Kodak dataset.

We first decompose each image to four subbands by using the following horizontal
and vertical low-pass (h(h)

0 , h
(v)
0 ) and high-pass filters (h(h)

1 , h
(v)
1 ):

h
(h)
0 = [1, 2, 1]/4, h

(v)
0 = [1, 2, 1]T /4

h
(h)
1 = [1,−2, 1]/4, h

(v)
1 = [1,−2, 1]T /4,

(3.1)

41
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(a) The Y channels of color images

(b) The NIR images

Figure 3.1: This figure illustrates the differences between the absolute intensities of
(a) the Y channel (the average of color channels), and (b) the NIR image. Despite
these differences, the object boundaries and high-frequency details of both color and
NIR representations are generally similar.

By using the above filters, the four subbands of the image I are computed as
follows:

ILL = h
(v)
0 ∗ h

(h)
0 ∗ I, ILH = h

(v)
1 ∗ h

(h)
0 ∗ I

IHL = h
(v)
0 ∗ h

(h)
1 ∗ I, IHH = h

(v)
1 ∗ h

(h)
1 ∗ I

(3.2)

ILL is obtained by applying, in both horizontal and vertical directions, a low-pass
filter to the original image. ILH and IHL are the results of low-pass filtering the
image in one of the horizontal or vertical directions and high-pass filtering in another.
Applying high-pass filters in both directions produces IHH. Figure 3.2 shows one
example image and its four subbands.

We compute the correlation between the corresponding subbands of two images
I1 and I2, following the normalized cross correlation (NCC) definition:

cij =
∑
m,n(I1ij(m,n)− µ1)(I2ij(m,n)− µ2)√∑

m,n(I1ij(m,n)− µ1)2
√∑

m,n(I2ij(m,n)− µ2)2
for ij ∈ {LL,LH,HL,HH}.

(3.3)
In the above formulation, µ1 and µ2 are the average values of I1ij and I2ij intensities.

We first study the correlation between NIR and the luminance channel of the
color image. The luminance channel, denoted as Y, contains spatial information
about the scene in the visible range and we compute it as the average of three color
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(a) Input image (I) (b) ILL

(c) ILH (d) IHL (e) IHH

Figure 3.2: An example image and its four subbands. All images have the same
resolution in the filter-bank decomposition, and are re-sampled here for illustration
purposes.

channels. From now on, we denote the NIR image as N . In Table 3.1, we report
the correlation values for four subbands of 30 image pairs. This table also shows the
correlation values between the red-green and blue-green channel pairs of correspond-
ing images. We show the histograms of correlation values between the subbands of
these channels in Figure 3.3. The correlation values between the low-frequency
components of NIR and Y channels are much smaller than the corresponding val-
ues between color channels. The lack of correlation between low-frequencies of NIR
and Y is explained by the significant differences between the absolute intensities of
these channels. Whereas, the high-frequency subbands (LH,HL,HH) exhibit strong
correlation. The correlation is not yet as strong as the correlation between color
channels for many images. This difference is partly due to the fact that some details
in the scene do not appear the same in color and NIR representations, although
they usually look very similar in all color channels. For instance, see the example
of Figure 3.4 where the pattern on the wall is visible in all color channels, but it
disappears in the NIR image.
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N and Y G and R G and B
No. LL LH HL HH LL LH HL HH LL LH HL HH
1 0.005 0.53 0.52 0.18 0.95 0.82 0.87 0.75 0.89 0.88 0.9 0.8
2 0.78 0.85 0.8 0.65 0.98 0.92 0.89 0.86 0.99 0.95 0.95 0.91
3 0.41 0.59 0.55 0.44 0.98 0.9 0.87 0.78 0.97 0.93 0.92 0.87
4 0.25 0.69 0.65 0.63 0.94 0.93 0.89 0.86 0.92 0.94 0.91 0.89
5 0.55 0.76 0.84 0.5 0.8 0.84 0.89 0.71 0.92 0.89 0.95 0.78
6 0.4 0.47 0.53 0.28 0.76 0.8 0.77 0.64 0.9 0.86 0.9 0.77
7 0.44 0.72 0.74 0.69 0.64 0.72 0.68 0.62 0.96 0.92 0.94 0.83
8 0.94 0.94 0.95 0.79 0.97 0.85 0.89 0.57 0.99 0.94 0.97 0.75
9 0.57 0.75 0.75 0.6 0.96 0.89 0.84 0.78 0.95 0.94 0.94 0.91
10 0.46 0.75 0.8 0.62 0.97 0.9 0.92 0.77 0.96 0.96 0.94 0.92
11 0.38 0.66 0.58 0.57 0.96 0.83 0.82 0.75 0.94 0.87 0.87 0.82
12 0.36 0.58 0.56 0.57 0.97 0.87 0.87 0.8 0.98 0.92 0.9 0.87
13 0.6 0.67 0.62 0.53 0.78 0.83 0.8 0.68 0.84 0.89 0.84 0.77
14 0.057 0.54 0.5 0.41 0.97 0.91 0.9 0.85 0.95 0.89 0.89 0.84
15 0.079 0.62 0.56 0.5 0.86 0.85 0.84 0.77 0.71 0.82 0.82 0.79
16 0.82 0.86 0.79 0.43 0.96 0.92 0.82 0.34 0.98 0.9 0.76 0.27
17 0.79 0.76 0.75 0.72 0.92 0.79 0.78 0.69 0.87 0.7 0.73 0.56
18 0.88 0.95 0.96 0.9 0.95 0.95 0.92 0.85 0.81 0.96 0.97 0.92
19 0.83 0.94 0.94 0.89 0.92 0.92 0.89 0.85 0.92 0.95 0.94 0.91
20 0.92 0.95 0.92 0.85 0.93 0.89 0.81 0.59 0.9 0.95 0.93 0.84
21 0.033 0.58 0.53 0.55 0.91 0.83 0.82 0.75 0.87 0.83 0.84 0.78
22 0.88 0.96 0.94 0.93 0.96 0.96 0.91 0.88 0.97 0.97 0.95 0.93
23 0.48 0.63 0.57 0.53 0.96 0.89 0.79 0.74 0.94 0.92 0.9 0.88
24 0.096 0.73 0.64 0.63 0.93 0.91 0.86 0.82 0.88 0.82 0.77 0.77
25 0.42 0.77 0.64 0.65 0.9 0.9 0.81 0.76 0.92 0.9 0.87 0.8
26 0.68 0.65 0.88 0.28 0.86 0.78 0.84 0.52 0.96 0.83 0.86 0.59
27 0.69 0.94 0.94 0.89 0.98 0.93 0.91 0.83 0.98 0.95 0.96 0.87
28 0.83 0.84 0.82 0.88 0.98 0.95 0.94 0.9 0.98 0.96 0.95 0.93
29 0.76 0.53 0.51 0.032 0.66 0.41 0.33 0.061 0.9 0.32 0.39 0.11
30 0.58 0.21 0.2 0 0.21 0.2 0.21 0.11 0.97 0.53 0.53 0.087

average 0.53 0.71 0.7 0.57 0.88 0.84 0.81 0.7 0.92 0.87 0.87 0.76

Table 3.1: Correlation values between four subbands for 30 pairs of images. The
correlation between the low frequencies of N and Y channels is usually small. In
most cases, the correlation between high-frequency subbands is stronger.
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(a) The histogram of correlation values
between LL subbands

(b) The histogram of correlation values
between LH subbands

(c) The histogram of correlation values
between HL subbands

(d) The histogram of correlation values
between HH subbands

Figure 3.3: The histograms of correlation values for different subbands. The correlation
between LL subbands of NIR and Y for majority of images is less than 0.6, whereas the
correlation is usually larger than 0.6 for LL subbands of red-green and blue-green pairs.
For the high-frequencies subbands, however, in most images the correlation between
NIR and Y is higher than 0.5.

Figure 3.4: Top row: color and NIR images. Bottom row shows a patch on the wall in
color channels and NIR. The pattern on the wall is visible in all color channels, while
the patch is uniform in the NIR image. These inherent differences result in weaker
correlation between color and NIR high frequencies compared with the correlation of
color channels.
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We compare the correlation between the subbands of NIR and the different color
channels in Table 3.2 and Figure 3.5. As before, we observe that the correlation be-
tween low-frequency subbands that contain information about the absolute intensities
of channels is usually weaker than the correlation between high-frequency details.

Table 3.2 shows that for this dataset, the correlation between the LH and HL
subbands of NIR and red (or green) channels is on average higher than the correlation
between NIR and blue channels. However, this is not necessarily the case for every
image. For images 5, 6, 8, and 29, the correlation values between NIR and blue are
higher or comparable with those of green and red channels. Based on these observations,
in this thesis, we usually exploit the correlation between the NIR image and the Y
channel that contains information about all color channels.

(a) The histogram of correlation values between
LL subbands

(b) The histogram of correlation values between
LH subbands

(c) The histogram of correlation values between
HL subbands

(d) The histogram of correlation values between
HH subbands

Figure 3.5: The histograms of absolute correlation values for different subbands. The
correlation values between LL subbands are usually small, whereas the high-frequency
subbands exhibit stronger correlations.
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N and R N and G N and B
No. LL LH HL HH LL LH HL HH LL LH HL HH
1 0.02 0.5 0.49 0.13 0.23 0.55 0.54 0.21 0.19 0.47 0.49 0.13
2 0.8 0.84 0.78 0.63 0.8 0.86 0.8 0.66 0.74 0.79 0.74 0.58
3 0.42 0.57 0.53 0.41 0.46 0.61 0.58 0.45 0.33 0.56 0.51 0.41
4 0.4 0.75 0.73 0.68 0.17 0.66 0.62 0.59 0.17 0.6 0.53 0.52
5 0.54 0.77 0.83 0.53 0.38 0.69 0.78 0.39 0.66 0.72 0.83 0.45
6 0.13 0.36 0.39 0.23 0.44 0.49 0.56 0.28 0.55 0.48 0.58 0.24
7 0.45 0.67 0.76 0.63 0.31 0.66 0.63 0.63 0.4 0.66 0.65 0.6
8 0.98 0.91 0.92 0.62 0.93 0.9 0.93 0.76 0.88 0.9 0.92 0.66
9 0.58 0.76 0.74 0.61 0.65 0.75 0.75 0.59 0.43 0.69 0.68 0.5
10 0.57 0.73 0.81 0.58 0.49 0.77 0.81 0.63 0.3 0.7 0.72 0.54
11 0.47 0.73 0.61 0.57 0.45 0.68 0.62 0.6 0.19 0.48 0.44 0.41
12 0.37 0.59 0.54 0.53 0.4 0.6 0.6 0.6 0.31 0.5 0.49 0.48
13 0.7 0.72 0.66 0.59 0.52 0.63 0.57 0.47 0.4 0.59 0.56 0.45
14 0.064 0.54 0.5 0.39 0.19 0.59 0.55 0.46 -0.064 0.47 0.45 0.35
15 0.099 0.57 0.5 0.43 0.48 0.67 0.6 0.54 -0.22 0.54 0.51 0.44
16 0.92 0.92 0.82 0.33 0.81 0.85 0.76 0.37 0.68 0.72 0.53 0.13
17 0.77 0.74 0.74 0.68 0.75 0.73 0.71 0.68 0.72 0.61 0.6 0.52
18 0.99 0.95 0.95 0.85 0.9 0.93 0.95 0.88 0.5 0.9 0.9 0.83
19 0.98 0.96 0.94 0.91 0.85 0.91 0.91 0.84 0.59 0.87 0.84 0.77
20 0.99 0.92 0.89 0.66 0.93 0.95 0.9 0.82 0.71 0.89 0.83 0.73
21 -0.11 0.53 0.48 0.49 0.24 0.63 0.58 0.58 -0.19 0.49 0.46 0.43
22 0.91 0.95 0.92 0.9 0.88 0.95 0.94 0.92 0.82 0.91 0.87 0.85
23 0.58 0.61 0.53 0.48 0.48 0.65 0.6 0.54 0.34 0.57 0.49 0.46
24 0.31 0.74 0.61 0.59 0.19 0.78 0.7 0.68 -0.15 0.57 0.49 0.48
25 0.64 0.8 0.67 0.65 0.46 0.78 0.66 0.66 0.14 0.66 0.52 0.51
26 0.78 0.65 0.85 0.26 0.56 0.62 0.85 0.26 0.58 0.51 0.71 0.13
27 0.67 0.94 0.9 0.82 0.69 0.92 0.93 0.86 0.7 0.89 0.91 0.81
28 0.86 0.83 0.82 0.86 0.83 0.84 0.83 0.88 0.76 0.79 0.72 0.8
29 0.81 0.38 0.39 0.004 0.58 0.31 0.31 0.003 0.72 0.47 0.4 0.004
30 0.14 0.098 0.08 0 0.56 0.13 0.17 0.001 0.65 0.17 0.19 0.002

average 0.56 0.7 0.68 0.53 0.55 0.7 0.69 0.56 0.42 0.64 0.62 0.47

Table 3.2: Correlation values between four subbands for 30 pairs of images. The
reported values show the correlations between NIR and different color channels.
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3.1.2 Frequency Analysis of Correlation

In [125], we analyze the correlation characteristics of color and NIR images in differ-
ent frequency bands by using frequency-selective filters. We use Gaussian filters with
different central (peak) frequencies to cover the whole frequency spectrum. Each fil-
ter with central linear frequencies fcx and fcy in horizontal and vertical directions
is formulated in the frequency domain as the following:

ĥ(fx, fy) =
∑

m=−1,1

∑
n=−1,1

exp−(fx −mfcx)2 + (fy − nfcy)2

σ2 , (3.4)

where fx and fy are, respectively, normalized horizontal and vertical frequencies1 and
σ is the standard deviation of the filter that defines the filter bandwidth. Figure 3.6
shows three examples of such filters for central frequencies (fcx = fcy = 0), (fcx =
0.2, fcy = 0), and (fcx = fcy = 0.3).

We change the center frequencies in both directions in the range of [0, 0.3]. The
maximum possible frequency is 0.5 in each direction, however, a filter with fcx = 0.5
or fcy = 0.5 mostly extracts high-frequency noise. To avoid the effect of noise, we
set the maximum center frequency to 0.3. We call the impulse response of a filter
with the ith horizontal center frequency and jth vertical center frequency hij .

To compute the correlation in each frequency band, we first apply the corre-
sponding filter to NIR and Y channels:

N ij = hij ∗ N , Yij = hij ∗Y. (3.5)

(a) fcx = fcy = 0 (b) fcx = 0.2, fcy = 0 (c) fcx = fcy = 0.3

Figure 3.6: Three sample filters used in our correlation analysis. The filters are
shown in the frequency domain.

1The frequencies are normalized by the sampling frequency. Here we assume they vary in the
range [−0.5, 0.5].
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Figure 3.7: The N and Y channels filtered by the ijth frequency-selective filter
are called N ij and Yij . The NCC block computes the normalized cross correlation
between two input images.

The normalized cross correlation in this band is computed as follows:

cij =
∑
m,n(N ij(m,n)− µN )(Yij(m,n)− µY )√∑

m,n(N ij(m,n)− µN )2
√∑

m,n(Yij(m,n)− µY )2
, (3.6)

where m and n are pixel coordinates, and µN , µY are the average intensities of
filtered NIR and Y channels. Figure 3.7 illustrates the framework of our correlation
analysis.

We show a few examples of the correlation surface in the frequency plane in
Figure 3.8. The surfaces in the second column of each example are the correlation
values plotted versus the horizontal and vertical center frequencies of filters. For
instance, the surface value at fx = fy = 0 is the correlation between NIR and Y
images that are processed by a filter with center frequencies fcx = fcy = 0, which
is a low-pass Gaussian filter. Hence, this value measures the correlation between N
and Y low-frequency information that represents the absolute intensities.

Similar to the results of filter-bank analysis, for most examples of Figure 3.8, the
correlation is minimum at low-frequencies and it increases as the high-frequency de-
tails of N and Y are extracted. There are, however, scenes where the low-frequency
components are also highly correlated. For instance, see the correlation surface
in Figure 3.8-(d). Nevertheless, in majority of scenes, high-frequency details are
strongly correlated.
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Figure 3.9 shows the average correlation surface computed for 30 pairs of N and
Y images. We perform this experiment on the same dataset that is used in the
filter-bank analysis.

The results of both correlation analyses confirm our hypothesis that color and
NIR images are correlated mainly in higher frequency bands. We exploit these results
in the next section in order to develop an algorithm for designing the optimum CFA
and the optimum demosaicing.

(a)

(b)

Figure 3.8: The correlation surfaces of N and Y channels.
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(c)

(d)

(e)

Figure 3.8: The correlation surfaces of N and Y channels (cont.).
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(f)

Figure 3.8: The correlation surfaces of N and Y channels versus horizontal and vertical
frequencies. For each example color and NIR images are shown on the left and the
correlation surface is on the right (cont.).

Figure 3.9: The correlation surface averaged for 30 pairs of N and Y channels. The
minimum correlation is 0.5159 and occurs at fx = fy = 0, and the maximum is 0.7721
at (fx = 0.3, fy = 0) and (fy = 0, fx = 0.3).
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3.2 The Optimized CFA and Demosaicing

Similar to [91], we assume a general color filter array of size M ×M is used for
sampling the scene. Each filter in the CFA transmits NIR, as well as a mixture of
primary colors (red, green, and blue). Figure 3.10 shows an example of such a CFA
for M = 4. In this figure, the color of each filter represents the mixture of colors
the filter transmits, and the coefficients on each pixel are the overall transmittance
of the corresponding filter in each band. We denote the overall sensitivity of the
sensor and the (i, j)th filter in the CFA to red, green, and blue channels, αijR , α

ij
G,

αijB , respectively. We assume all filters equally transmit NIR, hence αN is one for
all filters. Thus, in what follows, for simplicity we omit αN . With these notations,
the value measured by the sensor at (i, j)th pixel is

zij = αijR × r + αijG × g + αijB × b+ n, (3.7)

where r, g, b and n are red, green, blue and NIR intensities at the corresponding
pixel.

We consider a patch of size (2L + 1)M × (2L + 1)M . Figure 3.11 shows an
example for M = 4 and L = 1. We form the vector representations of different
channels in this patch by stacking their columns:

r = vec(R),g = vec(G),b = vec(B),n = vec(N ). (3.8)

We concatenate these vectors into the column vector x:

x = [rT ,gT ,bT ,nT ]T , (3.9)

where T represents the transpose operator.
As shown in (3.7), the intensities of different channels are linearly mapped to

the CFA samples. Hence, vector x in the full-resolution image is linearly related to
the corresponding patch in the CFA image:

z = Ax, (3.10)

where z is the vector representation of the patch in the CFA image and A contains
the CFA coefficients.

The CFA samples in z are used to estimate the intensities of the full-resolution
image in the central patch of sizeM×M . This patch is marked as x0 in Figure 3.11.
By using a linear demosaicing, the full-resolution patch is estimated as

x̂0 = Dz = DAx. (3.11)

In the above equation, D is the demosaicing matrix that maps the CFA samples (z)
to the intensities of the estimated full-resolution image (x̂0).
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Figure 3.10: A general CFA of size 4×4. Each filter in this CFA transmits a mixture
of primary colors (red, green, blue) and NIR. The α coefficients are the overall
transmittance of each filter in the corresponding band. The filters are assumed to
equally transmit NIR, hence αN = 1 for all filters. These coefficients are generated
randomly for illustration purposes alone.

Figure 3.11: Each patch x0 of size M ×M is demosaiced using a neighborhood of
size (2L+ 1)M × (2L+ 1)M . In this example: M = 4, and L = 1. The size of CFA
is M ×M , and every patch of size M ×M is sampled by the same periodic pattern.
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Lu et al. in [91] propose to find optimum values for the CFA coefficients and the
demosaicing matrix by solving the following optimization:

{A?,D?} = argmin
A,D

E(‖x0 − x̂0‖22), (3.12)

where E(.) represents the mathematical expectation. This optimization finds the
matrices A and D that minimize the error of reconstructing full-resolution patches.
By substituting x̂0 from (3.11), we have

{A?,D?} = argmin
A,D

E(‖Sx−DAx‖22). (3.13)

S is a selection matrix, containing zeros and ones; it extracts the intensities corre-
sponding to the central patch (x0) from x: x0 = Sx.

In the previous section, we show that the high-frequency details of N and Y
are usually strongly correlated. Following this observation, we propose adding the
following terms to the cost function of (3.13):

Pr(N ,Y) = E(‖h1 ∗ N̂ − h1 ∗ Ŷ‖2F + ‖h2 ∗ N̂ − h2 ∗ Ŷ‖2F ). (3.14)

Here N̂ and Ŷ are N and Y channels of the demosaiced patch. h1 and h2 are
horizontal and vertical high-pass filters. Minimizing these terms promotes the high-
frequency details of reconstructed N and Y to be strongly correlated.

Denoting the convolution matrices of h1, h2 filters as H1 and H2, we find the
optimum CFA and demosaicing by solving:

{A?,D?} = argmin
A,D

E(‖Sx−DAx‖22)+λE(‖H1n̂−H1ŷ‖22 +‖H2n̂−H2ŷ‖22). (3.15)

n and y are vector representations of N and Y channels. ŷ is computed as the
average of red, green, and blue channels. As x̂0 = [r̂T , ĝT , b̂T , n̂T ], we write

r̂ = SM2×4M2
r x̂0 ĝ = SM2×4M2

g x̂0

b̂ = SM2×4M2

b x̂0 n̂ = SM2×4M2

N x̂0
(3.16)

Here M2 is the number of pixels in the estimated patch. We denote an identity
matrix of size R× T as IR×T and an all-zero matrix of size R× T as ΘR×T . Using
these notations, the selection matrices Sr,Sg,Sb and Sn are formed as follows:

Sr = [IM2×M2
,ΘM2×3M2 ] Sg = [ΘM2×M2

, IM2×M2
,ΘM2×2M2 ]

Sb = [ΘM2×2M2
, IM2×M2

,ΘM2×M2 ] Sn = [ΘM2×3M2
, IM2×M2 ].

(3.17)

Combining (3.11) and (3.16), our optimization problem is written as

{A?,D?} = argmin
A,D

E(‖Sx−DAx‖22)

+ λE(‖H1SnDAx−H1
Sr + Sg + Sb

3 DAx‖22

+ ‖H2SnDAx−H2
Sr + Sg + Sb

3 DAx‖22).

(3.18)
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Following [91], we decompose matrix C = E(xxT ) as C = PP since C is a posi-
tive semi-definite matrix. With this decomposition, the above optimization problem
is re-written as follows:

{A?,D?} = argmin
A,D

‖SP−DAP‖2F

+ λ(‖H1SnDAP−H1
Sr + Sg + Sb

3 DAP‖2F

+ ‖H2SnDAP−H2
Sr + Sg + Sb

3 DAP‖2F ).

(3.19)

We simplify the presentation of the above problem by using matrices S1 , H1Sn −
H1(Sr + Sg + Sb)/3 and S2 , H2Sn −H2(Sr + Sg + Sb)/3:

{A?,D?} = argmin
A,D

‖SP−DAP‖2F + λ(‖S1DAP‖2F + ‖S2DAP‖2F ). (3.20)

We solve the above optimization problem by iteratively updating D and A, when
the other matrix is fixed. The closed-form solution for D is obtained by setting the
gradient of the cost function to zero. The solution at iteration k is

D(k) = (I + λST1 S1 + λST2 S2))†(SP)(A(k−1)P)† (3.21)

Here I is the identity matrix, and (.)† denotes the pseudo-inverse. Please see Ap-
pendix A for the derivation of the above solution.

Formulating matrix A as A0 +
∑
i αiAi, we re-write the optimization prob-

lem (3.20) as a quadratic problem in terms of α. Here α is a vector containing the
CFA coefficients that are to be optimized. A0 and Ai’s are fixed matrices. The
quadratic problem has the following form:

α? = argmin
α

1
2α

TQα+ pTα, s.t. 0 ≤ α ≤ 1. (3.22)

In each iteration Q and p are fixed with respect to α. To respect the physical
constraints, the transmittance of filters (α) is bounded between zero and one. In
Appendix A we detail the computation of Q and p. To solve the above constrained
quadratic problem, we use “quadprog” of MATLAB’s optimization toolbox. Algo-
rithm 3.1 shows the pseudo-code for solving our optimization problem.
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Algorithm 3.1 CFA and demosaicing optimization
1: Randomly initialize vector α that contains CFA coefficients. Set k = 0 (the

iteration number), e0 = 0 (the initial error), and δ = 0.0001. δ defines the stop
criterion of the iterative optimization.

2: do
3: Update the demosaicing matrix (Dk) as (3.21).
4: Compute the value of cost function in (3.20) and call it ek+1.
5: Update the CFA coefficients (αk+1) by solving (3.22).
6: k = k + 1.
7: while |ek − ek−1| > δ.
8: α? = αk and compute D? by placing α? in (3.21).

3.3 Experiments

In this section, we compare the performance of the CFA and the demosaicing de-
signed by our algorithm with those computed by the algorithm of Lu et al. [91].
Before presenting the results, we review some details about the dataset and imple-
mentation of algorithms in the next subsection.

3.3.1 Implementation Details

The mathematical expectation E(xxT ) to compute C is replaced by the following
ensemble summation:

C =
∑
i

xixTi , (3.23)

where xi’s are patches extracted from a training set of color and NIR images.
We use the following Sobel filters to extract the high-frequency details of N and

Y channels (see (3.14)):

h1 =

 −1 −2 −1
0 0 0

+1 +2 +1

 h2 =

 −1 0 +1
−2 0 +2
−1 0 +1

 (3.24)

The Sobel filters, as opposed to simple derivative filters [+1,−1], do not amplify
noise. Figure 3.12 compares the frequency response of a Sobel filter with that of a
simple derivative filter. Note how the Sobel filter suppresses the highest frequencies.

The filtering is applied on small patches with the same size of the CFA that is
usually less than 10 pixels on each side. Hence, special care is required to avoid
boundary effects. In our optimization, we remove the borders of the filtered patch
and only keep the central valid part of the convolution output.

Our optimization problem and the problem of [91] that design CFA and demo-
saicing are non-convex and the solution depends on the initial point. In the following
experiments, we solve each optimization 10 times with 10 different initial points that
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(a) The frequency response of the
derivative filter (+1,−1).

(b) The frequency response of the
Sobel filter, h2 in (3.24).

Figure 3.12: The Sobel filter does not extract the highest frequencies that might be
contaminated with high-frequency noise. On the other hand, the maximum response
of the simple derivative filter occurs at the maximum frequency.

are selected randomly. The solution that results in the minimum cost value for the
training set is selected to sample and demosaic test images.

Each pair of color and NIR images used in our experiments is captured by a
consumer DSLR camera that does not have a hot mirror. The images are captured
in two sequential shots when the NIR-blocking and visible-light-blocking filters are
placed in front of the lens. Each pair is aligned after acquisition using feature-point
matching. All images are subsampled to 680× 1024 pixels.

After optimizing the CFA and demosaicing matrices, the CFA sampling is sim-
ulated for test images following (3.10). The full-resolution images are reconstructed
as shown in (3.11).

We compute the following peak-signal to noise ratios (PSNR) for reconstructed
color and NIR images:

PSNR = 10 log10
2552

1
P

∑
i,j(N (i, j)− N̂ (i, j))2

CPSNR = 10 log10
2552

1
3P

∑
i,j,k(Ic(i, j, k)− Îc(i, j, k))2

(3.25)

Here CPSNR stands for color PSNR. In the above definitions, matrices with hat
(̂.) contain intensities of reconstructed images and those without .̂ are ground-truth
images. Ic is a three-dimensional array containing color channels. P is the number of
pixels in each image, and (i, j) indicate the spatial position of each pixel. k indexes
different color channels in the image.

In the following experiments, 60 pairs of color and NIR images are used to test
the optimized CFA and demosaicing matrices.
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3.3.2 Simulation Results

In this subsection, we compare the performance of our algorithm with the method of
Lu et al. [91]. Figure 3.13 illustrates the CFAs designed by our algorithm and by the
method of [91]. Note that there is a white pixel in our CFA where the coefficients
for all the channels is one. There is also one near-white pixel in the CFA designed
by Lu’s method where coefficients are αR = 1, αG = 1 and αB = 0.82. As discussed
in Chapter 2, the white filters are used in color imaging, for instance in Kodak’s
RGBW CFA [120]. In [22], Chakrabarti et al. argue that using several white pixels
in a CFA results in a high-quality reconstruction of color images. The results of our
optimization confirm that having a white filter also benefits the joint acquisition of
color and NIR.

We empirically set L = 1, which means a neighborhood of size (2L + 1)M ×
(2L+ 1)M = 12× 12 around each patch of size M ×M = 4× 4 is used to demosaic
the central patch.

We report the average PSNR values for images sampled and demosaiced by our
CFA and demosaicing matrices in Table 4.2. This table shows the results obtained
by using the CFA and the demosaicing optimized by the algorithm of Lu et al. [91].
On average, the PSNR values obtained by our algorithm, for color and NIR images,
are about 1 dB higher than the results of Lu’s algorithm [91].

(a) Lu’s CFA [91] (b) Our optimized CFA

Figure 3.13: 4 × 4 CFAs designed by (a) Lu’s algorithm [91] and (b) our method.
The color of each filter indicates the mixture of primary colors it transmits and
the numbers on each pixel are the coefficients of each mixture. All filters equally
transmit NIR (αN = 1).
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Lu’s method Our algorithm

CPSNR (color) average 42.39 43.21
standard deviation 4.46 4.57

PSNR (NIR) average 42.29 43.58
standard deviation 4.47 4.57

Table 3.3: The PSNR values of images reconstructed by our algorithm and Lu’s [91].
The results are obtained over a dataset of 60 color and NIR pairs. CPSNR and PSNR
are computed, respectively, for color and NIR images.

Figure 3.15 shows crops of some ground-truth images2, along with the results of
both algorithms. The corresponding full-resolution images are shown in Figure 3.14.
The visual comparisons confirm the advantage of our algorithm over the method of
Lu et al. [91].

2Full-resolution images are illustrated in Figure 3.14.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14: Ground-truth color images. In Figure 3.15 we compare the zoomed-
in regions of ground-truth images with those of the images reconstructed by Lu’s
algorithm [91] and our method.
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(a) From left to right: Ground-truth, results of [91], and our results. The high-frequency content in
the background leads to severe false colors and aliasing in the result of [91]. These details are better
preserved in our result.

(b) From left to right: Ground-truth, results of [91], and our results. The false color artifacts are less
visible in the image reconstructed by our method.

(c) From left to right: Ground-truth, results of [91], and our results. The edges in our result are sharper
and exhibit less ringing artifacts.

(d) From left to right: Ground-truth, results of [91], and our results. Letters “T”, “R”, and “S” contain
false colors in the result of [91]. The color on these letters looks better in our result.

Figure 3.15: For each example, the top row shows color images and the NIR images
are placed in the bottom row.
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(e) From left to right: Ground-truth, results of [91], and our results. The image reconstructed by our
method contains sharper edges and less color artifacts.

(f) From left to right: Ground-truth, results of [91], and our results. Our algorithm reconstructs the
edges more faithfully.

(g) From left to right: Ground-truth, results of [91], and our results. Fewer ringing artifacts are visible
in our result.

(h) From left to right: Ground-truth, results of [91], and our results. Edges look better with fewer
false colors in our result.

Figure 3.15: For each example, the top row shows color images and the NIR images
are placed in the bottom row (cont.).
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Optimizing the NIR Transmittance

Assuming that all the filters in the CFA equally transmit NIR, our algorithm op-
timizes the transmittance of filters in the visible band only. It is however possible
to modify the proposed algorithm such that it optimizes four coefficients (transmit-
tance in red, green, blue, and NIR bands) for each filter. Figure 3.16 shows the
coefficients optimized for a 4× 4 CFA.

We applied this CFA and its corresponding demosaicing matrix to sample and
reconstruct the image set described in Subsection 3.3.1. The average PSNR results
obtained for color and NIR images are, respectively, 44.75 and 41.66 dB. Comparing
these values with the results reported in Table 4.2 shows that the quality of color
images is improved by using this CFA, but it results in lower-quality NIR images.
This could be explained by a lower NIR sampling frequency in this CFA. Note that,
as shown in Figure 3.16, the NIR transmittance is zero for six filters.

Figure 3.16: The CFA obtained by optimizing four coefficients (transmittance in
red, green, blue, and NIR bands) for each filter. Note that six filters completely
block the NIR radiation.

Failure Cases

The most challenging features to preserve when reconstructing a full-resolution im-
age from subsampled measurements are edges and fine details. The task is even
more difficult if different channels do not share the same high-frequency content.
Figure 3.17 shows one example, where the text on the book cover is almost invisi-
ble in the NIR image, because most color pigments are transparent in NIR. In this
region, the high-frequency components of NIR and color channels are quite different.

Although the CFA and demosaicing matrices designed by our algorithm and by
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the method of Lu et al. [91] usually result in high-quality reconstructions, they both
fail to correctly estimate full-resolution patches where color and NIR high frequencies
are not strongly correlated. Figures 3.17-(b) and (c) illustrate that the reconstructed
images suffer from two types of artifacts around these regions: (1) the edges are not
correctly preserved in the color image, (2) more importantly the text is visible in
the reconstructed NIR image.

As most patches in natural images share similar high-frequency details in color
and NIR, our training set is dominated by these patches. As a result, the demosaicing
matrix optimized over this training set does not perform well in reconstructing
patches with different high-frequency components.

3.4 Summary

We studied the correlation between color and NIR representations of the scene.
We first computed the correlation between the low-frequency and high-frequency
subbands of these images, and showed that the correlation is usually strongest in
horizontal and vertical high-frequency subbands (LH and HL). Although the average
correlation on our dataset is maximum for NIR/green and NIR/red channels, for
some images the correlation is higher for the NIR and blue pair. We further analyzed
the correlation in different frequency bands, and concluded that the low-frequency
components of color and NIR images are weakly correlated as the absolute intensities
of these representations are in many cases different. However, the high-frequencies
are usually strongly correlated.

We exploited these results in order to develop a framework for designing an op-
timum CFA and demosaicing. Our optimization problem minimizes (1) the error of
demosaicing over the training set and (2) the differences between the high-frequency
components of reconstructed N and Y channels. The simulation results verify that
the quality of images reconstructed by our algorithm is higher than the results of a
similar method presented in [91] by Lu et al.

Despite producing high-quality images, both our algorithm and Lu’s method suf-
fer from two limitations. First, the optimized CFAs contain two NIR-only filters,
which requires the dye filter to have a sharp transition region that is very difficult
and costly to implement. We also observe that these algorithms are not as successful
when the high-frequency details of color and NIR images are significantly different.
This is a challenging case for any inverse underconstrained problem, including de-
mosaicing. As the correlation and redundancy in the signal decrease, it becomes
more difficult to reconstruct the signal from its undersampled measurements. In the
next chapter, we address these issues by considering the RGBN CFA for the joint
acquisition of color and NIR images.
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(a) Original images. The text on the book cover is almost invisible in the NIR image as most color
pigments (except for carbon black) are transparent in NIR. This leads to a very weak correlation between
the high-frequency components of color and NIR images.

(b) The results of Lu’s method [91].

(c) The images reconstructed by our optimized CFA and demosaicing.

Figure 3.17: Both our method and Lu’s fail to correctly reconstruct the patches
where color and NIR do not share the same high-frequency content.
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RGBN CFA and Sparse
Reconstruction

In this chapter we study the joint acquisition of color and NIR images when the
RGBN CFA samples the scene. This CFA, as explained in Chapter 1, is formed by
one red, green, blue, and NIR-pass filter. The RGBN CFA is very similar to the
popular Bayer CFA.

If the RGBN CFA, similar to current CFAs, is implemented using inexpensive
dye filters with smooth transition regions (see Figure 1.9-(b)), NIR radiation leaks
into color filters and vice versa. As a result, the sensor records a mixture of NIR
and one color channel at each pixel. In this chapter, we propose an algorithm that
separates mixed measurements and reconstructs full-resolution color and NIR images
sampled by the RGBN CFA.

The problem of separating color and NIR channels is underconstrained, as there
is one measurement available in each pixel and two unknowns are to be estimated.
Hence, it does not have a unique solution unless additional constraints are added
to the problem. To constrain the problem, we explore the spatial and spectral
structures of natural color and NIR images. Specifically, we assume these images
are sparsely represented in a proper transform domain, meaning that most of the
signal coefficients in the transform domain are zero. In this sense, our algorithm is
inspired by the solutions proposed in compressive sensing (CS) [37].

To our knowledge, this is the first study in which sparse decomposition is used
in the joint acquisition and reconstruction of RGB and NIR images. However, com-
pressive acquisition and sparse reconstruction of color and multispectral images have
been studied previously. We review these works and discuss their differences with
our problem in Section 4.1. In Section 4.2, the principles of sparse recovery, neces-
sary to comprehend the proposed separation algorithm, are explained. Section 4.3
explains our proposed reconstruction algorithm.

This chapter also includes a thorough comparison of current algorithms proposed
for the joint acquisition of color and NIR using a single sensor. We study the

67
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performance of these methods by using different image quality metrics, along with
visual comparisons. We conclude by summarizing the advantages and limitations of
each technique, both in terms of image quality and hardware implementations.

4.1 Compressive Imaging

4.1.1 Compressive Sensing in Color Imaging

Nagesh and Li in [109], and Majumdar and Ward in [97] use compressive sensing
in color imaging. They assume that every measurement is a mixture of all pixel
intensities in the image, which would require major changes in the sensing process
of current cameras. Gan proposes a block sampling of natural images [47], where
each block of the image is densely sensed. This means that each measurement is
a mixture of several pixel intensities in a local neighborhood. Implementing the
hardware of such a system would require a significant modification in the hardware
of current consumer cameras.

The compressive acquisition and demosaicing of color images are also studied by
Moghadam et al. in [104] and Aghagolzadeh et al in [5]. In both of these papers,
the authors propose using a CFA that, similar to our optimized CFA, transmits a
combination of all color channels at every pixel.

There are two main differences between our work and these studies. First, our
goal is to capture four channels instead of three channels captured in color imaging.
Moreover, all these designs require significant changes in sensing components (sensor
and CFA) of conventional color cameras, whereas fabricating our proposed design is
possible with minor modifications in current consumer cameras.

4.1.2 Compressive Sensing in Multispectral Acquisition

Sun and Kelly in [141] propose a compressive sensing hyperspectral imager that uses
a digital micromirror device. In [94], Duarte and Baraniuk address the compressive
acquisition of multi-dimensional signals, including hyperspectral images. The sens-
ing process proposed in both [141] and [94] is quite different from what is used in
current color cameras. In these studies, the authors assume that spectral channels
are sampled independently, and each measurement is a spatial multiplex of all pixel
intensities in the image of one channel. As opposed to these designs, in our proposed
model, the color and NIR channels are only spectrally mixed to respect the limita-
tions imposed by the hardware components of current cameras (we do not allow any
spatial multiplexing).

Compressive acquisition of hyperspectral images is also addressed in [51, 50],
where Golbabaee et al. study the problem of reconstructing hyperspectral images
from a few noisy measurements. The main assumption in these studies is that only
a few materials with specific spectral signatures are present in every image. This
assumption holds for target images in remote sensing applications. However, we
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envision the color and NIR acquisition system to be used in everyday photography,
where the main assumption of [51, 50] is not valid anymore.

4.2 Review of Sparse Reconstruction

Let us consider the following system of linear equations:

zm×1 = Mm×nsn×1 m < n, (4.1)

where s is the target signal to be recovered, and M is the measurement matrix that
samples the target signal to produce the measurement vector z. Superscripts denote
dimensions. The goal is to recover s, knowing z and M. In compressive sensing
usually m� n.

As mentioned earlier, CS imposes the sparsity assumption to find the unique
solution of the above problem. If this assumption is enforced, the signal recovery is
formulated as solving the following optimization problem:

ŝ = argmin
s
‖s‖0 subject to zm×1 = Mm×nsn×1. (4.2)

‖.‖0 is the quasi `0 norm that counts the number of non-zero elements in a vector,
which is a measure of sparsity.

The above problem is usually called “sparse decomposition”. Several algorithms
are developed to solve this problem or its `1 relaxation. Some of these algorithms
are the orthogonal matching pursuit (OMP) [111], the basis pursuit (BP) [25], and
the smoothed-`0 (SL0) [106].

The sparsity assumption does not hold for many classes of natural signals in the
original domain. For instance, the majority of pixels in most images have nonzero
intensities. However, natural images have sparse representations in a transform
domain such as wavelet. As a result, in most cases, problem (4.2) is replaced as
follows:

ŝ = argmin
s
‖s‖0 subject to z = MΦs, (4.3)

where s is the sparse representation of the target signal in the transform domain,
and Φ is the transform matrix, usually called “dictionary”. For instance, if Φ is
the discrete cosine transform (DCT) matrix, then s contains the DCT coefficients
of the signal, which is usually sparse for natural images (for most image patches
high-frequency coefficients are approximately zero). The sparsifying transform we
design for color and NIR images is explained in Subsection 4.3.4.

As discussed by Candès and Wakin in [20], if the measurement matrix (M
in (4.2)) is incoherent with the sparsifying transform (Φ), the perfect recovery of a
sparse signal from an underdetermined set of linear measurements is possible with
an overwhelming probability. It is established that random matrices are incoher-
ent with most sparsifying transforms [20]. As such, dense random matrices are
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(a) (b) (c)

Figure 4.1: (a) Color arrangement in one patch of the image sampled by the RGBN
CFA. Both red and black pixels contain mixtures of NIR and red intensities. (b) A
block of size 4 × 4 in the CFA image. Indices in this patch show how we arrange
the measurements in z (see equation (4.4)). (c) Separating NIR and color channels
results in subsampled color channels with the shown arrangements.

among the most used measurement operators in compressive sensing. By employing
a dense random measurement matrix, every measurement is a linear combination of
all samples in the signal.

In a single-sensor camera, the structure of the measurement matrix is dictated
mainly by the CFA. Hence, the measurement matrix cannot be chosen arbitrarily.
In Subsection 4.3.3, we model the measurement matrix in our problem and propose
a framework for adaptively designing the measurement operator.

4.3 The Proposed Algorithm: Color and NIR Separation

In this section, we first mathematically formulate the task of separating color and
NIR channels. As discussed previously, the NIR filter in the RGBN CFA transmits
a mixture of the NIR radiation and the red band of the visible spectrum. Hence,
by using this CFA, the rate of sampling the mixture of red and NIR is twice the
sampling frequency of green/NIR, and blue/NIR mixtures. Therefore, we start by
un-mixing red and NIR channels. The output of this step is used in estimating green
and blue channels.

4.3.1 Separating Red and NIR Channels

Figure 4.1-(a) shows the arrangement of channels in one patch of the image sampled
by the RGBN CFA (the mosaiced image), where row and column indices are shown
in every pixel. The sensor records a mixture of red and NIR intensities at the pixels
colored red and black.

Let us consider a block of size √p × √p in the mosaiced image and call the
mixture of red and NIR channels at the ith pixel zi. The measurements in a patch
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of size √p×√p are stacked in vector z:1

z = [z1, z2, · · · , zm]T, m = p

2 (4.4)

As shown in Figure 4.1-(a), half of the pixels in every patch contain a mixture of red
and NIR. The measurements are arranged in vector z such that the values measured
by one period of the 2 × 2 CFA are placed next to each other in z. Figure 4.1-(b)
illustrates this ordering in a patch of size 4× 4.

The output of the separation algorithm is the red and NIR pixel intensities, in
odd rows and columns and in even rows and columns of the patch. We stack the
target values in the following vector x :

x = [R1,R2, · · · ,Rm,N1,N2, · · · ,Nm]T (4.5)

where Ri and Ni are, respectively, red and NIR intensities in the ith pixel.
Every measurement is a weighted average of two samples in the target signal.

Hence, x and z are related through the following linear transformation:

zm×1 = Mm×2mx2m×1, (4.6)

where M is the measurement matrix.
The goal of the separation step is to find vector x, knowing z and M. We

assume that the target signal (x) has a sparse representation in a transform domain
Φ. To separate the channels, we solve the sparse decomposition problem shown
in (4.3). Once the sparse representation is computed, the target signal is obtained
as x̂ = Φŝ. We discuss the dictionary (Φ) used to sparsify red and NIR channels of
natural images in Subsection 4.3.4.

To separate red and NIR channels, the sparse decomposition problem is solved
for all image patches. To increase the estimation accuracy, we partition the image
into overlapping patches. The intensity of every pixel is computed several times,
and the final value is the average over all the estimations.

4.3.2 Green/Blue and NIR Separation

The NIR values computed in the previous step are interpolated to estimate the
missing NIR pixel intensities. This results in the full resolution NIR image. In the
next step, we subtract the NIR intensities from the mixtures of green and NIR to
estimate green values in the odd rows and even columns of the image2. In the same
manner, we calculate the blue intensities in the even rows and odd columns (see the
indices of rows and columns in Figure 4.1-(a)).

1 For the sake of simplicity, we assume that the image is partitioned into patches that have an
even number of pixels (p = 2m, m ∈ N).

2To perform this operation, the sensitivities of the system (sensor and CFA) in green and NIR
bands are taken into account.
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Another approach for estimating blue and green intensities is to use the sparse
decomposition explained in the previous subsection for separating red and NIR chan-
nels. Our experiments show that this approach does not result in significant improve-
ments compared with using the interpolated NIR image as explained above.

After separating the NIR and all the color intensities, the intensities of the sub-
sampled color channels, with the arrangement shown in Figure 4.1-(c), are available.
The full-resolution color image can be estimated by applying any color demosaicing
algorithm to these samples. Most demosaicing algorithms assume that the Bayer
pattern with the highest sampling rate for the green channel samples the scene. We
can simply modify any of these methods to demosaic the image for the case when
the red channel has the highest sampling frequency (Figure 4.1-(c)).

4.3.3 The Measurement Matrix

In this subsection, we model the sampling of the RGBN CFA at the red and NIR
filters by a measurement matrix (M in (4.6)). The sensor measures the following
value at the location of the red filter:

z1 = α1
RR1 + α1

NN1, (4.7)

where R1 and N1 are the red and NIR intensities at the corresponding pixel. α1
R

and α1
N are the overall sensitivities of the sensor and the filter to red and NIR

radiations. The overall sensitivity is the filter transmittance multiplied by the sensor
sensitivity. We loosely use the term “filter transmittance” instead of “system overall
sensitivity”. Similarly, we write the sensor measurement at the location of the NIR
filter as follows:

z2 = α2
RR2 + α2

NN2. (4.8)

α2
R and α2

N are the transmittances of the NIR filter in the red and NIR bands,
respectively.

Combining (4.7) and (4.8), it follows that

M = [MR,MN ], (4.9)

where:

MR =


α1

R 0 0 · · · 0
0 α2

R 0 · · · 0
0 0 α1

R 0 · · ·
...

 ,

MN =


α1
N 0 0 · · · 0
0 α2

N 0 · · · 0
0 0 α1

N 0 · · ·
...

 .
(4.10)
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As the measurement matrix in our problem is highly structured, instead of draw-
ing the coefficients from a random distribution, we find the non-zero coefficients in
matrix M by solving the following optimization problem:

α? = argmin
α

∑
i

‖xi − x̂i‖22. (4.11)

In this problem, α contains the non-zero coefficients in matrix M:

α = [α1
R, α

2
R, α

1
N , α

2
N ]T . (4.12)

xi in (4.11) is the ith patch in the training set. This vector is formed by stacking
red and NIR intensities in one patch as shown in (4.5). x̂ is the reconstructed patch,
which is computed as x̂ = Φŝ, where ŝ is obtained by solving (4.3).

We pose the following constraints in order to respect physical limitations in
manufacturing the filters:

α1
R, α

2
R,α

1
N , α

2
N ≤ 1,

α1
R + α1

N ≤ 1, α2
R + α2

N ≤ 1
(4.13)

The second and third inequalities model the limited capacities of pixels. We assume
that the maximum capacity is normalized to one. Moreover, as discussed before, dye
filters used in the RGBN CFA do not have a sharp cut-off, hence all coefficients in α
are required to be non-zero. We use the following additional constraint to guarantee
this:

α1
R, α

2
R, α

1
N , α

2
N ≥ TL > 0 (4.14)

Here TL is a positive constant that models the minimum transmittance of red and
NIR filters in red and NIR bands. For instance TL = 0.1 means that, because
of manufacturing limitations, the transmittance of the red filter in the NIR band
cannot be less than 10%.3

Considering the above constraints, the non-zero coefficients of the measurement
matrix are computed by solving the following optimization problem:

α? = argmin
α

∑
i

‖xi − x̂i‖22. s.t. TL ≤ α < 1,Aα ≤ b, (4.15)

for:

A =
[

1 0 1 0
0 1 0 1

]
,b =

[
1
1

]
(4.16)

We solve (4.15) for different values of TL and present the optimum coefficients in
Section 4.4.

3We assume that the overall transmittance of each filter is normalized to one.
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4.3.4 The Sparsifying Transform

The main assumption in our separation algorithm is that the red and NIR channels
have a sparse representation in a transform domain denoted as matrix Φ in (4.3). In
the following, we refer to matrix Φ, interchangeably, as the sparsifying transform or
the dictionary. In this subsection, we describe the dictionary used in our separation
algorithm.

Decorrelating transforms such as Kruhenen-Loève, known as KLT or principal
component analysis (PCA), accumulate most of the signal energy in a few non-zero
coefficients in the transform domain, when the remaining coefficients are zero or
almost zero; this results in a sparse or an approximately sparse representation. Such
a representation is obtained by removing the correlation and redundancy in the
signal. Similarly, to build a sparsifying transform for the red and NIR channels, we
exploit the correlation in our target signal (x in (4.5)). In the following, we identify
two types of correlations in signal x.

Spatial Correlation

In natural images, the pixel intensities in a small patch are usually correlated because
abrupt transitions occur rarely in a small neighborhood. We call this correlation the
spatial correlation as it models the spatial relations in a patch. Our target signal x,
which contains pixel intensities of the red and NIR channels in a local neighborhood,
exhibits spatial correlation. Many two-dimensional transforms, such as 2D DCT, 2D
wavelet, and curvelet are used by the image processing community to explore the
spatial correlation. Any of these transforms are applicable to our problem.

Spectral Correlation

In addition to a strong spatial correlation, the values in our target signal are cor-
related in the spectral dimension. This is the result of the correlation between the
NIR and red channels at each pixel. To exploit the spectral correlation, we use
a two-dimensional PCA that is trained over a set of red and NIR patches. The
PCA transform is commonly used in multispectral imaging to remove the spectral
redundancy [121, 38].

Figure 4.2 illustrates an example patch where the red and NIR channels are
strongly correlated. We refer to these areas of the image as similar patches. As
discussed in Chapter 3, differences between scene reflections in visible and NIR
bands might result in different high-frequency details in some patches of color and
NIR images. Figure 4.2 shows an example of such a patch, called a dissimilar patch
here. As both similar and dissimilar categories might be encountered in a pair of
color and NIR images, only one dictionary cannot effectively express the diverse
spectral structure of our target signal.
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(a) Red image (b) NIR image

Figure 4.2: Patches with white borders share the same high-frequency information
between red and NIR. The ones in yellow boxes are dissimilar patches where high-
frequency components of red and NIR are quite different.

To represent the spectral correlation between NIR and red channels, we pro-
pose using two dictionaries, each trained over one category of similar or dissimilar
patches. To train these transforms, we form two different datasets. The first one
contains patches with similar high-frequency information in red and NIR channels,
and the other dataset consists of dissimilar patches where high-frequency details of
red and NIR images are highly different. To assign each patch in the training set
to one of these categories, we compute the DCT coefficients of red and NIR im-
ages. We assume that the last H coefficients of the DCT representation carry the
high-frequency content of the patch. We call the high-frequency DCT coefficients of
the red patch, sHR , and those of the NIR patch, sHN , and we compute the energy of
difference between these two vectors normalized by their norm:

d = ‖|sHR | − |sHN |‖22
‖sHR ‖2‖sHN ‖2 + ε

, (4.17)

where ε is a small constant added to avoid division by zero. If d is smaller than a
constant threshold, T , the high-frequency components are strongly correlated and
the corresponding pair of patches belongs to the similar dataset (used to train the
similar dictionary). If d is above the threshold, the patches are added to the dis-
similar dataset. In our experiments we empirically set H to be 0.9 of the number of
pixels in the patch and T = 4.

We train a different PCA transform over each of these datasets to represent its
spectral correlation. We call the PCA matrix of the similar dataset ΦPCA

s , and the
one trained over the dissimilar transform ΦPCA

ds . Multiplying these transforms with
the spatially decorrelating transform, the following two dictionaries are obtained:

Φs = ΦPCA
s ×ΦDCT

Φds = ΦPCA
ds ×ΦDCT,

(4.18)
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where ΦDCT is the DCT transformation matrix. To better represent our target
signal, we further refine above dictionaries applying K-SVD to both datasets. K-
SVD is a dictionary learning algorithm proposed by Aharon et al. [6]. We use Φs
and Φds in (4.18) to initialize K-SVD for each dataset.

Separation with Two Dictionaries

We apply both similar and dissimilar dictionaries in (4.3) to obtain two different
estimates of red and NIR channels. We call the NIR channel estimated using Φs,
N s, and the result of using Φds, N ds. Similar notations are adopted for the estimated
red channels.

Figure 4.3 shows red and NIR images estimated by two dictionaries, along with
ground-truth images. The high-frequency details of the red and NIR patches on
the screen are very different, as the image on the screen is invisible in the NIR
image. Using the similar dictionary (Φs) these differences are discarded in the
estimated red and NIR images. Whereas, Φds is successful in estimating these
patches. However, the patch with the “PHILIPS” logo is reconstructed better when
the similar transform Φs is used. The reason is that the NIR and red high frequency
details are similar in this patch and Φs is trained to represent the strong spectral
correlation; and Φds, trained over dissimilar patches, is not as successful in recovering
this patch.

To obtain an accurate estimation for all patches in the image, we fuse the images
reconstructed by both dictionaries. To this end, each patch is categorized as either a
similar one where red and NIR high frequencies are correlated or a dissimilar patch
where high frequencies are different.

Our experiments show that the edge maps of dissimilar estimations (N ds and
Rds) provide an acceptable approximation of the level of correlation between the
red and NIR edges in each patch. Figure 4.4 shows the edge maps of these images
for the example given in Figure 4.3. If the NIR and red edge maps are the same in
more than 90%4 of pixels in the patch, it is categorized as a similar patch. We form
a binary map, B, by comparing the edge maps in each local neighborhood. B is one
at a pixel that belongs to a similar patch, otherwise it is zero. Using this map, the
final NIR and red channels are computed as follows:

N = B�N s + (1−B)�N ds,

R = B�Rs + (1−B)�Rds.
(4.19)

Here � represents the element-wise multiplication. Figure 4.3-(d) shows the final
estimations obtained using both similar and dissimilar dictionaries.

4We allow a small deviation from the perfect match between two edge maps because of noise
and reconstruction errors.
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(a) Ground-truth images

(b) Images reconstructed by the similar transform

(c) Images reconstructed by the dissimilar transform

(d) Final results of our algorithm obtained by fusing (b) and (c)

Figure 4.3: Left column: RGB images, and the right column: NIR images. (a)
Ground-truth images. (b) By using the similar transform, the differences between
color and NIR details are discarded (patches inside white boxes). (c) Although
successful in reconstructing dissimilar patches, the dissimilar dictionary does not
retrieve the shared edges faithfully (see the “PHILIPS” logo). (d) By fusing the
results of similar and dissimilar dictionaries, high-quality estimations of all patches
are obtained.
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(a) Red image reconstructed by the dissimilar
transform (Rds)

(b) NIR image reconstructed by the dissimilar
transform (N ds)

(c) The edge map computed from the
reconstructed red image

(d) The edge map computed from the
reconstructed NIR image

Figure 4.4: Red and NIR edge maps of images reconstructed by the dissimilar dic-
tionary. These maps provide an estimation of the inherent correlation between the
high-frequency details of red and NIR images in local patches. For instance, the
screen looks different in red and NIR ground-truth images, which is reflected in the
differences of edge maps in the corresponding patches. Edge pixels are shown in
black.
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4.4 Simulations of Our Proposed Algorithm

4.4.1 Implementation Details

To find the optimum values for the measurement matrix M, we solve problem (4.11)
by MATLAB’s “fmincon” function designed for solving general constrained optimiza-
tion problems. As the problem is nonlinear and non-convex, we run each optimiza-
tion with 10 different initial points and choose the solution that results in the lowest
value for the cost function. We perform the optimization for different numbers of
training patches and report the results in the following.

To separate red and NIR channels, we use patches of size p× p with an overlap
of p − 2 pixels in each of horizontal and vertical directions. The results for p = 8
and p = 12 are reported in the following subsection. We use the smoothed-`0 (SL0)
algorithm [106] to solve the sparse decomposition problem (4.3) for each patch.
To interpolate the NIR image after the red-NIR separation, we employ the edge-
adaptive interpolation technique of Li and Orchard [88]. After the color and NIR
intensities are separated, the full-resolution color image is obtained by the color
demosaicing algorithm of Hirakawa and Parks [62]. This algorithm is designed for
the Bayer CFA where the green sampling frequency is the highest. We modify it for
our problem where, after separation, the red sampling rate is the highest.

To evaluate the performance of our algorithm, we use a dataset of 60 pairs of
color and NIR images. We run every experiment for three different values of TL.
From (4.14) recall that TL is the minimum achievable transmittance of the red filter
in the NIR band, and vice versa for the NIR filter. In the next subsection, we present
the results for TL = 0.1, TL = 0.2, and TL = 0.3.

4.4.2 Results

In the following, we first present the results of training the dictionary and the mea-
surement matrix. We then compare the quality of reconstructed images when differ-
ent patch sizes are used, and show the effect of using two dictionaries in separation.
In Section 4.5, we compare our algorithm with other single-sensor acquisition tech-
niques.

Dictionary Training

In the first set of experiments, we use different training sets to design the dictionary
(Φ). We employ each of these dictionaries in reconstructing 60 pairs of color and NIR
test images. In each experiment, we use the same arbitrary measurement matrix with
different trained dictionaries. The non-zero coefficients for each measurement matrix
respect inequalities (4.13) and (4.14). The coefficients we use for this experiment
are shown in Table 4.1. Figure 4.5 shows an example of red and NIR filters’ spectral
transmittance for TL = 0.2.
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TL = 0.1 TL = 0.2 TL = 0.3
α1

R 0.9 0.8 0.7
α1
N 0.1 0.2 0.3
α2

R 0.1 0.2 0.3
α2
N 0.9 0.8 0.7

Table 4.1: The transmittance of red
and NIR filters in red and NIR bands
(see (4.7) and (4.8)). For each TL, the
four coefficients define the measure-
ment matrix. We arbitrarily choose
these coefficients to study the effect
of dictionary on the quality of recon-
structed images.

Figure 4.5: An illustration of red and
NIR filters spectral transmittance for
the values shown in Table 4.1 for TL =
0.2.

To design the dictionary, we use a dataset of red and NIR patches. To investigate
the effect of the training-set size on the results, we train two dictionaries, one for
12000 red and NIR patches and the other one for 75000 patches, extracted from 30
pairs of train images. The CPSNR and PSNR values for images reconstructed by
each dictionary are reported in Table 4.2-(a). These results show that, although not
significant, increasing the size of the training set leads to a higher-quality recon-
struction.

We also analyze the effect of the training set on the performance of the algo-
rithm. To this end, two different sets each with 30 pairs of images are used to train
the dictionary. We extract 12000 patches from each set. The results of using these
two dictionaries in reconstructing the test set are shown in Table 4.2-(b). Small dif-
ferences in the results show that the dictionary learning algorithm performs equally
well for both training datasets.

Training the Measurement Matrix

We compute the optimum measurement matrix by solving (4.15). The coefficients
obtained for a training set of 12000 image patches and different values of TL are
shown in Table 4.3. For all TL values, one filter has a higher transmittance in the
red band and the other one transmits the NIR light more than the red radiation,
although there is no constraint in our optimization favoring this solution. This
outcome perfectly matches the model of the RGBN CFA, where the first filter is a
red filter with a higher transmittance in the red part of the spectrum and the second
filter is an NIR one that transmits mostly the NIR radiation.

To investigate the effect of training set, we extract 12000 and 75000 patches from
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(a)

training size = 12000 training size = 75000

TL = 0.1 CPSNR (color) 40.55 40.76
PSNR (NIR) 42.26 43.34

TL = 0.2 CPSNR (color) 40.71 40.78
PSNR (NIR) 42.08 42.96

TL = 0.3 CPSNR (color) 40.74 40.63
PSNR (NIR) 41.51 42.08

(b)

First training dataset Second training dataset

TL = 0.1 CPSNR (color) 40.55 40.64
PSNR (NIR) 42.26 42.97

TL = 0.2 CPSNR (color) 40.71 40.74
PSNR (NIR) 42.08 42.76

TL = 0.3 CPSNR (color) 40.74 40.74
PSNR (NIR) 41.51 42.18

Table 4.2: The effect of training set on the sparsifying dictionary. The reported
results are averaged over 60 pairs of color and NIR images. For different dictionaries,
we use the same measurement matrix, with non-zero coefficients shown in Table 4.1.
(a) For these experiments, two dictionaries are trained over 12000 and 75000 patches
extracted from 30 pairs of color and NIR train images. (b) In this experiment, we
use two dictionaries trained over two different sets of images. Each dictionary is
trained over 12000 patches.
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α1
R α1

N α2
R α2

N

TL = 0.1 0.58 0.10 0.20 0.80
TL = 0.2 0.80 0.20 0.20 0.80
TL = 0.3 0.70 0.30 0.30 0.70

Table 4.3: The optimum transmittances of red and NIR filters in the RGBN CFA.
These values are obtained by solving problem (4.15) for different values of TL.

the same set of images to train two sets of measurement matrices. We use each of the
measurement matrices to sample the test images and the dictionaries trained for the
same datasets are used to reconstruct the CFA images. The nonzero coefficients of
measurement matrices and average CPSNR and PSNR results of using each matrix
are reported in Tables 4.4-(a) and 4.4-(b).

We observe in Table 4.4 that computing the measurement matrix is not very
sensitive to the size of the training set. In fact, except for slight differences in opti-
mum values for TL = 0.1, using two training sets results in the same measurement
matrices.

The differences between the CPSNR and PSNR results in Table 4.2-(a) and
Table 4.4 are in most cases negligible (the maximum difference is less than 0.2 dB).
This demonstrates that although using optimized measurement matrices slightly
improves the quality, the performance of our reconstruction algorithm is almost not
affected by the exact transmittances of CFA filters. Hence our algorithm is not
sensitive to manufacturing errors in implementing the filters, that are specifically
hard to avoid when inexpensive dye filters are used.

Patch Size

Our simulations confirm that changing the size of the processed patch does not lead
to noticeable differences in the performance of our reconstruction algorithm. In
Table 4.5, we report the results for reconstructing images using 8 × 8 and 12 × 12
patches.

4.4.3 Separation with Two Dictionaries

In Subsection 4.3.4, we propose using two dictionaries (similar and dissimilar trans-
forms) to represent the spectral correlation between the red and NIR channels. To
train these dictionaries, we form two datasets each containing 25000 patches.

Figures 4.6-(b) and (e) show the images reconstructed using the similar transform
only. The images obtained by fusing the results of similar and dissimilar transforms
are illustrated in Figures 4.6-(c) and (f). It is immediately observed that the inherent
differences between color and NIR are not preserved in images reconstructed by
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using the similar transform only. Whereas, combining the results of both similar
and dissimilar dictionaries successfully retrieves these differences.

(a) The optimum transmittance of red and NIR filters in the RGBN CFA. The coefficients are
trained over two sets containing 12000 (data 1) and 75000 (data 2) patches.

TL = 0.1 TL = 0.2 TL = 0.3
data 1 data 2 data 1 data 2 data 1 data 2

α1
R 0.58 0.47 0.80 0.66 0.70 0.70

α1
N 0.10 0.10 0.20 0.20 0.30 0.30
α2

R 0.21 0.13 0.20 0.20 0.30 0.30
α2
N 0.79 0.87 0.80 0.80 0.70 0.70

(b) CPSNR and PSNR results of images sampled by the above measurement matrices and
reconstructed by our algorithm.

TL = 0.1 TL = 0.2 TL = 0.3
data 1 data 2 data 1 data 2 data 1 data 2

CPSNR (color) 40.78 40.82 40.71 40.78 40.74 40.63
PSNR (NIR) 41.92 43.40 42.08 43.04 41.51 42.08

Table 4.4: Analyzing the effect of training set on the optimized measurement matrix.
Using a larger training set slightly improves the results especially for NIR images.

8× 8 patches 12× 12 patches

TL = 0.1 CPSNR (color) 40.76 40.45
PSNR (NIR) 43.34 43.37

TL = 0.2 CPSNR (color) 40.78 40.50
PSNR (NIR) 42.96 43.02

TL = 0.3 CPSNR (color) 40.63 40.46
PSNR (NIR) 42.08 42.03

Table 4.5: Changing the patch size does not significantly affect the performance of
our reconstruction algorithm.
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(a) Ground-truth images (b) Results of the similar
transform

(c) Combined results

Figure 4.6: (a) Ground-truth images (b) By using only the transform that is trained
for similar patches, the inherent differences between color and NIR are not preserved
in the reconstructed images. (c) By combining the results obtained by both similar
and dissimilar transforms, our algorithm successfully maintains the differences.
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(d) Ground-truth images (e) Results of the similar
transform

(f) Combined results

Figure 4.6: (d) Ground-truth images (e) By using only the transform that is trained
for similar patches, the inherent differences between color and NIR are not preserved
in the reconstructed images. (f) By combining the results obtained by both simi-
lar and dissimilar transforms, our algorithm successfully maintains the differences
(cont.).
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4.5 Analysis of Single-Sensor Color and NIR Acquisition Tech-
niques

In this section, we use three single-sensor multispectral imaging techniques [102, 4,
75] for the joint acquisition of color and NIR images and compare their performance
with our proposed methods (based on the optimized CFA and the RGBN CFA). In
the following, we first briefly review each of these algorithms5. We then explain the
metrics chosen for evaluating the quality of images reconstructed by each method.
We conclude the section by presenting numerical and visual results and discussing
the advantages and limitations of each method.

4.5.1 Single-Sensor Acquisition Techniques

The Binary-Tree Algorithm

Miao et al. in [102] present an algorithm for designing a generic CFA given the
sampling rate of each spectral channel. Their demosaicing algorithm starts by an
edge adaptive interpolation of the channel with the highest sampling frequency. Miao
et al. do not provide any recommendations regarding optimum sampling rates for
different spectral channels. We choose to use their algorithm with an equal sampling
rate of 1/4 for the red, green, blue, and NIR channels. The designed CFA is shown
in Figure 4.7-(a). The arrangement of filters is similar to our RGBN CFA, however
Miao et al. assume that each filter transmits only the corresponding channel. In the
following, we refer to this algorithm as BT.

Least-Square Multispectral Demosaicing

In [4], Aggarwal and Majumdar propose a uniform CFA where different channels
are sampled on diagonal stripes. Their four-channel CFA is shown in Figure 4.7-(b).
The missing values at each pixel are calculated as weighted averages of measurements
in neighboring pixels. The weights are optimized by minimizing the reconstruction
error in a training set of images. The algorithm is called the least-square based
multispectral demosaicing, referred to as LMSD in what follows.

The Hybrid CFA Technique

The hybrid CFA presented by Kiku et al. in [75] samples color channels and an
additional band, which is NIR in this section. See Figure 4.7-(c) for an illustration.
Kiku et al. propose a disjoint reconstruction of the color image and the image of
the additional band. The proposed color demosaicing algorithm is a combination
of the guided image filtering [58] and the gradient-based interpolation [113]. To

5For more details about these algorithms, please refer to Chapter 2.
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(a) BT [102] (b) LMSD [4] (c) Hybrid [75] (d) Opt. CFA
[125]

(e) CS [126]

Figure 4.7: The color filter arrays proposed by five single-sensor acquisition tech-
niques. In all CFAs, the black pixel represents an NIR-pass filter. Our RGBN CFA
(e) is the only one that models visible and NIR radiation leaking into NIR and color
filters, respectively.

reconstruct the additional band, they apply the super-resolution algorithm of [98].
We call this approach the hybrid technique.

The Optimized CFA Technique

We explained our algorithm for optimizing CFA and demosaicing matrices in Chap-
ter 3. For the experiments of this section, we use the optimized CFA shown in 4.7-
(d). For a detailed explanation on the process of designing this CFA, please refer to
Chapter 3. In the following, we use the abbreviation “Opt. CFA” for this method.

The RGBN CFA technique

The last sampling technique we analyze in this section uses the RGBN CFA with
dye filters. To reconstruct images, we use the separation algorithm proposed in this
chapter. The RGBN CFA is shown in Figure 4.7-(e), and we refer to this technique
as CS, as the separation algorithm is based on the compressive sensing framework.

4.5.2 Quality Metrics

To compare the performance of different algorithms, we use the following quality
metrics that are designed to measure the similarity of the reconstructed image to
the reference (ground-truth) image. Ground-truth color and NIR images are, re-
spectively, called Ic and N , and the reconstructed images are Îc and N̂ .
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CPSNR and PSNR

Color peak signal to noise ratio (CPSNR) and peak signal to noise ratio (PSNR)
measure the quality of reconstructed color and NIR images as

PSNR = 10 log10
2552

1
P

∑
i,j(N (i, j)− N̂ (i, j))2

CPSNR = 10 log10
2552

1
3P

∑
i,j,k(Ic(i, j, k)− Îc(i, j, k))2

(4.20)

P is the number of pixels in each image, (i, j) indicate spatial coordinates, and k

indices different color channels.

Structural Similarity Index Measure (SSIM)

Developed by Wang et al., the structural similarity index measure (SSIM) com-
pares the average intensity, the contrast, and the structure of the reference and
reconstructed images [149]. SSIM is applied to gray-scale images. Here we explain
the metric for NIR images; for color images we use the same formulation for the
luminance channel (the average of color channels).

Let us call the average intensities and standard deviations of ground-truth and
reconstructed NIR images µN , µN̂ , and σN and σN̂ . The cross-correlation between
original and reconstructed images, representing the similarity between their struc-
ture, is computed as

σNN̂ = 1
P − 1

∑
i,j

(N (i, j)− µN )(N̂ (i, j)− µN̂ ) (4.21)

P is the number of pixels. The average intensities, contrast, and structure are
compared through the following formulation:

SSIM =
(2µNµN̂ + ε1)(2σNN̂ + ε2)

(µ2
N + µ2

N̂ + ε1)(σ2
N + σ2

N̂ + ε2)
(4.22)

In the above equation ε1 and ε2 are small constants included to avoid zero division.
The SSIM metric is in the range of [−1, 1], with SSIM = 1 only when two images

are exactly the same.

Visual Information Fidelity (VIF)

Sheikh and Bovic in [136] present the visual information fidelity (VIF) metric that
aims to measure the loss of information in the reconstructed image. The VIF algo-
rithm compares the amount of information carried by the ground-truth image with
the information contained in the reconstructed image. The final VIF value is the
ratio of these two information measures. The VIF metric is in the range of [0,∞],
with VIF = 1 only when two images are exactly the same. If the reconstructed im-
age contain more information compared with the ground-truth image, for instance
as a result of contrast enhancement, VIF > 1.
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Delta E and Zipper Artifacts

Recommended by the International Commission on Illumination (CIE), Delta E
(∆E) is a measure of color difference. ∆E is computed in the Lab color space that
is designed to be perceptually uniform. Representing the color image (Ic) in the Lab
space as ILab, ∆E is computed as follows:

∆E = 1
P

∑
i,j

(ILab(i, j)− ÎLab(i, j))2. (4.23)

In the next subsection, we report the ∆E values computed for color images recon-
structed by each method.

Another common artifact observed in demosaiced images is the zipper effect,
mostly visible around edges. In [90], Lu and Tan argue that when a pixel suffers
from the zipper artifact, its color difference with the most similar color in the neigh-
borhood increases, compared with this difference in the original image. Hence, to
quantify the zipper effect, for each pixel they find the pixel with the most similar
color in a close neighborhood in the ground-truth and compute the color difference,
called ∆E1. They compute the color difference between the same pair of pixels in
the reconstructed image and call it ∆E2. If ∆E2−∆E1 > 2.3, this pixel is assumed
to suffer from zipper. The percentage of pixels with the zipper effect measures the
severity of this artifact. Similar to ∆E, the zipper metric is designed for color images
only.

4.5.3 Simulation Results

All the results reported in this subsection are computed over 60 pairs of color and
NIR images. For each technique, we simulate the CFA sampling based on the pat-
terns shown in Figure 4.7. The full-resolution image is then reconstructed by the
corresponding algorithm.

We start by analyzing CPSNR and PSNR results in Table 4.6. Our optimized
CFA and demosaicing achieve the best compromise between the color and NIR
PSNR results. The average CPSNR values of the LMSD and hybrid techniques is
less than 0.1 dB higher than the CPSNR of the optimum CFA algorithm. However
our algorithm outperforms the LMSD and hybrid techniques in reconstructing NIR
images with, respectively, 2 and 5 dB difference. The results of our CS algorithm
are comparable to those of other techniques. This is despite the fact that the CFA
used by our algorithm is the simplest among other techniques, and more impor-
tantly, our CS algorithm is the only one that models the cross-talk between visible
and NIR bands. This practical modeling increases the difficulty of reconstruction
considerably, yet our algorithm is successful in producing high-quality images.

Our experiments with the SSIM metric (results in Table 4.7) show that this met-
ric is not powerful enough to measure the quality of demosaiced images. Although
other metrics and visual comparisons, as shown later, confirm noticeable differences
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in the performance of different algorithms, SSIM is not capable of measuring these
differences.

The VIF results are reported in Table 4.8. Our algorithms outperform other
techniques in terms of VIF for both color and NIR images, with only one exception.
The hybrid technique performs slightly better (0.06) than our CS algorithm in terms
of color VIF, however our NIR VIF is on average 0.23 higher than the hybrid’s result.

In terms of ∆E (Table 4.9), which aims at measuring the quality of color recon-
struction, our CS algorithm performs the best. Although still being below the just
noticeable difference (JND) of 2.3, the error of color reconstruction is the highest in
the images produced by our optimum CFA algorithm. This might be explained by
the fact that in the optimized CFA each filter transmits a mixture of color channels,
which increases the correlation between the measurements of different filters. Al-
though resulting in a higher-quality spatial reconstruction, this correlation, as shown
by Alleysson et al. [10], decreases the color acuity.

As reported in Table 4.10, the percentage of pixels suffering from zipper artifacts
is the smallest for the results obtained by the hybrid algorithm. This is mainly due
to the high sampling frequency of color channels (90% in total) in this technique. In
fact, this algorithm sacrifices the quality of the NIR image to achieve a high-quality
color image, which results in severe artifacts in reconstructed NIR images. After the
hybrid method, our CS algorithm performs the best in terms of the zipper artifacts.
The optimum CFA method does not perform well in terms of the zipper artifacts.
The reason is that, to reconstruct the image, this method uses a simple but efficient
linear demosaicing and no post-processing is performed to reduce the artifacts. We
observed that by applying a simple median filtering to the images obtained by the
optimized demosaicing, the average zipper percentage drops from 5.61% to 1.96%,
which is the second best after the hybrid technique (1.82% zipper).

Figure 4.8 shows several crops of color and NIR images sampled and recon-
structed by different acquisition techniques.

BT LMSD Hybrid Opt. CFA CS

CPSNR (color) ave. 41.98 43.30 43.31 43.22 40.68
std. 5.15 5.07 4.75 4.57 4.50

PSNR (NIR) ave. 41.98 41.55 38.52 43.57 43.21
std. 4.51 4.33 4.36 4.57 4.35

Table 4.6: CPSNR and PSNR results for 60 pairs of color and NIR images sampled
and reconstructed by five different techniques.
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BT LMSD Hybrid Opt. CFA CS

Color SSIM ave. 0.98 0.98 0.99 0.99 0.98
std. 0.02 0.02 0.01 0.01 0.01

NIR SSIM ave. 0.98 0.97 0.95 0.98 0.98
std. 0.02 0.02 0.03 0.01 0.02

Table 4.7: SSIM results for 60 pairs of color and NIR images sampled and recon-
structed by five different techniques. To compute color SSIM, we compare the Y
channels of original and reconstructed color images, as SSIM is developed for gray-
scale images.

BT LMSD Hybrid Opt. CFA CS

Color VIF ave. 0.76 0.77 0.89 0.89 0.83
std. 0.08 0.08 0.04 0.08 0.08

NIR VIF ave. 0.73 0.66 0.55 0.75 0.78
std. 0.08 0.08 0.10 0.08 0.08

Table 4.8: VIF results for 60 pairs of color and NIR images sampled and recon-
structed by five different techniques. To compute color VIF, we compare the Y
channels of original and reconstructed color images.

BT LMSD Hybrid Opt. CFA CS

∆E ave. 1.34 1.74 1.62 2.15 0.96
std. 1.41 1.51 2.39 1.73 0.53

Table 4.9: ∆E results for 60 color images sampled and reconstructed by five different
techniques. As ∆E measures the color accuracy, we only compute it for color images.

BT LMSD Hybrid Opt. CFA CS

Zipper ave. 11.06 4.41 1.82 5.61 3.02
std. 11 4.07 2.04 5.66 2.52

Table 4.10: Percentage of pixels suffering from the zipper artifacts averaged over 60
color images sampled and reconstructed by five different techniques.
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4.5.4 Discussion

The CFA proposed in the LMSD technique [4] samples different channels on diagonal
stripes (Figure 4.7-(b)). Although the overall sampling frequency of different chan-
nels is still 1/4, the horizontal and vertical sampling frequencies are decreased in this
CFA compared with other CFA patterns shown in Figure 4.7. Hence, sampling with
this CFA leads to a poor reconstruction of vertical and horizontal edges as shown in
Figure 4.8-(c). According to the oblique effect [11], the ability of a human observer
to resolve details (hence artifacts) is highest at vertical and horizontal directions.
As a result, although the LMSD technique performs quite well in terms of PSNR,
its VIF results, which measure the quality of image as perceived by the human eye,
are lower compared with other techniques.

The hybrid CFA, Figure 4.7-(c), samples the NIR radiation with the rate of
1/10. As a result, using this CFA leads to high-quality reconstruction of color
images only. As shown by all metrics and visual comparisons, the quality of the
NIR images demosaiced by this method is lower compared with all other techniques.

Our RGBN CFA (Figure 4.7-(e)) and the CFA designed by the binary tree algo-
rithm [102] are the most similar patterns to the Bayer CFA placed in most current
cameras. The binary tree algorithm, however, does not model the leaking of visi-
ble and NIR radiations into NIR and color dye filters. This method assumes each
filter transmits light only in the corresponding band. Our separation algorithm is
the only one, among the techniques analyzed in this section, that models this diffi-
culty in using dye filters. Despite simulating very simple hardware components, the
performance of our algorithm is comparable to, or better than, other methods.

4.6 Summary

We studied the use of a simple RGBN CFA for the joint acquisition of color and
NIR images. The main challenge in sampling the scene with this CFA is that dye
filters transmit a mixture of color and NIR channels, as implementing dye filters
with sharp cutoffs is extremely challenging if not impossible. To solve this issue, we
proposed an algorithm that, relying on the spatial and spectral correlations of color
and NIR images, separates the mixed measurements of sensor. We explored the
correlation through sparsifying transforms and sparse decomposition. We presented
this algorithm in [126].

Although the basic principles of our algorithm are similar to the conventional
framework of compressive sensing, there are two main differences. First, limited
by the camera hardware, our measurement matrix is sparse and highly structured,
whereas in many applications of compressive sensing a dense random sampling is
used. Second, we proposed to use two different dictionaries and fuse the recon-
structed images. We showed that this is essential to preserve the variations in
spectral correlation of color and NIR images. This idea might be extended to us-
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ing multiple dictionaries, each trained to represent a different level of correlation
between color and NIR high-frequency details.

In the final section, we analyzed three single-sensor acquisition techniques and
compared their performance with our two algorithms based on the optimized CFA
and the RGBN CFA. Confirmed by different image quality metrics, as well as visual
comparisons, our optimum CFA method performs the best among these techniques.

The RGBN CFA and our reconstruction algorithm produce high-quality images
comparable to the results of other methods. This technique offers the most straight-
forward path towards the mass production of color and NIR cameras, as it requires
the least amount of modifications in the hardware of current color cameras.

This chapter concludes the first part of the thesis. In the next two chapters, we
study the problem of chromatic aberration in color and NIR joint imaging.
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Chapter 5

Chromatic Aberration in Color and
NIR Joint Acquisition

In this chapter, we study the problem of chromatic aberration (CA) in the joint ac-
quisition of color and NIR images. Chromatic aberration distortions can be reduced
by using compound lenses made of multiple lens elements. Figure 5.1-(a) shows the
approximate focus errors of a simple lens and some compound lenses. To illustrate,
an achromatic doublet lens, shown in Figure 5.1-(b), is a combination of a convergent
element of crown glass and a divergent lens of flint glass [8]. There exist professional
lenses corrected for both the visible and NIR bands of the spectrum1. However, such
lenses are very expensive and too bulky to be used with most consumer cameras,
especially those integrated inside small devices such as cellphones. Therefore, we
are interested mainly in digital correction of CA after acquisition.

We consider the scenario where the color image is in focus and sharp. In this
case the NIR image captured with the same lens and same focus settings is blurred
as a result of axial chromatic aberration. Hence, we formulate the task of reducing
chromatic aberration as deblurring the NIR image. The algorithms presented in
this chapter and the following chapter can be simply modified to reduce chromatic
aberration if the NIR image is in focus and the color image is blurred.

In the following sections, we present a deblurring algorithm that reduces chro-
matic aberration distortions, and compare its performance with the general approach
for CA correction in color imaging. We also compare our method with deblurring
algorithms that use a single image or multiple images.

1Example of a commercial product: http://www.jenoptik-inc.com/coastalopt-standard-
lenses/uv-vis-nir-60mm-slr-lens-mainmenu-155/80-uv-vis-ir-60-mm-apo-macro.html

99
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(a) Focus error versus wavelength (b) The achromatic doublet lens

Figure 5.1: (a) The focus error of simple and compound lenses versus wavelength
(re-drawn based on data from [1]). (b) The achromatic doublet lens is a combination
of convergent crown glass and divergent flint glass elements.

5.1 Guided Deblurring

We mathematically formulate the blurring of the NIR image as follows:

N b = k ∗ N , (5.1)

where N is the underlying sharp image to be estimated, k is the kernel point spread
function (PSF) that characterizes the out-of-focus lens blur, N b is the NIR image
blurred because of chromatic aberration, and ∗ denotes the convolution operation.

In the following subsections, we explain our deblurring algorithm that first es-
timates the blur kernel. The algorithm then deblurs N b by exploiting the high-
frequency details of the color image.

5.1.1 Estimating the Blur Kernel

Similarly to previous chapters, we denote the luminance channel of the color image
as Y. By solving the following optimization problem, we estimate the blur kernel k:

k? = argmin
k
‖∇xN b −∇x(k ∗Y)‖2F + ‖∇yN b −∇y(k ∗Y)‖2F + Pr(k), (5.2)

where ∇x, ∇y, respectively, represent the horizontal and vertical gradient operators.
This optimization exploits the fact that, as opposed to absolute intensities, the high-
frequency details of NIR and color channels are usually correlated. For a detailed
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analysis of the correlation between these channels, please see Chapter 3. As men-
tioned in previous chapters, color and NIR images do not share similar edges in all
patches, nevertheless, our experiments show that if there are some correlated edges
in the image pair, the kernel estimated by solving the above problem is reliable.

Pr(k) in (5.2) represents the prior information about the kernel. The PSF of
a lens is usually modeled as a Gaussian filter [143, 65]. Hence, we assume kσ =
exp (− (m−m0)2+(n−n0)2

2σ2 ), where σ fully characterizes the kernel and is a measure of
the filter’s spread. m0, n0 indicate the center location of the kernel. In this chapter,
we assume that the blur kernel is spatially invariant. In this case, estimating the
blur kernel is equivalent to finding one σ value:

σ? = argmin ‖∇xN b −∇x(kσ∗Y)‖2F + ‖∇yN b −∇y(kσ ∗Y)‖2F

s.t. kσ(m,n) = 1
c
exp (−(m−m0)2 + (n− n0)2

2σ2 ),

(5.3)

where (m,n) are horizontal and vertical coordinates, and c is a normalization factor
ensuring that

∑
i(kσ)i = 1.

5.1.2 Deblurring the NIR Image

We formulate the NIR deblurring as solving the following problem:

N ? = argmin
N

‖N b − kσ ∗ N‖2F + λ Pr(N ), (5.4)

where kσ is the blur kernel estimated in the first step (Subsection 5.1.1) and λ is
the regularization parameter.

Image deblurring is an ill-posed problem, hence including a regularization term
(Pr(N )) to constrain the solution is necessary. Different prior terms are proposed
in the deblurring literature. The most popular regularization is the sparsity of
gradients in natural images [14, 80, 66].

In our scenario, the sharp color representation of the scene is available. Thus,
instead of using a general distribution of natural images, we propose applying the
following regularization term that constrains the gradients of the deblurred NIR
image to be similar to those of the sharp color image:

Pr(N ) = ‖∇xN −Mx �∇xY‖2F + ‖∇yN −My �∇yY‖2F . (5.5)

Here, Mx and My are the similarity maps with the same size as the NIR and
color images, and � stands for the element-wise multiplication of two matrices. The
similarity maps represent the correlation between the gradients of N and Y channels
at each pixel. Therefore, Mx has large values at pixels where N and Y horizontal
gradients are highly correlated. Whereas, if the horizontal gradients are not similar,
the corresponding component in Mx is small. My has similar properties when the
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gradient is computed in the vertical direction. We incorporate the similarity maps
to ensure that the edges of the Y image contribute to the deblurring result only
where gradients of N and Y are strongly correlated.

The similarity maps should measure the similarity between the gradients of N
and Y channels. If the sharp NIR image is accessible, the similarity levels can be
computed as follows:

M0
x(m,n) = 1− |∇xN (m,n)−∇xY(m,n)|

|∇xN (m,n) +∇xY(m,n)| ,

M0
y(m,n) = 1− |∇yN (m,n)−∇yY(m,n)|

|∇yN (m,n) +∇yY(m,n)| ,
(5.6)

where (m,n) indicate the horizontal and vertical coordinates of the pixel. Note that
as the similarity between the gradients of N and Y channels increases, the values
of M0

x(m,n) and M0
y(m,n) increase.

In the deblurring problem, we do not have access to the sharp NIR image in
advance. Hence, using (5.6) to compute the similarity maps is not possible. In
addition, deblurring fails if we directly compare the gradients of the blurred NIR
and the sharp Y channel. The reason is that even the edges that are inherently
similar between the color and NIR representations, have different profiles as they
are blurred in NIR and sharp in the Y channel. To address this difficulty, we first
blur the Y channel with the estimated blur kernel:

Yb = kσ ∗Y, (5.7)

and calculate the similarity maps as

Mx(m,n) = 1− |∇xN b(m,n)−∇xYb(m,n)|
|∇xN b(m,n) +∇xYb(m,n)| ,

My(m,n) = 1− |∇yN b(m,n)−∇yYb(m,n)|
|∇yN b(m,n) +∇yYb(m,n)| .

(5.8)

Comparing the gradients of blurred Y and NIR channels ensures large components
for Mx and My when the edges are similar. Additionally, if in one neighborhood
color and NIR edges are fundamentally uncorrelated, they are likely to look different
even after blurring (unless the NIR image is severely blurred).

We discussed the significance of using similarity maps (Mx and My) before.
Here, we illustrate this effect with one example. Figure 5.2 shows a pair of blurred
NIR and sharp color images. Subfigure (c) is the NIR image deblurred without
using similarity maps. It can be immediately observed that false edges (the pattern
zoomed-in in the second row) are introduced into the deblurred NIR image. However,
when we incorporate the similarity maps into deblurring (Figure 5.2-d), the inherent
differences between the color image and its NIR counterpart are preserved (the
differences are more noticeable when this figure is viewed on a screen).
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(a) Color image (b) Blurred NIR (c) Deblurred
without similarity

maps

(d) Deblurred with
similarity maps

(e) Multiscale
deblurring

Figure 5.2: (a) Sharp color image. (b) Blurred NIR image. Second row: (c) the
result of deblurring guided by the color image without using similarity maps contains
false edges that are not present in the NIR image. (d) By using the similarity maps,
the algorithm preserves the differences between color and NIR images. Third row:
As the similarity maps provide a rough estimation of correlation between gradients,
the image in (d) is not as sharp as the image (c). (e) Using the multiscale approach
presented in Subsection 5.1.3, the deblurring results in a sharper image while the
differences between color and NIR are kept.

The third row of Figure 5.2 shows patches where color and NIR images share
similar high-frequency details. The image deblurred using similarity maps in this
patch is not as sharp as the one estimated without using any similarity maps. The
reason for this is that the maps are computed from blurred N and Y images, hence
they only provide a rough estimation of actual similarities between NIR and color
gradients. In the next subsection, we present a multiscale deblurring framework
that results in more accurate estimations of similarity maps and sharper images.
Figure 5.2-(e) is the result of our multiscale approach.

5.1.3 Multiscale Deblurring

We first form pyramids of Y and N b (blurred NIR) images with p + 1 scales. The
images in each scale are downsampled by a factor of R to form the images of the next
coarser level. The full-resolution images are called N (0)

b and Y(0), and the coarsest
scale is denoted by N (p)

b and Y(p). In the following, we use (.)↓R to represent
downsampling by a factor of R, and upsampling is shown by (.)↑R. Figure 5.3
demonstrates one example image pyramid, and the notations used for the images at
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Figure 5.3: A pyramid of N and Y images with p + 1 scales. The kernel in each
scale is obtained by downsampling the kernel in the previous finer scale.

each scale.
To estimate the kernel, we use an optimization problem similar to (5.3). The blur

kernel in the finest scale is obtained by solving the following optimization problem
that computes the variance (σ) of the Gaussian filter:

k(0) = f(N (0)
b ,Y(0)) , argmin

k
‖∇xN (0)

b −∇x(k ∗Y(0))‖2F + ‖∇yN (0)
b −∇y(k ∗Y(0))‖2F

s.t. k(m,n) = 1
c
exp (−(m−m0)2 + (n− n0)2

2σ2 ),

(5.9)

We start the blur kernel estimation from the finest scale of the pyramid because
the full-resolution Y and NIR images exhibit larger differences compared with the
downsampled image pairs in coarser scales. This results in a more accurate estima-
tion of kernel. After estimating k(0), the blur kernels in coarser levels are sequentially
computed by downsampling the kernel in the previous finer scale with factor R, i.e.,

k(1) = (k(0))↓R, k(2) = (k(1))↓R, · · · , k(p) = (k(p−1))↓R. (5.10)

These blur kernels are fixed and are not updated in the following steps of the algo-
rithm.

After estimating the blur kernels, starting from the coarsest scale, we deblur the
NIR image in every scale of the pyramid until the full resolution NIR is deblurred.
To deblur the coarsest NIR image, N (p)

b , we solve the following problem:

N (p)
d = g(N (p)

b ,Y(p),M(p)
x ,M(p)

y )

, argmin
N (p)

‖N (p)
b − k

(p) ∗ N (p)‖2F

+ λ‖∇xN (p) −M(p)
x �∇xY(p)‖2F

+ λ‖∇yN (p) −M(p)
y �∇yY(p)‖2F ,

(5.11)
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M(p)
x and M(p)

y are, respectively, horizontal and vertical similarity maps in scale
p. As before, the second and third terms in the cost function of (5.11) constrain
the gradients of the deblurred NIR image to be similar to those of Y(p) only where
similarity maps have large values.

Only for the coarsest scale of the pyramid, do we compute the similarity maps,
as shown in (5.8), by comparing the gradients of blurred NIR and blurred Y images:

M(p)
x (m,n) = 1− |∇xN

(p)
b (m,n)−∇xY(p)

b (m,n)|
|∇xN (p)

b (m,n) +∇xY(p)
b (m,n)|

,

M(p)
y (m,n) = 1− |∇yN

(p)
b (m,n)−∇yY(p)

b (m,n)|
|∇yN (p)

b (m,n) +∇yY(p)
b (m,n)|

.

(5.12)

Here Y(p)
b = k(p) ∗Y(p). Figure 5.4-(a) illustrates deblurring the NIR image in the

coarsest scale of the pyramid.
Using the gradients of blurred NIR and blurred Y images in (5.12) provides only

a rough approximation of similarity levels between the gradients of sharp color and
NIR images. As a result, the output image of (5.11), N (p)

d , is still blurred compared
with the underlying sharp NIR image, N (p). The residual blur in N (p)

d can be
formulated as

N (p)
d = k(p)

res ∗ N (p), (5.13)

where k(p)
res is the residual kernel after deblurring. We estimate the residual kernel

by solving
k(p)

res = f(N (p)
d ,Y(p)). (5.14)

f(., .) is defined in (5.9). See Figure 5.4-(a) for an illustration.
To deblur the NIR image in the next scale, N (p−1)

b , we need to compute the
corresponding similarity maps, M(p−1)

x and M(p−1)
y . If, similarly to the previous

scale, we use the blurred NIR image, inaccurate estimations of similarity maps are
obtained. Instead of using blurred images, we propose to use an upsampled version of
the image deblurred in the previous scale, (N (p)

d )↑R. The gradients of this deblurred
image are more similar to those of the sharp NIR image at scale p − 1. Hence,
comparing its gradients with the Y image provides a more accurate estimation of
similarity levels between gradients. Thus, we compute M(p−1)

x and M(p−1)
y as follows:

M(p−1)
i = 1− |∇i(N

(p)
d )↑R −∇iY

(p−1)
b |

|∇i(N (p)
d )↑R +∇iY(p−1)

b |
, i ∈ {x, y}. (5.15)

Note that N (p)
d , after upsampling by factor R and Y(p−1)

b , have the same resolution.
Here we omit pixel coordinates for brevity.

Similar to the previous scale, Y(p−1)
b in (5.15) is the Y image deblurred by the

residual blur kernel of (N (p)
d )↑R. To compute this blur kernel, we upsample k(p)

res
in (5.14) by factor R. So,

Y(p−1)
b = (k(p)

res )↑R ∗Y(p−1). (5.16)
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(a) Deblurring NIR and computing the residual kernel in the coarsest scale.

(b) Forming similarity maps using the NIR image deblurred in the previous coarser scale.

(c) Deblurring the NIR image in scale p− 1 using accurate
similarity maps.

Figure 5.4: A schematic of our multiscale deblurring algorithm for the first two
coarsest scales (p and p− 1). The procedure shown in (a) and (b) is repeated for all
scales until the full-resolution NIR is deblurred.
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Figure 5.4-(b) shows the process of estimating similarity maps in scale p− 1.
The similarity maps computed in (5.15) are then used in the following optimiza-

tion problem to deblur N (p−1)
b (see Figure 5.4-c):

N (p−1)
d = g(N (p−1)

b ,Y(p−1),M(p−1)
x ,M(p−1)

y ). (5.17)

Function g(., ., ., .) is defined in (5.11).
The deblurring algorithm described above is applied to every scale of the pyra-

mid until N (0)
b (the full-resolution NIR) is deblurred to obtain N (0)

d , which is the
final output of the algorithm. As explained previously, the goal of multiscale pro-
cessing is to produce accurate similarity maps (Mx and My). Figure 5.5 illustrates
a pair of sharp color and blurred NIR images with two horizontal similarity maps
computed by the single-scale and multiscale versions of our algorithm. Darker pixels
in similarity maps indicate low similarities between the horizontal gradients of color
and NIR images. This figure shows that the similarity maps computed by the mul-
tiscale processing better represent the similarities between color and NIR gradients,
compared with the maps obtained in a single scale.

5.2 Experiments

5.2.1 Data Acquisition

All the images used in the following experiments are captured by a Canon Rebel
T1i camera, after removing its hot mirror. For each scene, we sequentially captured
one color image by placing an NIR-blocking filter in front of the lens and two NIR
images using a visible-light blocking filter. The color image is in focus, and the first
NIR image, captured with the same lens and same focus settings, is blurred. We
then refocused the camera to capture a sharp NIR image, which we use as the visual
ground-truth image in the following experiments. For each scene, both NIR images
are aligned to the color image. Note that the ideal color-and-NIR camera captures
the images in one shot and it is not possible to set the focus differently for color
and NIR images. In our experiments, we created this situation by not changing the
focus settings between the color shot and the first NIR shot.

5.2.2 Simulation Results

In the following, we first evaluate the performance of our algorithm in estimating the
blur kernel. We then present the results of using the single-scale guided deblurring
algorithm detailed in Subsection 5.1.2. We compare the performance of our method
with the blind deblurring algorithm of Krishnan et al. [82] and with the general
approach used in color imaging for reducing chromatic aberration. In the final set
of experiments, we demonstrate the images deblurred by our multiscale algorithm.
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Blur Kernel Estimation

In a practical scenario, when the color image is in focus and NIR is blurred (out
of focus), we do not have access to the ground-truth blur kernel. Therefore, to
assess our kernel estimation algorithm, we conducted a synthetic experiment. For
this experiment, we used the color and the sharp NIR images of each scene. We
blurred the NIR image, as modeled in (5.1), by a Gaussian kernel with a known
standard deviation (σ). The blur-kernel spread (σ) is estimated by solving the
optimization problem (5.3) when the blurred NIR and sharp color images are used.
Table 5.1 summarizes ground-truth σ values used to blur the NIR image and the
values estimated by our algorithm. The results reported in this table are averaged
over 30 pairs of color and NIR images. As can be seen, the estimated values are
quite close to the ground-truth. Our experiments show that a small deviation from
the true kernel does not greatly affect the deblurring process.

To test the kernel estimation in a more realistic scenario, in the second set
of experiments, we use the NIR images blurred by the lens. In this experiment,
we compare our blur kernel estimation method with the algorithm of Krishnan et
al. [82]. Krishnan et al. propose a blind deblurring method that first iteratively
estimates the blur kernel from the blurred image and, at the last step, uses the
estimated kernel to deblur the image. Figure 5.6-(b) shows the image deblurred
by this method. We also estimate the blur kernel by our algorithm and apply the
deblurring step of Krishnan’s method to produce the final image using our estimated
kernel (Figure 5.6-(c)). As can be seen in Figure 5.6, the image deblurred using
our estimated kernel contains fewer artifacts compared with the result of the blind
deblurring algorithm of Krishnan et al. [82]. This proves the effectiveness of our
algorithm in estimating the blur kernel, as both images are produced by the same
deblurring technique and only the estimated blur kernels are different.

Ground-truth σ 3 4 5 6 7 8 9 10

Estimated σ average 2.88 3.87 4.82 5.85 6.81 7.78 8.83 9.55
std. 0.25 0.32 0.38 0.44 0.61 0.65 0.77 0.77

Table 5.1: Blur kernel estimation: for each ground-truth σ value (number of pixels)
that is used to blur the NIR images, we report the σ estimated by using the blurred
NIR and sharp color images. The experiment is conducted for 30 pairs of images.
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(a) The blurred NIR image (b) Deblurred with Krishnan’s
kernel

(c) Deblurred with our kernel

Figure 5.6: (a) The blurred NIR image, (b) the result of the blind deblurring algo-
rithm of Krishnan et al. [82], and (c) the result of the deblurring step of Krishnan’s
algorithm using our estimated kernel.

Single-Scale Deblurring

We now analyze the performance of our single-scale deblurring algorithm. We first
study the importance of using similarity maps in deblurring. In Figure 5.7-(c) and
(h), we present the results of simply adding the high-frequency details of the color
image into the blurred NIR image. This approach is similar to the chromatic aber-
ration correction algorithms, such as the method of Tisse et al. [144], that assume
a strong correlation between the gradients of all color channels. To obtain these re-
sults, we solve the following problem that constrains the gradients of the deblurred
NIR image to be the same as those of the color image:

N d = argmin
N

‖N b − k ∗ N‖2F +
∑

i∈{x,y}
‖∇iN −∇iY‖2F . (5.18)

This method cannot preserve the inherent differences between color and NIR images.
For instance, as shown in the second and fourth rows of Figure 5.7, the drawing
and the text on the paper are almost invisible in the ground-truth NIR image,
however, the image deblurred by (5.18) contains the pattern. Figure 5.7-(d) presents
the results obtained by our algorithm that employs similarity maps in deblurring
(see (5.4) and (5.5)). We observe that by using the similarity maps the inherent
differences between color and NIR images are faithfully preserved.

In the next experiment, we study the performance of the deblurring step when
different prior terms for the sharp NIR image, Pr(N ) in (5.4), are explored. Fig-
ure 5.8 provides some examples for this comparison. Figure 5.8-(c) shows the deblur-
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ring results when the popular TV (total variation) regularization is used as Pr(N ).
In this case, the following optimization is solved to deblur NIR:

N ? = argmin
N

‖N b − kσ ∗ N‖F + λ‖∇N‖1. (5.19)

The deblurring step in the Krishnan et al. method [82] is used to produce the images
of Figure 5.8-(d). This algorithm exploits a normalized sparsity of image gradients as
the prior term. The images of subfigure (e) are the results of our proposed algorithm,
when the gradients of the color image are used to constrain the problem. For each
image, the blur kernel estimated by our method is used with different deblurring
techniques to generate the different results in Figure 5.8.

These results show that using a regularization term specific to each blurred NIR
image (the gradients of the sharp color image in our algorithm) is more effective than
exploiting general distributions. Our algorithm results in more accurate edges and
less noticeable artifacts, compared to other techniques presented in Figure 5.8-(c)
and (d).
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Multi-Scale Deblurring

In Figure 5.9 we compare the images deblurred by our single-scale deblurring and its
multiscale extension where p = 2 (an image pyramid with three scales) is used. It is
immediately observed that the accurate similarity maps computed by the multiscale
scheme help the algorithm recover sharper details compared with the single-scale
deblurring. At the same time, the multiscale algorithm still successfully preserves
the inherent differences between the color and NIR representations of the scene.

In Figure 5.10, we study the performance of our algorithm when image pyramids
with different number of scales are used in deblurring. As can be seen with the
word “Walt” (the second row of the figure), increasing the number of scales results
in sharper images. However, the quality of text in the fourth row of Figure 5.10
does not improve beyond two scales. This shows that the optimum number of scales
required to obtain accurate similarity maps, depends on the frequency spectrum of
the image and also the amount of blur (the size of the blur kernel). If the image is
severely blurred and/or contains very fine details, increasing the number of scales
improves the deblurring result. We observed that a pyramid with three scales usually
results in acceptable deblurred images.

We present the results of the guided image filtering of He et al. [58] in Figure 5.11-
(c) and (d). For this experiment, we apply the guided filtering algorithm to deblur
the NIR image by using the sharp color image as a guide. This algorithm computes
each pixel intensity in the output image as a weighted average of neighboring pixels
in the guide image. The weights in each neighborhood are computed based on the
input image (the blurred NIR in this experiment). We show the results of guided
image filtering for two different values of the neighborhood size. As can be seen, for
a small value of r (the neighborhood size), the results of guided filtering is blurred
compared with the images produced by our multiscale algorithm. On the other hand,
increasing r introduces false edges into the NIR image and in the case of r = 50, even
the pixel intensities of the deblurred NIR image are not similar to the original NIR
image. The fifth row of Figure 5.11 shows that although the pen is bright in the NIR
image, it is dark in the image produced by the guided image filtering for r = 50. Our
algorithm produces sharp images while preserving the inherent differences between
both the intensities and the gradients of color and NIR images.
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5.3 Summary

Reducing chromatic aberration distortions in color and NIR acquisition is more
challenging compared with color imaging. First, as a wider range of wavelengths is
captured in joint acquisition, the distortions are more severe and cannot be avoided
by the lenses designed for color imaging. More importantly, the assumption of a
strong correlation between details of all channels fails in the case of color and NIR
images.

We addressed these challenges by developing a guided algorithm that incorpo-
rates similarity maps into deblurring. These maps measure the correlation between
color and NIR gradients at every pixel. The contribution of sharp color gradients
in reconstructing the NIR image is weighed by the values of similarity maps at
each pixel. We presented a multiscale extension of our deblurring algorithm that
computes the similarity maps more accurately and results in sharper images. The
methods and results explained in this chapter are presented in [127] and [124].

In this chapter, we consider the cases where the amount of blur is uniform across
the NIR image, hence we modeled the blur as a spatially invariant kernel. In the fol-
lowing chapter, we address spatially varying chromatic aberration distortions. This
phenomenon occurs when differences in objects depths lead to noticeable changes in
the amount of blur across the image.



Chapter 6

Spatially Varying Chromatic
Aberration

In this chapter we study chromatic aberration when the out-of-focus blur kernel
varies spatially in both color and NIR images captured with the same lens and focus
settings.

In Section 6.1, we show that the amount of out-of-focus blur changes in both color
and NIR images as a function of the distance from the camera. More importantly,
the amount of blur in the NIR image with respect to the blur in the color image
varies depending on the object depth. Our goal is to reconstruct an NIR image that
is as sharp as the corresponding color image in different patches.

A commonly encountered situation, for instance in macro or portrait photogra-
phy, is when the object of interest, usually placed in the foreground, is in focus in
the color image and the background is out of focus to create artistic effects and to
emphasize the interesting object in the scene. In this case, because of chromatic
aberration, the NIR image is severely blurred in the foreground. However, in the
background, the blur in the NIR image as compared with the blur in the color im-
age is not as severe. It is even possible that the NIR image is sharper than the
color counterpart in the background plane. Figure 6.1 illustrates an example. In
Section 6.2, we propose an algorithm that, by comparing the blur clues in color and
NIR images, segments the image into foreground and background objects. We then
use our guided deblurring algorithm presented in Chapter 5 to deblur the foreground
in the NIR image.

In Section 6.3, we extend our foreground-background segmentation algorithm
such that it detects several planes in the image where the amount of blur in the
NIR image with respect to the blur in the color image is uniform in each plane. We
deblur the NIR image in regions where the color image is sharper.
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Figure 6.1: A pair of color and NIR images captured with the same focus settings.
The color image is focused in the middle of the scene (zoomed-in on the second
row), where the NIR image is out of focus. The NIR image is, however, sharp in the
background where the color representation is blurred.

6.1 Spatially Varying Defocus Blur

In this section, by using the thin lens model, we show how the amount of defocus
blur changes in color and NIR images as a function of object distance from the
camera.

Let us consider the schematic of Figure 6.2 where 2D is the lens diameter, and
the distance between the lens and the sensor is x. Light rays emitted from distance
d0 are converged on the sensor, if

1
d0 + 1

x
= 1
f
, (6.1)

where f is the focal length of the lens. If the object is placed closer or further away
than the focus plane, the image formed on the sensor is blurred. The amount of
blur is characterized by the radius of a disk that is the blurred image of a point light
source on the sensor. In Figure 6.2 we denote the radius as r, which is computed as
follows:

r = D|1− x

u
| (6.2)

In the above equation, u is the distance from the lens where the light rays coming
from d are focused. Using the thin lens model, we have

1
u

+ 1
d

= 1
f
, (6.3)
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Figure 6.2: 2D is the lens diameter. The sensor is placed at distance x from the
lens. A source point at distance d from the lens produces a blurred disk of radius
r on the sensor. Light rays emitted from distance d are focused at distance u from
the lens.

and,
r = D|1− x

f
+ x

d
| (6.4)

We assume the focus plane for this setting (distance x between the lens and the
sensor) is at distance d0 from the lens. So,

r =
{

D(1− x
f + x

d ) if d < d0

D(−1 + x
f −

x
d ) if d > d0 (6.5)

We now study the amount of lens blur in the green1 and NIR channels for
an object placed in distance d. As the refractive index of the lens changes with
wavelength, the focal length is wavelength-dependent. We call the focal length for
the green channel fG, and the one for the NIR radiation fN . The blur radii in green
and NIR images, are

rN = D|1− x

fN
+ x

d
|,

rG = D|1− x

fG
+ x

d
|.

(6.6)

Hence, the amount of blur in the NIR image with respect to blur in the green image
depends on the object distance:

rN
rG

=
|1− x

fN
+ x

d |
|1− x

fG
+ x

d |
. (6.7)

1We use green as one example channel in the visible range.
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6.2 Foreground-Background Segmentation and Deblurring

In this section, we consider a scenario where the foreground object is in focus and
sharp in the color image, and blurred in the NIR representation. The background
plane is either blurred in both images, or blurred in color and sharp in NIR. The
goal is to deblur the NIR image in the regions where the color image is sharper than
NIR. To this aim, we present an algorithm that segments the image into foreground
(in focus) and background (out of focus) regions by using the blur clues.

6.2.1 Proposed Algorithm

To detect the objects that need to be deblurred in NIR, for each patch we compute
a sharpness measure for color and NIR images. Similarly to the previous chapter,
we use the Y channel of the color image that carries the spatial information.

To compare the sharpness of Y and N in each patch, we use the measure pro-
posed by Crete et al. [33]. Their algorithm is based on the observation that blurring
an already blurred image does not lead to significant changes in the gradients of the
image. However, blurring a sharp image changes the edges considerably. Therefore,
to measure the sharpness level of an image, called I, the image is first blurred in
both horizontal and vertical directions:

Ixb = h1 ∗ I
Iyb = h2 ∗ I

(6.8)

h1 and h2 are horizontal and vertical lowpass filters. Crete et al. suggest using a
uniform box filter to blur the image. However, our experiments show that filtering
image rows and columns with a Gaussian filter results in a more reliable sharpness
measure.

To compare the gradients of the original image and its blurred versions, the
following horizontal and vertical gradient images are formed:

∇xI = |g1 ∗ I| ∇yI = |g2 ∗ I|

∇xIxb = |g1 ∗ Ixb | ∇xI
y
b = |g2 ∗ Iyb |

(6.9)

Here g1 and g2 are horizontal and vertical gradient filters. In [33], simple derivative
filters g1 = [+1,−1] and g2 = [+1,−1]T are used. We use the following Sobel
operators that are more robust to noise:

g1 =

 −1 −2 −1
0 0 0

+1 +2 +1

 g2 =

 −1 0 +1
−2 0 +2
−1 0 +1

 (6.10)

In (6.9) the absolute values of gradients are computed, as the gradient direction does
not carry information about the sharpness level.
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To measure the amount of change in the gradients of the image after blurring,
the following variation matrices are formed:

Vx = max(0,∇xI−∇xIxb )
Vy = max(0,∇yI−∇yIyb )

(6.11)

Note that the difference is important only where the gradients of the blurred image
are weaker than those of the original image (∇xI − ∇xIxb > 0). Otherwise the
variation value is set to zero. The average magnitudes of entries in variation matrices
indicate the level of sharpness:

exV = 1
P

∑
m,n

Vx(m,n) eyV = 1
P

∑
m,n

Vy(m,n), (6.12)

P is the number of pixels and (m,n) indicate horizontal and vertical coordinates.
To ensure that the blur measure is not affected by the contrast of the original image,
average intensities of the image gradients are computed as

exI = 1
P

∑
m,n

∇xI(m,n) eyI = 1
P

∑
m,n

∇yI(m,n), (6.13)

and used to normalize the blur measure:

bx = 1− exV
exI

by = 1− eyV
eyI
. (6.14)

In the above equation, bx and by measure the amount of blur in horizontal and
vertical directions. If the average magnitudes of variations (exV and eyV) with respect
to the gradients of the original image are large, which means the image is sharp, the
blur measures, bx and by, are small. The sharpness of the image is quantified as

s = 1−max(bx, by). (6.15)

We compute the sharpness for all patches in both N and Y images to obtain
two sharpness maps, called SN and SY, respectively. We, then, form the following
difference map:

Sd = SY − SN , (6.16)

which has a positive value for a pixel where the Y image is sharper and is negative
where N is sharper. Uniform patches in the image are not affected by the defocus
blur and their sharpness measure might be altered by even an insignificant amount
of noise. To handle this, we assign a void value (zero) to the difference map where
the patch is uniform in both Y and N . A patch is assumed to be uniform if the
maximum of averages for horizontal and vertical gradients (exI and eyI in (6.13)) is
smaller than a fixed threshold T . We empirically set T = 0.02 when the image
intensities are normalized to the range of [0, 1].
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To find precise segmentation boundaries, to remove the noise in the difference
map, and to assign the uniform patches to either foreground or background, we
combine the blur clues presented in the difference map with color clues, similarly
to the method of Chakrabarti et al. in [23]. Let us call the foreground-background
segmentation mask, U. This mask is one where the color image is sharper than NIR,
and is otherwise zero. We minimize the following energy function to find U:

E(Um,n) =
∑
m,n

Bm,n(U(m,n)) +
∑
m,n

Cm,n(U(m,n)) +
∑

(m,n)
(m′,n′)

δ(U(m,n)−U(m′, n′)),

(6.17)
where

δ(i, j) =
{

0 if i = j

1 if i 6= j
(6.18)

The blur clues contribute to the first term of the above energy, where,

Bm,n(U(m,n)) =
{
−Sd(m,n) if U(m,n) = 1
Sd(m,n) if U(m,n) = 0

(6.19)

The second term, Cm,n(U(m,n)), models the color of foreground and background
regions as mixtures of Gaussians [23]. The last term in (6.17) favors smooth seg-
mentation maps and adds a penalty if the labels of neighboring pixels ((m,n)
and (m′, n′)) are different. We minimize E(Um,n) by the toolbox provided by
Chakrabarti et al. [23]. This toolbox uses the graph-cut implementation of Vladimir
Kolmogorov [16].

After forming the foreground-background (in-focus/out-of-focus) map, we esti-
mate the blur kernel and deblur the NIR image in the foreground region where U is
one. This is performed by our guided deblurring algorithm presented in Chapter 5.

6.2.2 Results

Foreground-Background Segmentation

We compare the foreground-background masks obtained by our method with the
masks computed by the algorithms of [23] and [138]. In [23], Chakrabarti et al. study
the spatially varying blur kernel by analyzing the responses of local patches to a set
of windowed Gaussian filters. The output of their algorithm is a mask that segments
the image into blurred and sharp regions. They specifically focus on situations where
one object in the scene is motion blurred. We modify their algorithm such that it
detects the out-of-focus blur2. Chakrabarti’s algorithm uses only a color image. The
method of Shi et al. [138] segments the image into blurred and sharp regions. For
this task, they use a combination of gradient features, the properties of the local
patch frequency spectrum, and the response to a set of filters trained to discriminate

2We replace the set of motion blur filters by a set of Gaussian filters.
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between blurred and sharp patches. We also present the masks computed by the
graph-cut algorithm [16] that refines the segmentation based on the user input. For
each image, we provide the algorithm with one line in the foreground and one line in
the background. This method does not exploit blur clues, and we include its results
to demonstrate how much the segmentation gains from color information in each
scene.

Figures 6.3-6.8 show the masks computed by different algorithms. In these fig-
ures, we overlay the masks with the color image, so that segmentation boundaries
can be simply compared. The pixels that belong to the foreground are represented
by their original intensities, and those in the background are shown by gray values.
The user input to the grab-cut algorithm is indicated by a red line for the foreground
and a green line for the background in the result image.

As shown in Figures 6.3-6.8, our algorithm consistently performs better than
other methods. The segmentation results of our method are not, however, perfect.
As expected, the segmentation errors usually occur in uniform patches where no
information about blur is available. As we show in the following results, our appli-
cation is not usually concerned with these errors because deblurring does not affect
uniform regions.

Deblurring

We present the results of deblurring the NIR image in the following experiments.
To deblur the NIR image, we apply our kernel estimation and deblurring algorithm
(explained in Chapter 5) only to the foreground region that is marked one in the
foreground-background mask.

For each image, we present four deblurring results obtained using (1) our mask,
(2) Chakrabarti’s mask [23], (3) Shi’s mask [138], and (4) the mask obtained using
color clues and user input. The same deblurring algorithm is applied to obtain the
results. Figures 6.9-6.14 show the deblurred images.

Although the same deblurring algorithm is used to obtain deblurred images for
each scene, as the foreground masks are different, the results are different. In most
cases, using our masks leads to sharper images. This is mainly because other masks
usually segment a large portion of the background as foreground. This results in an
underestimation of the blur-kernel size, which in turn leads to blurry images.
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(a) The foreground (inside the yellow box) is in focus in the color
image.

(b) The background (marked blue) is sharper in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds. For this scene, segmen-
tation based on color produces the most accurate mask. Note
that this approach requires the user input.

(d) The result of [138]. A large portion of the background is
detected as part of the background. Some regions of the fore-
ground (red text on the book) are labeled as background.

(e) The result of [23]. As the background is highly textured,
Chakrabarti’s algorithm detects it as part of the foreground.

(f) Our algorithm produces the best result similar to the color-
based segmentation in (c). Our method does not use any user
input to refine the segmentation.

Figure 6.3: Comparison of foreground-background (in-focus/out-of-focus) masks. The foreground objects
(the lens cap and the book) are in focus in the color image. Pixels detected as foreground (where color is
sharper than NIR) are shown by their original color, and those in the background are converted to gray
scale.
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(a) The foreground (inside the yellow box) is in focus in the
color image.

(b) The background (marked blue) is sharper in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds. Large regions in the
background are detected as foreground because their color
(the black book and the black hat) is similar to the fore-
ground object (the black vase).

(d) The result of [138].

(e) The result of [23]. (f) Our result. Part of the hat is detected as foreground by
our algorithm, because the corresponding patches are uni-
form and do not provide any blur information. Moreover, the
color of the hat is similar to the foreground object. This does
not greatly affect the deblurring result as uniform patches are
insensitive to deblurring.

Figure 6.4: Comparison of foreground-background (in-focus/out-of-focus) masks. Pixels detected as fore-
ground (where color is sharper than NIR) are shown by their original color, and those in the background
are converted to gray scale.
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(a) The foreground (inside the yellow box) is in focus in the
color image.

(b) The background (marked blue) is sharper in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds. The lack of color
contrast between foreground and background planes fails the
segmentation based on color clues only.

(d) The result of [138]. The background plane is detected
correctly, however many small regions of the foreground are
labeled as background.

(e) The result of [23]. As shown in (a) and (b), a region of
the upper part in this image belongs to background, which is
missed in this mask.

(f) Our method produces the most reliable mask compared
with other algorithms.

Figure 6.5: Comparison of foreground-background (in-focus/out-of-focus) masks. Pixels detected as fore-
ground (where color is sharper than NIR) are shown by their original color, and those in the background
are converted to gray scale.
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(a) The foreground (inside the yellow box) is in focus in the
color image. The central paper-sheets are in the foreground
plane. Left and right papers belong to the background plane.

(b) The background (marked blue) is sharper in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds. As the color of objects
in the background and foreground planes is the same, the color-
based segmentation fails to label the piece of paper on the right
as part of the background.

(d) The result of [138].

(e) The result of [23]. (f) Our result. Our algorithm and Chakrabarti’s (e) obtain the
most accurate masks for this scene.

Figure 6.6: Comparison of foreground-background (in-focus/out-of-focus) masks. Pixels detected as fore-
ground (where color is sharper than NIR) are shown by their original color, and those in the background
are converted to gray scale.
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(a) The foreground (inside the yellow box) is in focus in the color
image.

(b) The background (marked blue) is less blurred in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds.

(d) The result of [138]. Most uniform regions on the foreground
plane are labeled as background.

(e) The result of [23]. (f) Our result.

Figure 6.7: Comparison of foreground-background (in-focus/out-of-focus) masks. Pixels detected as
foreground (where color is sharper than NIR) are shown by their original color, and the ones in the
background are converted to gray scale.



6.2. Foreground-Background Segmentation and Deblurring 133

(a) The foreground (inside the yellow box) is in focus in the
color image.

(b) The background (marked blue) is less blurred in NIR.

(c) Color segmentation with user input. Red line: foreground
seeds and green line: background seeds. Similarities of ob-
jects colors results in the failure of color-based segmentation
despite the fact that the user input is provided to this algo-
rithm.

(d) In the result of [138] many regions are mislabeled as
foreground or background.

(e) The result of [23]. Although the foreground object is
detected correctly, several regions of the background are la-
beled as foreground.

(f) Our result. Our mask is the most accurate one compared
with the results of other segmentations. Part of the book on
the left is detected as foreground because color and NIR
images are inherently different in this region. This mistake
does not lead to noticeable errors in the deblurred image as
our deblurring algorithm preserves these inherent differences.

Figure 6.8: Comparison of foreground-background (in-focus/out-of-focus) masks. Pixels detected as fore-
ground (where color is sharper than NIR) are shown by their original color, and those in the background
are converted to gray scale.
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6.3 Spatially Varying Blur Kernel Estimation and Deblurring

In this section, we study chromatic aberration in cases where multiple planes with
different levels of blur in color and NIR images could be detected. We first present
an algorithm that segments the image into several regions where the blur is uni-
form inside each region. We then use this segmentation with an extension of our
guided deblurring algorithm to deblur the NIR image in patches where the color
representation is sharper than the NIR counterpart.

6.3.1 Multi-Label Segmentation

Let us consider an image patch that is sharper in the color representation. The
blur kernel in the corresponding patch of the NIR image might be estimated by
minimizing the following cost function:

E(kσ) = |sYb
− sN |, for Yb = kσ ∗Y. (6.20)

In the above cost function s is the sharpness value of the patch computed by the
algorithm of Crete et al. [33] explained in Section 6.2. Similarly to Chapter 5, we
model the defocus blur as a Gaussian filter characterized by σ. We assume that the
blur kernel is uniform in the patch.

Direct minimization of (6.20) does not lead to a reliable estimation of the blur
kernel, because the amount of information carried by a local patch is critically low,
and the sharpness estimation might be affected by noise. Moreover, one patch
might contain sub-patches with different levels of blur, which fails the assumption
of kernel uniformity across the patch. Instead of minimizing (6.20), we compute
the cost function in all patches of the image for a set of σ values in the range of
[−σmax, σmax], where σmax is a positive value empirically set to 6 in our experiments.
For negative values of σ, the following cost is computed:

E(kσ) = |sY − sN b
|, for N b = k|σ| ∗ N . (6.21)

This value would be small for patches where NIR is sharper than the color image.
We define matrix U to be the segmentation map, which contains the σ parameter

of the blur kernel that affects the corresponding pixel. Positive values of U indicate
that the color image is sharper than the NIR representation in those pixels and vice
versa for negative values of U. We form the following multi-level cost function based
on blur clues:

Bm,n(U(m,n)) =
{
|sYb

− sN | for Yb = kσ ∗Y, if U(m,n) > 0
|sY − sN b

| for N b = k|σ| ∗ N , if U(m,n) < 0
(6.22)

In the above formulation σ = U(m,n), and sharpness values are computed in a small
neighborhood around coordinates (m,n). We empirically found a neighborhood of
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size 50× 50 results in reliable estimations for images of size 2300× 1500 pixels used
in our experiments.

As before, if a patch is uniform, for all values of σ we assign a very small cost to
the corresponding elements of B. A uniform patch does not carry any information
about the amount of blur, hence it should not add any cost to the blur term (B).

To obtain a smooth segmentation, we define the following cost function:

Wm,n,m′,n′(U) = λm,n,m′,n′δ(U(m,n)−U(m′, n′)) (6.23)

The above cost function penalizes assigning different labels to neighboring pixels
if the weight parameter λ is large. δ is defined in (6.18). λ is computed as the
following:

λm,n,m′,n′ = exp(−|Ic(m,n)− Ic(m′, n′)|2

t
), (6.24)

where Ic(m,n) and Ic(m′, n′) are intensities of neighboring pixels (m,n) and (m′, n′)
in the color image. On object boundaries, the difference between the color values of
two neighboring pixels is usually large, resulting in a small λ. In this case, W(U)
does not penalize different labels for those pixels. We empirically choose t = 0.1.

By combining blur clues in (6.22) and the smoothness term in (6.23), we obtain
the segmentation map by solving the following optimization:

U? = argmin
U

∑
m,n

Bm,n(U(m,n)) +
∑

(m,n)
(m′,n′)

Wm,n,m′,n′(U). (6.25)

We solve the above optimization using the graph-cut algorithm [17, 78, 15].

6.3.2 Spatially Varying Deblurring

Let us assume that U assigns L positive labels (σi for i = 1, · · · , L) to the image.
Recall that the color image is sharper than the NIR image in the patches with
positive labels. Hence, we need to deblur the NIR image in these regions. The NIR
image is deblurred L times with different values of σi in U. We call each deblurred
image, N d

i .
To combine deblurred images and obtain the final NIR image, we first form L

binary masks, Ui for i = 1, · · · , L, as follows:

Ui(m,n) =
{

1 if U(m,n) = σi
0 otherwise

(6.26)

To have smooth transitions between different regions and avoid artifacts on the
boundaries of regions, we slightly blur each binary mask:

Ub
i = Ui ∗ h, (6.27)
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where h is a Gaussian filter of size 15 × 15. Using smooth masks, we compute the
final deblurred image as

N d =
∑
i

(Ub
iN d

i ) + ŨN , (6.28)

where Ũ = 1−
∑
i Ub

i .

6.3.3 Results

Blur-Kernel Map Estimation

In this subsection, we compare the performance of our algorithm in computing the
blur-kernel map with the method of Zhang and Hirakawa [159]. Their algorithm
estimates spatially varying blur kernels by analyzing the discrete wavelet coefficients
of local patches in a single image, where the lens defocus blur is modeled as a disk
filter. For each scene, we apply their algorithm to estimate the size of the disk kernel
in the local neighborhoods in the color image. We call the matrix, which contains
this information at every pixel, URGB. We then use their algorithm to estimate the
spatially varying blur kernel in the NIR image, resulting in UN . We compute the
amount of blur in NIR with respect to the color counterpart as follows:

U = UN −URGB. (6.29)

Figures 6.15-6.21 show U kernel maps computed by our algorithm (see (6.25))
and the results of Zhang and Hirakawa’s approach (U in (6.29)). For each scene,
we number the objects on the color image in the order of their distance from the
camera. For each example, in the caption we indicate the object that is in focus
in the color image. For all examples, our algorithm clearly outperforms Zhang and
Hirakawa’s method [159] in estimating the blur-kernel map.

In almost all cases, our algorithm finds a different blur kernel for every object
(or sometimes even a part of an object) placed at a different depth. Objects further
away from the color focus plane, where the NIR image is sharper than the color
image, are correctly labeled by negative σ values. Although color clues usually ease
the segmentation, they cannot always be beneficial. For instance, the color contrast
in the example of Figure 6.17 is not high. Notice that the color of the tower in
the Stephansdom model (the top part of object number 2) is quite similar to the
background color (object number 3). Yet, the blur clues used by our algorithm are
strong enough to assign different labels to these regions.

There are still some errors in blur kernel maps obtained by our algorithm. For
instance, consider the example in Figure 6.15. In this scene, part of the book (object
number 3) has the same label as the bird (object number 2) in our blur-kernel map.
This patch of the book is almost uniform and the color edge between the bird and
the book is not strong enough to cut the segmentation at that region. In Figure 6.21,
object number 3 does not contain rich texture information, and its color is similar
to the background (object number 4). Hence, it is incorrectly segmented as part of
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the background. These mistakes do not usually affect the final output as uniform
regions do not change with deblurring.

Spatially Varying Deblurring

In Figures 6.22-6.28, we compare the performance of our spatially-varying deblurring
algorithm with two other techniques. The first technique is the deblurring algorithm
proposed in [159], where the blur-kernel maps obtained as (6.29) are used. We also
compare with the results of using our binary segmentation and deblurring algorithms
presented in Section 6.2.

The images deblurred by Zhang and Hirakawa’s algorithm are in most cases
blurred compared with the results of our binary and spatially varying deblurring
methods. For all scenes, using our multi-label map results in sharper images without
producing artifacts. The images deblurred by our method are almost as sharp as
the color image. This holds for patches where the color representation is in focus,
and also for regions where, although not in focus, the color image is still sharper
than NIR (for instance, see the third row of Figure 6.24). This is because by using
a blur segmentation map, a more reliable kernel is estimated for every region. Our
binary deblurring could fail if two planes with different amounts of blur in the NIR
image are both segmented as foreground.
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(a) Object number 2 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.15: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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(a) Object number 2 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.16: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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(a) Object number 2 is in focus
in the RGB image.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map
of [159] overlaid on the NIR
image.

(e) Our blur kernel map. (f) Our segmentation map over-
laid on the NIR image.

Figure 6.17: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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(a) Object number 1 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.18: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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(a) Object number 2 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.19: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.



6.3. Spatially Varying Blur Kernel Estimation and Deblurring 149

(a) Object number 2 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.20: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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(a) Object number 2 is in focus in the RGB im-
age.

(b) The NIR image.

(c) The blur kernel map of [159]. (d) The segmentation map of [159] overlaid on
the NIR image.

(e) Our blur kernel map. (f) Our segmentation map overlaid on the NIR
image.

Figure 6.21: The blur kernel map indicates the σ parameter of the blur kernel in
each patch. Positive σ values in the map mean that the color image is sharper than
NIR in the corresponding patches. NIR is sharper where σ is negative. The objects
are numbered in the order of their distance to the camera.
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6.4 Discussion

In this chapter, we mainly addressed deblurring the NIR image in regions where
the color image is sharper than NIR. By using a dense blur-kernel map obtained by
our algorithm, performing two other processing steps is possible. We can blur the
NIR image in areas where the color image is more blurred than NIR. Furthermore,
we can deblur the color image in patches where the NIR representation is sharper.
Figure 6.29 illustrates an example where (1) the color image is deblurred in the
background plane and (2) the NIR image is deblurred in the foreground and blurred
in the background planes. By deblurring the background object in the color image,
the depth-of-field slightly increases. Deblurring and blurring the NIR image in
foreground and background planes, respectively, result in an NIR image that has
the same focus plane of the original color image.

As mentioned earlier, the amount of blur changes in the image when the objects
are placed close3 to the camera. Otherwise, the blur kernel can be assumed uniform.
Figure 6.30 shows one example of such a scene. We apply our blur-kernel map
estimation to this example and show the result of using only the blur clues (without
exploiting color information) in Figure 6.30-(c). As can be seen, our algorithm
estimates a uniform kernel for the majority of patches. Figure 6.30-(d) shows the
blur-kernel map computed by both blur and color clues. This map contains one plane
for the whole image. Hence, for this case, applying a spatially variant deblurring
algorithm does not change the result compared with using the deblurring algorithm
proposed in Chapter 5.

3In the order of a few centimeters to one or two meters depending on the camera settings.
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(a) The blur kernel map (b) The blur kernel map overlaid on the NIR image

(c) The original color image. The foreground ob-
jects are in focus and the background object is out
of focus.

(d) The original NIR image. The foreground ob-
jects are blurred. The background object is sharper
than the color representation.

(e) The background object is deblurred. This in-
creases the depth-of-field compared with the orig-
inal color image in (c).

(f) The foreground objects are deblurred and the
background object is blurred in the NIR image.
The focus plane of this processed image is simi-
lar to the original color image shown in (c).

Figure 6.29: The blur kernel map obtained by our algorithm can be effectively used
to deblur the NIR image in patches where the color image is sharper. Moreover,
the color image can be deblurred on the background plane where the NIR image is
sharper.
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(a) The color image (b) The NIR image

(c) The blur kernel-map computed
based on the blur clues only

(d) The blur kernel-map obtained
by using the blur and color clues

(e) The result of spatially-varying
deblurring

(f) The result of uniform deblurring

Figure 6.30: For this scene the amount of blur in the NIR image with respect to the
color image is spatially invariant. Hence, estimating the blur-kernel map does not
improve the deblurring result.
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6.5 Summary

The severity of chromatic aberration distortions in the NIR image changes with the
object depth if the scene is close to the camera or with a shallow depth-of-field. In
this case the assumption of spatially varying blur kernels does not hold anymore.

We developed an algorithm that locally analyzes and compares the sharpness
levels in a pair of color and NIR images. The differences in local sharpness values
provide information about the amount of blur kernel in one of color or NIR represen-
tations with respect to the other. Combined with color information, the local blur
clues result in dense blur kernel maps that assign different σ values to objects placed
at different distances from the camera. Our deblurring algorithm explained in the
previous chapter is adopted to separately deblur each region that has a uniform blur
kernel. A smooth fusion of deblurred regions results in visually pleasing images.

We also presented a simplified version of this algorithm that binary segments
the image into regions where the color image is sharper than NIR (foreground), and
patches where NIR is sharper. The binary mask is used to deblur the foreground
plane in the NIR image.
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Chapter 7

Conclusion

7.1 Thesis Summary

Current color-and-NIR acquisition techniques, customized mainly for industrial and
scientific use, are too expensive and inconvenient for “everyday” photography. We
proposed an acquisition solution that can be implemented using the hardware com-
ponents similar to those of consumer color cameras. Our proposed system reduces
the manufacturing costs and paves the way for the mass production of consumer
color-and-NIR cameras. Throughout the thesis, we showed that the joint acquisi-
tion of color and NIR is more challenging than conventional color imaging. First,
because data with a higher spectral resolution (four channels instead of three chan-
nels captured in color imaging) is recorded. More importantly, as quantified in
Chapter 3, the dependency between NIR and color channels is usually weaker than
the correlation between color channels.

In the first part of the thesis, we studied the spectral and spatial sampling of the
scene, and illustrated that color and NIR acquisition on a single sensor is feasible as
silicon-based sensors are sensitive to both visible and NIR bands of the spectrum. We
developed an algorithm that, based on the correlation characteristics of these images,
designs an optimum color filter array. The optimized CFA is accompanied by a linear
demosaicing that reconstructs full-resolution images. Our algorithm optimizes the
CFA and the demosaicing matrix by (1) minimizing the error of reconstructing full-
resolution images and (2) maximizing the correlation between the high-frequency
information of color and NIR images. Both objective and subjective comparisons
confirm the superiority of our method over a similar algorithm presented in [91].

We also analyzed the use of the RGBN CFA made of inexpensive dye filters,
similar to those used in current color cameras. As discussed in Chapter 4, the main
limitation of using the RGBN CFA is the cross-talk between color and NIR filters. As
a result of this deficiency, the sensor records a mixture of visible and NIR radiations
at every pixel. Our solution for this problem un-mixes the measurements by relying
on the spatial and spectral correlations of color and NIR images. We exploited the
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correlation through training sparsifying transforms that compactly represent the
signal.

We compared the performance of our optimized CFA and the RGBN CFA with
the state-of-the-art techniques developed for single-sensor multi-band acquisition.
Our studies showed that the optimized CFA performs the best in terms of most
quality metrics. The RGBN CFA and our reconstruction algorithm achieve the
image quality comparable with the results of other techniques. Compared with the
complicated sampling strategies proposed by other techniques, the RGBN CFA is the
most similar to the CFAs used in current color cameras. Moreover, our algorithm
is the only one that models and addresses the cross-talk between color and NIR
radiations caused by the imprecise cut-offs of dye filters.

In Chapters 5 and 6, we analyzed chromatic aberration distortions when using
simple lenses that reduce chromatic aberration in color channels but remain uncor-
rected for the NIR band. We tackled this issue by deblurring the NIR image when
the color image on the sensor plane is in focus and sharp. Our main goals were to
retrieve the lost details of NIR by using the gradients of the sharp color image and
to maintain the inherent differences between these images. We achieved these by
iteratively deblurring NIR and measuring the local correlation between color and
NIR gradients in a multiscale fashion. Our algorithm performs better than blind de-
blurring algorithms in retrieving the sharp edges without producing visual artifacts.
We also showed that the general approach employed in color imaging to reduce chro-
matic aberration distortions discards the intrinsic differences between color and NIR
images. This is critically problematic as the algorithms that fuse color and NIR rely
mainly on the differences between these images. Our guided deblurring algorithm
successfully preserves these differences.

In Chapter 6, we demonstrated that variations in object distances could cause
noticeable changes in the amount of blur across the image. This is specifically
pronounced in macro photography. We developed an algorithm that estimates a
dense blur-kernel map by combining local sharpness measures computed for the pair
of color and NIR images, and color information. By using the blur-kernel map,
our guided deblurring algorithm is applied separately to each region of the NIR
image that is blurred by a uniform kernel. The final image is obtained by smoothly
combining different deblurred regions. Our algorithm outperforms the state-of-the-
art methods [23], [159], and [138] in estimating the blur-kernel map. As a result,
the images deblurred by our algorithm, compared with the results of these methods,
contain sharper edges without noticeable artifacts. Our blur-kernel estimation and
deblurring methods do not require any information about the lens and the focus
settings.
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Figure 7.1: The PixelTeq color and NIR camera (PixelCam) monitors coffee beans.
Visible and NIR active light sources are used for this demonstration. The left half
of the screen shows the color image, and the right part shows the NIR image. Note
that the NIR light leaks into the color filters. The NIR radiation is observed as
purple stripes in the color image. This photo is taken at the Photonics West 2015
exhibition.

7.2 Future Research

Motivated by diverse applications of color and NIR images, a few camera manufac-
turers, such as Omnivision and PixelTeq, have recently focused on a single-sensor
acquisition solution. The algorithms developed in this thesis for spatial and spectral
sampling and chromatic aberration reduction benefit the challenges these manu-
facturing efforts come across. At the Photonics West 2015 conference, PixelTeq
exhibited a camera that uses a color and NIR mosaic. Figure 7.1 shows the camera
while it monitors coffee beans. Visible and NIR active light sources are used for this
demonstration. The zoomed-in region shows that the NIR radiation leaks into color
filters as purple stripes (the red dots are the projections of the visible-light source).
Our separation algorithm, presented in Chapter 4, is designed to solve this problem.
Analyzing the performance of our algorithm in this camera could be a part of the
future research in this field.

As shown in Chapter 6, the amount of chromatic-aberration blur in the NIR
image with respect to the color image depends on the object depth. It would be
interesting to investigate the use of our blur kernel map in estimating the depths
of objects in the scene. In order to calculate absolute depth values, the camera
and the lens should be calibrated in different acquisition settings, similar to what is
done for a color camera by Trouvé et al. in [145]. This approach will probably not
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be as accurate as active depth-estimation systems such as Kinect or time-of-flight
cameras [77, 55]. It will, however, be useful for outdoor scenes where Kinect fails to
calculate reliable depth maps.

We addressed two of the most important issues in the single-sensor acquisition
of color and NIR images. There still remain a few questions that require further
research. For instance, without an NIR-blocking filter, every pixel receives both
color and NIR radiations. This, considering the limited charge capacity of pixels,
is problematic when recording scenes with extremely high dynamic-range especially
if the light source radiates strongly in both visible and NIR bands. This problem
could be analyzed thoroughly once a color and NIR camera prototype is accessible.

Some of the commonly used light sources, such as fluorescent, radiate weakly in
the NIR band. This causes problems when taking pictures in environments that are
illuminated solely by fluorescent light sources. An NIR flash could be used in such
a situation. As NIR is invisible and harmless, using an NIR flash does not disturb
the user or the environment. To resolve this issue, it would also be interesting
to investigate exposing the NIR pixels more than the color pixels. This technique
is explored in high dynamic-range imaging where an optical mask with spatially
varying transmittance is placed next to the sensor [110].

All the ground-truth images used in this thesis were captured in two sequential
shots when NIR-blocking and visible-light-blocking filters are placed in front of the
lens. This method limits the images to representing scenes that do not contain
moving objects. Although not fundamentally different, color and NIR acquisition
should be tested for scenes with moving objects.

Some of the in-camera processing steps, implemented in current color cameras,
should be adopted when the additional NIR band is captured. For instance, com-
pression standards employed in current cameras are optimized for color images. The
framework needs to be customized for joint compression of color and NIR images.
In [130], we conducted an initial study on the joint compression by removing the spa-
tial and spectral redundancies of these images. Moreover, the NIR information could
be used to improve the white-balancing in the camera, as common light sources, de-
spite having similar power spectra in the visible range, behave very differently in
the NIR band. These differences are explored by Fredembach and Süsstrunk in [44]
to detect the dominant illumination in the scene.

In this thesis, the NIR was defined as the spectral band that covers the wave-
length range of 700 nm (right next to the visible spectrum) up to the silicon sen-
sitivity limit (wavelength of 1100 nm). Hence, the wavelength range captured in
joint acquisition is more than twice the range recorded in color imaging. This, as
discussed throughout the thesis, introduces challenges in different aspects of acqui-
sition. Limiting the recorded NIR information to a smaller wavelength range eases
these difficulties as the correlation between color and NIR channels increases. This,
however, might restrict the applications that fuse color and NIR images, as they
rely on the differences between these images. Another possible direction for future
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research is to find an NIR sub-band that achieves the best compromise between the
acquisition quality and the gain obtained by combining color and NIR information.

Our work addressed a special case of multispectral imaging where four spectral
channels are captured. The design issues studied in this thesis are also encountered
in a more general single-sensor multispectral acquisition system, especially if both
visible and infrared radiations are captured. Our algorithms and the results of our
study could be extended to solve the challenges in such an acquisition system.
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Appendix A

Optimizing CFA and Demosaicing

In Chapter 3, we presented an optimization problem for designing CFA and de-
mosaicing matrices used in the joint acquisition of color and NIR images. The
optimization problem is solved by iteratively updating the demosaicing matrix and
the CFA coefficients. In this chapter, we derive the details of this optimization.

Let us call the cost function of our optimization problem (see (3.20)), J(A,D).
Recall that A contains the CFA coefficients and D is the demosaicing matrix. The
cost function is:

J(A,D) = ‖SP−DAP‖2F + λ(‖S1DAP‖2F + ‖S2DAP‖2F ). (A.1)

To expand the above cost function, we use the following equation that holds for any
matrix, Z:

‖Z‖2F = Tr(ZTZ), (A.2)

where Tr is the matrix trace (sum of its diagonal elements), and T denotes the
transpose operator. We expand (A.1) as follows:

J(A,D) = Tr((SP−DAP)T (SP−DAP)
+ λ(S1DAP)T (S1DAP) + λ(S2DAP)T (S2DAP))

(A.3)

We start by finding the optimum point of (A.1) with respect to D when A is
fixed. After expanding (A.3) and removing the terms that do not depend on D, the
cost function with respect to D is:

J1(D) = Tr(−2DAPPST ) + Tr(PTATDT (I + λST1 S1 + λST2 S2)DAP), (A.4)

where I is the identity matrix.
The following equations hold for all matrices Z, B, and C [116]:

∇
∇ZTr(BZCZTBT ) = CTZBBT + CZBBT ,

∇
∇ZTr(ZB) = BT .

(A.5)
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Using (A.5), we have:

∇J1(D)
∇D = −2SPPAT + 2(I + λST1 S1 + λST2 S2)DAPPAT . (A.6)

Setting the above gradient to zero, we obtain the optimum demosaicing matrix:

D = (I + λST1 S1 + λST2 S2))†(SP)(AP)†. (A.7)

To update CFA coefficients, as explained in Chapter 3, we write:

A = A0 +
∑
i

αiAi. (A.8)

where A0 and Ais are fixed matrices, and αi are CFA coefficients. For the sake of
brevity, we define the following matrices:

X0 , SP−DA0P Xi , DAiP
Y0 , S1DA0P Yi , S1DAiP
Z0 , S2DA0P Zi , S2DAiP.

(A.9)

Using (A.3), (A.8), and (A.9), the cost function with respect to the CFA coeffi-
cients is:

J2(α) =
∑
i

αiTr(YT
i Y0 + ZTi Z0 −XT

i Xi)

+
∑
i

∑
j

αiαj
1
2Tr(X

T
i Xj + YT

i Yj + ZTi Zj).
(A.10)

In the above formulation, α is a vector that contains CFA coefficients. We define
the vector p and the matrix Q as follows:

pi = Tr(YT
i Y0 + ZTi Z0 −XT

i Xi)
Qij = Tr(XT

i Xj + YT
i Yj + ZTi Zj),

(A.11)

where pi is the ith element of p, and Qij is the element at row i and column j.
Using these definitions, the CFA coefficients (α) are updated by solving the following
quadratic optimization problem:

α = argmin
α

1
2α

TQα+ pTα, s.t. 0 ≤ α ≤ 1. (A.12)



Glossary

R The red channel in a color image. 17, 31, 32, 42, 45, 51, 74, 76

G The green channel in a color image. 17, 31, 32, 42, 45, 51

B The blue channel in a color image. 17, 42, 45, 51

N The NIR image. xii, xiii, xv, xxiii, 41, 42, 45–53, 55–57, 63, 74, 76, 85, 86,
98–103, 105, 108, 111, 121–123, 138–140

I A gray-scale, color, or multi-spectral image. 18–20, 33, 34, 40, 41, 56, 85–87, 122,
123, 139

k The blur kernel that models the shape and amount of blur in an image. 33, 34

N Noise that usually contaminates the image during acquisition or further process-
ing. 33

∇ The gradient operator. 34, 108, 111, 122, 123

Y The luminance channel of the color image that contains spatial (achromatic)
information about the scene. It is either computed as the average of color
channels or is the luminance channel in the YCbCr color space. xii, xv, xxiii,
40–42, 44, 46–50, 53, 55, 63, 98–103, 105, 108, 122, 123, 138
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