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Abstract

The effect of shaping on the ideal internal kink mode is considered for cases where Aq = [1—go|
may or may not be small. For an analysis which treats the ellipticity e, triangularity § and inverse
aspect ratio (toroidicity) € to be small expansion parameters, a pure triangularity §W contribution to
the kink mode exists which is leading order in magnitude even when Agq is small. Where there is no
elongation, only a pure triangularity term contributes to the effect of shaping on stability.

The motivation for this note is to reflect on a recent paper by Eriksson and Wahlberg [1] which
considers the effect of combined triangularity § and ellipticity e on the internal kink mode potential
energy 6W. The largest shaping contributions in Ref. [1] have been shown to be identical to the shaping
terms of Mercier criterion [2]. The latter Mercier terms have been employed to interprete sawtoothing
behaviour in shaped TCV plasmas [3]. However, recent numerical studies [4] using the KINX code
[5] present results that cannot be explained by Ref. [1]. These include improved internal kink mode
stabilisation for negative triangularity - a regime planned for possible future sawtoothing studies in the
TCV tokamak. The present contribtion attemps to explain the origin of this stabilising effect by taking
into account a pure triangularity term [6, 7]. Although this term was ignored in Ref. [1] it is shown here
that it is generally leading order in magnitude.

In Ref. [1] special attention is given to small Aq = |1 — go|. This follows because for Aq ~ 1 the
shaping terms of Eriksson and Wahlberg [1] are a factor of € smaller than the toroidal term [8] and the
pure ellipticity and triangularity of Refs. [6, 7]. Expanding in small Aq and keeping only Ag® terms
facilitates the previously mentioned agreement between an expression for §W and the shaping terms of
the Mercier criterion [2]. However, it is important to note that while e, J and € are treated as formal
expansion parameters in Ref. [1], Ag is not. In fact the ordering of Ag ~ € must be treated carefully
from the outset as was done for the toroidal case of Ref. [9]. Here it was seen that the field line bending
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for Ag ~ € is a factor of €2 smaller than for conventional q profiles. Hence for Ag ~ ¢, Eq. (1) is the
same order of magnitude as the effects that arise from toroidicity and shaping and therefore does not
in general identify the leading order radial eigenfunction &, as the top-hat. For g profiles which have
T1/a > €, (where 1 denotes values at the ¢ = 1 surface) one finds from Eq. (14) of Ref. [9] that the
internal kink mode is always unstable for conventional sized beta (8 ~ €2). Such a finding gave credence
to Wesson’s quasi interchange mode [10]. In particular, 8 ~ €? is required for an ideal stability threshold
to exist. Hence it is noted here that one cannot have absolute confidence in Eriksson and Whalberg’s [1]
analytical expressions (e.g. Eq. (40) of Ref. [1]) of W for cases where Ag < e. This questions the
correctness of the statement in Ref. [1] which claims that when go approaches unity the geometric factor
governing the stability of the internal kink mode is identical to the corresponding factor in the Mercier
criterion for shaped plasmas. More analytical work is required for the formal treatment of small Aq in
shaped plasmas.

The remainder of this note is dedicated to including all the known analytical shaping contributions
to 6W [6, 7, 1] and comparing the sizes of these terms for both Aq ~ 1 and Aq ~ e. This therefore
requires that £, is assumed to be top-hat throughout. In references [7, 11] the equilibrium has the form:
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Z =rsinw + E 5™ (r) sin(n — 1)w,

where 7 is the minor radius and w is a non-orthogonal (to r) angular variable. A is the Shafranov shift
and S(™ the imposed shaping of the flux surfaces with n denoting the Fourier harmonic. It is noted that
the equilibrium equations of Ref. [7] yield the radial dependence of the shaping coefficients:

5™ (r) ~ (2)"_1 5™ (a). @)

The Mercier analysis of Refs. [11] use transformations between the coefficients S(2) and S and the
conventional definitions of elongation « and triangularity ¢ as:
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and hence S(?) /r is identified with the ellipticity e = (x — 1)/2.

Assuming at the start that Ag ~ O(e°) as required in the analysis of Refs. [8, 6, 7] and using
€ as a formal expansion parameter obtains: dW_5 + Wy + 6W> and eigenfunction &, + &; + &5,
where the subscript denotes the corresponding ordering in e. Here §W_5 is minimised to zero by the
incompressible fluid relation V - §,, = 0. dWj, given by Eq. (1) above, is minimised to zero by
identifying {o with the top hat function. In a real torus the pure cylindrical contribution to §W5 is
minimised to zero thus leaving toroidal and shaping effects only. Given that k ~ § ~ € and employing
the normalisation W — §W/(2n2 RoB2£2e$/10) one obtains [8, 6, 7] the toroidal contribution (e2):
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The pure elongation e? and pure triangularity 62 terms are given by:
2 2
— [S§2)I _ ng)/rl] (b(3) + 4) (c(3) + 4) [S?)l + 3S§2)/7‘1] p(—1)(—1)
¢ = 12¢ FORTE) + D ZpD ’
and
2
I (5 =250 /1] (69 + 5) (e +5) )
# = g EORey ©
2
[S&a)' + 4.5']53)/7"1] (b2 —1) (=2 —1)
+ , @)

cl=2) — p(-2)



where subscript ‘1’ denotes evaluation at r;. Note that Ref. [7] also obtains the contributions from pure
quadrupole d? and other higher harmonics. The quantities 5™ and (™) are defined as
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with functions £(™) (r < r;) and (™) (r > 71) being the solutions of the homogeneous equation for the

eigenfunction ¢:
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Permissible solutions are regular as 7 — 0 and r — 75 (Where g(r2) = 2). The boundary conditions
[£(0) =0, d§(0)/dr = 1] are used to obtain b(? and [£(r3) = 1, d(rs)/dr = 0] to obtain c(2).

Analytical approximations are available for the toroidal and shaping terms if one assumes that
r1/a ~ € and the g profile has have the form: ¢ = 1 — Ag(1 — (r/r1)*). Choosing the parabolic
case (A = 2) and using the substitutions given in Eq. (3) together with d = S /r gives
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where e, 4, € and d are again evaluated at ;. It is noted that the elongation term is proportional to Ag?

(not Ag? as quoted in Ref. [12]) and for this reason is considered to be ignorable for small Ag. However,

the pure triangularity term is proportional to Aq only and thus cannot be considered small enough to

ignore. In particular, with an ordering § ~ ¢ one should not drop the pure triangular shaping term while

retaining the toroidal term, which is also proportional to Ag, as has been done in Ref. [1]. Indeed & W2

was considered to be large in Ref. [7], and for experimentally relevant parameters could give rise to an

increase in the critical threshold beta to 8, ~ 1. It is also noted that the quadrupolarity term Wy is

much less important than §Wsz. This follows from Eq. (2) where it is seen that d(r) ~ (r/a)2d(a) has

only a weak penetration into the plasma.

If one wishes now to artificially assume that Ag ~ ¢, and ignore the non-trivial effect on the ordering

of the internal kink expansion, then the terms in Eq. (10) are one order higher in e. Hence the leading
order components of the e2e and eed contributions described in Ref. [1] should also be included:
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where the effect of quadrupolarity and higher harmonics has been ignored. It is seen that the pure
triangularity term is all that remains of the shaping effects if the flux surfaces are not elongated! The
critical (threshold) beta which corresponds to vanishing Eq. (11) is given by:
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Hence, where there is no elongation the critical beta is given by:
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Figure 1(a) plots 37 as a function of §/e for Ag = 0.25 and k = 1.2. The dotted line ignores the
contribution from the 62 contribution and is thus similar to the Ag = 0.2 curve in Fig.2 of Ref. [1]. The

solid curve, which this time does include the §2 contribution, differs greatly from the dotted curve for
[6] ~ €. Furthermore, for negative & of around €/2 it is seen that there is a minimum value of By For
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even more negative triangularity the quadratic 62 contribution dominates and thus stabilises the mode.
Similar characteristics are observed in Fig. 1(b) which plots W as a function of §/e for Ag = 0.25,
k = 1.2 and 8, = 0.19. Again, the solid line in Fig. 1(b) includes the 2 contribution while the dotted
line does not.
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Figure 1: Showing (a) the critical poloidal beta 37 (for which W = 0) and (b) the potential energy 1154
as a function of triangularity 4 /e with fixed parameters Ag = 0.25 and & = 1.2. The solid lines include
the pure triangularity contribution (62), while the dotted lines do not.

Figure 2 shows three different contour plots of 85 as a function of § /e and k. Figure 2(a) plots
Eq. (12) without the pure triangularity term while in Fig. 2(b) the pure triangularity term is retained.
For k 2 1 the latter two plots exhibit the expected contrasting dependence on §/e. Figure 2(b) is very
similar to that of Fig. 4(a) in Ref. [4]. Note that the value of J/¢ which gives the minimum 37 is
increasingly large and negative as « increases from unity. The minimum is at § = 0 when x = 1. This
can be understood from inspection of Eq. (11) or (12) where it is seen that Whalberg’s eed contribution
is zero for k = 1 regardless of 4, while the §2 term is quadratic in § and independent of &.

For cases where k = 1 (i.e. no elongation) the minimum of both §WW and ,3; is not in general at
vanishing &/€ as e increases. One can see this by noting that there are higher order contributions to 6W
which are an odd function of ¢ and independent of x. From Ref. [1] it can be seen that contributions
to §W of order ete”d* exist for f02 ™ d6 cos* 0 cos” 20 cos* 39 # 0. Hence the non-vanishing term
€*(6/€) is linear in 6/e and independent of k. For § ~ e, the latter term is € smaller than the pure
triangluarity term €2(J/€)? and would therefore only be significant for ¢ larger than is appropriate in
analytical studies. However, regimes with moderate € could explain KINX simulations which claim to
yield a minimum in ; at non-zero § when k = 1.

Finally, the effect of the pure elongation term (e?) is included in Fig. 2(c) for the parameters em-
ployed in Figs. 2(a) and (b). One can evaluate the effect of the pure elongation term on 3] by employing
the following transformation in Eq. (12):
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This transformation introduces an explicit € dependence in §;. Upon comparing Fig. 2(b) and (c) it can
be seen that the destabilisng quadratic dependence of the pure elongation term is significant for x 2 1.2.
However, for Ag = € = 0.1 (rather than Ag = 0.25 as in Fig. 2(c)) it is found that x ~ 3 is required for
the pure elongation term to significantly influence the stability. Such extreme elongation is out of the
range of what is permitted for an analyitcal treatment because the corresponding value of the ellipticity
e is unity.
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Figure 2: Contour plots of 37 as a function of §/e and « with fixed parameter Ag = 0.25. (a) plots

Eq. (12) without the pure triangularity term, while in (b) it is retained. (c) also includes the contribution

from pure elongation (e2) which requires an additional numerical parameter: € = 0.1. Darker colours

correspond to larger values of Sy,

In conclusion, the effects of pure elongation and triangularity [6, 7] on the ideal internal kink mode
potential energy 6W have been included in conjunction with shaping contributions of Eriksson and
Whalberg [1]. It is seen that for Aq ~ 1, the pure elongation and triangularity terms are leading order of
magnitude, while those of Eriksson and Whalberg [1] are a factor of € smaller. For Ag ~ ¢ the shaping
terms of Ref. [1], the pure triangularity term of Refs. [6, 7] and the toroidal contribution [8] are all
leading order of magnitude. Here it has been assumed that contrary to the analysis of Refs. [9, 10],
the leading order eigenfunction is assumed to be the top-hat. Inclusion of the pure triangularity term
provides agreement with KINX simulations [4] which show that negative triangularity can stabilise the
internal kink mode. Such a regime is planned for future sawtoothing experiments.
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