Supplemental material for the paper "Discriminative learning of Deep Convolutional Feature Point Descriptors"

Edgar Simo-Serra^{*,1,5}, Eduard Trulls^{*,2,5}, Luis Ferraz³

Iasonas Kokkinos⁴, Pascal Fua², Francesc Moreno-Noguer⁵

¹ Waseda University, Tokyo, Japan, esimo@aoni.waseda.jp

² CVLab, École Polytechnique Fédérale de Lausanne, Switzerland, {eduard.trulls,pascal.fua}@epfl.ch

³ Catchoom Technologies, Barcelona, Spain, luis.ferraz@catchoom.com

⁴ CentraleSupelec and INRIA-Saclay, Chatenay-Malabry, France, iasonas.kokkinos@ecp.fr

⁵ Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain, {esimo,etrulls,fmoreno}@iri.upc.edu

The contents can be summarized by the following:

- Results for multiple architectures, including different numbers of convolutional layers, fully connected layers, different rectifiers, etc. We studied a large number of strategies exhaustively, and settled on the solution used throghout the submission: fully convolutional models with three layers, i.e. CNN3 (see Sec. 3.1 for details). These experiments were not included in the paper due to space constraints.
- Results for multiple metrics. As we argue in Sec. 4, Precision-Recall (PR) curves are the most appropriate metric for this problem; however, we also consider Receiving Operator Characteristics (ROC) and Cumulative Match Curves (CMC). For the experiments of Sec. 4.2 we also include the numerical results for each test fold separately (see Sec. F). Please note that these results do not include every baseline considered in the final version of the paper.

A. Metrics

As we argue in Sec. 4, PR curves are the most appropriate metric for this problem. We also consider ROC and CMC curves. ROC curves are created by plotting the true positive rate TPR as a function of the true negative rate TNR, where:

$$TPR = \frac{TP}{P}$$
 $TNR = 1 - \frac{FP}{N}$ (1)

Alternatively, the CMC curve is created by plotting the Rank against the Ratio of correct matches. That is, CMC(k) is the fraction of correct matches that have rank \leq k. In particular CMC(1) is the percentage of examples in which the ground truth match is retrieved in the first position.

We report these results for either metric in terms of the curves (plots) and their AUC (tables), for the best-performing iteration.

B. Depth and Fully Convolutional Architectures

The network depth is constrained by the size of the patch. We consider only up to 3 convolutional layers $(CNN\{1-3\})$. Additionally, we consider adding a single fully-connected layer at the end (NN1). Fully-connected layers increase the number of parameters by a large factor, which increases the difficulty of learning and can lead to overfitting.

An overview of the architectures we consider is given in Table 1. We choose a set of six networks, from 2 up to 4 layers. Deeper networks outperform shallower ones, and architectures with a fully-connected layer at the end do worse than fully convolutional architectures. We settled on CNN3 and used it for the rest of experiments in this supplemental material, as well as the experiments reported in the submission.

Table 2 lists the results, and Figs. 1, 2 and 3 show the PR, ROC and CMC curves respectively.

Name	Layer 1	Layer 2	Layer 3	Layer 4
CNINI2 NINI1	32x7x7	64x6x6	128x5x5	128
CININS_ININI	x2 pool	x3 pool	x4 pool	-
CNN3	32x7x7	64x6x6	128x5x5	-
CININS	x2 pool	x3 pool	x4 pool	-
CNN2a NN1	32x5x5	64x5x5	128	-
CININZALININI	x3 pool	x4 pool	-	-
CNN25 NN1	32x9x9	64x5x5	128	-
CININ2D_ININI	x4 pool	x5 pool	-	-
CNN2	64x5x5	128x5x5	-	-
CININ2	x4 pool	x11 pool	-	-
CNN1 NN1	32x9x9	128	-	-
	x14 pool	-	-	-

Table 1: Various convolutional neural network architectures.

Architecture	Parameters	PR AUC	ROC AUC	CMC AUC
SIFT	—	.361	.944	.953
CNN1_NN1	68,352	.032	.929	.929
CNN2	27,776	.379	.971	.975
CNN2a_NN1	145,088	.370	.987	.988
CNN2b_NN1	48,576	.439	.985	.986
CNN3_NN1	62,784	.289	.980	.982
CNN3	46,272	.558	.986	.987

Table 2: Experiments on depth and fully convolutional architectures.

Figure 1: PR curves for the experiments on depth and architectures.

Figure 2: ROC curves for the experiments on depth and architectures.

Figure 3: CMC curves for the experiments on depth and architectures.

C. Hidden Units Mapping, Normalization, and Pooling

It is generally accepted that Rectified Linear Units (ReLU) perform better in classification tasks (see Krizhevsky et al., NIPS 2012) than other non-linear functions. We consider both the standard Tanh and ReLU. For the ReLU case we still use Tanh for the last layer. We also consider not using the normalization sublayer for each of the convolutional layers. Finally, we consider using max pooling rather than L_2 pooling. We show results for the fully-convolutional CNN3 architecture in Table 3 and Figs. 4, 5 and 6. The best results are obtained with Tanh, normalization and L_2 pooling ('CNN3' in the table/plot). This was the configuration used for the experiments in the paper, unless specified otherwise.

Architecture	PR AUC	ROC AUC	CMC AUC
SIFT	.361	.944	.953
CNN3	.558	.986	.987
CNN3 ReLU	.442	.973	.976
CNN3 No Norm	.511	.980	.982
CNN3 MaxPool	.420	.973	.975

Table 3: Experiments on hidden units, normalization, pooling.

Figure 4: PR curves for the experiments on hidden units, normalization, pooling.

Figure 5: ROC curves for the experiments on hidden units, normalization, pooling.

Figure 6: CMC curves for the experiments on hidden units, normalization, pooling.

D. Mining 'hard' positives and negatives

Here we extend the results of Sec. 4.1, including all the metrics, which are summarized in Table 4. Figs. 7, 8 and 9 show the PR, ROC and CMC curves respectively.

$\frac{B_P}{B_P^M}$	$\frac{B_N}{B_N^M}$	PR AUC	ROC AUC	CMC AUC
1	1	.366	.977	.979
1	2	.558	.986	.987
2	2	.596	.988	.989
4	4	.703	.993	.993
8	8	.746	.994	.994
16	16	.538	.983	.986

Table 4: Extended table for the experiments of Sec. 4.1.

Figure 7: PR curves for the experiments of Sec. 4.1 (equivalent to Fig. 6 in the paper).

Figure 8: ROC curves for the experiments of Sec. 4.1.

Figure 9: CMC curves for the experiments of Sec. 4.1.

E. Number of filters and descriptor dimension

We analyze increasing the number of filters in the CNN3 model, and adding a fully-connected layer that can be used to decrease the dimensionality of the descriptor. We consider increasing the number of filters in layers 1 and 2 from 32 and 64 to 64 and 96, respectively. Additionally, we double the number of internal connections between layers. This more than doubles the number of parameters in this network. To analyze descriptor dimensions we consider the CNN3_NN1 model and change the number of outputs in the last fullyconnected layer from 128 to 32. In this case we consider positive mining with $B_P = 256$ (i.e. 2/2).

Numerical results are given in Table 5, and Figs. 10, 11 and 12 show the PR, ROC and CMC curves repectively. The best results are obtained with smaller filters and fully-convolutional networks.

Architecture	Output	Parameters	PR AUC	ROC AUC	CMC AUC
SIFT	128D	_	.361	.944	.953
CNN3	128D	46,272	.596	.988	.989
CNN3 Wide	128D	110,496	.552	.987	.988
CNN3_NN1	128D	62,784	.456	.988	.988
CNN3_NN1	32D	50,400	.389	.986	.987

Table 5: AUC results for the experiments on number of filters and descriptor dimension.

Figure 10: PR curves for the experiments on number of filters and descriptor dimension.

Figure 11: ROC curves for the experiments on number of filters and descriptor dimension.

Figure 12: CMC curves for the experiments on number of filters and descriptor dimension.

F. Generalization & Comparisons with the state of the art

In this section we extend the results of Sec. 4.2. We summarize the results over three different dataset splits, each with ten test folds of 10,000 randomly sampled positives and 1,000 randomly sampled negatives. We show the PR results in Tables 6-8, and Figs. 13-15, the ROC results in Tables 9-11, and Figs. 16-18, and the CMC results in Tables 12-14, and Figs. 19-21.

	Preci	ision-H	Recall	AUC,	Train	: LY+	YOS, '	Fest: N	ND (10	folds)	
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.364	.352	.345	.343	.349	.350	.350	.351	.341	.348	.349
BGM	.490	.490	.487	.487	.496	.481	.490	.488	.483	.480	.487
LBGM	.498	.499	.489	.492	.505	.489	.501	.498	.490	.490	.495
BinBoost-64	.273	.261	.267	.266	.276	.270	.265	.262	.266	.260	.267
BinBoost-128	.456	.449	.447	.447	.465	.449	.452	.452	.451	.445	.451
BinBoost-256	.549	.548	.546	.544	.560	.551	.551	.552	.548	.542	.549
CNN3, mine 8/8	.667	.658	.669	.667	.678	.659	.672	.667	.662	.666	.667

Table 6: Generalized results in Precision-Recall. Models trained over LY+YOS and tested on ND.

Precision-Recall AUC, Train: LY+ND, Test: YOS (10 folds)												
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.	
SIFT	.428	.419	.413	.416	.414	.427	.429	.442	.432	.430	.425	
BGM	.498	.495	.481	.492	.475	.497	.508	.511	.497	.492	.495	
LBGM	.521	.519	.504	.512	.499	.524	.530	.530	.511	.519	.517	
BinBoost-64	.286	.286	.274	.280	.273	.288	.291	.285	.280	.288	.283	
BinBoost-128	.459	.463	.447	.457	.436	.463	.468	.467	.451	.456	.457	
BinBoost-256	.537	.538	.519	.535	.514	.543	.545	.545	.529	.530	.533	
CNN3, mine-8/8	.547	.547	.528	.551	.528	.559	.556	.561	.546	.530	.545	

Table 7: Generalized results in Precision-Recall. Models trained over LY+ND and tested on YOS.

	Preci	ision-H	Recall	AUC,	Train	: YOS	+ND,	Test:]	LY (10	folds)	
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.223	.226	.229	.228	.226	.222	.233	.235	.219	.223	.226
BGM	.269	.265	.280	.255	.272	.261	.281	.267	.272	.258	.268
LBGM	.353	.354	.364	.343	.360	.352	.361	.352	.361	.352	.355
BinBoost-64	.201	.198	.211	.194	.205	.201	.208	.201	.204	.200	.202
BinBoost-128	.351	.338	.351	.335	.348	.345	.353	.349	.351	.346	.346
Binboost-256	.411	.405	.416	.399	.411	.407	.411	.418	.410	.409	.410
CNN3, mine-8/8	.607	.611	.610	.604	.603	.604	.606	.615	.612	.608	.608

Table 8: Generalized results in Precision-Recall. Models trained over YOS+ND and tested on LY.

ROC AUC, Train: LY+YOS, Test: ND (10 folds)												
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.	
SIFT	.956	.954	.955	.958	.957	.955	.955	.955	.956	.955	.956	
BGM	.973	.972	.973	.976	.974	.972	.974	.973	.974	.973	.973	
LBGM	.969	.968	.970	.972	.971	.969	.971	.969	.970	.969	.970	
BinBoost-64	.948	.950	.951	.954	.951	.950	.952	.949	.951	.951	.951	
BinBoost-128	.965	.966	.966	.969	.968	.966	.968	.965	.967	.967	.967	
BinBoost-256	.970	.971	.971	.974	.972	.971	.973	.970	.971	.971	.971	
CNN3, mine-8/8	.986	.985	.986	.988	.987	.986	.989	.986	.986	.986	.987	

Table 9: Generalized results in ROC. Models trained over LY+YOS and tested on ND.

		ROC	AUC,	Train	: LY+l	ND, Te	est: Y(DS (10	folds)	1	
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.949	.947	.948	.949	.949	.950	.949	.950	.950	.950	.949
BGM	.970	.970	.972	.970	.972	.972	.971	.971	.972	.972	.971
LBGM	.966	.966	.967	.966	.969	.969	.967	.968	.969	.969	.968
BinBoost-64	.944	.943	.943	.944	.946	.943	.944	.943	.943	.944	.944
BinBoost-128	.961	.960	.961	.961	.963	.962	.963	.962	.962	.962	.962
BinBoost-256	.967	.966	.968	.967	.969	.968	.968	.968	.968	.968	.968
CNN3, mine-8/8	.974	.972	.975	.974	.976	.975	.975	.975	.976	.974	.975

Table 10: Generalized results in ROC. Models trained over LY+ND and tested on YOS.

		ROC	AUC,	Train	YOS	+ND, '	Test: 1	LY (10	folds)		
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.938	.939	.936	.938	.933	.935	.936	.938	.937	.936	.937
BGM	.962	.962	.963	.961	.960	.961	.961	.962	.963	.962	.962
LBGM	.961	.961	.961	.960	.960	.960	.960	.960	.962	.961	.961
BinBoost-64	.951	.948	.950	.949	.949	.948	.948	.950	.949	.949	.949
BinBoost-128	.962	.962	.961	.961	.961	.960	.960	.963	.962	.962	.961
BinBoost-256	.965	.965	.965	.965	.964	.964	.964	.966	.966	.965	.965
CNN3, mine-8/8	.983	.983	.983	.981	.983	.982	.982	.984	.983	.982	.982

Table 11: Generalized results in ROC. Models trained over YOS+ND and tested on LY.

CMC AUC, Train: LY+YOS, Test: ND (10 folds)												
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.	
SIFT	.964	.962	.963	.966	.965	.963	.964	.963	.964	.962	.963	
BGM	.974	.973	.974	.977	.976	.974	.976	.974	.975	.975	.975	
LBGM	.972	.971	.972	.975	.974	.971	.974	.972	.973	.972	.973	
BinBoost-64	.956	.956	.958	.961	.958	.957	.960	.957	.958	.958	.958	
BinBoost-128	.969	.968	.969	.971	.971	.969	.971	.968	.970	.970	.970	
BinBoost-256	.972	.972	.973	.975	.974	.973	.975	.972	.973	.973	.973	
CNN3, mine-8/8	.988	.988	.988	.990	.989	.988	.990	.989	.989	.989	.989	

Table 12: Generalized results in CMC. Models trained over LY+YOS and tested on ND.

CMC AUC, Train: LY+ND, Test: YOS (10 folds)											
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.956	.955	.956	.956	.956	.958	.956	.957	.956	.958	.956
BGM	.971	.971	.973	.972	.973	.973	.972	.973	.973	.974	.972
LBGM	.969	.969	.970	.969	.970	.971	.969	.971	.971	.971	.970
BinBoost-64	.952	.952	.952	.953	.954	.952	.953	.953	.952	.954	.953
BinBoost-128	.965	.965	.966	.966	.967	.966	.967	.967	.966	.967	.966
BinBoost-256	.969	.968	.971	.970	.971	.971	.971	.971	.971	.970	.970
CNN3, mine-8/8	.980	.979	.981	.981	.982	.982	.980	.982	.982	.982	.981

Table 13: Generalized results in CMC. Models trained over LY+ND and tested on YOS.

CMC AUC, Train: YOS+ND, Test: LY (10 folds)											
Model	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Avg.
SIFT	.948	.949	.947	.948	.945	.945	.948	.949	.948	.947	.948
BGM	.967	.967	.967	.966	.966	.966	.967	.967	.968	.967	.967
LBGM	.965	.965	.965	.964	.965	.964	.965	.965	.966	.965	.965
BinBoost-64	.954	.952	.954	.953	.952	.952	.952	.954	.952	.952	.953
BinBoost-128	.965	.964	.964	.964	.963	.963	.963	.965	.964	.964	.964
BinBoost-256	.968	.968	.968	.967	.967	.967	.967	.969	.969	.968	.968
CNN3, mine-8/8	.985	.985	.985	.984	.985	.984	.985	.986	.986	.985	.985

Table 14: Generalized results in CMC. Models trained over YOS+ND and tested on LY.

Figure 13: Generalized results in PR, first split.

Figure 14: Generalized results in PR, second split.

Figure 15: Generalized results in PR, third split.

Figure 16: Generalized results in ROC, first split.

Figure 18: Generalized results in ROC, third split.

Figure 19: Generalized results in CMC, first split.

Figure 20: Generalized results in CMC, second split.

Figure 21: Generalized results in CMC, third split.