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Introduction

This report summarises the work performed during summer 2003 at the Cen-
tre de Recherches en Physique des Plasmas (EPFL) on the development of
a semi-Lagrangian code. This code is part of a project with the long term
aim of studying gyrokinetic turbulence and anomalous transport in fusion
devices.

Today’s supercomputers allow us to consider the semi-Lagrangian method
(which computes the distribution function on a fixed grid by tracing back in
time the characteristics) as a good alternative to the Particle-in-Cell (PIC)
approach (which is commonly used for gyrokinetic studies). The main ad-
vantages of the semi-Lagrangian method with respect to PIC codes are that
(i) it is not affected by statistical noise and (ii) it gives informations of the
particles distribution function in all phase space coordinates on a structured
grid.

The present version of the code (developed in collaboration with CEA-
Cadarache) globally models the collisionless electrostatic ion drift-kinetic
equations in a straight cylinder configuration. The nonlinear evolution of
ions temperature gradients (ITG) driven instabilities is studied assuming a
uniform magnetic field, B = B¢, adiabatic electrons and neglecting finite
Larmor radius effects. In these hypotheses, the ion distribution function
is a four-dimensional (4D) function, f(r,0,z2,v), and its time evolution is
governed by the 4D Vlasov equation non-linearly coupled with the quasi-
neutrality (3D) equation.

A previous version of the code was based on the parabolic approximation
of particles trajectories and a Newton-Raphson algorithm was used to solve
the corresponding implicit scheme. In order to improve the conservation of
the constants of motion, the parabolic approximation has been substituted
by the direct resolution of the differential equation of the trajectories based
on the Bulirsch-Stoer algorithm. This new semi-Lagrangian scheme consti-



tutes the starting point of this work and in this report we will describe the
improvements that we have introduced in order to obtain a code able to
properly study the saturation phase of the ITG instability.

In Chapter 1, we will analyse the results obtained with the new semi-
Lagrangian scheme, and we will discuss the open problems to be solved: (i)
the appearance of negative values in the ion distribution function during the
saturation phase, and (ii) the necessity of increasing phase space resolution.
In Chapter 2, we will compare different numerical techniques used to address
the problem of negative values in f. In Chapter 3, we will present the first
results obtained with increased resolution using a non-equidistant mesh in r
and v directions.



Chapter 1

The new semi-Lagrangian
scheme

The time evolution of the ions distribution function f(r,8, z,v)) is governed
by the 4D Vlasov equation

of . & of . Of

A : oyl = 1.1

8t+UGC V_]_f+’l)||az+’v||av” 0 (1.1)
where V| = (8/0r, (1/r)8/08), ¥gc = E x B/B?, B = B¢, and E = —V¥.
Eq. (1.1) is nonlinearly coupled to the quasi-neutrality equation:

%, [”;(g;) ﬂ«p] + GJZO(S) (@— < ®>) =ni(r,0,2,8) — no(r)  (1.2)

where Q = ¢;B/(m;) is the ion cyclotron frequency (g; and m; are the ion
charge and mass), n; is the ion density, ng is the initial density profile, T is
the electron temperature and < . > gives the averaged along the magnetic
field lines. Eq. (1.2) is Fourier transformed in @ and 2, and it is solved
by a standard finite element procedure where the electrostatic potential is
discretized along r as a sum over a finite element (cubic spline) basis.

Eq. (1.1) is solved using a time-splitting algorithm which allows us to



reduce the 4D equation (1.1) to a sequence of 2D and 1D equations:
or | Vif =0 1.3
5 vgcVof = (1.3)
of of _
a5 + % =0 (1.4)
of . of

A previous version of the code was based on the parabolic approximation
of Eq. (1.3) and a Newton-Raphson algorithm was used to solve the cor-
responding implicit scheme together with a predictor-corrector method (see
Refs. [1, 2] and Section 1.2). In order to improve the conservation of the
constants of motion!, the parabolic approximation has been substituted by
the direct resolution of Eq. (1.3) based on the Bulirsch-Stoer algorithm.

In Section 1.1, we will discuss basic properties of Hamiltonian systems,
in Section 1.2 the semi-Lagrangian scheme based on the predictor-corrector
method, in Section 1.3 the order of the new semi-Lagrangian scheme and
in Section 1.4 we will present the numerical results obtained using these
schemes.

1.1 Hamiltonian systems

The Vlasov equation (1.1) is Hamiltonian and can be put in the form

ﬁ——a—i+{H f}=0 (1.6)
dt

where {, } are the Poisson brackets and H is the Hamiltonian. This equation
expresses the fact that the distribution function f(z,v,t) is a Lagrangian in-
variant, i.e., it is constant along any particle trajectory (Liouville’s theorem).
As a consequence, the integral over the entire phase space of the distribu-

tion function is a constant, as well as the integral of any arbitrary (smooth)

In our code, we follow the time evolution of the following constants of motion: the
number of ions [ f dR dyj, the entropy [ f In f dR dv||, the L2-norm [ f? dR dv) and
the total (perturbed) energy of the system E; = Ej + Ey, where the kinetic energy is
Ex =1/2) [(f — fm) v” dR dv|| (fum being the equilibrium Maxwellian distribution such

that [ fu dv| =mno) and the field energy is Ef = (1/2) f(n: —no) ® dR.



function of f, C(f), since

dC(f) _ 0C(f)

o = g tTHC()}=0 (1.7)
Thus, the evolution of the distribution function f, described by the Vlasov
equation, is constrained by an infinite number of constants of motion. This
implies, for example, that the volume of phase space regions is conserved,
and that two phase space regions initially disconnected cannot connect at
later times (the number of saddle points is conserved). Since dissipative phe-
nomena are not allowed, an important characteristic of Hamiltonian systems
is reversibility, ¢t — —t.

From a numerical point of view, it is non-trivial to simulate such Hamil-
tonian systems without introducing spurious dissipative effects, as we will see
in the following. Anyway, we will try to take advantage of the fact that, in
the absence of collisions, there is an infinite number of conserved quantities,
and to construct a Vlasov code in such a way as to preserve a good control
of these constants of motion.

1.2 Predictor-corrector method

In this section, we describe the method used in the 4D code to solve the
equations of motion in the r-6 plane before the introduction of the Bulirsch-
Stoer algorithm.

The equations of motion in r-f are solved in cartesian coordinates and
are given by:

X . =
Frie Tec(X (%), 2(t), 1) (1.8)
where X = (z, y) and the components of the guiding-center velocity are
vge: = Ey/B (1.9)
Vgcy = —Em/B (1.10)

The solution of Eq. (1.8) is obtained to second order accuracy by
Xt +dt) — X(t) = dt Gec(X (@t + dt/2), 2(t + dt/2),t + dt/2)  (1.11)

If we suppose that there is a displacement d such that X(t) = X (t+dt)—d
and X (t + dt/2) = X (t + dt) — d/2, Eq. (1.11) becomes

d = dt Tec(X (t+ dt) — d/2, 2(t + dt/2),t + dt/2) (1.12)
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which can be solved using the Newton-Raphson algorithm. Thus, we need
the electric field components E, and E, at time ¢ + dt/2 in order to have a
second order accurate scheme. These components can be obtained using

e a predictor-corrector method: the predictor gives the particle positions
X(t + dt/2) (with first-order accuracy in time), from which we can
calculate the new distribution function and (from the solution of the
quasi-neutrality equation) the electric field at time t+dt/2. Finally, the
corrector uses the (approximated) field calculated with the predictor to
solve Eq. (1.11)

e a leap-frog method (see Ref. [3])

The predictor-corrector method and the time-splitting scheme described
in Appendix A give a solution of Eq.(1.1) which is second-order accurate in

time (apart from the estimate of E obtained with the predictor).

1.3 Bulirsch-Stoer method and its implemen-
tation in the semi-Lagrangian code

The Bulirsch-Stoer method (see Ref. [4]) is an extrapolation method for solv-
ing initial value problems for ordinary differential equations (ODEs). Con-
sider the first-order differential equation

dy(z)

7 = 9@ (1.13)
where the function g is known. Suppose to know y at the initial time z. The
key idea of the Bulirsch-Stoer method is the following: in order to find y at
time = + H, where H is the time-step, H is divided in different sequences
of finer and finer substeps h = H/n. The computed results of y(z + H),
corresponding to the different sequences, are then extrapolated to A — 0.
In the Bulirsch-Stoer method, the integrations are done by the modified
midpoint method, and the extrapolation technique is rational function
or polynomial extrapolation.

The modified midpoint method advances y(z) from a point z to a point



z + H by a sequence of n substeps each of size h = H/n and its formulas are

zn = y()
2y = z+ hg(z, 2)
Zmi1 = Zm-1+ 2hg(z + mh, z,,), Ym=1,2,...,n—-1

1
yz+H) ~ y,= 5[2" + 2p—1 + hg(z + H, 2,)] (1.14)

The modified midpoint method is basically a ‘centred difference’ (second-
order) method except at the first and last points.

In order to implement the previous formulas (1.14) into the semi-La-
grangian code, some modifications are necessary. In our code, the particle
positions are known at time ¢, (i.e., the grid points) and one wants to find
the corresponding positions at the previous time ¢,. Thus, the first simple
modification is to write (1.14) as:

zg = y(z+H)
2y — hg(z + H, z)
Zmi1l = 2Zm-1 — 2hg(z + H — mh, z,,), Vm=12,...,n—1

21

Y(&) ~ tn=glen+ 2ot — ho(@, )] (1.15)

Moreover, since in our case g is known only at time ¢,,, we assume g(z+ H —
mh, zn) = g(z, z,), for all m = 1,2,...,n — 1, so that the sequence (1.15)
reduces to:

20 = y(z+ H)

Q1 = p— hg(:c, 2p)
Zmel = 2Zm-1 — 2hg(z, zp), vm=1,2,...,n—1
1
y(@) ~ ¥n=Slen + 201 — hy(3, 7)) (1.16)

where z,, are calculated explicitly by interpolating (with cubic splines) the
terms g(z, 2,). All the steps in the sequence (1.16) are now of first order in
time, and thus the global scheme is of first order, as confirmed by Ref. [3]).

Despite the fact that the scheme (1.16) is of first order in time, the global
splitting scheme provides a solution of Eq. (1.1) which is more accurate
than the one obtained using the predictor-corrector method together with
a Newton-Raphson algorithm. Why?



The reason is that in our problem the function g(z,y) in Egs. (1.16)
corresponds to the electric field components, E.(r,6, z,t) and Ey(r,0, z, ).
Thus, one has to provide the first derivatives of the potential field ®. Since
® is calculated with cubic splines, its first derivatives are obtained using
quadratic splines.

On the other hand, for the Newton-Raphson algorithm it is necessary to
provide the second derivatives of ®, which are obtained in our code using
linear splines. Thus, even if the Newton-Raphson algorithm allows one to
obtain a second-order scheme in time, it is less accurate in space.

1.4 Numerical results with N = 64 in each
direction

In this section, we describe numerical results obtained with the following
parameters (RUN1):

e phase space resolution: N, = Ng =N, = N, =64

e Geometrical configuration: 7,/p;y = 14.5, where p;o = Mm;Usio/(¢B)
and v = /kpTio/m; (Ti being the ion temperature at the peak,
T = T3(0.57,) = T.); cylinder length: L,/pio = 1508

e density and ion temperature profiles such that L,, = 1/ViInny =
1.2574, L, = 1/V InT; = 0.25r, at the peak

e time step: ditQ2~' = 0.2 (in the following, time is normalised to the
inverse of the ion cyclotron frequency £2); since the convergence studies
of the code with the time step have not been performed yet, we set
dt to a very small value so that dt < |wsm|™ ~ 80, where wj,, is the
frequency of the most linearly unstable ITG mode (in our case, the
mode with n = 3; see, for example, Ref. [2] for the frequency values)?.

o cutoff velocity: v maz/Vthio = 4.15

e The plasma is initialised by exciting a superposition of ITG modes
(m,n) with random phases o;,, and amplitudes 0 < €4, < 0.001,

2Note also that dt = 0.2 < |wazm| ™! ~ 8, where n = 32 is the larger mode studied in
simulations with N, = 64.



f(r,0,2,t =0) = fy[l+h(v)g(r) D, €mn c0s(2mnz/L, + mb + oty )],
where 1 <m < 12,1 <n <4, and where h and g are Gaussians
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Figure 1.1: Time evolution of the relative error in the number of ions (a), the total
energy (b), the entropy (c) and the L2-norm (d) for RUN1 (parameters given in
the main text): Bulisch-Stoer method corresponds to dotted lines and predictor-

corrector to dashed lines.
The parameters of RUN1 are the same as those of the runs presented in

Ref. [3] except for the cutoff velocity, which in Ref. [3] is set t0 v mas/Uthio =

7.33.
by Egs. (1.16) (dotted line in Fig. 1.1) and the predictor-corrector method

described in Section 1.2 (dashed line). Fig. 1.1 shows the time evolution of

We compare the results obtained with the Bulirsch-Stoer method given
the relative error in the number of ions (a), the perturbed energy (b), the
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Figure 1.2: Spectrum in  (top left), § (top right), z (bottom left) and v (bottom
right) at time ¢ = 720.

entropy (c) and the L2-norm (d). Even if the new scheme gives a better
energy and number of ions conservation with respect to the scheme based
on the Newton-Raphson algorithm (cf. frames (a) and (b) in Fig. 1.1) open
problems still remain.

A quantity which is very useful in order to understand if the chosen
resolution is sufficient is the Fourier spectrum of the perturbed distribution
function, 6f = f — fu. In Fig. 1.2, the Fourier transforms at time ¢t = 720
of 0f with respect to 7, 6, z and v are shown (these results refer to the
Bulirsch-Stoer method). This figure shows that small scales come into play
very early in the simulation (at time ¢ ~ 700, which corresponds to the end of
the linear phase3, see Fig 3.5, and even before using the predictor-corrector
method), and they first appear in 6 direction. Indeed, the # spectrum at

3This explains why Fig. 2.2 in Ref. [3] is difficult to understand: a study of the con-
vergence in df is performed until ¢ ~ 4000 while spatial resolution starts to give numerical
problems at time ¢ ~ 700.

10



time ¢ = 720 is flat near the boundaries m = +32 and the mode amplitudes
are of the order of 1074

Moreover, the distribution function becomes negative at time ¢ ~ 1100
(note that the same occurs also using the Newton-Raphson algorithm).

In summary, even if the Bulirsch-Stoer method gives better results with
respect to the predictor-corrector method (at given resolution and time-step),
there are two main problems which must be solved in order to properly study
the non-linear phase of ITG instability: (i) small scales which appear in the
distribution function must be correctly resolved and (ii) the positivity of f
must be preserved. In the next chapter, we will see how these two problems
are connected.

11



Chapter 2

Solving the negative values
problem

This chapter is organised as follows: in the first part, we will describe two dif-
ferent schemes which preserve the positivity of the distribution function: the
Positive and Flux Conservative (PFC) method (in Section 2.1, see Ref. [5])
and a method based on the direct interpolation of the logarithm of the dis-
tribution function (in Section 2.2, idea by L. Villard). In the last section, we
will present numerical results in 2D phase space.

2.1 Positive Flux Conservative scheme
We want to solve the following equation:
Of + Ou(u(z,t) f) =0 (2.1)

We introduce a finite set of mesh points (z;41/2) of the computational domain
(Zmin, Tmaz), We denote the grid size as Az = Z;y1/2 — Zi—1/2 and the cell as
Ci = [Zi—1/2, Tit1/2)- Assuming that the values of the distribution function
are known at time t" = nAt, one can find the new values at time ¢"*! by
integrating the distribution function over each cell. Denoting by X(s) =
X (s;t, z) the characteristic curve at time s such that X (t) = z and dX/ds =
u(X(s), s) gives

Tiy1/2 D (CTAan FIRPPY|
/ f(z, 1) dg = / flo, ™) JEn 0 g) dr (2.2)

Ti_1/2 X(tritntl iz y/9)

12



where J(t", ", z) = 8, X (t"; t"*!, z) is the Jacobian. If the condition J =1
is satisfied!, one can define the flux as
Tit1/2

St = [ F(a,t) do (2.4

X(trstrtl,zipyy0)

to obtain the conservative scheme

Tit1/2 1 Tit1/2
/ f(z, 1) dz = ®;_15(t") +/ f(z,t") dz — $i4q0(t")  (2.5)
Ti-1/2 Ti—1/2
Introducing the distribution function averaged over a cell
Tit1/2
F(t") = / (@, %) do (2.6)
Ti-1/2
Eq. (2.5) reads

Fy(t™) = Fi(t") + (@i-12(t") — Biapa (7)) /A (2.7)

In the following, the time variable ¢ only acts as a parameter and will be
dropped. We want now a suitable approximation of f over a cell in
order to calculate (approximatively) the fluxes (2.4). One can take
the following expression (see Ref. [5]):

Py
Fla) = i+6Az2

+ (T = zic1p2) (T — Zig1/2)|(Figr — F))

€7.
N [2(z — z:)(z — Zit3/2)

+ (&= zim12)(T — Tigay2)|(Fi — Fioi) (2.8)

In the case of the 4D code, this condition is satisfied, for example, for the z and )
advections (cf. Eqs. (1.4)-(1.5)). For the r-8 advection, in order to have J = 1 one must
consider (instead of Eq. (2.1)) a 2D equation

[2(.’1) - (B,)(IE - 11!«,;-3/2)

8:f+V-(vgc f) =0 (2.3)

and one must generalise Eqs. (2.7)-(2.8)-(2.11)-(2.13), which define the PFC method, to
two dimensions.

13



where € and ¢; are the slope correctors, introduced to guarantee the
positivity of f and defined as:
eF = min(1; 2F;/(Fiy, — F)) if Fi > F;
| min(}; -2(feo — F)/(Fips — F3)) if Fip < B

1

and
- _ J min(};2(fo — F)/(F; — Fi-1)) i F;> Fiy
% =\ min(1; -2F,/(F; — F,_,)) if F; < Fy_,

with fo = max(f). Eq. (2.8) is chosen such that:

Tit1/2
/ Fi dz = F; Az (2.9)

Ti-1/2

Xi+12 s Xit112
L ] l,,e L 1 - T T L e\\ ‘ ! ;
Il \\
Il \\
/ Xj1n
e e — b >

X1

Figure 2.1: (a) Shift in z direction for the case u > 0 (a) and u < 0 (b).

Now, consider the case of positive propagating velocity « > 0. Find
the cell C; such that X (¢";¢t"!,z;) € C; = [Tj_1/2, Tj+1/2] and define (see
Fig. 2.1a)

a =T — X% t"+1,zi+1/2), with: 0 < a < Ax (2.10)
Thus, Eq. (2.4) and Eq. (2.8) give

: +
D12 = Az k=,Z+1 Fi +ofF; + %’ (1 - %) (2 - Aim) (Fj1 — F})

+ £(1-2) - B (2.11)

14



In the case of negative propagating velocity u < 0, one obtains (see Fig. 2.1b)

a =z — X(t" t"+1,x,-+1/2), with: —Ax<a<0 (2.12)
and
I € a?
Diy1p = —Az Z Fi +olf; - é (1 - E) (Fj41 — F;)
k=i+1
_ & & 2N(F. - F.
(2 5,) (1 &) (B~ B (2.13)

In summary, the Positive Flux Conservative (PFC) scheme is based on
the following three main ingredients: (i) a conservative scheme (Eq. (2.7)),
(ii) an approximation of the distribution function over a cell (Eq. (2.8)) and
(iii) slope correctors to guarantee the positivity of f.

2.2 Logarithmic interpolation

In order to solve the problem of negative values in f one can use another
scheme based on a simple idea (by L. Villard).
Instead of calculating the cubic spline coefficients of f, for example in 1D:

fl@) =) calal(z) (2.14)

one calculates first the cubic spline coefficients of the logarithm of f:

Inf(z) =) Zaha(z) (2.15)

and uses &, (instead of ¢,) to interpolate the distribution function at the
particle position z* and calculate In f(z*). Inverting the logarithm now gives
the desired value of f(z*) which, by construction, is positive.

2.3 Numerical results in 2D phase space

In order to test the methods presented in the previous sections, we use a
semi-Lagrangian code in 2D phase space, which solves the Vlasov equation
0 0 0

v—+ E(t, x) B

5 T U5 0 (2.16)

15



where f(z,v,t) is the electron distribution function and E(z, t) is the electric
field. Eq. (2.16) is coupled to the Poisson equation?

Q%%’—Q = /_:f(z,v,t) dv—1 (2.17)

Ions are taken to be motionless and provide a uniform, neutralizing back-
ground. Furthermore, periodic boundary conditions are assumed in z, L
being the box length. Oscillations are excited by initializing a single Fourier
mode k = 27 /L:

f(z,v,0) = far(v)(1 + e cos(kz)) (2.18)

where fy(v) = (21)~/2exp(~v?/2) is the equilibrium Maxwellian. The
Vlasov equation (2.16) is solved using the time-splitting scheme described in
Ref. [6], which is second-order in time.

We use this 2D code because it is much faster than the 4D code and
because it describes a physical problem which is well known. From the results
of this simplified code we can learn a lot on how the semi-Lagrangian scheme
works. We report results for a case with parameters a = 0.05, ¥ = 0.4 and
dt = 0.1, which are the same as those used in Ref. [7] except for the cutoff
velocity, which is set t0 Vpez = 5.

Four different schemes will be compared:

e CS: scheme which uses cubic spline interpolation
e CSLI: scheme which uses cubic spline and logarithmic interpolation
e FC: flux conservative scheme

e PFC: positive flux conservative scheme (which includes the slope cor-
rectors to guarantee the positivity of f)

We consider a case with mesh grid (IV, = 128, N, = 512). First we note
that negative values appear with both the FC (at time ¢ ~ 10) and the CS
method (at time ¢ ~ 60), while the positivity of f is preserved with both
PFC and CSLI.

2In normalized units: time is normalized to the inverse electron plasma frequency w;el,
space is normalized to the Debye length Ap, and velocity to the electron thermal speed
Vr. = Apwge.

16



We now study the time evolution of the Fourier spectrum of the per-
turbed distribution function, é f(z,v,t) = f(z,v,t) — far(v). This quantity,
as said in Section 1.4, is very useful because it tells us if the chosen reso-
lution is sufficient. In Fig. 2.2, the Fourier transform of § f with respect to
v, FT,(0f(L/2,v,t = 60), is shown: the frame on the left refers to the case
obtained using CSLI, while the frame on the right corresponds to the case
PFC.

Figure 2.2: Spectrum in v for the case CSLI (left frame) and PFC (right frame)
for times ¢t = 60 (red) and ¢ = 100 (blue).

Note that:

e In the case CSLI (and the same happens with CS), problems appear
very early in the simulation and first in the v direction

e at t ~ 60, the Fourier transform in v direction of § f shows that small
scales become important and reach an amplitude of the order of 1075 —
1078 both in CS and in CSLI

e The results obtained with PFC show that small scales in v direction are
one order of magnitude smaller that those with CSLI, i.e. of the order
of 107 until the end of the simulation ¢ = 100. Indeed, small details of
the distribution function are eliminated by the algorithm itself which,
as seen in Section 2.1, evolves the average of f over a cell.

Let us analyse now the time evolution of the constants of motion.
From Fig. 2.3, it can be easily seen that
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Figure 2.3: Time evolution of the relative error in the number of ions (a), the
total energy (b), the entropy (c) and the L2-norm (d) for the different schemes.

e the PFC scheme gives very good results because the corresponding sim-
ulation is not affected by negative values (as in the case of FC or CS),
the resolution is sufficient (cf. Fig. 2.2, right frame) and the constants of
motion are conserved to a good accuracy. The force of the PFC method
is to introduce numerical diffusion which smoothes the small scales
and stabilizes the scheme. Indeed, the flux conservative schemes FC
and PFC result to be more diffusive than CS and CSLI, in agreement
with Ref. [5] (the relative error in the entropy and in the L2-norm are
always larger).

e Even if the CS scheme seems to conserve energy and particles number
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to a good accuracy, we already know that it is affected by two problems:
(i) appearance of negative values in f and (ii) insufficient resolution3.

e the CSLI scheme stops to give energy and number of ions conservation
at time ¢ ~ 60 and this is the same time at which small scales become
of the order of 10~¢ (cf. Fig. 2.2, left frame).

But, what happens at time ¢ ~ 60 which destroys the conservations in
the CSLI scheme? As shown in Fig. 2.6, vortices appear in phase space near
the resonance regions v ~ £v,; = £3.21 due to the interaction of the wave
with the particles trapped inside it. In Fig. 2.4, a sequence of frames which
describes the time evolution of the resonant region v = v, in phase space is
shown. At the initial time, ¢ = 0, the particles are moving on free-streaming
orbits. At later times, ‘ripples’ appear and they develope ‘large crests’ which
eventually break down, leading to the closed orbits of the trapped particles.
At time ¢t ~ 60, the ‘topology’ of the orbits changes from free-streaming to
closed orbits. This kind of evolution should be forbidden by the Hamiltonian
nature of the Vlasov equation, as discussed in Section 1.1. The CSLI scheme
seems to be very sensitive to the time at which the smallest scales come
into play and the orbit ‘topology’ changes. As the phase-space resolution
increases, the conservation of the constants of motion obtained with the CSLI
scheme is more accurate, as shown in Fig. 2.5, meaning that the Hamiltonian
nature of the system is destroyed later in time.

On the other hand, the numerical diffusion introduced by the PFC method
regularizes the filamentary structures inside the vortices, as seen from the
comparisons of the two frames in Fig. 2.6 obtained with CSLI (left) and PFC
(right). In Fig. 2.7, the Fourier transforms in = and v of §f are shown at
t = 60 for the two schemes. From this figure, one can see how PFC cuts the
small scales in comparison with CSLI, both in z and v directions.

2.4 Discussion

The numerical study of the 2D problem has given us useful informations on
how different schemes work and on their advantages and disadvantages. Now
we want to discuss the implementation of these schemes in the 4D code.

3From this we learn that the conservation of the constants of motion is only sufficient
but not necessary for having a simulation of good quality.
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Figure 2.4: Contour plots of f in the resonant region at time ¢ = 0 (left top),
t = 15 (right top), t = 60 (left bottom) and ¢t = 70 (right bottom).

In the numerical studies of collisionless systems, one should avoid as much
as possible to introduce numerical diffusion. As an example, one of the open
problems in the study of ITG modes is to understand the mechanisms of
saturation of the zonal flow and to establish if it is due to collisionless or
collisional phenomena. In order to address this kind of problem numerically
one should minimize the introduction of spurious diffusion.

As we have seen in the previous section, the PFC scheme allows us to
obtain the conservation of the constants of motion to a good accuracy but
to have this conservation we have to pay the price of introducing numerical
diffusion to cut the smallest scales.

But there is another way to cut the smallest scales (at least in 7 and 6
directions), which is more ‘physical’. It consists in considering gyro-averaged
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Figure 2.5: Time evolution of the relative error in the ions number (a), the total
energy (b), the entropy (c) and the L2-norm (d) for different values of N, and
using the CSLI scheme.

equations (instead of the drift-kinetic approximation). In this way, a ‘physical
cutoff’, given by the Larmor radius, appears in the system and we can hope to
obtain the same regularizing effects that we have seen using the PFC method
but without introducing spurious numerical diffusion.

In the present version of the 4D code which neglects finite Larmor effects,
we have chosen to implement the logarithmic interpolation to solve the neg-
ative values problem with a minimal introduction of numerical diffusion. As
seen in the previous section, the CSLI scheme is no more conservative when
the smallest scales come into play. This can be considered as an advantage
of the scheme, which responds quickly to the appearance of unresolved scales
with a numerical instability (while, in contrast, the CS method continues
to give a good conservation of the constants of motion (even if the spatial
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Figure 2.6: Vortex in phase space near v = vpe, at time ¢ = 100 obtained with
CSLI (left) and PFC method (right).

107°

10

10

Figure 2.7: Spectra of 6f in z (left) and v (right) directions at time ¢ = 60
obtained with PFC (magenta) and CSLI (black).
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resolution is not sufficient) developing negative values in f).

We have not chosen for the moment the PFC method because we plan
to introduce in the next future gyro-averaged equations which, as discussed
before, should be able to regularize the small structures in a more physical
way.
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Chapter 3

Increasing resolution

In this Chapter, we will present the results obtained with the semi-Lagran-
gian 4D code described in Chapter 1. If one applies the logarithmic interpo-
lation method to solve the problem of negative values in f and if one uses a
phase-space resolution equal to 64 points in each direction (cf. results pre-
sented in Chapter 1 and in Ref. [3]), one obtains a very poor conservation of
the constants of motion (see Section 3.1). Why?

As discussed in the previous chapter, the problem is that the resolution is
not sufficient. This enforces us to introduce a non-equidistant mesh (NEM)
in the non-periodic directions, r and v (see Section 3.2), which enables us
to resolve properly the regions where the physics take place and, at the same
time, to gain in CPU time.

In Section 3.3, we will discuss the results obtained with the present version
of the code, which includes NEM in r and v directions and the logarithmic
interpolation.

3.1 Numerical results with logarithmic inter-
polation and N = 64 in each direction

If we consider the same parameters as RUN1 (cf. Section 1.4) and if the log-
arithmic interpolation is included in the semi-Lagrangian code to guarantee
the positivity of f, the following results are obtained.

In Fig. 3.1, the Fourier transforms at time ¢t = 720 of 4 f with respect
to r, 8, z and v are shown. This figure shows that the & spectrum at time
t = 720 is flat at the boundaries m = 432 and the mode amplitudes are of
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20

Figure 3.1: Spectrum in r (top left), 6 (top right), z (bottom left) and v (bottom
right) at time ¢ = 720.

the order of 1074, meaning that the smallest scales are not well resolved (the
same occurred for RUN1, cf. Section 1.4: Fig. 1.2 is almost equal to Fig. 3.1).

Fig. 3.2 shows the comparison between the results of RUN1 (dotted line)
and those obtained using the logarithmic interpolation (RUN1log, solid line).
This figure shows the time evolution of the relative error in the number of
ions (a), the perturbed energy (b), the entropy (c) and the L2-norm (d)
until time ¢ = 720, which is the time at which the smallest scale come
into play in € direction. Note that, as occurred also in the 2D problem
discussed in Chapter 2, with the CSLI scheme the particles number and the
total energy start to be not conserved when the smallest scales appear, i.e. at
time t ~ 700. Before this time, the conservation of the constants of motion
obtained with CS and CSLI is comparable.

Thus, we need to increase resolution in order to study further in time the
evolution of the system.
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Figure 3.2: Time evolution of the relative error in the number of ions (a), the
total energy (b), the entropy (c) and the L2-norm (d) for RUN1 (parameters given
in Section 1.4) (dotted line) and using logarithmic interpolation (RUN1log, solid
line).

3.2 Non-equidistant mesh

In order to increase resolution mainly in the region where the physics take
place, a non-equidistant mesh (NEM) has been introduced in the non-periodic
directions r and v. The grid mesh is finer in r where the temperature gra-
dient is steeper; in v) direction, the grid mesh is finer where the distribution
function is larger, more precisely in the regions near the phase velocity of the
most unstable n mode, v >~ +1 (see Fig. 3.3).

The cubic spline interpolation has been modified to consider a variable
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Figure 3.3: Distribution of mesh points in r (left) and v (right) directions for
N = 32. Also shown (in red) is the value of the equidistant mesh size corresponding

to double N.

mesh size, as explained in details in Appendix B. The introduction of NEM
allows us to obtain the same physical results with half the number of points
in r and v directions and to gain in CPU time.

As an example, RUN2 with Nr = Ny, = 64, Np = 128 and N, = 32
with an equidistant-mesh gives the same results of RUN3 with Nr = N,, =
N, = 32 and Ny = 128 with NEM; the difference in CPU time is (22 h/16
processors) against (9 h/16 processors) with NEM.

3.3 Numerical results with increased resolu-
tion

Since small scales appear first in the # direction, the number of points have
been increased as shown in the following table (all the other parameters are
the same as those of RUNL, cf. Section 1.4):
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RUN color Ny | Ng | N | Ny, mesh

RUNI1log | green 64 |64 [64 |64 |EM

RUN3 red 32 112832 |32 | NEM
RUN4 blue 32 256 (32 |32 | NEM
RUNS black 32 |512|32 (32 | NEM
RUNG6 magenta [ 64 | 512 {32 |32 | NEM
RUN7 cyan 128 | 256 | 32 | 32 | NEM

In this table, NEM means that a Non Equidistant Mesh has been used in r
and v directions, every simulation is associated to a name (RUN) and a color,
which corresponds to the color used in Fig. 3.4. All the runs in the table have
been performed using logarithmic interpolation. As discussed in the previous
chapter, increasing resolution allows us to study the evolution of the system
further in time and the logarithmic interpolation scheme guarantees that the
introduction of spurious dissipation is minimised.

In Fig. 3.4, the time evolution of the constants of the motion is shown
for the different RUNs. The resolution of RUNG6 is sufficient to study the
saturation phase of I'TG modes with a relative error in the perturbed total
energy less than 6%.

The development of small scales in the nonlinear phase of the instability
can be seen in Fig. 3.5, where the contour plots of f(r,0,L,/2,v; = 0)
are shown for different times. As time evolves, filaments develop in the
distribution function which become finer and finer, until gradients become
so steep that the scheme used is no more able to follow their evolution.

From Fig. 3.5, it is evident how important will be to introduce gyro-
averaged equations, which can regularize structures of the size of the Larmor
radius in a physical way, without introducing spurious dissipative effects.
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semilogarithmic plots); colors correspond to resolutions listed in the table.
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Figure 3.5: Contour plots of f(r,0,L,/2,v = 0) at time ¢ = 288, ¢ = 688 and
t = 1142 for RUNG.
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Conclusions and future work

In conclusion, let us summarise the main points of this report.

We have analysed the numerical results obtained with a semi-Lagrangian
scheme based on the Bulirsch-Stoer algorithm. We have seen that a resolution
equal to N = 64 points in each direction is not sufficient, because small scales
develop and negative values appear in the distribution function.

We have studied different numerical schemes to address the problem of
preserving the positivity of f: the Positive Flux Conservative (PFC) method
and a method based on the cubic spline interpolation of the logarithm of
f (CSLI). We have seen that PFC is more dissipative than CSLI but that it
is more conservative. We have decided to implement CSLI in the 4D code
to avoid as much as possible to introduce spurious numerical diffusion. The
PFC method will be reconsidered when the physical model will be generalised
to gyro-averaged equations. In this case, scales in r and 8 directions smaller
that the Larmor radius are ‘physically’ eliminated. However, the PFC method
may be important to cut small scales in z and v directions.

We have presented numerical results obtained using logarithmic interpo-
lation and increased resolution. We are now able to study the evolution of the
ITG modes until the saturation occurs with a good control of the constants
of the motion.

For the future, we need to

e conclude the study of convergence of the code with resolution, in par-
ticular how the evolution of the system is modified if the number of
points in 2z and v is changed

e study the convergence of the code with the time step at fixed (and
sufficient) resolution

e include finite Larmor radius effects
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Appendix A

Splitting scheme

If we denote by Q the solution of the quasi-neutrality equation and with 2 /2,
/2 and 70 the shifts, respectively, in z, v (over dt/2) and r-@ directions
(over dt), the following sequence of shifting of the distribution function is
implemented in the code when the predictor-corrector scheme is used (see
Section 1.2:

UZomaZol
(2 2QT0Q2Q2) (A1)
or more explicitly:

( ) = f(n,z U= E,dt/2) (
( ) = f*(’l”, 8,z — ’U||dt/2,’UH) (
[ (r0,z,9) = (70,2 (A.4)
( ) = (0,2 —vjdt/2,v) (

( ) = (6,2, - E,dt/2) (

where the electric field component E, is calculated at time ¢, that is £, =
E,(t) = E,(r(t),0(¢), 2(t),t) while E, in Eq. (A.6), is calculated after the
second shift in the z direction, that is E, = E,(t + dt) = E,(r(t + dt), 0(t +
dt), z(t + dt),t + dt). Moreover, 7 and § are obtained by using the Newton-
Raphson algorithm together with the predictor-corrector scheme, as descri-
bed in Chapter 1.

By substituting successively the former equations in the last one, we
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obtain:

P, 0,2,0p) = F***(r,0,2,v — E,dt/2)
= f**(r,0,z— ’U||dt/2, u = Ezdt/Z)
= f*(7, é, z— ’U”dt/2, y — Ezdt/2)
= f*(F, 9, zZ— ’U”dt, U — Ezdt/Z)
= f"(F,8,z — (v — E,dt/2)dt,v — (E, + E.)dt/2)

We find that the previous equation is equivalent to the following equations
of the characteristics:

rt) = #(t+dt) (A.7)
8(t) = O(t+dt) (A.8)
2(t) = 2(t+dt) —dt (v)(t + dt) — E,dt/2) (A.9)
uit) = vyt +dt) - (B, + E,)dt/2 (A.10)

We have already discussed in Section 1.2 the accuracy of the predictor-
corrector scheme for Egs. (A.7)-(A.8). Let us see now which is the order
of accuracy of the last two equations. Eq. (A.10) gives the following scheme:

’U||(t + dt) = (t) = [Ez (t) + FE, (t + dt)]dt/2
= E,(t+dt/2)dt + O(dt®) (A.11)

Thus, Eq. (A.10) is second order accurate. Eq. (A.9) gives the following two
equations:

2() = 2(t + dt) — di(vy (¢ + dt) — E,(t)dt/2) (A.12)

and
z(t — dt) = z(t) — dt(v(t) — E,(t — dt)dt/2) (A.13)

the difference of which is:

z(t —dt) — 22(t) + z(t +dt) = dt(v(t +dt) —y(t))
+dt*(E,(t — dt) — E,(t))/2
= dt*(E,(t+dt) + E,(t — dt))/2
~ di*E,(t) (A.14)

which is again second order accurate in time.
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Appendix B

Cubic splines

B.1 Cubic spline interpolation in 1D

Let us write a 1D function g(z) in terms of cubic spline basis A,(z) for all

T € [Zo, zN] as:
N+1

g9(@) = ) chu(z)
v=-1
where A, are piecewise cubic polynomials (shown in Fig. B.1), twice contin-
uously differentiable, defined by:

((z - z,-5)° ifz, s <z<z
h3 + 3h%*(z — z,-1) + 3h(z ~— z,-1)?
) -3(z — x,_1)3 ifz, ,<z<z,
A(z) = o Q b3 +3h%(z,41 — ) + 3h(zyyy — T)?
=3(zy41 — )3 ifz, <z <z
(Tyy2 — 2)3 fz,1 <2<t
\ otherwise

where h = (zy — z9)/N. The previous definition holds if we consider an
equidistant mesh. We will discuss how to generalize it for the case of non-
equidistant mesh in section B.3.
The coefficients ¢, are computed solving the following system of equations:
N+1

gz:) = ch(z) i=0,N (B.1)

v=-1
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Figure B.1: Cubic spline basis in the case of equidistant-mesh

The system (B.1) can be written in the following matricial form:

Cc-1 (o)

[A] (N+1)x(N+1)
CN+1 9(zn)

Thus, there are (N + 1) equations and (N + 3) unknowns. Imposing periodic
or non-periodic boundary conditions gives rise to other two equations, as
explained in the following subsections.

B.1.1 Non-periodic boundary conditions

In non-periodic case, we suppose that the first (case (a)) or the second deriva-
tive (case (b)) are known at the boundaries. Using the values of the cubic
spline basis listed in the following table:

T Ty_2 Ty Ty Tyl Ty42
A | 0 | 1/6 | 2/3 | 1/6 0
A | 0 |1/@hy| 0 |-1/2h)] 0
Az) [ 0 | 1/K |—2/R*| 1/hZ | 0
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the (N + 3, N + 3) matricial system to be solved becomes in case (a):

s ) (R [
A =] | e
- fan 0 viw) \an) g,
For the case (b), only the first and the last rows change and are replaced by:
(1/R? —2/h* 1/R% 0 --- 0) x &= g"(zo)
(0 --- 0 1/h* —2/h? 1/h%) x = g"(zn)
where &= (c.; ¢ -+ ¢n cNH)t.

If we permute the matrix to keep the boundary conditions in the last two
rows, Eq. (B.2) reads:

and
. (Al
A= A & &
& &
where:
r 2/3 1/6
1/6 2/3 1/6
- A is the (N + 1) x (N + 1) tridiagonal symmetric matrix : e
1/6 2/3 1/6
1/6 2/3
- Ais 2 x (N + 1) matrix : (g s S 3)

t

- is (N + 1) x 2 matrix : 1563 0 1(/)6)
_ (S &y _ (1/(@) O

\'6_(5;'22)_( 0 —1/(2h)
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Besides, A can be factorised in the LU form as:

O A0 I A_l’}’ . T _ -1

A—()‘ S)X(O 7 ) with: 0=0—-AA""y
This LU factorisation is used to solve, by forward and backward substitutions,
the (B.2) equivalent system:

A0y (1 Aty o (Y = (o
Ao 0 I v T \wv
This means, at first, to solve
A0 y v\ _ [(u
A6 v ) T \w
I A—l,y 8 o' _ u"
0 I o)\

Thus, the computation of the coefficients ¢, can be performed in the following
steps:

and then

1. Initialisation :

(a) Factorise and store A
(b) Compute and store A~y
(c) Compute and store the (2 x 2) matrix § = § — AA~ly
2. Time loop :
(a) Compute and store u” = A~'u using the previously computed
factorisation of A
(b) Compute v — AA™ u,
(c) Solve the (2 x 2) system v” = v — AA~'u using the Cramer

-1 __ 1 £-4_ __5-2
formulae for 6! = det(d) \ —&3 & )

(d) Compute u’ using the previous storage of A=l by u' = u" —
A~y where v’ is trivially equal to v".

These steps involve at first the resolution of a tridiagonal symmetric system
in the initialisation and then one at each time loop. These systems are solved
by the LAPACK library subroutines which use a LDL! factorisation for A.
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B.1.2 Periodic boundary conditions

In the periodic case, we cannot use the condition g(zy) = g(zn) because it
is a linear combination of the equations (B.1). Thus, we use the continuity
property of the cubic spline basis on the first and second derivatives:

{gxzo)==g%x~)
gll(xo) — g"(xN)

which gives respectively:

—lc +-}-c +lc —ic =0
oh 1T gp Tt T gp TNl T gptNHL T

and
1 2 1 1 2 1
ot T et e T ot ey — v =0

The equivalent (N + 3) x (N + 3) matricial system becomes:

(2/3 1/6 0 N | N1 1/6\ (00\
C

1/6 2/3 1/6 P00 .

' 16 0 i Ix|en, | =

1/6 2/3 1/6 0 .

o X o ... o0 L o0 -L1 L N
\— 2 % 0 --- 0 R O CN+1
R BT R KT TR RZ \ c-1

\ 0

which can be solved with the same method described in the previous subsec-

tion, the only differences being:

= (0,0)",
0 1/(2h) 0 - 01/(2h) O
—2/h? 1/h% 0 - 0 —1/h2 2/h?

(8&) = (—1/(2h) —1/(zh))
€3 &4 —1/h?  1/h?

-V
A
-4

B.2 Cubic spline interpolation in 2D

Any 2D function g(z,y) can be written in terms of cubic spline basis as

follows:
Nz+1 Ny+1

g(x,y) = Z z C(Va u)A,(x)Au(y)

v=—1pu=-1
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for all z € [z, zn,] and y € [yo,yn,], where N, and N, are the number of
grid points. Thus, in order to compute the coefficients ¢(v, 1), we need to
solve the following system:

Ng+1 Ny+1

g(zi,y5) = Z Z c(v, p)Ay(z:)Au(y;) i=0,Nyand j=0,N,

v=—1pu=-1

This computation can be replaced by solving a succession of 1D systems,
since g(z;,y;) can be written as:

No+1 Ny+1
9(@ny;) = Y Y i)Au(z:) where Y(v,5) = D c(v, 1) Au(y;)
y=-1 p=-1

For these 1D interpolation problems, we can refer to the results of the pre-
vious sections.

B.3 Non-equidistant mesh

In the case of a non-equidistant mesh, let us start from the recurrence relation
for constructing spline functions B;:

T — T Tipk — T

Bi,k—l(x) + Bi+1,k—1($) (B3)

Biy(z)=—— _—
Tivk—1 — T4 Titk — Titl

where B;;(z) = 1if z; < 2 < z;4; and 0 otherwise. If we call h; = z; — z;_,
we obtain for the linear spline basis the following expression

(x—zi)/hips fz;<z<zip
Bio(z) = { (Tig2 — ) /hize f 23y <2< 2540
0 otherwise

for the quadratic spline basis:

((z — 2:)2/ (hig1P12) ifz; <z <z
(Tive — 2) (7 — 2:) [ (Rivahi2)+

B;3(z) = { +(zirs — z)(& — Tit1)/ (hizohes) if 241 < 2 < Tipo
(Zir3 — x)?/(Riyshes) ifr0 <z < Tiy3

\ 0 otherwise
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where his = h;y; + hyo and hgg = hjo + hiy3. Finally, for the cubic spline
basis:

((z — 2:)%/ (his1hrohazs) ifr; <z <y
(Zire — z)(z — 7:)?/ (hizehizhios)+

+(zi+3 — 2)(z — 2:)( — Tiy1)/(hir2hashizs)+

+(Zits — 2) (2 — Tit1)?/ (hivahashass) ifri <z < Tigo
Bia(z) = § (ziys — 2)%(z — ;) /(hiyshoshias)+

+(%i+4 — T)(Ti43 — ) (T — Tiv1)/(hivshashoss)+

+(Zisa — 7)%(2 — Tiva)/(Pirshsahoss) if 20 <7 <7Ti43
(Zita — )%/ (Rirahsahazs) if 2 <7< Tigy
0 otherwise

\

where hgq = hiy3+hipg, P2z = hip1+Hhija+higs and hozg = hiyo+hi3+hiyg.
One can easily check that the previous expression corresponds to the one
given in Section B.1if 7 —» v — 2 and h; = h.

Figure B.2: Cubic spline basis in the case of non-equidistant mesh

B.3.1 Non-periodic boundary conditions

In the non-periodic case, we suppose, as before, that the first derivate is
known at the boundaries. For reference, we rewrite the expression derived in
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the previous section as

((z = 2,-2)2/(hyo1ha2) fz, s<z< 200
(z, — z)(z — zy—2)/(hyh12)+

B,s(z) = { +(zvs1 — 2)(T = 2021)/(hohes) ifz,1 <z <3,
(@y41 — )%/ (Pus1has) ifz, <z <zpps

\ 0 otherwise

where hyo = h,_1 + h, and hg3 = h, + h,;. For the cubic spline basis, we
have:

( (2 — 2y-2)*/ (hu—1h12h123) ifr, ,<z<z,,
(zy — 2)(z — Ty—2)?/(huh1ghias)+

+(Ty41 — z) (T — Tuo2)(T — Tuo1)/(Puhoshios)+

+(Zyre — ) (T — Zy—1)2/ (hyhoshass) ifz, ,<z<z

B,4(z) = ¢ (zy41 — 2)2(z — Ty—2)/(Pus1hoshios)+
+(Tyi2 = 2)(Tu1 — 2)(T — Tu—1)/(Pus1hashoss)+
+(Zy12 = 2)%(2 — 2,)/ (hy41hashass) fz, <z <z
(zv42 — )3/ (hut2hashoss) ifz,1 ST < Tt
0 otherwise

\

where hgqy = hyy1+hyi2, h12s = by +h,+hyq and hogy = hy+hyay +hyyo.
For the derivative of spline functions, the following relation holds [8]

g [ N+2 .
— cB, ()| = k—1)—~—>" B . iz B.4
4 [Z )| = -0 p, @) (B

where c_; = cy42 = 0. Eq. (B.4) can be written as:

Edz[g:l c.,Bu,k(a:)] - g:l(k—l)cu( e B”“”‘—l(x))

v=-1 Ty4+k-3 — Ty—2 Tygk—2 — Ty-1

v=-1

N+1

= Z c,,B,,,k_l(x) (B.5)

v=-1
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Let us write explicitly B,,,;;:

r

(17 - $u-2)2/(hu—1h12h123)

(zv — z)(z — Ty—2)/(hyh12hi23)+
+(zy+1 — 2)(x — 2,—1)/ (huhoshias)+
—(z — zy-1)%/(hyhoshass)

(zv41 — 2)?/ (hu1hashizs)+

—(Zv41 — Z)(x — Tyo1)/ (hos1hashoss)+
—(Tv42 — x)(x - $u)/(hu+1h34h234)
—(Zv+2 — 2)?/ (hu+2hsahass)

0

o]

,,,3(:1:) =34

\

ifr, s<z<3

ifr,1<z<ux,

ifr, <z<z4y
ifr, 11 <z< 1040
otherwise

Using Eq. (B.4) (or, equivalently, Eq. (B.5)), we find that the following rela-

tions hold at the boundaries:

3 Cop—C_1 €1 —Cp
"(zo) = h; + h
g( 0) h0+h1 (.’L’l — T2 ! T9g — T3 0
3 l: ( hl h() Clho C_lhl ]
= co - -+
ho + hy Ty —Z.9 To—T_1 To—T_1 X1—T_s
= C()Fo + ClFl + C_1F_1 (B6)
3 CN — CN-1 CN+1 — CN
"(z = h + h
g'(an) hn + byt ($N+1 —Zn_z T Znes — TNy N
- 3 hnti hn
= [CN —
hn + hynit IN+1 — TN—2 ZIN42 — TN-1
" cN+1hy cn-1hn41
IN42 —IN-1 IN41 — TN-2
= cyFv+evpFva+evo1Fyog (B7)

Using the previous two equations and the values of the cubic spline basis

listed in the following table:
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T Ty-1 Zy Tyt

(-1) _ B ©) _ hyt1hi2 | hyhgg M) _ s
Byu(z) v h12h1123 Dy h23 ( h11231 haas ) D)= hashaas
Boa(z) | hu-1/ha hu1/has 0

B, 3(z) | 3hy_1/(h1ah123) | 3(hyt1/h12s — hy/hosa)/hes | —3hy,+2/(hsahosa)

the (N + 3, N + 3) matricial system to be solved becomes!:

F., F F c g,($0)

W op o o) [a)] ()
p® pO p{u :

X = (B.9)
0 by, oY D{ kCN 9(zn)
\ Fy_1 Fy FN+1/ CN+1/ \g'(ﬂfzv))

If we permute the matrix to keep the boundary conditions in the last two
rows, Eq. (B.9) reads:
(9(z0), -, g(zn))*

(9-() e
v = (g'(zn), g'(20))*

1The coefficients ¢, are computed solving the following system of equations

= (o, ,en)*
= (

CN+1, 0—1)

N+1

g(:z:,-) = Z Cqu,4(zi)

v=-1

= ¢1DM, +¢,D9 + ¢, DY (B.8)
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and
Al v

/i= fl 52
Me &

where:

r D(()O) Dg—l)
D(()l) Dgo) Dg—l)
- A is the (N + 1) x (N + 1) tridiagonal matrix : :

4 ese
- A is 2 X (N + 1) matrix : (goFlqu;I i)
3 . D(ll) 0 0 t
-y is (N +1) x 2 matrix : o bty
%)
F, 0
L.6: g;gj) - ( N0+1 F_1)

which can be solved with the same method described in Subsection B.1.1.

B.3.2 Periodic boundary conditions

In the periodic case, we use, as before, the continuity property on the first
and second derivatives, which gives the following relations:

ClFl -+ C()Fo -+ C_.IF_I = CN_1FN_1 + CNFN + CN+1FN+1 (BlO)
aGiY + Gy +eaGY = eniGF, + eGP + cN+1GS;i)1(B.11)

where the coefficients F; are defined in the previous sections and G; are given
in the following table:

Z Ty—1 Ty Ty41

B, () G.(/_l) = 5 G,(,o) = _hg_s [; + ﬁ] G,(,l} _ _6

) T hizhias hi23 " haghaaq
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Let us write explicitly B, o:

’2(37 — Ty_2)/(hy—1h12h123) ifr, s <z<z,,
(zy + Ty—2 — 2z)/(hyh12h123)+

+(@y41 + Tyo1 — 23)/(hyhoshias)+

—2(z — zy-1)/(hyhashazd) fz, 1<z<z
B,a(z) = 3 —2(zy41 — 7)/(hy41hoshios) +

—(Zv41 + Tu—1 — 23)/ (hut1hoshose)+

—(zy42 + o — 22)/(hyy1h3ahoss) ifz, <z <z0p
2(zy42 — z)/(Put2h3shazs) ifz, Lz< 40
0 otherwise

\

The (N + 3, N + 3) matricial system to be solved becomes

’LL,=(CQ,"' 7CN)t

A(y)=() e 402 ((5&53?7-1 ),tgm))t
v = (0,0)t

A= & &
A £ &4

- A is the (N + 1) x (N + 1) tridiagonal matrix :

and

where:

p® p{-n
p® p® p{

’ 1. 0. -1
D(N) 2 D(N) 1 D(N )

1 0
D(N) 1 D(N)

) 2is 2 x (N + 1) matrix : ( oy iy o i —FN)

6 0 o), 6O
pWo . o \
-y is (N + 1) x 2 matrix : -

-1
matx: (oo oy
S f(& &Y _ [ TINAL -1
6= (58) = (Tl o)

\

which can be solved with the same method described in Subsection B.1.1.
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B.4 Integration of cubic splines

In the case of equidistant mesh the following relations can be easily calculated

[ " A(2)ds = / " A (z)dz = /24 (B.12)

v—2 v+1

Ty Ty+1
A(@)ds = f A(z)dz = 11h/24 (B.13)

Ty—1

so that the sum gives .
v+4-2
/ A(z)dz = h (B.14)
Ty—-2
The case of non-equidistant mesh presents more algebraic calculations. The
final result is

/ - Bys(z)dz = h_;/(4hizhias) (B.15)
Ty-2
” B,s(z)dz = h,G,/(4hiohoshiazhass) (B.16)
Ty-1
/m o B,(z)dx = hyp1H,/(4hoshsahiashoss) (B.17)
o B, s(z)dz = h3,,/(4h3ahoss) (B.18)
J Tyqy

where G, is the following function

G, = (zpat x'/)(x?/—l + ‘73.2/)(-'13:/—1 —Z,41) +
- (.’Eﬁ_l + :L‘,,_l.’L'ﬁ + 1"12/(-'1"" —3z,41) + :z:,2,_1(.'1:,, - Zyq1)) Tuga +
+ 22 (322 — 22 + 4Ty 1Ty + 220 1(Ty — 2(Tyrs + Tui2))) +
+ Typ(—3z5_; + 320 (—, + Tyy1 + Tuy2) +
Ly -731/(3":2/ — 6z, 11Tp42 + To(Tug1 + Tuga)) +
+ z,_1(=32% - 22,11 %40 + 47, (Ty11 + Tus2))) (B.19)

and H, has an analogous expression. But, instead of using the previous
expression, it is easier to use Gaussian quadrature to calculate the integrals in
Egs. (B.16)-(B.17). Indeed, for a polynomial of degree 3, the result obtained
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with a 2-point Gaussian quadrature is exact?. By the linear x transformation
t =2z — (2, + )]/ (b — Za), z = [(zp — za)t + (2o + )] /2 (B.20)

the interval [z,, z;] can be transformed to [—1, 1] and then

[t = 222 [ e
= Z.[f(Zm — Zctg) + [(Tm + Zcta)] (B.21)

where Z, = (2o + 3)/2, . = (2Z» — Z,)/2 and tg is the Gaussian point
te = 0.577350269189626 (for the 2-point formula, the Gaussian weigth is
equal to 1).

B.5 Dirichlet boundary conditions

In order to impose Dirichlet boundary conditions, we need to change only
the three splines nearest to the boundary. The transformation is such that
the sum of the basis functions at any given point remains equal to one3.

In the case of equidistant mesh, the transformation is given by

3_1,4 6 00 B_i4
Bo’4 =]-41 0] x Bo,4 (B22)
31,4 -1 01 B4
and similarly on the outside boundary:
B{\r_l,4 10 -1 BN—1,4
BN,4 =101 -4} x BN,4 (B23)
Byni14 00 6 Bni14

2For the integration of the product of two As, 4-points Gaussian quadrature is needed,
and the same rule can be generalized to integrate polynomials of higher order.

30ne can easily check that this condition is satisfied by B, . For k = 4, we have
indeed:

1

Bya(®y) + By-1,4(2y) + Bug1,a(z) = hos (

huy1hi2 + huh34)
hi23 hasa

2 2
hv hu+1 — 1
h23h234 h23h123 h23

+ (hy + hyy1) =1
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In the case of non-equidistant mesh, the transformation is

B_.4 Eo 0 0\ [B_is
Bo,4 = C() 1 0] x Bo,4
B4 A 01 By 4

and on the outside boundary:

B{\V—-l,4 10 AN BN—1,4
,.BN’4 =101 CN X BN,4
Bni14 0 0 Ey Byyia

where:
4 = _hj(hoi+ho + ha)
h%(ho + hy + hy)
Co = —[(h_1 + ho)/hl
" ho(hy + ha)(h_1 + ho + hl)]
h2(ho + hy + hy)
E() = 1- (A0+Co)
Ay = _h?v+1(hN +hny1 + hngo
k% (hy-1+ by + hyy1)
Cn = ~[(hn41+hni2)/hn
N hnii(hy + hyo1)(hy + Ay + hN+2)]
k% (hn-1+ hy + hyt1)
Ey = 1-(Ay+Cy)
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