
Master Thesis
An EmbeddedQuery Language
in Scala
Amir Shaikhha

Professor Martin Odersky
Supervisors Vojin Jovanovic, Eugene Burmako
Expert Stefan Zeiger, Typesafe
Semester Spring 2013

mailto:martin.odersky@epfl.ch
mailto:vojin.jovanovic@epfl.ch
mailto:eugene.burmako@epfl.ch
mailto:stefan.zeiger@typesafe.com
http://typesafe.com

An Embedded Query Language in Scala, p. 1

Abstract
In this thesis we address the problem of integrating general purpose programming languages
with relational databases. An approach to solving this problem is using raw strings to represent
SQL statements. This approach leads to run-time errors and security vulnerabilities like SQL
injection. The second approach is integrating the query in a host language. The most well-known
example of the second approach is LINQ. This approach provides static checking of types and
syntax during compilation.
This thesis presents an embedded query language in Scala, namely Shadow Embedding in Slick.
Shadow Embedding provides even stronger compile-time guarantees than LINQ and similar sys-
tems in Scala. The experimental results show that the performance of our approach is very
similar to the case of using raw Strings, thanks to static code analysis and clever code caching.

An Embedded Query Language in Scala, p. 2

Acknowledgement
First, I would like to thank Prof. Martin Odersky for giving me the opportunity to do my master
thesis in Typesafe and LAMP.
Vojin Jovanovic helped me tremendously during the whole period of my thesis. Thank you to
Stefan Zeiger for believing in me and providing me with the opportunity to work on the Slick
project. I would like to thank Eugene Burmako for all his support, Christopher Vogt for the
great discussions, and everybody at Typesafe and the LAMP team.
I can never thank my parents enough for believing in me and supporting me through all periods
of my life. If it wasn’t for their love and support, I would for sure be nothing.
Last but not least, I would like to thank my wife Fatemeh for all her love, help, and support.
This work is dedicated to her.

CONTENTS An Embedded Query Language in Scala, p. 3

Contents

1 Introduction 9

2 Related Work 11

3 Slick 13
3.1 Architecture . 13
3.2 Front-end . 13

3.2.1 Table Data-Structure . 13
3.2.2 Column Data-Structure . 14
3.2.3 Constraints . 14
3.2.4 Query Interface . 14
3.2.5 Executor . 15

3.3 Slick AST . 15
3.4 Query Compiler . 15
3.5 Invoker . 16
3.6 Lifted Embedding . 16
3.7 Direct Embedding . 17
3.8 Plain SQL . 17

I Type Providers 18

4 Scala Macros 19
4.1 Def Macros . 19
4.2 Type Macros . 20

5 Schema Modelling 22
5.1 Naming . 22
5.2 Table Data-Structure . 22
5.3 Column Data-Structure . 22
5.4 Constraints . 22

6 Type Provider 24
6.1 Schema Model Creation . 24
6.2 Scala AST Generation . 25

6.2.1 Table Record Class . 25
6.2.2 Table IR Class . 25

6.3 Custom Naming . 25

CONTENTS An Embedded Query Language in Scala, p. 4

6.3.1 Configuration File . 25
6.3.2 Naming API . 27

6.4 Custom Typing . 28
6.5 Type Macro . 30
6.6 Code Generation . 33

7 Limitations 34

II Shadow Embedding 35

8 Yin-Yang 36
8.1 Architecture . 36

8.1.1 Feature Analysis . 38
8.1.2 Captured Identifier Analysis . 38
8.1.3 Transformation . 38
8.1.4 Interpretation or Code Generation . 38
8.1.5 Stage Guards . 38

8.2 Transformation . 38
8.2.1 Language Virtualization . 39
8.2.2 Ascription . 39
8.2.3 Lifting . 39
8.2.4 Type Transformation . 39
8.2.5 Scope Injection . 40

8.3 API . 40
8.3.1 Deep DSL Component . 41
8.3.2 Transformation . 42

9 Shadow Embedding 44
9.1 Architecture . 44
9.2 Shallow Interface . 45
9.3 Deep IR . 45
9.4 Yin-Yang Integration . 46

9.4.1 Captured Identifiers Analysis . 46
9.4.2 Lifting . 47
9.4.3 Type Transformation . 47
9.4.4 Class Virtualization . 48

9.5 Shadow Interpreter . 50
9.5.1 Parameterized Query . 51

CONTENTS An Embedded Query Language in Scala, p. 5

9.5.2 Shadow Executor . 51
9.6 Example . 51

10 Evaluation 53
10.1 Correctness . 53
10.2 Micro-benchmarking . 54

10.2.1 Selection . 54
10.2.2 Insertion . 55
10.2.3 Update . 56

10.3 Databench . 58

11 Limitations 60

12 Future Work 61
12.1 Type Providers . 61
12.2 Shadow Embedding . 61
12.3 Shadow Programming . 61

13 Conclusion 62

A Slick AST I

B Query Compiler III
B.1 Standard Phases . III
B.2 Relational Phases . IV

LIST OF TABLES An Embedded Query Language in Scala, p. 6

List of Tables
1 The schema of COFFEES table . 30
2 The schema of SUPPLIERS table . 30
3 Type transformation rules for Polymorphic Embedding 40
4 Type transformation rules for LMS . 40
5 Type transformation rules for Shadow Embedding 48
6 The schema of ACCOUNT table . 59

LIST OF FIGURES An Embedded Query Language in Scala, p. 7

List of Figures
1 Slick architecture . 13
2 The implementation for assert . 19
3 The call to assert before macro expansion . 20
4 The call to assert after macro expansion . 20
5 The implementation for H2Db . 20
6 Module Db before macro expansion . 21
7 Module Db after macro expansion . 21
8 Table model . 22
9 Column model . 22
10 Constrains model . 23
11 Type provider architecture . 24
12 Default naming configuration . 26
13 Naming configuration in table-level . 26
14 Naming configuration in column-level . 27
15 An example for custom naming . 28
16 An example for custom typing . 29
17 The model for COFFEES and SUPPLIERS table 31
18 Module MyDb before macro expansion . 32
19 Module MyDb after macro expansion . 32
20 Yin-Yang operations flowchart . 37
21 Yin-Yang transformation architecture . 39
22 Interface of BaseYinYang . 41
23 Interface of StaticallyChecked . 41
24 Interface of Interpreted and CodeGenerator . 42
25 Yin-Yang Transformer factory . 42
26 Interface of TypeTransformer . 43
27 Shadow Embedding architecture . 45
28 Class virtualization architecture . 48
29 Annotated case class for COFFEES table . 49
30 Virtualization module of class virtualization . 49
31 Virtualized types rewiring . 50
32 Interpretation workflow in Shadow Embedding 50
33 An example of a selection query in Lifted Embedding 52
34 An example of a selection query in Shadow Embedding 52
35 Expanded version of the selection query example in Shadow Embedding 52
36 Performance results for simple selection . 55
37 Performance results for parameterized selection 55

LIST OF FIGURES An Embedded Query Language in Scala, p. 8

38 Performance results for insertion of a constant value in all iterations 56
39 Performance results for insertion of different values in each iteration 56
40 Shadow Embedding code for update benchmarks 57
41 Performance results for update case I . 57
42 Performance results for update case II . 58
43 Performance results for update case III . 58
44 Performance results for Databench . 59
45 Slick AST hierarchy . II

1 INTRODUCTION An Embedded Query Language in Scala, p. 9

1 Introduction
One of the main components of modern applications are the systems using databases to store
their persistent information. The developers of these systems are mainly using object-oriented
languages and relational databases. Therefore, it is important to integrate these two concepts.
Impedance mismatch described by David Maier in [27] explains why object-oriented program-
ming languages cannot be integrated with relational databases. Relational databases represent
data in a tabular format, whereas object-oriented languages use objects. Additionally, rela-
tional databases are using declarative queries, like SQL, whereas object-oriented languages are
mostly imperative. William Cook et al. in [43] have discussed several Object-Relational Mapping
(ORM) frameworks which are designed to facilitate bridging the mismatch between objects and
relations.
In order to integrate databases with programming languages, an interface needs be defined in
the program, which is responsible for executing the queries in the database. There are two
interfaces to query a database:

• Call Level Interface (CLI) [41]: The program is separated into two conceptual paradigms
in this way. One part is using object-oriented paradigm for computation, and the second
one is for accessing the relational database. ODBC [41] and JDBC [20] are standard
call level interfaces for C and Java programming languages respectively. This approach
is highly error-prone and provides no type-safety. Even expert users can make typing
errors or confuse identifier names, function parameters, and types. Moreover, there is a
possibility of security vulnerabilities such as SQL injection. The main problem is that
catching these errors will be postponed until run-time. Although there are tools in order
to perform these checks in the compile-time, they need a very complicated infrastructure
and require lots of effort. In addition, there is no way to reuse a part which is very common
in different places in a type-safe manner.

• Embedding Queries in a Host Language: The second approach is to embed the queries
in a host language. In this way, the previous errors are caught at compile time by the
host language compiler. One of the most popular efforts towards this goal, is Microsoft
LINQ [29] in .NET family programming languages. The queries are expressed by using
language-level constructs, which makes the queries verifiable at compile-time. All the
query expressions are represented as expression trees during compilation. Afterwards, this
tree representation is converted into an SQL statement for the desired database engine
backend in the run-time. Most of the non-homoiconic programming languages could not
provide this feature, and there is a need for language extension to support it. LINQ also
allows type-safe composition of the queries. Meaning that the user can define the part of
query commonly used in different queries, and then use it in different places. This way,
the code is more maintainable and less error-prone.

This thesis presents an approach for embedding queries in Scala programming language. Em-
bedding queries in Scala can be achieved in two ways:

• Purely embedding [22] the query in the Scala language. This approach is used in Polymor-
phic Embedding [21] and LMS [33] to embed Domain Specific Languages (DSLs) in Scala.
Pure embedding is also used in Scala-Integrated Query [42] and Lifted Embedding front-end
(Section 3.6) of Slick [9] to embed queries in Scala.

• Directly embedding queries by retrieving tree representations of queries at compile-time

1 INTRODUCTION An Embedded Query Language in Scala, p. 10

with Scala macros [13] and storing them for run-time processing. This approach is used
in Direct Embedding front-end (Section 3.7) in Slick.

Our approach is Shadow Embedding in Slick to overcome the limitations of Lifted Embedding
and Direct Embedding. Lifted Embedding lifts query expressions to their deep representation,
and makes the deep representation visible to the user, whereas Direct Embedding converts query
expressions to the Scala AST nodes behind the scenes (by using Scala macros [13]). As a result,
the types are not standard Scala types in Lifted Embedding and can confuse the user, but
they encode the operators supported by query engine (Unintuitive and complete). In Direct
Embedding, the type of query expressions is standard Scala type, but converting from Scala
AST nodes to deep representation is done at run-time. Therefore, unsupported operations
are not caught during compilation (Intuitive and incomplete). Shadow Embedding, converts
every query expression to corresponding deep representation transparently by Yin-Yang [24]
using Scala macros. As a result, every query expression is of standard Scala type from user
perspective, but behind the scenes every query expression is mapped to its deep representation
during compilation. Hence, type-errors are intuitive (like Direct Embedding) and comprehensive
(like Lifted Embedding) at the same time. Furthermore, by having AST of query expression, it
is possible to analyse the code and perform clever code caching, which will lead to an increase
in performance speed (from 1x to 250x, see Section 10) without any effort by the user. Also,
Shadow Embedding uses the same deep representation as Lifted Embedding, and therefore, it
is interoperable with Lifted Embedding.
In order to integrate query expressions in Scala, the user should define the types for each table,
which requires some boilerplate. Type provider is an approach to providing table definitions for
the user automatically by reading information about tables from database schema or from the
code annotations provided by the user. As Shadow Embedding has the same deep representation
as Lifted Embedding, type provider of Lifted Embedding is available for Shadow Embedding as
well.
The thesis is structured as follows. First, we will present the related work in Section 2. In
Section 3 we give an overview of Slick. Afterwards, the thesis is divided into two main parts.
In Part I, the effort towards having type providers in Slick is explained. First, we explain Scala
Macros in Section 4. Afterwards, in Section 5 we will explain how to create an appropriate
Schema Model to abstract over database entities. Then, in Section 6 we will explain the main
design and implementation aspects for type providers in Slick. Finally, we will review the limi-
tations of type providers in Section 7.
Part II discusses Shadow Embedding. In Section 8, we give an overview of the Yin-Yang system.
Thereafter, in Section 9 the main design and implementation concerns about Shadow Embedding
will be explained. Section 10 is dedicated to experimental results for Shadow Embedding in
comparison with other front-ends of Slick and other systems. We explain the limitations of
Shadow Embedding in Section 11 and future work in Section 12. Finally, Section 13 is dedicated
to concluding remarks.

2 RELATED WORK An Embedded Query Language in Scala, p. 11

2 Related Work
There are several tools for performing the type checking of SQL statements at compile-time.
For example, the IntelliJ plugin [2] for Hibernate [1] will report errors and do auto-completion
for HQL. JDBC Checker [16] provides the same thing for JDBC, as well as the work done by
Card Gould et al. [17] and SQL DOM [28]. These tools need a very complicated infrastructure
and require lots of effort for development. In addition, they can generate false positives when
separate compilation is used [14].
For Java, SQLJ [30] in a pre-compilation step converts the embedded queries into corresponding
Java code by using a component called SQLJ Translator. As a result, it provides static typing.
Safe Query Object [14] uses standard Java classes to represent queries and uses reflection and
OpenJava [39] to convert these classes into JDO [3] queries during compilation.
HaskellDB [26] is an embedded domain-specific language in Haskell. The query expressions in
this DSL are statically typed. These expressions use Haskel as meta-language. These query
expressions are converted to SQL statements.
Scala-Integrated Query [42] uses LMS [33] to embed a query language in Scala. ScalaQL [36]
uses the same approach as Lifted Embedding (Section 3.6) front-end of Slick [9], to embed query
language in the host language.
James Cheney et al. presented T-LINQ [23], an extension to LINQ [29] that supports nested
data, but does not support queries returning nested data. Ferry [18], in addition to these
features, supports the queries returning nested data.
Type providers in F# 3.0 [38] are a type-bridging mechanism which allow strongly typed pro-
gramming that uses external information systems. Type providers produce the types necessary
for the program, which are fetched from an information source. The user can use these types
and do the programming in a type-safe way.
Type provider in F# is a compile-time component, for which two inputs need to be provided:

• The static parameters, available at compile time, which identify an external information
space.

• A way of accessing this information space.
Then this component will provide the compiler with two things:

• A programming interface to the given information space.
• An implementation of this interface.

In other words, type provider is an adapter component which reads external information sources
with schematized data and then converts them into types. As a result, there will be no need
for the user to perform any explicit transcription or code generation for types. The provided
types are used not only in the type-checker and run-time, but also in the tools which rely on
the type-checker, like IDE code auto-completion.
An important feature of type providers in F# is that type providing is done lazily. Therefore,
whenever a type is requested by the compiler, the information about it will be fetched and
corresponding members will be provided. As a result, the information space could be very large
and only the required subset of information space will be fetched.
Type providers in Slick support all features of type providers in F#, except lazy type providers.
Lazy type providers can not be easily implemented in the Scala programming language. It needs
enough infrastructure to generate the byte code lazily, which is not currently supported by type

2 RELATED WORK An Embedded Query Language in Scala, p. 12

macros (See Section 4.2). However, lazy type providers can be implemented using def macros
and by using Dynamic classes which is not investigated in this thesis. All other features can be
implemented with type macros.

3 SLICK An Embedded Query Language in Scala, p. 13

3 Slick
Slick provides a type-safe way for accessing databases. User can write the query expression in the
Scala language, and Slick translates this query expression into an appropriate SQL statement.
Slick will be creating its own AST out of the given query expression. Then, query compiler will
convert it into a corresponding SQL statement. This statement is passed to the given query
engine and the result is returned to the user.

3.1 Architecture
Slick is composed of three main components. The first component, namely front-end, is the
component with which the user is interacting. Query expressions are input for this component,
and as output this component will produce Slick AST. The next component is query compiler
which is responsible for translating the Slick AST from the previous component to an appropriate
SQL statement. The last component is the Invoker component which is a wrapper for SQL
statements. This component executes given SQL statement and translates the result to a form
which is recognizable in the client side.

Figure 1: Slick architecture

3.2 Front-end
The user is interacting with the whole system via the front-end component. There are three
types of tasks which are needed to be handled by front-end.

• Querying: Represents selection.
• Data Manipulation: Represents insertion, update and deletion.
• Data Definition: For defining a table or dropping it.

A data-structure for representing a table and its columns is an essential component for all of
these tasks. For querying, a query interface is needed to be defined in order to provide the
operations which can be handled by SQL select statements. For manipulating data, an executor
component is necessary to provide an interface for the database engine. Furthermore, an interface
for defining and dropping a table is necessary. Finally, to restrict the domain of the elements of
a table, it is necessary to have table constraints.

3.2.1 Table Data-Structure
This kind of data-structure represents each relation in relational databases. The main motivating
reason for having this element is having an appropriate AST node for each specific relation. By
having this data-structure in the user code, we will avoid any misspelling in relation entities or
any other errors of this kind.

3 SLICK An Embedded Query Language in Scala, p. 14

3.2.2 Column Data-Structure
With the same reasoning as having a data-structure for each relation, we could conclude that
a data-structure is needed for each column of that relation. As a result, we could create AST
nodes representing columns.

3.2.3 Constraints
By using constraints, we could restrict the domain of elements that a table could contain. We
have the following constraints:

Not Null ensures that a column cannot be null.

Unique indicates that each record should have a unique value for a particular column.

Primary Key specifies that a table record can be identified uniquely by a single column or
a combination of columns. A table can have only one primary key constraint. The column(s)
with this constraint, could not be null. In other words, Primary Key is a combination of Not
Null and Unique constraints.

Foreign Key enforces the relationship between two tables. A foreign key in one table refers
to a column or a combination of columns in the other table.

Index An index over some columns of a table, provides quicker access to that table using
indexed columns.

3.2.4 Query Interface
By using this interface, we can query over a table or a projection of some columns of that table.
This interface contains the elements which are the result of that query. In other words, it is a
view of the result elements. This interface should define these operations in order to provide
select statement capabilities.

Map Applies the function which is passed to it, to every element, and returns a view with
new elements. The SELECT part of the SQL statement can be expressed by this operation.

Filter Returns a view with the elements satisfying the given predicate. It corresponds to the
WHERE part of the SQL statement.

Flatten Converts a two layer nested query view into a one layer view.

FlatMap This operation is a composition of the map and flatten operations. It applies the
given function to each element, and then it flattens the result view.

SortBy It sorts the query view by the given order. This operation is corresponding to ORDER
BY in the SQL statement.

GroupBy Divides the elements into different groups specified by given grouping criterion.
GROUP BY is its corresponding clause in the SQL statement.

Join It should merge two query views into one query monad. This operation corresponds to
INNER JOIN, JOIN, OUTER LEFT JOIN, OUTER RIGHT JOIN and CROSS JOIN.

Zip Creates a query view out of two views, in which each element is a tuple of corresponding
elements from each view. Both views must have the same length, and the result view has the

3 SLICK An Embedded Query Language in Scala, p. 15

same length as the two input views.

Union Unions the elements of two views and returns the result as a new view. This operation
is mapped to the UNION operation in the SQL statement.

Count Returns the number of elements of the given query view. It is mapped to COUNT in the
SQL statement.

Take Whenever this operation is applied to a query view, another view will be returned
containing the first n elements of the original view, in which n is the input to this operation.

Drop Returns a query view without the last n elements of the given query view, n being the
input for this operation.
As the query interface provides the implementation of map, flatMap, and filter, Scala for-
comprehensions can be used. These expressions are translated to equivalent monadic expressions
using these three operations.

3.2.5 Executor
In addition to query views, each table and associated query view requires another interface for
manipulating data. This interface provides these operations:

Update Updates the elements of the view with the new value. It is translated to the UPDATE
statements in SQL.

Insert Inserts the given element to the table. It is translated to the INSERT SQL statements.

Delete Deletes the given element from the table. It is translated to the DELETE statement.

3.3 Slick AST
Slick AST is an intermediate representation for all SQL statements. It provides a high-level
abstraction over SQL statements in order to make them independent of the query engine. Slick
AST nodes are used among different phases of query compilation. In Appendix A different AST
nodes are explained in detail.

3.4 Query Compiler
This component is responsible for converting Slick AST into SQL statement depending on the
given query engine. Like every other compiler, it consists of different phases which are divided
into different categories:

• Standard Phases: These phases are common for all query engines, whether they are re-
lational, or non-relational. Cleaning up the AST is the main responsibility of standard
phases.

• Relational Phases: These phases are only specific to relational databases. Assigning type
to the nodes, converting to comprehension form (a form similar to SQL comprehension),
and fusing are the main phases of relational phases.

• Statement-Specific Code Generation: The last phase is to generate SQL statement, ac-
cording to the type of statement. It has different code generators for selection, update,
deletion and insertion. After this phase, the result SQL statement will be generated and
wrapped by an Invoker object.

3 SLICK An Embedded Query Language in Scala, p. 16

More details about each phase are given in Appendix B.

3.5 Invoker
An Invoker is a wrapper over JDBC SQL statements. Depending on the type of statement we
have different invokers:

Select Invoker A wrapper over select statement. It will provide the user with two main
methods first and list which return first element and all elements consecutively. This invoker
should also include type mapping between a tuple and case class, in the case that a case class
is representing each row of a table. Whenever the result is fetched from the database, it will be
automatically converted to the case class.

Query Template Invoker Very similar to Select Invoker. The main difference between
these two is that, the former has a fixed SQL statement, whereas the latter has a prepared
statement, which contains some parameters that need to be filled later. This invoker will set
these parameters to the values which are passed to it, and then query against this statement.

Insert Invoker Contains a prepared statement instead of a fixed statement. Because the value
which should be inserted is not specified. Whenever insert method is invoked, the prepared
statement is filled in with the parameters which are passed to it. It should also embed conversion
from the case class to tuple representation in instances where a case class represents each row
of a table. If an instance of that case class has been passed to the insert method, it should
know how to deconstruct it to separate attributes.

Update Invoker It is very similar to Insert Invoker. It has the limitation that the only values
which will be set are the parameterised values. These parameters will be set as soon as update
method is invoked with the desired values.

3.6 Lifted Embedding
Lifted Embedding, the main front-end in Slick, uses an approach similar to Lightweight Modular
Staging (LMS [33]). Every expression is lifted explicitly or by using implicit conversions to its
deep representation. As a result, every expression has the deep type (usually a higher-kinded
type [31]), and not the Scala standard type. The good thing about this design is that it causes
the type checker to check for the existence of every operation in the deep type. As a result, if an
operation is not supported by the query engine, a type error will be raised. The negative aspect
of this design is that the types of expressions do not make sense to the user and error messages
are not very intuitive.

Table Data-Structure There exists an abstract class Table[T] wherein each class that ex-
tends it, will be representing a table. The type of each record of that table should be specified
by T type parameter. Method * should be implemented by user in order to show which columns
represent the full projection over that table and if of type Rep[T]. The constructor for Table
class is a string which represents the name for this table in the database. Table[T] extends
Rep[T]

Column Data-Structure There is a trait called Column[T] which is a super-trait for each
column. In order to create a column, whenever the user is defining a table by extending Table
class, he will have a method called column, with one parameter, which represents the name of

3 SLICK An Embedded Query Language in Scala, p. 17

this column in the database. Column[T] extends Rep[T].

Projection Every column with type Column[T1], will have a method ~ which accepts another
column of type Column[T2]. The result of this method is projection of these two columns and
is of type Projection2[T1, T2]. This type extends Rep[Tuple2[T1, T2]]. Consecutively,
Projection2 has method ~ which returns Projection3 and so on.

Type Mapping As it was noted, Table[T] has a method * which specifies which columns
are representing the full projection of type Rep[T]. If T is a Tuple of some types, * can be
implemented by chaining ~ over desired columns. But, what will happen if T is a case class?
Somehow, the tuple which is created from the projection of these columns needs to be translated
to its corresponding case class and vice versa. Every Projection class has method <> which
accepts as arguments apply and unapply method of companion module for that case class.
Hence, it returns an object of type MappedProjection[T] which extends Rep[T] and encodes
how to convert from tuple to case class, and from case class to tuple.

Constraints Class Table has an object that includes flags denoting whether a column is
primary key, or whether it should be an auto-incrementing key. Also, it provides two methods
foreignkey, and index, which are responsible for defining foreign key and index constraints.
Compiling queries and creating invokers are done by an implicit conversion. Whenever the user
uses first, list, insert, update, and delete over a query, it will be implicitly converted to
another type which triggers query compilation, uses the appropriate invoker for it, and calls
associated method over that invoker.

3.7 Direct Embedding
Direct Embedding in Slick uses the same approach as LINQ. Every query expression is converted
to its AST in the compile-time. During run-time, by using reflection API this tree representation
is converted to the SQL statement which is associated with the given query engine. As a result,
the user will only see the standard Scala types, and the type errors are understandable for
the user. However, as the conversion of tree representation to SQL statement is done at the
run-time, the errors for unsupported operations are not caught during compilation.

Table Data-Structure A case class which is annotated by @table represents a table in the
database. This annotation accepts one string parameter which represents the name of this table
in the database.

Column Data-Structure Every field of the case class which is annotated by @column rep-
resents a column of that table. Like @table it has one string parameter for its name in the
database.
This front-end is experimental and lacks many features of Lifted Embedding.

3.8 Plain SQL
There are several operations which are not supported by Lifted Embedding. Plain SQL is a
wrapper over JDBC and has a nicer Scala-based API. This API bypasses producing Slick AST
nodes and Query Compiling. It will be translated directly to parameterised SQL statements. As
a result, there is no need to define any data-structure representing tables and columns. It also
provides an API which uses String interpolation to simplify creating parameterised statements.

An Embedded Query Language in Scala, p. 18

Part I

Type Providers

4 SCALA MACROS An Embedded Query Language in Scala, p. 19

4 Scala Macros
Macros are a compile-time meta-programming facility in Scala. Meta-programming means writ-
ing a program which can write another program. For example, in C++ one could define macro
strings, which will be expanded to string code snippets. The main difference between macros
in C++ and Scala is that in C++ the macros are plain strings and will be substituted by plain
strings. Also, there is a notion of Template Meta-programming in C++[40] in which the code
written in templates is used by compiler for generating the code. Haskel has meta-programming
facility provided by Template Haskell [35].
Macros in Scala are using abstract syntax trees. Macros manipulate the AST of the program
at compile-time by using the reflection API that abstracts over the compiler’s internals. They
have been available as experimental features in the Scala programming language since version
2.10.
Two kinds of macros are being used in the present thesis. The first type includes def macros,
which are methods whose calls are expanded at compile-time. This kind of macros is available in
the 2.10 release. The other category consists of type macros, which are types that are computed
and expanded during compilation. This macro is available in another branch of the Scala
compiler, called Macro Paradise [8].

4.1 Def Macros
Def macros are methods that their calls are expanded during compilation. A def macro is
defined the same way as regular methods, except that its body will be followed by a macro
keyword and a static reference to a method that operates on ASTs. Every call to a def macro
will be substituted by the result of the method which was working on ASTs. In other words,
the arguments to a def macro will be lifted to their AST representation and will be passed to
the method. Then, this method does computation over an AST and as a result returns another
AST. Every call to a def macro is substituted by the result AST.
As an example we present a def macro named assert in Figure 2. The first line of code shows
that the actual implementation for this def macro is done in assertImpl method.

def assert(cond: Boolean, msg: String) = macro assertImpl
def assertImpl(c: Context)(cond: c.Expr[Boolean], msg: c.Expr[String]):

c.Expr[Unit] = {
import c.universe._
q"if (!$cond) raise($msg)"

}

Figure 2: The implementation for assert

In the second line of code, assertImpl has a parameter of type Context which encodes the con-
text in which assert method has been invoked. In addition, instead of two arguments of type
Boolean and String, assertImpl has arguments of type c.Expr[Boolean] and c.Expr[String].
These two arguments represent AST of the two arguments passed to assert method. q is a
quasi-quote [34] String Interpolator1, which returns trees of type c.Tree (and its subtypes) out
of the given string. As q is a String Interpolator, it is possible to use other variables with type

1A way to embed variable references directly in processed string literals [13]

4 SCALA MACROS An Embedded Query Language in Scala, p. 20

c.Expr in it. In addition, the quasi-quote itself is a macro [34]. In this example, assertImpl
method creates an expression which represents an if statement, in which the first argument
is the condition for it, and it will raise an exception that contains the second argument as its
message.

assert({
val x = 2 * 2
val y = 2 + 2
x == y

}, "incorrect computation")

Figure 3: The call to assert before macro expansion

As a result, the code in Figure 3 will be expanded to the code shown in Figure 4

if(!{
val x = 2 * 2
val y = 2 + 2
x == y

})
raise("incorrect computation")

Figure 4: The call to assert after macro expansion

4.2 Type Macros
Type macros are types that are expanded into their underlying macro implementation during
compilation. They are using the same syntax as type aliasing (type ListInt = List[Int])
with the difference that type macros can accept value arguments.
Figure 5 shows the implementation for a type macro which creates a connection to H2 database
and provides the types for tables which exist in that database. The first line of this code shows
that h2DbImpl is the macro implementation for type macro H2Db.

type H2Db(url: String) = macro h2DbImpl
def h2DbImpl(c: Context)(url: c.Expr[String]): c.Tree = {

val Template(_, _, existingCode) = c.enclosingTemplate
Template(..., existingCode ++ generateCode())

}

Figure 5: The implementation for H2Db

In the second line of Figure 5, h2DbImpl uses the AST representation of the module or the class
which is extending it, and appends the code which is generated by method generatedCode()
to its body. generatedCode() returns an object of type List[c.Tree]. Each element of this
list is an AST representation for the code, which will be generated.

4 SCALA MACROS An Embedded Query Language in Scala, p. 21

object Db extends H2Db("jdbc:h2:coffees.h2.db") {
val dbId = "h2-coffee"

}

Figure 6: Module Db before macro expansion

For example the code shown in Figure 6 will be expanded to the code which is shown in Figure
7.

object Db {
val dbId = "h2-coffee"
// generated code
case class Coffee(...)
val Coffees: Table[Coffee] = ...

}

Figure 7: Module Db after macro expansion

In Figure 7 the generated code will be injected to the definition of the module Db. As a result,
the user could have access to Coffees field and Coffee case class of this module in a type-safe
manner.
The main use case for type macros is code generation out of an abstract model defining the
data-structure in an abstract level. The schema over which we are defining the abstract model,
must be available at compile time. This abstract model can be inferred either by another part
of code or from information encoded in an external resource.

5 SCHEMA MODELLING An Embedded Query Language in Scala, p. 22

5 Schema Modelling
In order to transform information space into types, creating an abstract model out of information
space is essential. In this case, different information spaces showing the same concept, can be
mapped to the same representation. In Slick, we have to create an abstract model out of database
entities. Therefore, we need an abstract model over table entities and their columns. Also, such
an abstract model should encode the constrains defined over the tables.

5.1 Naming
Each table in the database, must be identified uniquely. For this purpose, a qualified name is
assigned to each table, which encodes the schema and catalog of that table. Therefore, this
qualified name will be the identity for each table.
Additionally, it is necessary to have an identity for each column. The qualified name for each
column encodes the qualified name of its table, as well as the name of that column.

5.2 Table Data-Structure
As it was discussed in Section 3.2, it is necessary to have a data-structure for each table. The
model for a table includes the qualified name for that table, the list of columns of that table
(which will be presented in Section 5.3), and the list of constraints of that table (which will be
presented in Section 5.4). Table model is represented using case class in Figure 8.

case class Table(name: QualifiedName , columns: List[Column],
constraints: List[Constraint])

Figure 8: Table model

5.3 Column Data-Structure
This model includes the qualified name for the column, the type of this column in Scala code,
and its type in the database. As the qualified name of the table of a column is implicitly encoded
in the qualified name of that column, there is no need to have any pointer to its table. Column
case class is represented in Figure 9.

case class Column(name: QualifiedName , tpe: Type, dbType: String)

Figure 9: Column model

5.4 Constraints
Constraints should not include any reference to the table over which they are making restriction.
For the purposes of this thesis, we implemented four different kinds of constraints:

Not Null Represents which column cannot store null.

Primary Key Contains the list of columns which are the primary key. If the list contains a
single element, the primary key is that single column, and if it contains more than one element,
this constraint represents a compound primary key.

5 SCHEMA MODELLING An Embedded Query Language in Scala, p. 23

Foreign Key Consists of the qualified name of the two tables, and a paired list of the columns
from the two tables which are mapped together. It also features an update rule which specifies
what needs to be done in the case of an update in the referenced table, as well as a delete rule,
which specifies the action that must be taken in the case of deletion in the referenced table.

Index Includes the list of columns used for indexing the table.
Figure 10 represents the implementation of these constraints.

sealed trait Constraint
case class NotNull(field: Column) extends Constraint
case class PrimaryKey(fields: List[Column]) extends Constraint
case class ForeignKey(pkTableName: QualifiedName , fkTableName:

QualifiedName , fields: List[(Column, Column)], updateRule:
ForeignKeyAction , deleteRule: ForeignKeyAction) extends Constraint

case class Index(fields: List[Column]) extends Constraint

Figure 10: Constrains model

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 24

6 Type Provider
The architecture of type providers is shown in Figure 11. The type provider component uses
existing schema in the database and creates a schema model out of it. Then, this component
generates corresponding Scala AST according to the desired front-end (Lifted Embedding or
Direct Embedding). Afterwards, two choices can be made. Either using type macros in order
to provide the types in the same compilation stage or generating the code in order to provide
the types by printing the corresponding code into another source file which will be used later
for accessing the types.

Figure 11: Type provider architecture

6.1 Schema Model Creation
Schema model is created in three phases in order to have support for providing the types lazily:

Table signatures In this phase only the table data-structures are created with their qualified
names. The columns and constraints are not retrieved in this phase. After this phase, the type
signature for each table will be provided without any member of that table. If a member of a
table is needed to be accessed, the next two phases should be triggered for that particular table.
However, there is no infrastructure from Scala type macros for providing the types lazily.

Table with columns In this phase, the information about columns of given tables is retrieved.
The Scala type for each column is set by a default mapping from database types to Scala types.
Additionally, this default mapping could be customised, which will be discussed later in Section
6.4. The only constraint retrieved in this phase is Not Null.

Table with columns and constraints Finally, the information about the constraints for the
given tables is retrieved.
There is a configuration file that provides the URL, the username, the password, and the driver
of the desired database engine. By using this information, a connection is made to the database
and the schema information will be fetched. Then, the schema model will be created out of the
given schema information.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 25

6.2 Scala AST Generation
Tree generation converts each table model in the schema model to the Scala AST, representing
table data-structure for the appropriate front-end. For example, in the case of Lifted Embedding
two types should be provided for each table. One represents a case class that is the type of each
record of the table, which we call record class. The other one represents the table intermediate
representation which we call IR class.

6.2.1 Table Record Class
An instance of this case class represents a record from a table. The name for this case class
is computed from the name of the table in the database. The default name for the case class
is computed by appending "Row" to the table name and making it camel case. For example,
the table name ”COFFEE” is converted to ”CoffeeRow”. As a table denotes a class, the first
character of its name should be upper case by convention. In Section 6.3 customising the naming
mechanism is explained.
The fields of this case class represent the columns of the table. The type of each field is encoded
in Column Data-Structure. The name of each field is computed by making the corresponding
column name, camel case. As a column denotes a field, the first character of its name should be
lower case. For example ”COFFEE_NAME” is converted to ”coffeeName”.

6.2.2 Table IR Class
The name of this class is computed by making it camel case and making the first character upper
case. For example ”COFFEE” is converted to ”Coffee”. An IR class extends Lifted Embedding
Table class. The type parameter for this class is the record class.
Each column has a method that invokes the column method of Lifted Embedding Table class,
and the name of the column is passed to this method. Also, the type of each column needs to be
passed as a type parameter to column method. The name of each of these methods is computed
in the same way as the field name in record class.
For each constraint, we generate a method that encodes the information about that constraint.
Finally, for full projection * needs to be implemented, as it is discussed in Section 3.6. All of
the columns are chained together by using ~. Then, by using <> method, apply and unapply
methods of the record case class are passed to it.

6.3 Custom Naming
There are two ways to customise the names of database entities in generated code.

6.3.1 Configuration File
The first way is by encoding the naming mechanism in the configuration file, which includes the
information necessary for connecting to the database. For that purpose, we use a language very
similar to JSON, but more readable than it, called HOCON [7]. The naming configurations are
put into the naming object in the configuration file.
At the top-level, we have four different members.

• Naming rule for IR class of each table.
• Naming rule for record class of each table.
• Naming rule for the fields of IR class, which represent the columns of each table.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 26

• Naming rule for the fields of record class, which represent the columns of each table.
For these top-level members, we can only provide a chain of functions that will be applied one
by one consecutively. The default configuration for naming is given in Figure 12:

naming {
ir-class = [lowercase , capitalize , camelize]
record-class = [lowercase , capitalize , camelize, addrow]
ir-field = [lowercase , camelize]
record-field = ${ir-field}

}

Figure 12: Default naming configuration

With default configuration, for table ”COFFEES”, the IR class name will be ”Coffees” and record
class name will be ”CoffeesRow”. And, for a column of this table named ”COFFEEE_NAME”,
IR class field and record class will be ”coffeeName”.
In order to customise the default rule for naming, one can override the desired members with
the new rule appropriate for the use case. If no member is overridden, the default naming
mechanism is used.
There are use cases in which we are interested in having different naming rules for each table.
For these use cases, naming object has another member called custom. Each member of this
object corresponds to a table. The name for each table object is the name of the corresponding
table in the database. Each table object, contains four members, like top-level naming object,
with the difference that ir-class and record-class are not representing any rule, but are
instead representing a String. ir-field and record-field are still representing a chain of
rules. The definition of these members in this level has higher priority than their definition in
the top-level. For example, assume the configuration given in Figure 13:

naming {
ir-class = [lowercase , capitalize , camelize]
ir-field = [lowercase , camelize]
custom {

COFFEE {
ir-class = Coffees
ir-field = [lowercase]

}
}

}

Figure 13: Naming configuration in table-level

The name for IR class of table ”COFFEE” will be ”Coffees” and not ”Coffee”. Also, assume a
column named ”COFFEE_NAME” in this table. The field name for this column in IR class
will be ”coffee_name” and not ”coffeeName”.
Each table object has another member named custom which is for customising the name of
each individual column of this table. The members of this object, are corresponding to the

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 27

columns of that table. Each column object, has the name as the columns. In addition, it has
two members ir-field and record-field. These objects are strings that represent the name
for the corresponding field for that column in IR class and record class. Column-level definitions
have higher priority than table-level definitions.
Let’s assume the configuration given in Figure 14:

naming {
ir-field = [lowercase , camelize]
custom {

COFFEE {
ir-field = [lowercase]
custom {

COFFEE_NAME {
ir-field = name

}
}

}
}

}

Figure 14: Naming configuration in column-level

The field for column ”COFFEE_NAME” in IR class is neither ”coffeeName” nor ”coffee_name”.
The name for this field is ”name”.

6.3.2 Naming API
Using configuration files for customising the names is a working solution, but it is not extremely
convenient. Configuration files provide the user with enough flexibility to have customised
naming for database entities. However, using configuration files requires learning the HOCON
language and knowing the protocol for writing the naming configuration.
An API that provides the same flexibility as configuration files is a better solution. In order to
specify that we are interested in using naming API, in the naming object of the configuration
file, there is a member named scala-source, that must be set to the name of the naming
class. This naming class must implement the naming API. The naming class must extend a
class called NamingConfigured, and must accept a parameter of type MappingConfiguration.
MappingConfiguration encodes the naming configuration done in the configuration file, as well
as the default naming configuration. Naming class has four methods related to the name of IR
class, record class, IR class fields, and record class fields. Each method has an input which shows
the qualified name for that element. By overriding each of these methods, the naming for that
particular element will be configured. The implementation for the previous example is given in
Figure 15.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 28

class CustomNaming(mapping: MappingConfiguration) extends
NamingConfigured(mapping) {

override def tableSQLToIR(name: QualifiedName): String =
name.lastPart match {

case "COFFEE" => "Coffees"
case _ => super.tableSQLToIR(name)

}

override def columnSQLToIR(name: QualifiedName): String =
name.getPartName(TableName) match {

case "COFFEE" => name.lastPart match {
case "COFFEE_NAME" => "name"
case s => s.toLowerCase

}
case _ => super.columnSQLToIR(name)

}
}

Figure 15: An example for custom naming

6.4 Custom Typing
There are two ways for customising the types. The first is by using configuration files, and
the second one is by using typing API. As using configuration files is not type-safe, types are
customized by using typing API.
There are two kinds of customizable types. The type of the entities representing a table, and
the types of the entities representing a column.

Custom Column Type Assume that we want to have a type for a column different than the
type defined by default. For example, in the database we have a column which shows the day of
week. In the database it can be defined as integer and the corresponding default type in Scala
will be Int. If we are interested in expressing it using another type called Day, we should define
a bidirectional mapping between Day and Int.

Custom Table Type Custom type for a table, means custom type for the record class. This
type will be passed as type parameter to Lifted Embedding Table class instead of the default
record class. Also, the type mapping of full projection must encode how to construct a record
instance from a tuple and how to deconstruct a record instance into a tuple. There is a trait
named TypeExtractor which accepts two type parameters, one for the Tuple type, the other
one for the record type. It has the interface for the two methods apply and unapply which
converts a tuple to a record and vice versa, consecutively. Whenever a custom type is defined
for a record class, corresponding type extractor class needs to be implemented as well.
As an example, assume that one has a field which uses integer representation in the database,
knowing that it encodes a boolean value. For example, it shows the state of a coffee machine,
whether it is off or on. The code in Figure 16 represents customising the type for that column
and its table.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 29

object CustomTyping extends TypeMapper {
implicit val boolTypeMapper = MappedJdbcType.base[Boolean, Int](

{ b =>
if (b) 1 else 0

}, { i =>
if (i == 1) true else false

}
)
type MyCoffee = Tuple3[Int, String, Boolean]
class MyCoffeeExtractor extends TypeExtractor[MyCoffee, MyCoffee] {

override def apply(s: MyCoffee): MyCoffee = s
override def unapply(s: MyCoffee): Option[MyCoffee] =

Tuple3.unapply(s)
}

override def tableType(name: QualifiedName)(implicit universe:
Universe): Option[universe.Type] = name.lastPart match {

case "COFFEE" => Some(getType[MyCoffee])
case _ => super.tableType(name)(universe)
}

override def tableExtractor(name: QualifiedName)(implicit universe:
Universe): Option[universe.Type] = name.lastPart match {

case "COFFEE" => Some(getType[MyCoffeeExtractor])
case _ => super.tableExtractor(name)(universe)
}

override def columnType(name: QualifiedName)(implicit universe:
Universe): Option[universe.Type] = name.lastPart match {

case "STATE" if name.getPartName(TableName).equals("COFFEE") =>
Some(getType[Boolean])

case _ => super.columnType(name)(universe)
}

}

Figure 16: An example for custom typing

MappedJdbcType.base accepts two Function objects for having a bidirectional mapping between
the two types. As this implicit value should be visible when the Lifted Embedding Table is being
defined, all the implicit members of the custom typing class must be imported into the scope
where lifted embedding Tables are defined.
Method tableType returns the custom type for the table associated with the given qualified
name and tableExtractor returns the type extractor type for that table. As one can see,
TypeMapper provides a method named getType which accepts a type parameter and returns the
associated Type object. columnType returns the type for a particular column. Every result is
wrapped into Option. None result shows that the default type should be used for that particular
table or column.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 30

6.5 Type Macro
There is a type macros in module TypeProvider named Db which accepts a parameter of type
String as input that represents the path to the configuration file. Whenever this type is mixed
in or extended, the module or class which is inheriting it will be provided with the types and
values provided by type provider component.
For example, let us assume that we have defined a table named COFFEES with the schema given
in Table 1:

Attribute Type Options
COF_NAME VARCHAR Primary Key
SUP_ID INTEGER Foreign Key
PRICE DOUBLE
SALES INTEGER
TOTAL INTEGER

Table 1: The schema of COFFEES table

On the other hand, there is another table with name SUPPLIERS, which has the schema shown
in Table 2:

Attribute Type Options
SUP_ID INTEGER Primary Key
SUP_NAME VARCHAR
STREET VARCHAR
CITY VARCHAR
STATE VARCHAR
ZIP VARCHAR

Table 2: The schema of SUPPLIERS table

The meta model for these two tables is given in Figure 17.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 31

Table("COFFEES", List(
Column("COFFEES.COF_NAME", typeOf[String], "VARCHAR", "name",

"name"),
Column("COFFEES.SUP_ID", typeOf[Int], "INTEGER", "supId", "supId"),
Column("COFFEES.PRICE", typeOf[Double], "DOUBLE", "price", "price"),
Column("COFFEES.SALES", typeOf[Int], "INTEGER", "sales", "sales"),
Column("COFFEES.TOTAL", typeOf[Int], "INTEGER", "total", "total")

), List(
PrimaryKey(List(Column("COFFEES.COF_NAME", typeOf[String],

"VARCHAR", "name", "name"))),
ForeignKey("SUPPLIERS", "COFFEES", List(

(
Column("SUPPLIERS.SUP_ID", typeOf[Int], "INTEGER", "id",

"id"),
Column("COFFEES.SUP_ID", typeOf[Int], "INTEGER", "supId",

"supId")
)

), NoAction, NoAction
)

), "Coffees", "Coffee"
)

Table("SUPPLIERS", List(
Column("SUPPLIERS.SUP_ID", typeOf[Int], "INTEGER", "id", "id")
Column("SUPPLIERS.SUP_NAME", typeOf[String], "VARCHAR", "name",

"name")
Column("SUPPLIERS.STREET", typeOf[String], "VARCHAR", "street",

"street")
Column("SUPPLIERS.CITY", typeOf[String], "VARCHAR", "city", "city")
Column("SUPPLIERS.STATE", typeOf[String], "VARCHAR", "state",

"state")
Column("SUPPLIERS.ZIP", typeOf[String], "VARCHAR", "zip", "zip")

), List(
PrimaryKey(List(Column("SUPPLIERS.SUP_ID", typeOf[Int], "INTEGER",

"id", "id")))
), "Suppliers", "SuppliersRow"

)

Figure 17: The model for COFFEES and SUPPLIERS table

Each table model encodes its qualified name, columns, constraints, and the name of the IR class
and record class. As mentioned previously in Section 5, the first argument of Table represents
the qualified name for the table. Since in this example there is no information specified for
catalog and schema, there will be no part for them in the qualified name. The second argument
is the list of the columns of that table. The third argument represents the list of constraints for
that table. The two last arguments represent the names for IR class and record class of that
table.
A column is represented by its qualified name, Scala type, database type, and the name of its
corresponding field in IR class and record class.

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 32

As it is shown in Figure 17, the record class name for COFFEES is Coffee and not CoffeesRow.
As it is using the Custom Naming which was explained in Section 6.3. The same thing has
happened to COFFEES.COF_NAME, SUPPLIERS.SUP_ID and SUPPLIERS.SUP_NAME.
Now assume that we have a module named MyDb, shown in Figure 18, that extends type macro
TypeProvider.Db and sets the configuration path parameter to the corresponding configuration
file. The configuration file states that H2Driver (the driver for accessing H2 query engine) must
be used.

object MyDb extends TypeProvider.Db("path/to/configuration/file")

Figure 18: Module MyDb before macro expansion

This module will be expanded to the code which is shown in Figure 19.

object MyDb {
import scala.slick.driver.H2Driver.simple._
val driver = scala.slick.driver.H2Driver
case class Coffee(val name: String, val supId: Int, val price:

Double, val sales: Int, val total: Int)
case class SuppliersRow(val id: Int, val name: String, val street:

String, val city: String, val state: String, val zip: String)
object Coffees extends Table[Coffee] ("COFFEES"){

def name = Coffees.this.column[String]("COF_NAME")
// other columns implementation
def * = Coffees.this.name ~ Coffees.this.supId ~ Coffees.this.price

~ Coffees.this.sales ~ Coffees.this.total <> (Coffee.apply,
Coffee.unapply _)

def pkCoffees = Coffees.this.primaryKey("pkCoffees",
Coffees.this.name)

def fkSuppliers = Coffees.this.foreignKey("fkSuppliers",
Coffees.this.supId, Suppliers)(supplier => (supplier.id),
scala.slick.lifted.ForeignKeyAction.NoAction,
scala.slick.lifted.ForeignKeyAction.NoAction)

}

object Suppliers extends Table[SuppliersRow] ("SUPPLIERS"){
def id = Suppliers.this.column[Int]("SUP_ID")
// other columns implementation
def * = Suppliers.this.id ~ Suppliers.this.name ~

Suppliers.this.street ~ Suppliers.this.city ~
Suppliers.this.state ~ Suppliers.this.zip <> (SuppliersRow.apply
_, SuppliersRow.unapply _)

def pkSuppliers =
Suppliers.this.primaryKey("CONSTRAINT_PK_SUPPLIERS",
Suppliers.this.id)

}
}

Figure 19: Module MyDb after macro expansion

6 TYPE PROVIDER An Embedded Query Language in Scala, p. 33

As a result, the module MyDb will include members driver, Coffee, SuppliersRow, Coffees,
and Suppliers. These member can be accessed in a type-safe manner.

6.6 Code Generation
The other approach, which does not use type macros, is using code generation. In a separate
compilation step, the code which holds the types of the tables will be generated into a module.
By using this generated module, the user can have access to the IR class and record class of the
tables defined in the database.
The main advantage of having code generation is that it is not dependent on type macros that
are less likely be adopted by the core Scala language. In addition, the generated source code is
visible for the user, whereas by using type macros the code generation is performed on the fly
and is not visible to the user.
The main disadvantage of this approach is that the user should trigger the compiler explicitly for
using the provided types. Also, if there is a change in the schema of the database, the generated
code should be regenerated.
The code which is generated by code generation for COFFEES and SUPPLIERS tables (which were
defined in Table 1 and 2) is identical to the expanded code which is shown in Figure 19.

7 LIMITATIONS An Embedded Query Language in Scala, p. 34

7 Limitations
One of the limitations of type providers in Slick is that they do not support lazily providing of
types. The schema model creates the model lazily, but there is no support from type macro
side. There are techniques for implementing lazy type providers, but these techniques are still
a research prototype. Hence, it is not possible to provide the types coming from an infinite
information space, since they must be fetched lazily.
The other limitation is that the schema model is only created from relational databases. The
main reason for this limitation is that Slick does not support non-relational databases. Therefore,
having support for non-relational databases in type providers needs the appropriate infrastruc-
ture from Slick.

An Embedded Query Language in Scala, p. 35

Part II

Shadow Embedding

8 YIN-YANG An Embedded Query Language in Scala, p. 36

8 Yin-Yang
There are two approaches to embedding a DSL into a host language:

Shallow Embedding Means executing programs directly on the host language values, with-
out the need for creating any IR. As there is no need for creating IR, the type errors are
comprehensible, the compilation is fast, and the debugging is easy. But, as the program is
executed directly, it cannot perform any code optimization or code analyses. Therefore, shallow
DSLs are suffering from low performance and cannot perform domain-specific analyses.

Deep Embedding Means creating an IR of the program, and then either interpreting this IR,
or generating a new code. In the meantime, the created IR can be passed to a code optimization
and a code analysis phase, before passing to the final phase. As a result, the performance is
improved and domain-specific analyses are allowed. deep embedding can be achieved in two
ways. The first way is at run-time by using type system (for example implicit conversions in
Scala) or language extensions. This approach is used in LMS [33] and Polymorphic Embedding
[21] in Scala, and the work by Miguel Guerrero et al. [19] in MetaOCaml. Runtime deep
Embedding uses complex types which are hard to understand, and as a result, the error messages
are incomprehensible [15]. Also, debugging is harder and domain-specific analysis can be done
only during run-time. The second way is at compile-time by using meta-programming facilities
like macros and template meta-programming. Compile-time deep Embedding does not require
complex interfaces, but the debugging is still hard and their development needs knowledge of
compiler internals.

Shadow Embedding Yin-Yang [24] is a DSL embedding framework, which translates shallow
DSLs to deep DSLs using macros. This framework has the advantages of shallow embedding
and deep embedding at the same time, without having most of their drawbacks. We coin the
term Shadow Embedding for the approach Yin-Yang is using. Shadow is a mixture of two words
shallow and Deep, and shows that Shadow Embedding is a combination of shallow embedding
and deep embedding.

8.1 Architecture
The flowchart of the operations in Yin-Yang is shown in Figure 20. In this figure, dashed boxes
represent optional phases, boxes with X represent error states, and boxes with check-mark
represent successful states.

8 YIN-YANG An Embedded Query Language in Scala, p. 37

Figure 9: Interface for lifting non-DSL types.

of macro and its interface to the user,
iv) definition of the , or and

methods, and v) optional definition of domain-
specific analysis and analysis of required holes in methods

and respectively.

6. Yin-Yang Operation
The operation of Yin-Yang makes series of decisions guided
by the programmer, DSL author, and the DSL program. The
flow chart of the operation is illustrated in Figure 10.

Feature Analysis is the first phase in Yin-Yang which
analyses methods and language features, used in the DSL
block. If any of the features is not supported by the deep
embedding a comprehensive error message is reported to the
user. This allows for building DSLs that are completely free
of host language code, which was not possible with existing
approaches. More details about the analysis can be found in
(§6.1).

Prototyping checks if the DSL is used in the prototyping
mode—with the shallow embedding. If yes, Yin-Yang will
simply return the unmodified block of the shallow embed-
ding. If run on large data-sets and in testing environments,
it will start the conversion to the deep embedding. This de-
cision is configured by the compilation flag, or by changing
the name of the method that encloses the DSL body.

Transformation to Deep Embedding translates the shal-
low to the deep embedding, if prototyping is disabled. The
conversion starts by transforming the body of the shallow
EDSL to the Scala component that contains the main method
with the body of the deep EDSL. The transformation assures
that the deep embedding is well typed, relying on the consis-
tent type mapping between the shallow and the deep embed-
ding. Finally, once the deep EDSL is defined, Yin-Yang re-
flectively instantiates it in order to invoke methods defined in
(§5). These operations will guide the rest of the conversion,

Feature Analysis

Prototyping?

Static Analysis

Transformation to
Deep Embedding

Captured Identifiers
Analysis

Interpreted or
 Staged?

Compile-Time
Code Generation

Shallow Embedding

Missing Features
Error Reporting

Domain-Specific
Error Reporting

Error

Instantiated DSL

Yes

Error

Interpretation or
Run-Time Code

Generation

Collected Identifiers

Deep Embedding

Success

Yes

No

No

✓

✓

✓

x

x

Figure 10: Flowchart of Yin-Yang operation. Dashed boxes
are optional phases in the operation. Nodes containing X repre-
sent error states, and boxes containing a check-mark represent
successful states.

based on the IR of the DSL program. This transformation is
described in (§6.2).

Static Analysis performs optional domain-specific anal-
ysis of the DSL, which is applied if the DSL inherits the

trait. In case of errors, the domain-
specific error messages are reported at the standard error out-
put of the host language. For the correct positions of the er-
ror messages, the source information is passed as an implicit
parameter in the deep embedding. The information about
source locations is automatically extracted from the shallow
embedding ASTs.

Captured Identifiers Analysis checks which captured
identifiers are required for optimizations at runtime. Not all
captured values are required for optimizations and capturing
all runtime values causes often DSL recompilation. In this
step the DSL analyses which captured values are required for
optimizations and returns them to Yin-Yang. If some vari-
ables are required the DSL is executed at run time and the
required values are converted to lifted values. If no variables
are required, and the DSL can generate code, the DSL code

7 2013/3/29

Figure 20: Yin-Yang operations flowchart

First, by using the Feature Analysis component, Yin-Yang checks whether all methods are
supported by DSL or not. If one of the methods is not supported by DSL, it will report it using
appropriate error message.
Prototyping checks the user configurations to decide whether it should use shallow DSL, or it
should transform it to deep DSL.
Transformation transforms the shallow DSL to its corresponding deep DSL.
Static Analysis is an optional operation, which performs domain-specific static analysis, and
reports if there is any error.
Captured Identifiers Analysis checks which captured identifiers are needed for optimization ac-
cording to the DSL author configuration. If an identifier is necessary for the optimization, the
associated value will be captured and the DSL will be recompiled if its value is changed.
Finally, Interpreted or Staged uses the given configuration and captured identifiers to decide
whether it should generate the code or it should interpret it during run-time.
Yin-Yang consists of the following components:

8 YIN-YANG An Embedded Query Language in Scala, p. 38

8.1.1 Feature Analysis
This component analyses methods and language constructs to check whether they are supported
by deep DSL or not. Firstly, language constructs are virtualized, by being normalized to method
calls. Then, Feature Analysis checks whether all methods in shallow DSL can be translated to
deep DSL. If it is not possible for all methods, an appropriate error message will be reported.

8.1.2 Captured Identifier Analysis
This component analyses captured identifiers to check which identifier’s run-time value is nec-
essary to be captured for optimization and which one should not be captured. If the value of
an identifier is required for the optimization, the associated value will be lifted at run-time. As
deep DSL encodes this kind of captured identifier by its associated value, if this value changes,
the deep DSL must be recompiled. If there is no captured variable required for the optimization,
Yin-Yang can generate code for the result deep DSL.

8.1.3 Transformation
The transformation component, transforms shallow DSL into deep DSL according to the given
configuration. This component is described in more detail in Section 8.2.

8.1.4 Interpretation or Code Generation
This component uses the deep DSL, and according to the given configuration and captured
identifiers, either interprets the deep DSL during run-time, or generates the corresponding code
which will be executed later. If the configuration states that the DSL must be interpreted,
Yin-Yang interprets the deep DSL during run-time. If the configuration states that the code
for DSL must be generated, the situation is a bit different. If the optimizations do not require
run-time values, code generation will be executed at compile time. However, if some run-time
values are necessary for optimizations, those values are captured in run-time and will be passed
to the code generator, in order to generate the code according to captured values.

8.1.5 Stage Guards
As run-time compilation is a very costly operation, it should be performed only when required.
Yin-Yang installs a guard around DSL recompilation, which checks whether the captured iden-
tifiers for optimizations have the same values as in the previous run or not. If one of the values
is different, DSL will be recompiled with the new values, and if all of the values are constant,
the previously compiled DSL will be used.

8.2 Transformation
Transformation from shallow DSL to deep DSL is done in different phases shown in Figure 21.
First, Language Virtualization translates language constructs into method calls. Then, Ascrip-
tion places type ascriptions for each expression to assure successful type checking. Afterwards,
Lifting converts captured identifiers and literals to the appropriate method calls. Then, in the
Type Transformation phase every type will be transformed according to the rule defined by the
DSL author. Finally, Scope Injection injects the DSL block into the deep DSL component.

8 YIN-YANG An Embedded Query Language in Scala, p. 39

Figure 21: Yin-Yang transformation architecture

8.2.1 Language Virtualization
Yin-Yang uses the same approach as Scala Virtualized [32] for Language Virtualization, except
that Yin-Yang uses macros for the conversion, whereas in Scala Virtualized, the compiler converts
language constructs into method calls. The language constructs which are translated in this
phase are: conditionals, loops, new, return, mutable variable operations, and the try construct.
To summarize, this phase normalizes the shallow DSL to contain only method applications,
method definition, immutable variable definition, variables, functions, and objects.

8.2.2 Ascription
This phase is for assuring the success of type checking, specially in the case of dealing with
Rep[T]. There are cases in which type inference for T succeeds in shallow DSL, whereas the
type inference for fails in deep DSL. As a result, the inferred type for each expression will
be extracted and will be placed in the appropriate place in shallow DSL, and later in the Type
Transformation phase, this type will be transformed to appropriate deep type. The ascription
transformation is applied on method arguments, method invocations, the return type of method
definition, function objects (of type T1 => T2), and variable definitions.

8.2.3 Lifting
Replaces all literals and captured identifiers with corresponding IR in deep DSL. There are two
kinds of captured identifiers. First, the identifiers which were classified by Captured Identifier
Analysis as not needed for optimization, which are denoted by Lifted Captured Identifiers. Sec-
ond, the identifiers possessing a value that is needed for optimization, which are denoted by
Hole Captured Identifiers.

Literal is replaced with the application of a method named lift to the literal value. lift
method is in charge of conversions from shallow DSL value to deep DSL IR.

Lifted Captured Identifier i is also replaced with the method invocation lift(i).

Hole Captured Identifier h is replaced with the method invocation hole[h.type](classTag
[h.type], symbolId(h)), in which classTag[h.type] returns a ClassTag object which en-
codes the type information of h and symbolId(h) returns the identifier of the corresponding
symbol for h.

8.2.4 Type Transformation
According to the configuration given by the DSL author, type transformation transforms every
shallow type, which was ascribed previously in the Ascription phase, to the corresponding deep
type.
If we are using Polymorphic Embedding [21] to embed deep DSL, every type appearing in

8 YIN-YANG An Embedded Query Language in Scala, p. 40

shallow DSL must have a corresponding abstract type member in the deep DSL component
(Will be explained in Section 8.3.1). In Polymorphic Embedding, the non-function type T is
translated to this.T, the function type T1 => T2 is translated to this.T1 => this.T2, and
the higher-kinded type H[M] is transformed to this.H[this.M]. The translation is identical if
the given type is a method type parameter. These rules are summarized in Table 3.

Shallow Type Context Deep Type
T Normal this.T
T1 => T2 Normal this.T1 => this.T2
H[M] Normal this.H[this.M]
T Type Apply this.T
T1 => T2 Type Apply this.T1 => this.T2
H[M] Type Apply this.H[this.M]

Table 3: Type transformation rules for Polymorphic Embedding

In LMS [33], every non-function type T is translated to Rep[this.T], every function type T1
=> T2 is converted to Rep[this.T1] => Rep[this.T2], and every higher-kinded type H[M]
is transformed to Rep[this.H[this.M]]. In the context of Type Apply, the translation will be
identical to the Polymorphic Embedding. These rules are summarized in Table 4.

Shallow Type Context Deep Type
T Normal Rep[T]
T1 => T2 Normal Rep[this.T1] => Rep[this.T2]
H[M] Normal Rep[this.H[this.M]]
T Type Apply this.T
T1 => T2 Type Apply this.T1 => this.T2
H[M] Type Apply this.H[this.M]

Table 4: Type transformation rules for LMS

8.2.5 Scope Injection
Injects the shallow DSL into the deep DSL Component. Shallow DSL is using the objects of
shallow DSL, which must be transformed to the corresponding object in the deep DSL Compo-
nent. The objects containing shallow interface, and the scala.Predef which provides common
definitions, are exceptions and are transformed to this instead of the corresponding element in
the deep DSL Component.

8.3 API
Yin-Yang framework provides the DSL authors with an API which connects the shallow interface
and deep interface to the framework. A deep DSL component must be defined by the DSL
author. The name of this component and an appropriate Type Transformer must be passed
to Transformation API. Also, there are other configurations which the DSL author can pass to
Transformation API in order to disable or modify the phases.

8 YIN-YANG An Embedded Query Language in Scala, p. 41

8.3.1 Deep DSL Component
deep DSL component is the main component which must be implemented by the DSL author.
There is a method named main in this component that contains the deep DSL, which is the
result of transforming shallow DSL. This component must support the following functionalities:

Type and Value Rewiring The component must contain deep version for the types and
values appeared in shallow DSL.

Captured Identifier Analysis The component must provide a method requiredHoles,
which returns the Hole Captured Identifiers (see Section 8.2.3). The signature of this method
is in trait BaseYinYang.

Lifting The definitions of lift and hole is given in BaseYinYang trait. The implementation
of these two methods for each specific type, uses the implementation of these two methods
in an implicit parameter of type LiftEvidence. DSL author must implement an appropriate
implementation of LiftEvidence for each type. The trait BaseYinYang is shown in Figure 22.

trait BaseYinYang {
def requiredHoles(): List[Symbol]
abstract class LiftEvidence[T: TypeTag, Ret] {

def hole(tpe: TypeTag[T], symbolId: Int): Ret
def lift(v: T): Ret

}
def hole[T, Ret](tpe: TypeTag[T], symbolId: Int)(implicit liftEv:

LiftEvidence[T, Ret]): Ret = liftEv hole (tpe, symbolId)
def lift[T, Ret](v: T)(implicit liftEv: LiftEvidence[T, Ret]): Ret =

liftEv lift (v)
}

Figure 22: Interface of BaseYinYang

Static Analysis StaticallyChecked trait, contains staticallyCheck method. If deep com-
ponent extends this trait, it must statically check given DSL during compilation. The interface
for this trait is given in Figure 23.

trait StaticallyChecked {
def staticallyCheck(c: Reporter)

}

Figure 23: Interface of StaticallyChecked

Interpretation If the result deep DSL is interpreted during run-time, the component must
extend a trait called Interpreted. DSL author must provide an implementation for method
interpret, which will be invoked when the program is executed. This method accepts the values
for holes, and returns the result of executing DSL program. Whenever, the value of one of the
lifted captured identifiers changes, reset method will be invoked for invalidating optimizations.

8 YIN-YANG An Embedded Query Language in Scala, p. 42

Code Generation If the DSL author is interested in using code generation, the component
must extend CodeGenerator. If no captured identifier is needed for optimization, the deep DSL
code can be generated in the compile-time. In this case, the generateCode will be invoked, and
the shallow DSL code will be substituted by the generated deep DSL code. If some captured
identifiers are needed for optimization, compile-time code generation is not possible, and com-
pilation should be done in the run-time. In this case, the DSL author should implement the
method compile. Ret type is instantiated to a Scala function type (Any, ..., Any) => T
which represents a function object that accepts the values for holes, and returns the result of
executing the DSL program.
The interfaces for Interpreted and CodeGenerator are shown in Figure 24.

trait Interpreted {
def reset(): Unit
def interpret[T: TypeTag](params: Any*): T

}

trait CodeGenerator {
def generateCode(className: String): String
def compile[T: TypeTag, Ret]: Ret

}

Figure 24: Interface of Interpreted and CodeGenerator

8.3.2 Transformation
The interface for Transformation accepts the name of deep DSL component, an object which
encodes type transformation, and other configurations for disabling or modifying the transforma-
tion phases (For example a flag that specifies whether the program should be run in Prototype
mode or not, which was explained in Section 8.1). Also, Transformation interface could be
provided with a post processing phase, which can perform manual transformations by the DSL
author. The factory for Yin-Yang Transformer is shown in Figure 25.

object Transformer {
def apply[C <: Context, T](c: C)(

dslComponentName: String,
tpeTransformer: TypeTransformer[c.type],
postProcessing: Option[PostProcessing[c.type]],
config: Map[String, Any])

}

Figure 25: Yin-Yang Transformer factory

Type Transformation An object of the abstract class TypeTransformer, transforms every
given Type object, to the tree representation that encodes transformed type. Method transform,
takes care of transforming the type to the tree representation of transformed type. In addition
to the Type object, the context in which that type occurs is also given. In other words, it is
given whether the given type is in the context of a Type Apply, or it occurs in a Normal context.

8 YIN-YANG An Embedded Query Language in Scala, p. 43

Figure 26 shows the interface of TypeTransformer.

abstract class TypeTransformer[C <: Context](val c: C) {
trait TypeContext
case object TypeApplyCtx extends TypeContext
case object NormalCtx extends TypeContext
def transform(ctx: TypeContext , t: c.universe.Type): c.universe.Tree

}

Figure 26: Interface of TypeTransformer

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 44

9 Shadow Embedding
Shadow Embedding is the proposed front-end for Slick with the goal of having the virtues of
Direct Embedding and Lifted Embedding, without having their drawbacks. Yin-Yang converts
transparently every query expression, written in shallow interface, to its corresponding deep IR
during compilation by using macros. Hence, from the user perspective every query expression
has shallow type, which is standard Scala type, but behind the scenes every query expression is
mapped to the corresponding deep IR. As a result, type-errors are comprehensible (like Direct
Embedding). Furthermore, as the conversion from shallow interface to deep IR is performed
during compilation, if there are any unsupported operations in deep IR, an appropriate type-
error will be reported by compiler. Additionally, by using feature analysis in Yin-Yang (See
Section 8.1.1), we can do more domain-specific analysis and report errors which are not possible
to be reported by Lifted Embedding or Direct Embedding during compilation. Hence, type-
errors are comprehensive (even more than Lifted Embedding).
The deep IR of Shadow Embedding uses deep IR of Lifted Embedding. More precisely, Shadow
Embedding deep IR is a wrapper over Lifted Embedding deep IR. As a result, Shadow Embed-
ding is interoperable with Lifted Embedding, which causes lots of code reusability, and makes
the code more maintainable. Furthermore, Shadow Embedding can reuse the type providers of
Lifted Embedding.
Shadow Embedding provides composability for the user, which means that a part of code used
in lots of places, can be defined once and be accessed in many different places. To provide
composability, it is necessary to convert deep IR to shadow interface. This feature is provided
by using Transferable Pattern which will be discussed in Section 9.4.2.
Captured Identifiers Analysis of Yin-Yang (See Section 8.1.2), specifies the run-time value of
which captured identifiers are necessary for optimization. The run-time value of these identifiers
is lifted and is encoded in deep IR. The captured identifiers without this criterion are considered
as the input parameter, and are encoded as a special deep IR node, called Hole. The hole
identifiers are mapped to Query Parameter node in Slick AST, which corresponds to parameters
in PreparedStatement of JDBC [20].
Finally, Stage Guards of Yin-Yang (See Section 8.1.5), keeps track of the changes in the value of
lifted captured identifiers. When the query expression is interpreted for the first time, the query
compiler is invoked and the result SQL statement is cached. For the next executions, there is no
need for recompiling the query, and the SQL statement cached previously can be used. However,
if there is a change in the value of an identifier in the query expression, which causes a change
in the result SQL statement, the cache is invalidated by the guard, and the query expression
must be recompiled. Therefore, for a fixed query expression, Shadow Embedding saves the time
that Lifted Embedding was consuming to recompile the query.

9.1 Architecture
The architecture of Shadow Embedding is given in Figure 27. The query expressions are written
using shallow interface. Yin-Yang Transformer converts the shallow query expressions into
corresponding deep IR. Then, shadow interpreter either compiles the deep IR or uses the previous
cached compiled query in order to create an appropriate SQL statement. Afterwards, shadow
Interpreter runs the given SQL statement against the given query engine, and returns the result
of executing that query.

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 45

Figure 27: Shadow Embedding architecture

9.2 Shallow Interface
Shallow interface provides the interfaces which are necessary for the user to interact with. These
interfaces should not necessarily implement the functionality, it is enough to have only the
signature for each method. Having the implementation is necessary for Prototyping (See Section
8.1) which is not needed in Slick. Shallow interface consists of the following components:

Query Interface is the interface for query expressions. It contains all the methods which
were discussed in Section 3.2.4.

Join Query Interface is a subtype of Query interface that has another method called on for
specifying the join predicate.

Single Column Query Interface is an interface for the queries which result in a single
column, and provides aggregation methods (min, max, avg, and sum) for these kinds of queries.

Query Factory for a Table is a module that whenever is applied to a type T creates a Query
object for a table in which each record is of type T.

Numeric Extension contains the additional operations for numeric types, which are not part
of the numeric types signature in the Scala standard library, but are supported in SQL (such as
toRadians, toDegrees, sign, etc.)

String Extension contains String additional operations which do not exist in the Scala stan-
dard library, but are supported in SQL (such as like, ltrim, rtrim, etc.).

Null Ordering provides two methods for controlling the ordering of the tuples containing
null elements.

Additional Implicit Conversions provides implicit conversions for converting from the
Scala standard types to their extension types in shallow interface. For example, for an ex-
pression of type Int, in order to use method toRadians on it, it needs to be converted to the
appropriate numeric extension type that includes additional operations.

9.3 Deep IR
The deep IR for Shadow Embedding is a wrapper over Lifted Embedding IR. As a result,
each method invocation on shadow deep IR will delegate the corresponding method on Lifted
Embedding. The result of the invocation will be wrapped into another shadow deep IR node,
which contains the underlying Lifted Embedding IR result node.
The main reason for wrapping over Lifted Embedding IR, and not using Lifted Embedding
IR directly, is that the method signatures in shallow interface do not match with the ones in
Lifted Embedding. For example, map method in shallow Query interface accepts only one type

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 46

parameter (map[T]), whereas the one in Lifted Embedding accepts two type parameters (map[T,
S]). As Scala compiler does not have the capability of partially applying the types, it is not
possible to leave the inference of not given types to the compiler. But, the method signatures in
shadow deep IR match with the ones in shallow interface. In the previous example, map method
in shadow deep IR accepts one type parameter (map[T]). shadow deep IR is responsible for
rewiring the methods in Lifted Embedding IR.
The main deep IR nodes are:

Query includes the methods of Query interface and whenever each method is invoked an IR
node representing appropriate query expression will be created.

Table is the IR node for a table in the database.

Column represents a column in the database.

Constant Column represents a constant value.

Hole represents a parameter the value of which will be specified later. It corresponds to the
QueryParameter node in the Slick AST.

Projection represents a tuple of columns. Hence, every element of this tuple must represent
a column.

Tuple represents a tuple of arbitrary elements. The difference with Projection node is that the
Tuple node can contain elements other than columns. These kinds of tuples can also represent
the nested tuples. The main usage of a Tuple node is in Group By and Joins.

Struct represents a companion module for a case class. A companion module of a case class
creates a case class instance whenever it is applied to the fields of that case class.

Ordering represents the priority of each element in the ordering of a tuple. Additionally, it
encodes the direction in which each element of a tuple is ordered, as well as the priority of null
values.

9.4 Yin-Yang Integration
DSL author is responsible for configuring Yin-Yang to make it work for the desired DSL. There
is no need for Slick to enable Prototyping mode in Yin-Yang. All the domain specific analysis
is performed by the compiler when shallow interface is transformed to the deep IR. Therefore,
no Static Analysis has been implemented. Captured Identifier Analysis is done by analysing
the type of each identifier (See Section 9.4.1). Lifting expressions is explained in Section 9.4.2.
Type transformation for Shadow Embedding in Slick, is different than the type transformation
in LMS and Polymorphic Embedding (See Section 9.4.2). The record IR class, for the Record
types defined by the user, are created using type providers (See Section 9.4.4).

9.4.1 Captured Identifiers Analysis
It is necessary to analyse captured identifiers to distinguish the identifiers whose value must be
encoded in the deep IR (Lifted Captured Identifiers), and the ones that must be substituted by
a Hole (Hole Captured Identifiers, see Section 8.2.3).
Lifted captured identifiers mainly consist of the query expressions. The main use-case for lifting

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 47

captured query expressions is for the composition. A query is calculated in a shadow block and
another block is using that query. Therefore, the identifier encoding this query expression is a
captured identifier and its value does not change frequently. As a result, its value can be used
for optimization and if its value is changed the optimization will be invalidated by Stage Guards.
Hole captured identifiers include primitive identifiers which represent the parameters in a query
expression. Let us assume a method with an argument of type Int with a body that is the
shadow block. This shadow block is using the argument of that method as a part of the query
expression. As the value of this identifier is being changed frequently, it is not performant to
encode its value in deep IR, because that would result in lots of unnecessary query recompilations.
Therefore, we will put a Hole node in the deep IR that corresponds to the QueryParameter node
in Slick AST. The Slick query compiler converts the QueryParameter node to a parameter in
the PreparedStatement of JDBC.
We can distinguish the captured identifiers based on their type. If the type of an identifier is
Query it must be lifted, and if an identifier has a type other than Query, it must be substituted
by a Hole. There is a marker trait2 called TypeAnalyser, that whenever a deep DSL component
(See Section 8.3.1) is extending it, there is no need for implementing requiredHoles method.
It is enough for the DSL author to provide the Yin-Yang Transformer with the types that must
be lifted. In this case, we are passing Query type for the Yin-Yang Transformer.

9.4.2 Lifting
Literals are converted to an appropriate Constant Column.

Lifted Captured Identifiers which are representing the identifiers of type Query, must be
converted to a deep Query. As a result, the identifiers of type Query must encode their deep IR
outside of shadow block. For this purpose, we are using an approach called Transferable Pattern.
Transferable Pattern is used for composing the result of a DSL into another DSL block. If
the result of a shadow block is a Query, its deep IR must be encoded in an object of type
TransferableQuery, which is a subtype of shallow Query. Therefore, when this query object is
being used in another shadow block, this object will be lifted to a deep Query simply by accessing
its underlying deep Query.

Hole Captured Identifiers which are identifiers of primitive types, are converted to a Hole
node in deep IR.

9.4.3 Type Transformation
The type transformation of Slick Shadow Embedding is different than Polymorphic Embedding
and LMS. In the Normal context, the non-function type T is translated to this.T, the function
type T1 => T2 is translated to this.T1 => this.T2, and the higher-kinded type H[M] is
transformed to this.H[M]. The types are not changed in the context of Type Apply. Table 5
shows the rules of the type transformation in Shadow Embedding.

2a trait that has no member and is used as a flag.

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 48

Shallow Type Context Deep Type
T Normal this.T
T1 => T2 Normal this.T1 => this.T2
H[M] Normal this.H[M]
T Type Apply T
T1 => T2 Type Apply T1 => T2
H[M] Type Apply H[M]

Table 5: Type transformation rules for Shadow Embedding

9.4.4 Class Virtualization
If we are using a table record type in the query expression, which is not defined in the Scala
standard library (for example a user-defined case class), the corresponding Table node in deep
IR must be created. In other words, the table record type must be virtualized to table IR class.
The type provider component provides the definitions for Lifted Embedding table IR class, that
can be used in Shadow Embedding. The architecture of class virtualization is shown in Figure
28.

Figure 28: Class virtualization architecture

Collecting Virtualized Types is the step in which the table record types, defined as a case
class outside of the scope, are collected. Additionally, there is an option to provide the definition
of the case classes in the shadow block, which is implemented and can be used. The case class
definitions are using JPA annotations [25] for transforming into corresponding entity in the
database.

Schema model creation creates the schema model out of the collected annotated case
classes. Figure 29 shows an example of an annotated case class representing COFFEES table.

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 49

The schema of this table was shown in Table 1.

@Table(name = "COFFEES")
case class Coffee(

@Id
@Column(name = "COF_NAME")

name: String,
@Column(name = "SUP_ID")

supId: Int,
@Column(name = "PRICE")

price: Double,
@Column(name = "SALES")

sales: Int,
@Column(name = "TOTAL")

total: Int
)

Figure 29: Annotated case class for COFFEES table

There is no support for the foreign keys and other constraints. However, as there is enough
infrastructure in type providers and the Schema Model, supporting the other constraints is
feasible.

Code Generator of Type Providers generates the shadow deep IR and Lifted Embedding
IR definitions for the given record types, and saves the code into virtualization module.

Virtualization Module for a table named Coffee, must have the members shown in Figure
30.

object VirtualizationModule {
type CoffeeRow = /*original Coffee case class*/
class CoffeeTable extends lifted.Table[CoffeeRow] {

/* Lifted Embedding Table provided by type providers */
}
class ShadowCoffeeTable(lifted: CoffeeTable) extends

deep.Table[CoffeeRow] {
/* A wrapper for CoffeeTable */
// delegates the method calls to the ones in CoffeeTable

}
val CoffeeRow = /* companion module of the original Coffee case class

*/
object CoffeeTable extends CoffeeTable
implicit object ShadowCoffeeTable extends

ShadowCoffeeTable(CoffeeTable)
implicit def convertCoffeeToIR(coffeeRep: ShadowRep[CoffeeRow]):

ShadowCoffeeTable
}

Figure 30: Virtualization module of class virtualization

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 50

Virtualized Types Rewiring imports the types which were provided in the virtualization
module into transformed deep DSL. In addition, for each record type this component defines
corresponding abstract type member in the deep DSL component. Furthermore, by using Struct
(See Section 9.3) a companion module will be created for each record type. Afterwards, in the
post processing phase of the transformation the codes shown in Figure 31 are injected into the
deep DSL component.

import VirtualizedModule._
type Coffee = ShadowRep[CoffeeRow]
val Coffee = new Struct[CoffeeRow](

CoffeeRow.apply _
)

Figure 31: Virtualized types rewiring

This design made the type transformer simpler. At the beginning, record types had special rules
which made the design of type transformer very complicated. Then, by using this design the
type transformer is very simple (See Table 5).

9.5 Shadow Interpreter
Shadow interpreter is responsible for evaluating a query expression written using Shadow Em-
bedding. If the query expression is evaluated for the first time, firstly, this query expression
must be transformed to the corresponding deep IR. Then, the query compiler must compile it
into the SQL statement. Afterwards, an Invoker object (See Section 3.5) wrapping the compiled
SQL statement will be created. This Invoker object is cached for the following executions, if
the cached values are still valid, there is no need to recompile the query again. Therefore, the
cached invokers are used to execute the query. The workflow is shown in Figure 32.

Figure 32: Interpretation workflow in Shadow Embedding

If the value of a lifted captured identifier changes, the cache is invalidated. This situation occurs
when the value of a captured query is changed. Since a part of the query expression is changed,
the previous compiled SQL statement is no longer a valid translation for the query expression.
Therefore, the query must be recompiled.
If there is a hole captured identifier, the run-time value for this identifier is passed to shadow
interpreter. In this case, shadow interpreter creates a parameterized query instead of a simple

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 51

query, and passes the run-time values for the parameters to this parameterized query.
Another component is necessary for executing the query. Shadow interpreter only maintains
the cached values for the invokers, but it does not execute the queries. Additionally, a shadow
block only expresses the query expression and does not execute any query. Shadow Executor is
responsible for the execution of each query expression.

9.5.1 Parameterized Query
This query contains parameters which need to be filled with appropriate values. The deep IR
encodes these parameters with Hole nodes which will be translated to parameters in the final
PreparedStatement of JDBC. The parameters in JDBC PreparedStatement will be set by the
run-time values, which are provided by shadow interpreter.
As in the deep IR of a Parameterized Query there is no node changing during different executions,
it can be compiled only once. These queries have the same functionality as Query Templates in
Lifted Embedding.
We can use Parameterized Queries for updates in Shadow Embedding. There is no Query Tem-
plate for update implemented in Lifted Embedding. In order to implement it, Lifted Embedding
needs a change in lots of components. However, thanks to the hole captured identifiers in the
Yin-Yang, it is implemented in the Shadow Embedding with less effort.

9.5.2 Shadow Executor
Executing a query against the appropriate query engine is done by shadow executor. Whenever
an execution operation is performed on a Query object, the Query object will be implicitly
converted to a ShadowExecutor object. The ShodowExecutor will use the corresponding shadow
interpreter for the given Query object in order to manage the caching of invokers. Afterwards,
by using the cached invokers, the query will be executed.
There are four types of executions done by shadow executor:

• Selection
• Update
• Insertion
• Deletion

Shadow executor performs the execution of the parameterized queries in a thread-safe manner.
Shadow interpreter passes the run-time values of the parameters by creating immutable param-
eterized query objects. As a result, there will be no race condition.

9.6 Example
Assume that we have a table Coffee and are interested in retrieving the name of all elements
of this table.
Figure 33 shows the Lifted Embedding code for this query. The CoffeeTable object is an object
of table IR type which can be provided either by the user or by type provider. The query object
is Lifted Embedding Query which will be executed in the next line. This object is implicitly
converted to an invoker by executing the query compiler. This implicit conversion triggers the
query compiler to compile the query. The list method executes the query and returns the
result.

9 SHADOW EMBEDDING An Embedded Query Language in Scala, p. 52

val query: lifted.Query[Coffee, CoffeeTable] = for (c <-
lifted.Query(CoffeeTable)) yield (c.name)

query.list()

Figure 33: An example of a selection query in Lifted Embedding

Figure 34 shows the Shadow Embedding code for this selection query. This code will be trans-
formed by Yin-Yang to the code shown in Figure 35. The keyword stage is used to specify the
shadow block. The shallow.Queryable object is the factory method for creating queries out of
the tables (See Section 9.2). Finally, the list method forces the compiler to implicitly convert
query from shallow.Query to ShadowExecutor.

val query: shallow.Query[Coffee] = stage {
for (c <- shallow.Queryable[Coffee]) yield c.name

}
query.list()

Figure 34: An example of a selection query in Shadow Embedding

In Figure 34, deep.Queryable accepts an implicit parameter which is an object of table IR type.
This object is provided by type provider by using the record type. convertCoffeesToIR is an
implicit method, in order to specify that c must be of table IR type and not of table record type
(See Figure 30). Otherwise, it is not possible to create a correct deep IR. TransferableQuery
wraps the computed deep IR, to make it composable in other shadow blocks. In addition,
TransferableQuery encodes the dslComponent which takes care of caching the invokers and a
list of parameter values needed for the parameterized queries. Finally, ShadowExecutor executes
the query and returns the result. For the sake of simplicity, no information about the Stage
Guards is shown in Figure 35. ShadowExecutor uses the caching information stored in the
dslComponent object in order to not recompile the query every time.

val query: deep.Query[Coffee] = new TransferableQuery(
for(c <- deep.Queryable[Coffee](ShadowCoffeeTable)) yield

(convertCoffeeToIR(c).name), dslComponent , Nil
)
(new ShadowExecutor(query)).list()

Figure 35: Expanded version of the selection query example in Shadow Embedding

10 EVALUATION An Embedded Query Language in Scala, p. 53

10 Evaluation
We have implemented the type provider in approximately one month and a half. Shadow Em-
bedding was designed and developed in three months. As Shadow Embedding shares its deep
representation with Lifted Embedding, there was no need for reimplementing all the IR nodes
for deep DSL. However on the other hand, this design required more tricks to integrate the deep
IR of Shadow Embedding and Lifted Embedding IR.
The schema modelling required around 230 LoC, in which 120 LoC was dedicated to create the
schema model out of a given database, 70 LoC was dedicated to naming, and the rest (40 LoC)
used for the schema models themselves. The type provider overall consists of around 900 LoC,
from which 300 LoC is dedicated to creating Scala AST out of the given schema model. This
amount of code will be significantly decreased by using quasi-quotes [34]. 250 LoC is dedicated to
custom naming, 50 LoC is dedicated to custom typing, 80 LoC is used for reading the information
from configuration files. The rest (220 LoC) is used for generating the code from the given Scala
AST. This amount can also be decreased by using quasi-quotes.
Shadow Embedding is written in around 1200 LoC. 90 LoC is used for defining the shallow
interface. 260 LoC is dedicated for the shadow deep IR, in which the rewiring with Lifted
Embedding IR is performed. 120 LoC is used for handling tuples and projection of columns.
As we are generating the code for tuples of arbitrary size, the generated code will be expanded
to 1300 LoC. 30 LoC is used for creating holes. 30 LoC is used for creating structs. 30 LoC is
dedicated to lifting. Type transformer requires 50 LoC. Class virtualization overall needs 280
LoC. Shadow interpreter is written in 150 LoC. 110 LoC is used for defining the deep DSL
component. Finally, instantiating Yin-Yang transformer requires 50 LoC.
All of our experiments were performed on Intel Core i7-2600K CPU running at 3.40GHz, with
16 GB of DDR3 memory running at 1333 MHz. We used Scala 2.10.2, on the JDK 1.6 with the
JIT compilation stabilized. Performance evaluation is investigated in Section 10.2 and 10.3.

10.1 Correctness
We have designed two sets of test units. The first set of unit tests is identical to the test units
of Direct Embedding, consisting of the tests for map, filter, flatMap, and sort methods of
Query. There are also several tests for evaluating correctness of standard String operations and
numeric operations. In addition, a number of tests are dedicated to construct the tuples in the
query expression. Each tuple in the query expression must represent a projection of different
columns, and there is no test for nested tuples. However, nested tuples are tested in the second
test suites. Furthermore, the ordering based on different priority, different direction, and dealing
with null elements of a tuple is investigated in the first set of unit tests.
The second set consists of the important tests of Lifted Embedding. Below you can find the list
of unit tests of this category:

• creating projections of different columns and accessing different elements of the constructed
tuple.

• creating and using nested tuples.
• language virtualization. For example, testing whether == and if then else statements

are translated correctly.
• using simple operations on a query over a virtual record type.
• sorting based on different priority, different direction, and in the presence of null elements

10 EVALUATION An Embedded Query Language in Scala, p. 54

in a tuple.
• using for-comprehension syntactic sugar.
• standard string and numeric operations.
• additional string and numeric operations, such as like, ltrim, toRadians, etc.
• using Option values.
• union operation.
• join operations consisting of leftJoin, rightJoin, innerJoin, outerJoin and zip.
• using Group By for a query.
• composition of queries.
• using parameterized queries for selection.
• inserting in a table.
• updating specific elements of a table.
• creating parameterized queries for update.

10.2 Micro-benchmarking
For measuring the performance of the operations taking a small amount of time, it is neces-
sary to perform micro-benchmarking. For this purpose we are using ScalaMeter [10], a micro-
benchmarking tool for the JVM platform.
For all of the benchmarks, we are assuming a simple table named COFFEE with two columns
ID and NAME, of type Int and String respectively. All the benchmarks are performed after 50
rounds of warm up.
The X-axis in every figure specifies the number of iterations in which the query is executed, and
the Y-axis denotes the time in milliseconds.
The performance for Direct Embedding is not included in the figures, because its performance
was approximately 30x worse than Lifted Embedding. The reason was explained previously in
Section 3.7.

10.2.1 Selection
Case I Let us assume a very simple query which returns the element with the given identity.
Figure 36 shows that the speed up of Shadow Embedding is around 250x in comparison with
Lifted Embedding. The reason for this high amount of speed up is that a very high amount
of the running time for this query is consumed for the query compilation. Furthermore, the
amount of time needed for fetching the result is negligible in comparison with the time needed
for query compilation. However, Shadow Embedding is 20% slower than Plain SQL, because
Shadow Embedding requires boxing and unboxing the result in a case class object.

10 EVALUATION An Embedded Query Language in Scala, p. 55

Figure 36: Performance results for simple selection

Case II The other performance test for selection is performed for a query which contains an
input parameter. The query will return the elements with the identity values smaller than the
given input parameter. In each iteration, a different value will be passed as the input parameter.
Figure 37 shows that in this case the performance of Shadow Embedding is almost identical to
the performance of Lifted Embedding using query templates. This is due to Shadow Embedding
is using the query template of Lifted Embedding behind the scenes. But, if Lifted Embedding is
not using query templates, Shadow Embedding has 4x speed up. Again, Shadow Embedding is
around 20% slower than Plain SQL, because of the overhead of boxing and unboxing.

Figure 37: Performance results for parameterized selection

10.2.2 Insertion
For insertion we perform two benchmarks. The first benchmark is for inserting a constant
element into the table in different iterations. The second one is inserting an element which will
be varied during each iteration.

Case I Figure 38 shows the performance results for the case of inserting a constant element
in all iterations. Shadow Embedding is around 10x faster than Lifted Embedding. The perfor-

10 EVALUATION An Embedded Query Language in Scala, p. 56

mance of Shadow Embedding and Plain SQL are almost identical in this case, because there is
no overhead for boxing and unboxing.

Figure 38: Performance results for insertion of a constant value in all iterations

Case II Performance results for inserting different values during iterations is shown in Figure
39. The element which will be inserted in the table is constructed using a captured identifier.
Shadow Embedding is 7x faster than Lifted Embedding in this case. As the inserted element
must be constructed, again we will have boxing and unboxing overhead. Therefore, Shadow
Embedding is 20% slower than Plain SQL.

Figure 39: Performance results for insertion of different values in each iteration

10.2.3 Update
For update we are considering three different cases. Shadow Embedding codes for these three
cases are given in Figure 40. In this code coffee is an object which will be changing during
each iteration. In Case II and III, id and name are captured identifiers which are being changed
in each iteration.

10 EVALUATION An Embedded Query Language in Scala, p. 57

// Case I
stage {

Queryable[Coffee].filter(_.id == 10)
}.update(coffee)
// Case II
stage {

Queryable[Coffee].filter(_.id == id)
}.update(coffee)
// Case III
stage {

Queryable[Coffee].filter(_.id == id && _.name == name)
}.update(coffee)

Figure 40: Shadow Embedding code for update benchmarks

Case I: In this case we are updating a fixed element. Figure 41 shows that Shadow Embedding
is 5x faster than Lifted Embedding, and its performance is almost the same as Plain SQL.

Figure 41: Performance results for update case I

Case II: The element which is updated in this case is being changed in each iteration. As
shown in Figure 42, Shadow Embedding and Plain SQL are again 5x faster than Lifted Embed-
ding.

10 EVALUATION An Embedded Query Language in Scala, p. 58

Figure 42: Performance results for update case II

Case III: The condition for selecting the element is more complicated than the previous two
cases. Furthermore, there are two captured identifiers which are being changed during different
iterations. Figure 43 shows that Shadow Embedding is around 4x faster than Lifted Embedding.
Again, its performance is similar to Plain SQL.

Figure 43: Performance results for update case III

10.3 Databench
Databench [5] is a persistence benchmark for JVM, which compares the performance of different
persistence systems. This benchmark uses the table ACCOUNT with the schema given in Table 6,
and uses Postgres [37] as the query engine.

10 EVALUATION An Embedded Query Language in Scala, p. 59

Attribute Type Options
ID INTEGER Primary Key
BALANCE INTEGER
TRANSFERS VARCHAR

Table 6: The schema of ACCOUNT table

In this benchmark there are 50,000 accounts, and 100,000 transactions are executed between
these accounts. In each transaction, a value will be decreased from the BALANCE of an account
and will be added to the BALANCE of another account. Also, the transferred value will be
concatenated to the TRANSFERS field of both accounts. Furthermore, during these transactions
the information from database is read 400,000 times, to check the correctness of the transactions.
Figure 44 shows the performance of different systems.

Figure 44: Performance results for Databench

Shadow Embedding is around 6.3x faster than Lifted Embedding and has almost similar perfor-
mance as Plain SQL. Activate Framework [4] is 2.3x faster than Shadow Embedding, because of
the more clever backend that it provides. Ebean [6] is around 10% faster than Shadow Embed-
ding. JDBC [20] is processing the transactions 50% faster than Shadow Embedding. The reason
for this amount of difference is that in JDBC the low-level caching for the PreparedStatements
can be performed, whereas Slick does not possess the proper API to support it. Shadow Em-
bedding is around 50% faster than different JPA [25] systems as well as Squeryl [12].

11 LIMITATIONS An Embedded Query Language in Scala, p. 60

11 Limitations
As Shadow Embedding is dependent on type provider, another compilation stage is necessary
to provide the data-structures for virtual record types. This extra compilation stage makes the
workflow more complicated for the user. However, an appropriate workflow template is designed
using simple build tool [11].
Lots of standard Scala types are not supported in the Shadow block. Additionally, it is not
possible to use user-defined types and methods in the Shadow block. Because all types and
methods must be mapped to appropriate element in the deep DSL component, but the ones
which are not defined for the deep DSL component will cause a type error.

12 FUTURE WORK An Embedded Query Language in Scala, p. 61

12 Future Work
12.1 Type Providers
Using macro annotations is not as fragile as type macros for type providers. If a class or the
members of a class are annotated by macro annotations, the class will be expanded by defin-
ing new members or modifying the defined members. Hence, by annotating a class by macro
annotations, it is possible to create a type member representing a Lifted Embedding Table.

12.2 Shadow Embedding
By using macro annotations there is no need for an extra compilation stage for generating the
code for the data-structures of virtualized record types.
In the current design of Slick, the update method in Lifted Embedding and Shadow Embedding
accepts a value. As a result, the updating value must be computed at the client side, and then
passed to the server. If update accepts a function instead of a value, it will be possible to
compute the new value based on the previous values in the server side. Therefore, the update
function will be more expressible in this case.
shadow block captures the identifiers of primitive types and query expressions. By adding more
deep IR nodes, it will be possible to capture tuple identifiers as well.
Additionally, it is very useful to define a function in a shadow block and use it in that block
or even in other blocks. This feature requires lifting functions. For functions having a single
argument, this feature is already implemented in the Shadow Embedding prototype. However,
the support for lifting functions with more arguments is considered as a future work.
Supporting nested data is related to Slick backend. If Slick uses an approach similar to Ferry
[18] or T-LINQ [23], Shadow Embedding will be able to support nested data.

12.3 Shadow Programming
The Shadow Embedding approach used in this thesis for Slick, can be used for embedding other
DSLs in a host language. The transformation from shallow DSL to deep DSL can be performed
by a transformation component such as Yin-Yang. The result deep DSL contains several types
which are needed to be virtualized to an appropriate type in deep DSL. Virtualizing the shallow
types to corresponding deep types can be done by using the type provider component. Hence,
by using Yin-Yang and type provider together it is possible to convert a shallow DSL to its
corresponding deep DSL in a robust and type-safe manner.

13 CONCLUSION An Embedded Query Language in Scala, p. 62

13 Conclusion
We have presented Shadow Embedding in Slick, which uses Yin-Yang to transparently transform
shallow DSL to deep DSL.
Shadow Embedding is as beautiful as Lifted Embedding and Direct Embedding. The type errors
are comprehensible like Direct Embedding and comprehensive like Lifted Embedding. Finally,
Shadow Embedding has almost the same performance as Plain SQL.
Using Shadow Embedding can be generalized for embedding other DSLs into a host language like
Scala. The main components are a transformation component like Yin-Yang and a component
for generating the types like type providers in Slick.
The implementation for Shadow Embedding in Slick is publicly available in the Slick repository3.
Shadow Embedding in Slick is dependent on the Yin-Yang project4.

3https://github.com/slick/slick
4https://github.com/vjovanov/mpde

REFERENCES An Embedded Query Language in Scala, p. 63

References
[1] Hibernate. http://www.hibernate.org/.
[2] Hibernate Plugin for IntelliJ IDEA.

http://www.jetbrains.com/idea/webhelp/
hibernate.html.

[3] Java Data Objects (JDO) Specification JSR-
12, 2003.

[4] Activate Framework. http://
activate-framework.org/, 2013.

[5] Databench. http://databen.ch/, 2013.
[6] Ebean ORM Persistence Layer. http://www.

avaje.org/ebean/introduction.html, 2013.
[7] HOCON (Human-Optimized Config Ob-

ject Notation). https://github.com/
typesafehub/config/blob/master/HOCON.
md, 2013.

[8] Macro Paradise. https://github.com/
scalamacros/kepler, 2013.

[9] Scala Language-Integrated Connection Kit
(Slick). http://slick.typesafe.com, 2013.

[10] ScalaMeter. http://axel22.github.io/
scalameter/, 2013.

[11] Simple Build Tool. http://www.scala-sbt.
org/, 2013.

[12] Squeryl - A Scala ORM for SQL Databases.
http://squeryl.org/, 2013.

[13] Eugene Burmako. Scala Macros: Let Our Pow-
ers Combine! In 4th Annual Scala Workshop,
2013.

[14] William R. Cook and Siddhartha Rai. Safe
query objects: statically typed objects as re-
motely executable queries. In International
Conference on Software Engineering, pages
97–106, 2005.

[15] Krzysztof Czarnecki, John T O’Donnell, Jörg
Striegnitz, and Walid Taha. Dsl implemen-
tation in metaocaml, template haskell, and
c++. In Domain-Specific Program Generation,
pages 51–72. Springer, 2004.

[16] Carl Gould, Zhendong Su, and Premkumar
Devanbu. JDBC checker: A static analysis tool
for SQL/JDBC applications. In Proceedings of
the 26th International Conference on Software
Engineering, pages 697–698. IEEE Computer
Society, 2004.

[17] Carl Gould, Zhendong Su, and Premkumar
Devanbu. Static checking of dynamically gen-
erated queries in database applications. In
Software Engineering, 2004. ICSE 2004. Pro-
ceedings. 26th International Conference on,
pages 645–654. IEEE, 2004.

[18] Torsten Grust, Manuel Mayr, Jan Rittinger,
and Tom Schreiber. Ferry: database-
supported program execution. In Proceedings
of the 2009 ACM SIGMOD International Con-
ference on Management of data, SIGMOD ’09,
pages 1063–1066, New York, NY, USA, 2009.
ACM.

[19] Miguel Guerrero, Edward Pizzi, Robert Rosen-
baum, Kedar Swadi, and Walid Taha. Imple-
menting dsls in metaocaml. In Companion to
the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, lan-
guages, and applications, pages 41–42. ACM,
2004.

[20] G. Hamilton and R. Cattell. JDBCTM : A
Java SQL API, 1997.

[21] Christian Hofer, Klaus Ostermann, Tillmann
Rendel, and Adriaan Moors. Polymorphic em-
bedding of dsls. In Proceedings of the 7th
international conference on Generative pro-
gramming and component engineering, pages
137–148. ACM, 2008.

[22] Paul Hudak. Modular domain specific lan-
guages and tools. In Software Reuse, 1998.
Proceedings. Fifth International Conference
on, pages 134–142. IEEE, 1998.

[23] Sam Lindley James Cheney and Philip Wadler.
A practical theory of language-integrated
query. In The 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming.
ACM, 2013.

[24] Vojin Jovanovic, Vladimir Nikolaev, Ngoc Duy
Pham, Vlad Ureche, Sandro Stucki, Christoph
Koch, and Martin Odersky. Yin-yang: Trans-
parent deep embedding of dsls. Technical
report, Technical Report, EPFL, Lausanne,
Switzerland, 2013.

[25] Mike Keith and Merrick Schincariol. Pro EJB
3: Java Persistence API. Apress, 2006.

http://www.hibernate.org/
http://www.jetbrains.com/idea/webhelp/hibernate.html
http://www.jetbrains.com/idea/webhelp/hibernate.html
http://activate-framework.org/
http://activate-framework.org/
http://databen.ch/
http://www.avaje.org/ebean/introduction.html
http://www.avaje.org/ebean/introduction.html
https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
http://slick.typesafe.com
http://axel22.github.io/scalameter/
http://axel22.github.io/scalameter/
http://www.scala-sbt.org/
http://www.scala-sbt.org/
http://squeryl.org/

REFERENCES An Embedded Query Language in Scala, p. 64

[26] Daan Leijen and Erik Meijer. Domain specific
embedded compilers. In ACM Sigplan Notices,
volume 35, pages 109–122. ACM, 1999.

[27] David Maier. Advances in database pro-
gramming languages. chapter Representing
database programs as objects, pages 377–386.
ACM, New York, NY, USA, 1990.

[28] Russell A McClure and Ingolf H Kruger. SQL
DOM: compile time checking of dynamic SQL
statements. In Software Engineering, 2005.
ICSE 2005. Proceedings. 27th International
Conference on, pages 88–96. IEEE, 2005.

[29] Erik Meijer, Brian Beckman, and Gavin M.
Bierman. LINQ: reconciling object, relations
and XML in the .NET framework. In SIG-
MOD Conference, page 706, 2006.

[30] Jim Melton. Understanding SQL and Java To-
gether: A Guide to SQLJ, JDBC, and Related
Technologies, 2000.

[31] Adriaan Moors, Frank Piessens, and Martin
Odersky. Generics of a higher kind. In Acm
Sigplan Notices, volume 43, pages 423–438.
ACM, 2008.

[32] Adriaan Moors, Tiark Rompf, Philipp Haller,
and Martin Odersky. Scala-virtualized. In
PEPM’12, pages 117–120, 2012.

[33] Tiark Rompf and Martin Odersky.
Lightweight modular staging: a pragmatic
approach to runtime code generation and
compiled DSLs. In Proceedings of the ninth
international conference on Generative pro-
gramming and component engineering, GPCE
’10, pages 127–136, New York, NY, USA,
2010. ACM.

[34] Denys Shabalin, Eugene Burmako, and Mar-
tin Odersky. Quasiquotes for scala. Techni-
cal report, Technical Report. EPFL, Lausanne,
Switzerland, 2013.

[35] Tim Sheard and Simon Peyton Jones. Tem-
plate meta-programming for haskell. In Pro-
ceedings of the 2002 ACM SIGPLAN workshop
on Haskell, Haskell ’02, pages 1–16, New York,
NY, USA, 2002. ACM.

[36] Daniel Spiewak and Tian Zhao. Scalaql:
language-integrated database queries for scala.
In Software Language Engineering, pages
154–163. Springer, 2010.

[37] Michael Stonebraker and Lawrence A Rowe.
The design of Postgres, volume 15. ACM, 1986.

[38] Don Syme, Keith Battocchi, Kenji Takeda,
Donna Malayeri, Jomo Fisher, Jack Hu, Tao
Liu, Brian McNamara, Daniel Quirk, Mat-
teo Taveggia, et al. Strongly-typed language
support for internet-scale information sources.
Technical report, Technical Report. Microsoft
Research, 2012.

[39] Michiaki Tatsubori, Shigeru Chiba, Marc-
Olivier Killijian, and Kozo Itano. OpenJava: A
class-based macro system for Java. In Reflec-
tion and Software Engineering, pages 117–133.
Springer, 2000.

[40] Todd Veldhuizen. Template metaprograms.
C++ Report, 7(4):36–43, 1995.

[41] Murali Venkatrao and Michael Pizzo. SQL/-
CLI—a new binding style for SQL. ACM SIG-
MOD Record, 24(4):72–77, 1995.

[42] Jan Christopher Vogt. Type safe integration
of query languages into scala. Master’s the-
sis, Diplomarbeit, RWTH Aachen, Germany,
2011.

[43] A. H. Ibrahim W. R. Cook. Integrating Pro-
gramming Languages and Databases: What is
the Problem?, Sept 2006.

A SLICK AST An Embedded Query Language in Scala, p. I

Appendix
A Slick AST
Slick AST, is an intermediate representation for all SQL statements. It provides a high-level
abstraction over SQL statements in order to make them independent of the query engine and
its driver. These nodes are used among different phases of query compilation. Here we only
introduce the nodes which are visible to first phase of compilation. Hierarchy of AST is shown
in Figure 45.

Node Represents a node in AST.

Symbol Represents symbol which can be used in AST.

UnaryNode A node with only one child.

BinaryNode A node with two children.

RefNode Super type for nodes which are referencing to a symbol.

DefNode Super type for all nodes which are introducing symbols.

TypedNode The nodes which are associated with a type.

TableNode Represents a table.

ColumnNode Represents a column.

ProductNode Represents a node which is conjunction of some other nodes, which are its
children nodes.

ElementSymbol Symbol of an element of a ProductNode.

StructNode Represents a structure, which is a conjunction of components, in which each
individual component has associated Symbol with them.

LiteralNode Represents a literal value.

Pure Represents a plain value which is lifted into a Query.

FilteredQuery Super type for nodes which are applying a filtering over a Query.

Filter Represents .filter call.

SortBy Represents .sortBy call. It also uses another kind of node named Ordering which
encodes the nodes, priority and direction of ordering.

GroupBy Represents .groupBy call.

Take Represents .take call.

Drop Represents .drop call.

Join Represents a join expression. It uses another node called JoinType which carries the
information about type of join(Inner, Left, Right, Outer and Zip).

Union Represents a union operation.

A SLICK AST An Embedded Query Language in Scala, p. II

Figure 45: Slick AST hierarchy

B QUERY COMPILER An Embedded Query Language in Scala, p. III

Bind Represents .flatMap call.

Select Represents selection of a filed in another expression.

Apply Represents a function call expression.

Ref Represents a reference to a symbol.

ConditionalExpr Represents a conditional expression.

IfThen Represents if-then parts of ConditionalExpr

QueryParameter Represents a parameter in QueryTemplate which should be turned into a
bind variable.

FieldSymbol A named symbol which refers to a field.

TableSymbol A named symbol which refers to a table.

AnonSymbol An anonymous symbol which is defined in AST.

IntrinisicSymbol A symbol which is associated with the identity of a Node object. It can be
used to reference a specific Node object when constructing the AST from the front-end.

FunctionSymbol A symbol which represents a library function or an operator.

B Query Compiler
B.1 Standard Phases
Localize References Converts all IntrinsicSymbol nodes into AnonSymbol and will put all
of them in a LetDynamic. So the references to them same node, refer to the same symbol.

Reconstruct Products In order to represent a tuple, we have used ProductNode. The
children of this node are the elements of that tuple. In this phase, the representation of each
element is converted from Select(ref, ElementSymbol(idx)), in which ref is a Ref node, to
ref.

Inline The references to a global symbol which occurs only once, will be inlined and removed
from LetDynamic.

Assign Unique Symbols In this phase, it is ensured that symbol definitions are unique.

Expand Tables In this phase, TableNodes are replaced by TableExpansions. TableExpansion
includes TableNode and list of nodes corresponding to its columns.

Create Result Set Mapping All TypeMapping nodes are removed and all type mapping
information is hoisted into ResultSetMapping. This phase also insures that the top-level node
should be of CollectionType. So if its type is not CollectionType, it will put it into Pure
node, and then this node is put into First node to denote only this single element.

Force Outer Binds All collection operations will be wrapped in a Bind so that we have a
place for expanding references in the next phases.

B QUERY COMPILER An Embedded Query Language in Scala, p. IV

Expand References As it was noted in Slick AST section, Paths are representing nested
Selects starting at Ref node. This phase will expand Paths to ProductNodes into ProductNodes
of Paths. Also it will convert Paths to TableExpansions into TableRefExpansions of Paths.

Replace Field Symbols In this phase, the references to FieldSymbols in TableExpansion
nodes are replaced by appropriate ElementSymbol which includes the index of element as it was
noted.

Rewrite Paths In this phase all TableExpansion and TableRefExpansion nodes are re-
moved. Also all ProductNodes are flattened into StructNodes. And unnecessary columns are
being removed from them.

Prune Fields Unreferenced fields are removed from StructNodes in this phase. There exists
a problem for right-side nodes of Union for this phase. There is no reference for left-side nodes of
Union which is resolved by assigning the symbols of the references of left-side nodes to right-side
nodes.

B.2 Relational Phases
Resolve Zip Joins It converts zip joins to a SQL standard, by using inner join and RowNumber
nodes. RowNumber needs the information about the ordering of rows, which will be filled in phase
Fix Row Number Ordering.

Assign Types In this phase, type information is computed for every node.

Convert To Comprehensions Basic ASTs are converted to a suitable shape for relational
databases. In this phase, all nodes of type Bind, Filter, SortBy, Take, and Drop are substituted
by a Comprehension node, which represents a SQL comprehension. Also, nested Comprehension
nodes are merged in this phase.

Fuse Comprehensions This phase fuses sub-comprehensions into their parents.

Fix Row Number Ordering In this phase, appropriate ordering is injected into RowNumber
nodes which was produced previously in Resolve Zip Joins.

Hoist Client Operations The operations which are preferred to be done at client-side, are
hoisted out of sub-queries.

	Introduction
	Related Work
	Slick
	Architecture
	Front-end
	Table Data-Structure
	Column Data-Structure
	Constraints
	Query Interface
	Executor

	Slick AST
	Query Compiler
	Invoker
	Lifted Embedding
	Direct Embedding
	Plain SQL

	I Type Providers
	Scala Macros
	Def Macros
	Type Macros

	Schema Modelling
	Naming
	Table Data-Structure
	Column Data-Structure
	Constraints

	Type Provider
	Schema Model Creation
	Scala AST Generation
	Table Record Class
	Table IR Class

	Custom Naming
	Configuration File
	Naming API

	Custom Typing
	Type Macro
	Code Generation

	Limitations

	II Shadow Embedding
	Yin-Yang
	Architecture
	Feature Analysis
	Captured Identifier Analysis
	Transformation
	Interpretation or Code Generation
	Stage Guards

	Transformation
	Language Virtualization
	Ascription
	Lifting
	Type Transformation
	Scope Injection

	API
	Deep DSL Component
	Transformation

	Shadow Embedding
	Architecture
	Shallow Interface
	Deep IR
	Yin-Yang Integration
	Captured Identifiers Analysis
	Lifting
	Type Transformation
	Class Virtualization

	Shadow Interpreter
	Parameterized Query
	Shadow Executor

	Example

	Evaluation
	Correctness
	Micro-benchmarking
	Selection
	Insertion
	Update

	Databench

	Limitations
	Future Work
	Type Providers
	Shadow Embedding
	Shadow Programming

	Conclusion
	Slick AST
	Query Compiler
	Standard Phases
	Relational Phases

