
 

  

Supplementary Figure 1. Representative transport characteristics of suspended graphene 
nanoribbons (GNR). (a-b) Transfer characteristics of a, a single layer GNR (device #1) and b, a 

bilayer GNR (device #6). Ids   Vbg curves demonstrate ambipolar behavior with the charge neutrality 
point VCN at 2V and at 0 respectively. (c-d) Output characteristics of the same c, single layer device 

and d, bilayer device. The linear Ids – Vds characteristics are indication of ohmic contact.   
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Supplementary Figure 2. Representative AFM images of suspended a and b, single layer. c and d, 
bilayer graphene devices. Scale bar is 200 nm. 
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Supplementary Figure 3. Photodetector calibration curves and the calculated photodetector 
sensitivity for a, Device#1. b, Device#2. c, Device#3 and Device#4 (both measured under the same 
calibration). d, Device#5. e, Device#6. f, Device#7. Using the calculated sensitivity values the 
cantilever deflection is determined in nanometers. 
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Supplementary Figure 4. Measurement of AFM tip radius using scanning electron microscopy. 
Magnified SEM image of the AFM probe. The diameter of the tip is approximately 60 nm. 

 

  



 

 

Supplementary Figure 5. a, Power spectrum of thermally induced cantilever motion. b, The 
resonance peak fit by a Lorentzian function allowing extraction of the cantilever spring constant   
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Supplementary Figure 6. FEM simulation of the nanoindentation experiment using various 
geometries. a, Geometry I: the GNR is clamped at the two ends by imposing zero displacement 
boundary conditions. b, Geometry II: the GNR is clamped at the two ends by means of two metallic 
clamps which are partially suspended due the isotropic nature of etching. c, Geometry III: the GNR 
and the clamping region are all suspended. This geometry considers that the interface between 
graphene and SiO2 absorbs the HF very fast which leads to the undercut also in the clamped part of 
the GNR. 



  

 

Supplementary Figure 7. Effect of various clamping geometries on the deflection profile of the GNR 
and the contacts. a, linear b, logarithmic scale deflection profile along the dashed line shown on c. 



 

Supplementary Figure 8. 2D map of strain distribution in suspended GNRs in a, Device#1. b, 
Device#3. c, Device#6 d, Device#7. The areas near the AFM tip experience the highest levels of 
strain due to the local deformation under the AFM tip. Moving away from the center of GNR towards 
the edges, the effect of local strain is replaced with the contribution from the global deformation of the 
GNR. The global deformation of GNR leads to the uniform distribution of strain due to the elongation 
of the GNR. 

 

  



 

Supplementary Figure 9. Strain profile along the dashed lines in Supplementary Figure 8. a, Device 
#1. b, Device #3. c, Device #6 d, Device #7. 
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Supplementary Figure 10. Mechanical failure and highest achieved strain for a, Device #2. b, Device 
#3. c, Device #4. d, Device #5. The black arrow shows the point at which mechanical failure occurs. 
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Supplementary Figure 11. Schematic drawing of one of the investigated models (ΔW = a). The two 
graphene layers are distinguished by color. Black rectangles show the rectangular repeat cell of AB-
stacking bilayer graphene leads. 

  



Supplementary Table 1  

Device geometry and preparation method 

Device number Width [nm] Length [nm] Channel 

thickness 

Preparation 

method 

1 85 550 1L Exfoliation 

2 270 800 1L CVD 

3 60 650 1L CVD 

4 100 700 1L CVD 

5 80 850 1L CVD 

6 300 850 2L Exfoliation 

7 200 900 2L Exfoliation 

 

  



Supplementary Note 1 

Imaging of suspended GNRs. Special care needs to be taken when imaging suspended 

graphene devices. Tapping mode operated AFM at low scanning speed (~ 6 µm/s) and 

scanning direction parallel to the ribbon, allows precise localization of the suspended GNR 

devices and reduces the risk of mechanical damage. AFM chamber is kept at a constant 

temperature of ~32°C to minimize thermal drift. Once the suspended GNR is localized, 

several imaging scans are performed to monitor sample drift. The nanoindentation of the 

suspended GNR is performed for vanishing drifts, ensuring a strict vertical and minimum 

lateral deformation. During the experiment, the GNR is biased with an AC signal with an 

RMS amplitude of 4 mV, a frequency of 8 kHz and the current flowing through it is 

monitored using a lock-in amplifier. We maintain the back-gate voltage at 0, Vg = 0 V. The 

rate of deformation is 0.1 Hz, i.e. the duration of one tip approach-retract cycle is 10 s. This 

allows acquiring sufficiently large number of points to detect the electromechanical 

oscillations in the noisy signal. The low-speed of deformation ensures the measurements are 

carried out in quasi-static conditions. 

Supplementary Note 2 

AFM photodetector (optical lever) calibration. Prior to nanoindentation experiment, we 

calibrate the sensitivity of the photodetector in order to accurately measure the AFM tip and 

nanoribbon deflection. In the AFM setup, a photodetector is used to detect the cantilever 

deflection and thus the measured deflection values are expressed in volts. In order to convert 

the measurements from volts to nanometers, the photodetector should be calibrated. This is 

achieved by performing nanoindentation on the SiO2 substrate. When being deformed on top 

of the hard substrate, the deformation of the substrate is negligible compared to the deflection 

of the cantilever, resulting in a one-to-one correspondence between the deflection of the 

cantilever and the voltage measured by the photodetector. The sensitivity of photodetector S 

is then defined as
1
: 

 

   piezo

volts

[ ]
/
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D V
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Where Zpiezo is the piezo scanner extension and Dvolts is the change in the voltage signal on the 

AFM photodetector due to the deflection of cantilever. For a typical load-deflection 

calibration curve the sensitivity of the photodetector is calculated from the inverse of the 

slope of the curve. Supplementary Figure 3 shows the calibration curve for all the devices 

presented in this work. The slope of load-deflection curve is extracted by fitting a line to it 

and the corresponding photodetector sensitivity is calculated for each device. Using the 

calculated sensitivity values makes it possible to determine the cantilever deflection in 

nanometers.  

 AFM probe characteristics. We used Mikromasch HQ probes (Model NSC36/AL BS). 

As reported by the manufacturer, the probe bulk resistivity is in the range of 0.01 Ω·cm to 

0.025 Ω·cm. Scanning electron microscopy (SEM) was used to estimate the tip radius (Figure 

S4). According to SEM image results, the radius of imaged tips vary in the range of 15 nm to 

35 nm. The tip height is in the range of 12−18 μm and it has the shape of a three-sided 

pyramid with the cone angle of 40°, Supplementary Figure 4.  

 Prior to performing the nanoindentation experiment on each suspended device, the spring 

constant of the AFM probe is calculated using the Hutter-Bechhoefer method
2
 based on 

acquiring the spectra of thermally induced cantilever motion. The extracted values of 



stiffness are in the range of 2 N/m to 7 N/m. Briefly, the energy of the thermally induced 

vibrations is expressed as: 

 

 2

thermal cantilever thermal

1

2
E k D  (2) 

 

where cantileverk  is the cantilever spring constant and 
2

thermalD  is the average of the square of 

the thermal vibration amplitude of the cantilever. Using the equipartition theorem: 

 

 2 2

cantilever thermal B

1 1

2 2
k D k T   (3) 

 

By recording the power spectral density of cantilever vibrations (Supplementary Figure 5a), 

we can obtain 
2

thermalD  by integrating the area under the resonance peak (Supplementary 

Figure 5b) and calculate the cantilever spring constant kCantilever.  

 

Supplementary Note 3 

 Influence of different boundary conditions. The simplest way of modeling the effect of 

metallic clamps is to consider them as ideal clamps i.e. the GNRs are fixed and the 

displacement is zero at the edges. The role of the ideal clamps is simulated by imposing fixed 

boundary conditions on the two edges of the GNR. The corresponding FEM geometry is 

illustrated in Supplementary Figure 6a and labeled as “geometry I”.  

In another geometry which is one step closer to the realistic devices, one should consider 

the isotropic nature of HF wet etching meaning that the SiO2 would be etched in the 

horizontal direction as much as it would be etched in the vertical direction. This results an 

undercut in the contact area (visible in the SEM image of Figure 1a. and schematics 

illustration in Figure 1b.). For instance if the GNR is suspended 180 nm above the substrate, 

180 nm of the SiO2 underneath the contacts is also etched therefore in addition to the GNR, 

180 nm of the contacts is also suspended. To model this effect, we use the geometry of 

Supplementary Figure 6b where the suspended parts of electrodes are left free to deform. 

This geometry is referred to as “geometry II”. 

  Finally, the most realistic model takes into account that graphene- SiO2 interface absorbs 

HF very fast thus etch away all the SiO2 below the suspended graphene
3,4

. In the clamping 

regions, both metal electrode and graphene are suspended and free to deform (illustrated in 

Figure 1b in the manuscript). The FEM geometry for this model is shown in Supplementary 

Figure 6c and is labeled as “geometry III”.  

In order to find out how different would be to calculate the GNR strain using the three 

different boundary conditions; we run the simulations for all the GNR devices using the three 

above mentioned geometries. The GNRs are deformed up to the experimental values 

corresponding to Figure 2b and Figure 3b of the manuscript. The deformation profile in the 

three cases are compared and no difference between them is observed. Supplementary Figure 

7 shows the simulation results for device #1 using the three different geometries. The results 

show that the deformation of the metallic clamps remains less than 0.1 nm while the GNR 

channel is deformed up to 50 nm.  

FEM simulations indicate that in our devices, the deformation of the contacts is negligible 

leading to the same value of strain and deformation as the ideal, rigid clamps. The difference 

with the results presented in Figure 2 in Huang et al.
5
 can be explained considering that they 



have used wedge shaped indenters with width bigger or equal to the graphene membrane 

while we have used sharp AFM tips. The use of wedge shaped wide indenters leads to a 

uniform strain in the graphene membrane meaning that the region of membrane close to the 

metal contacts is experiencing as high strain as the part under the indenter. In our experiment, 

as we have discussed in Supplementary Section 6, the strain distribution is not uniform and 

most of the strain is concentrated in the vicinity of the AFM tip. Therefore, the areas of GNR 

close to the metal clamps undergo a much lower strain which is not enough to induce a 

considerable deformation in the suspended part of contacts.  

 

Supplementary Note 4 

Finite element modelling: strain distribution and the gauge factor. For GNRs that are 

much wider than the AFM tip radius, the sharp AFM tip introduces local strain at the center 

of the ribbon and the resulting strain distribution is not uniform. In this case, the strain is due 

to two main contributions. First is dominant in the areas close to the AFM tip due to a local 

deformation of the ribbon around the sharp, indenting probe. In addition to the non-uniform 

strain field under the tip, the GNR undergoes a vertical deflection which is the second 

contribution and is dominant in GNR regions farther away from the AFM tip. 

Using finite element modelling (FEM), we simulated the strain distribution on the GNRs 

of devices #1-#7 in order to determine the maximal strain. Each device is modelled as a 

suspended clamped GNR. For each device, the geometry is extracted from AFM images and 

each device is deformed to the same value of deformation corresponding to the data shown in 

Figures 2b and 3b in the main manuscript. The nominal thickness of 0.335 nm and 0.69 nm 

have been used for single layer and double layer devices, respectively. Young’s modulus of 1 

TPa, Poisson’s ratio of 0.165 and linear elastic material was assumed as the parameters. A 

linear elastic behavior is assumed since in the data presented in manuscript, the maximum 

applied strain is 4% and it has been shown by Lee. et al.
6
  that only for strain higher than 

threshold of 5% the non-linear behavior starts to become considerable. Initially the clamped 

edges of the ribbon were modelled by imposing fixed constraint boundary condition. Other 

possibilities for boundary conditions are also considered which is discussed in details in 

Supplementary Section 7. The AFM tip was modelled as a rigid sphere and is indenting the 

GNR in the center up to a predefined displacement value which is set as an input parameter to 

the model. Contact between the membrane and the indenter is modelled as a frictionless 

contact with the contact pressure described using Augmented Lagrangian method. Using the 

stationary study, we determined the strain distribution for each suspended device when it is 

deformed to the values corresponding to the experimental measurements.  

Figure S6 shows the 2D map of the strain distribution on two of the narrowest ribbons 

(Devices #1 and #3) and two of the widest ribbons (Devices #6 and #7).  As illustrated in 

Supplementary Figure 8, the strain distribution map on GNRs can be described by a 

combination of two different effects. The first effect is the local deformation of the GNR in 

the vicinity of the AFM tip. The sharp tip of AFM introduces a local strain which can reach 

strain values as high as 4% for the deformation values corresponding the data shown in 

Figures 2b and 3b in the manuscript. The second effect is the vertical deflection of the GNR 

which forms two segments of straight lines. This effect is more prominent for the regions 

farther away from the center, where the strain is uniformly distributed on the GNR and the 

strain level determined by FEM simulations are equal with the strain levels calculated by the 

expression for uniform  

strain ε: 
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where L is the length of the strained GNR, L0 its relaxed length and DGNR the GNR deflection 

at mid-point. While both effects are present in all of the GNRs, the FEM simulations indicate 

that for GNRs with widths closer to the tip radius, the global vertical deformation dominates 

in areas away from the tip. This observation is expected since the ratio between the GNR 

width and the tip diameter determines how uniformly the tip could deflect the GNR. 

 

The strain profile along the dashed lines in Supplementary Figure 8a - d is shown in 

Supplementary Figure 9a - d. Device #3 with the width of 60 nm is the narrowest GNR 

measured. The strain distribution for this device (Supplementary Figure 9b) clearly shows a 

plateau of constant strain of 1.7% in regions far from the AFM tip. This value is equal to the 

strain calculated using Supplementary Equation 4 for a GNR of initial length L0 = 650 nm 

and DGNR = 60 nm (deflection of Device #3 data in Supplementary Figure 8b). For the same 

device, Supplementary Figure 9b shows that in the region of GNR which is closer to the 

AFM tip the strain is not constant and is increasing up to 4% which is due to the local 

deformation effect of the AFM tip. Comparing the four GNRs presented in Supplementary 

Figure 9, one conclusion is that for wider GNRs, the plateau of constant strain is smaller and 

the non-uniformity of the strain distribution is more pronounced. 

 

Using finite element modeling, we can estimate the upper limit on the gauge factor GF 

defined as: 

 0/R R
GF




  (5) 

where R0 is the electrical resistance of the undeformed material and ΔR the change in 

resistance under the application of strain ε. The upper limit of gauge factor could be 

calculated by taking into account only the second contribution to strain, related to the vertical 

deflection of the GNR and corresponding to the plateau of constant strain (Supplementary 

Figure 9). The electromechanical behavior of device #1 to device #4 shows that the gauge 

factor of our single layer GNRs is positive and smaller than 8.8 and comparable to previously 

reported values
7,8

 In comparison, the piezoresistive gauge factor of atomically thin MoS2, an 

emerging semiconducting two dimensional material, is shown to be more than 200
9
, the 

gauge factor of silicon reaches ~200
10

 and for single-wall carbon nanotubes it can be as high 

as ~2900
11,12

. 
 

 

 

  

 

Supplementary Note 5 

Mechanical failure and highest achieved strain. Each suspended GNR was deformed in 

several extension-retraction cycles with the extension depth increasing successively until the 

mechanical failure of the device is observed. Supplementary Figure 10 shows the 

electromechanical response of devices #2-5 at the mechanical failure. All devices show 



similar electromechanical behavior. Before the mechanical failure occurs, the current Id 

decreases with the increasing deformation. Once the suspended structure fails (the point 

marked by black arrow), the cantilever deflection drops sharply and the current Id drops to 

zero. By further extension of the piezo scanner Zpiezo the cantilever starts deforming on top of 

the hard substrate, thus the linear shape of the Dcantilever vs. Zpiezo curve. During the retraction 

cycle, the tip starts retracting from the hard substrate with the same linear shape for the 

Dcantilever vs. Zpiezo curve. The current Id remains zero as the GNR channel has failed. Using 

FEM the maximum achieved strain is calculated to be 5%.  

 

Supplementary Note 6 

 Reproducibility of electromechanical oscillations. Repeated experiments have been 

conducted in order to ascertain the reproducibility of the observed electromechanical 

oscillations for bilayer GNRs. Two samples from distinct fabrication batches have been 

probed. For each device, several consecutive nanoindentation cycles are performed. Results 

from an additional bilayer graphene device show reproducible electromechanical oscillations 

through successive cycles of loading-unloading with increasing strain. For these successive 

deformations, current oscillations overlap almost perfectly with slight shifts appearing at high 

strains. This confirms the reproducibility of the measurements. 

 

Supplementary Note 7 

 Estimation of the domain boundary width. Below, we estimate the width of the 

transition region W for the case of large ΔW characterized by the formation of a ripple in 

graphene layer with area excess. We describe the ripple by a sinusoidal out-of-plane 

deformation of form  
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Hence, the amplitude of the out-of-plane deformation 
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The energy of the domain boundary E per unit length results from two contributions, E = E1 + 

E2. The first contribution represents the binding energy of the two layers lost upon 

delamination due to the ripple formation  

 

 1 bE W  (8) 

 

where is b = 1.83 eV/nm
2 

 is the binding of graphene layers energy per unit area.
13 

The 

second contribution originates from the bending of the rippled layer. The bending energy is 

given by
14
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where  = 1.42 eV is the bending rigidity of graphene. 

 

The actual value transition region width W minimizes the energy of domain boundary E, 

hence  
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  (10) 

 

For a typical path difference ΔW = 1 nm considered by our simulations the domain boundary 

width W ≈ 4 nm. This justifies the assumption of ballistic transmission across the investigated 

domain boundaries in bilayer graphene.   

 

Supplementary Note 8 

Simulations of electronic transport across domain boundaries in bilayer graphene.  
We use a tight-binding model of bilayer graphene with the nearest-neighbor hopping term 

within each graphene layer, and the interlayer hopping being restricted only to the sites 

aligned along the direction normal to the plane. The Hamiltonian can be written as
15

  

    † †

1 2

, ,

h. c. h. c.mi mj i i

m i j i

H t a b t a a       (11) 

where ami bmi( )  annihilates an electron in graphene layer m = 1,2 at site Ri belonging to 

sublattice A(B) , t  = 2.66 eV is the intralayer nearest-neighbor hopping energy and t^ = 0.4 

eV is the interlayer hopping energy. 

Based on the Landauer-Büttiker formalism
16,17

, we first compute the ballistic transmission 

probability T as a function of momentum k|| and energy E 
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using the Green’s function 
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where I is a unitary matrix, ( 0)E E i     , and HS is the Hamiltonian for the scattering 

region. The coupling matrices are given by 

 

 
†
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where L(R) are the self-energy matrices of bilayer graphene leads. 

 

 

Finally, the conductivity G is given by 

 

 
||

0 ||

,

( , )
k E

G G T k E   (15) 

where 
2

0

e
G

h
 is the quantum of conductance.  



Supplementary Figure 11 shows a schematic drawing of a typical model employed for 

studying the discussed transport phenomena. Semi-infinite AB-stacking bilayer graphene 

leads are separated by the scattering region in which the two graphene layers are locally 

decoupled and which incorporates an effective width difference ΔW. The structure is periodic 

along the armchair direction while transport is simulated along the zigzag direction.  It was 

shown that transport properties of such model systems are insensitive to the overall width of 

the scattering region and the only relevant parameter is the effective width difference ΔW.  
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