Differential chirped-pulse pair for sub-meter spatial resolution
Brillouin distributed fiber sensing
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ABSTRACT

A distributed fiber sensor based on a differential chirped-pulse pair Brillouin optical time domain analysis (DCP-
BOTDA) is proposed for sub-meter spatial resolution sensing. The technique is based on the subtraction of two
measurements made with the same pump pulse widths, but differing in the final short section of the pulse by a positive or
negative frequency chirp, respectively. Experimental results are compared with a precise theoretical modeling, validating
the sub-meter sensing capabilities of the technique.
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1. INTRODUCTION

Distributed optical fiber sensors using stimulated Brillouin scattering (SBS) are widely used for structural health
monitoring, especially for strain and/or temperature sensing. The standard technique, called Brillouin optical time-
domain analysis (BOTDA), is based on a pump-probe interaction, in which the spatial resolution is given by the pump
pulse duration'. Since the temperature or strain information is contained in the frequency domain (Brillouin frequency),
the accuracy of these sensors is inversely related to the pump pulse duration and the material response time, practically
limiting the spatial resolution down to 1 meter®. In the past ten years, several configurations have been proposed to
achieve sub-meter spatial resolution, one of them being the differential pulse-width pair BOTDA (DPP-BOTDA): the
method consists of two measurements with different pulse-widths, while the local information is retrieved by subtracting
both measurements in the time-domain®. This technique is actually a smart simplification of a formerly known technique
including a short n-phase shift at the end of the second pulse®, thus creating a destructive interference between the optical
waves and resulting in a signal-to-noise ratio larger by 3dB with respect to the DPP-BOTDA. Recently, the Brillouin
phase subtraction of the DPP method was implemented using a coherent detection scheme”.

In this paper, we propose another approach to break the symmetry between two long pulses of equivalent lengths, by
abruptly and briefly shifting the frequency of the pump pulses. A complete theoretical model validates the technique and
supports the results obtained over a 1.5 km-long fiber, where two stressed sections of 30 cm are resolved.

2. THEORETICAL DESCRIPTION OF THE DCP-BOTDA SENSOR
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Figure 1: chirped pulses configuration for DCP-BOTDA

The principle of the differential chirped-pulse pair BOTDA (DCP-BOTDA) method proposed in this paper is presented
in Fig. 1: each chirped pump pulse has a first long section (at a constant frequency v), which pre-activates the acoustic
wave. Then the symmetry is broken by introducing an abrupt positive (negative) frequency change (+ 6v) in the second
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section of the first (second) pulse. Sub-meter spatial resolution is obtained after subtraction of the frequency-scanned
time-domain traces. The optimization of the method clearly depends on the time duration of the two pulse sections and
on the frequency chirp that is applied to the second section of the pulses. In order to fully describe the temporal evolution
of the acoustic wave and probe signal, the corresponding SBS coupled equations are solved:
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where Ep, Eg and Q are slowly-varying envelopes of the pump, probe and acoustic fields; g; , are the electrostriction and
elasto-optic coefficients; I', =i2zv+7Av, is the frequency detuning and damping parameter, Avg is the Brillouin

linewidth and v the frequency detuning between the local Brillouin frequency shift (BFS) and the frequency difference
between the pump and the probe waves. The chirped pump pulse can be represented as:
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where Ov is the frequency chirp on the final part of the pump pulse, and u(*) is the Heaviside step function. By solving
Eq. (1-4), the Brillouin gain contribution on probe wave of a short fiber section of length Az is:
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Summing up Eq. (5) over all positions covered by the pulse, the Brillouin gain observed in the time trace at a given
position z can be obtained. An optimized configuration for zp, =4 ns (corresponding to a potential 40 cm spatial
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Figure 2: Simulation of the temporal evolution of the probe amplitude during the second section of the pulses in the DCP-BOTDA
method; left: positive chirp; center: negative chirp; right: result after subtraction of both responses.

Fig. 2 shows the response on the probe wave at a given fiber location during the final section of the pump pulses, for a
frequency scan Av from -50 MHz to 50 MHz around the Brillouin peak frequency. The positive (negative) chirp drags
the probe response to raise (decrease) its frequency, thus leading after subtraction to a distinct frequency response. The
Brillouin frequency is simply given the crossing by zero amplitude obtained after subtraction. The observed frequency
difference between both extrema is about 40 MHz. Fig. 3 shows the spectrum of the probe signal after subtraction as a
function of the frequency detuning for different pump parameters (chirp and pre-activation time) and for tp, =4 ns.
Within all these conditions, the optimized value for the chirp parameter to maximize the amplitude contrast of the
subtraction has been found to be between 80 MHz and 100 MHz and the pre-activation time duration should be tp;> 16
ns. The frequency difference between the two extrema (minimum and maximum of the subtraction) tends to the natural
Brillouin linewidth Avg. Contrary to the m-phase shift technique, where the probe experiences an abrupt destructive
interference - equivalent to a loss process - during the second section of the pulse, the DCP-BOTDA gradually shifts the
interferometric phase. Following the Rayleigh ' wave criterion, the interference is constructive as long as the phase shift
does not exceed n/2, which means that the maximum frequency chirp is given by the relation 276vr,, = 7 /2 . Hence, for

Tp, =4 ns, the acoustic wave will keep its strength for a frequency chirp dv=60 MHz, which is slightly inferior to what
our model suggests. The reason of this can be explained as follows: with a positive chirped pump pulse dv=100 MHz, a
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destructive interference process occurs on the probe wave at frequencies where a constructive interference occurs for the
respective negative chirped pump pulse. After subtracting the two probe waves, the amplitude contrast turns out to be
slightly higher, even if the strength of the single measured probe is not maximum.
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Figure 3: probe signal obtained after subtraction (tp,=4ns); left: influence of the chirp parameter; right: influence of the first section
time duration for a fixed chirp parameter (5v=100MHz).

3. EXPERIMENTAL DEMONSTRATION

In order to experimentally validate the DCP-BOTDA method proposed in this paper, measurements have been carried
out along a 1.5 km-long standard single-mode fiber. The experimental set-up is based on the generation of chirped pump
pulses using an arbitrary waveform generator (AWGQ) that drives an intensity modulator operating in suppressed carrier
mode®. The AWG is able to deliver a new frequency every 4 ns, with neither glitch nor phase hop. The rise and fall times
of the pump pulses are well below 1 ns, which is an essential condition for differential techniques. The bandwidth of the
detector is 350 MHz (matching the expected spatial resolution), and each temporal trace is averaged 1000 times. The
sampling rate of the acquisition card is set to 1Gs/s, corresponding to a measurement point every 10 cm. Fig. 4 (left)
shows the two Brillouin gain spectra (BGS) obtained with DCP-BOTDA at the end of the fiber. A good agreement is
observed between the theoretical model (solid lines) and data (circles), even if a slight asymmetry can be observed,
probably due to power fluctuations of the chirped pump pulses. It is interesting to point out that each BGS has an
apparent linewidth matching that of an equivalent (tp;+1p,/2) null-chirped pump pulse duration. Fig. 4 (right) shows the
subtraction of the two BGS, confirming the presence of slow oscillations in the frequency domain, as predicted by the
model.
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Figure 4: left: BGS at 1.4 km; right: subtraction of BGS. Empty circles: measurements; solid lines: theoretical model.

Fig. 5 shows the DCP measurement at the end of the sensing fiber, where two fiber sections of 30 cm are stressed and
separated by a 30 cm loose fiber. Both sections, under an applied strain of about 0.1%, are resolved, which is eventually

better than the theoretical spatial resolution of 40 cm, the system benefiting from a dead zone during transients (see
Fig.2).

Finally, we have compared the Brillouin frequency shifts (BFS) measured by DCP-BOTDA with a DPP-BOTDA using a
24/20 ns pulse pair (Fig. 6). The BFS has been obtained by a quadratic fitting around both extrema, although other
methods such as a linear fitting may be used for the proposed DCP method. The BFS profiles in both cases are in very
good agreement. It has been experimentally verified that the measurement contrast using the DCP-BOTDA is two-fold
the contrast obtained with the conventional DPP-BOTDA. This can be easily explained by the push-pull configuration of
the DCP-BOTDA that doubles the effect of the response on the probe wave.
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Figure 5: 3D plot (left) and top-view plot (right) of the measured BGS subtraction at 1.54km fiber, where the fiber is stressed.
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Figure 6: BFS at the end of the sensing fiber, where two sections are stressed (30cm each with a 30cm loose fiber in the middle).
Empty circles: DCP-BOTDA; dashed line: DPP-BOTDA.

4. CONCLUSION

A novel distributed fiber sensor for sub-meter spatial resolution is proposed based on frequency shift keying within the
pump pulse. Measurements are validated experimentally and theoretically through an analytical solution calculated from
the SBS coupled equations. A comparison with the DPP-BOTDA shows that the signal-to-noise ratio (SNR) is doubled
thanks to the intrinsic push-pull effect given by the method. The scheme requires no modification of the experimental
set-up used for coding, so that both techniques may be easily combined, thus increasing the SNR for fast measurements.
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