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Abstract— We investigate the effect of asymmetric configura-
tions on the heterogate germanium electron-hole bilayer tunnel
FET (TFET) and assess the improvement that they provide
in terms of boosting the typically very low ON-current levels
of TFET devices in the presence of field-induced quantum
confinement. We show that when a very strong inversion for
holes is induced at the bottom of the channel, the formation of
the inversion layer for electrons is shifted to higher gate voltages,
which in turn enhances the electrostatic control of the band
bending at the top of the channel. As a result, the pinning of
the quantized energy subbands is prevented for a wider range
of gate voltages, and this allows vertical band-to-band tunneling
distances to be further reduced compared with the conventional
symmetric electron-hole bilayer configurations.

Index Terms— Asymmetric layouts, band-to-band
tunneling (BTBT), heterogate electron-hole bilayer tunnel
FET (HG-EHBTFET), inversion layer, quantum confinement.

I. INTRODUCTION

UNNEL FETs (TFETs) have been gaining growing inter-

est in the last years as potentially compelling devices to
replace the traditional MOSFETs at low Vpp and overcome
their 60-mV/decade subthreshold swing (SS) limit at room
temperature [1] imposed by the thermionic emission mech-
anism on which they rely. TFETs, on the contrary, operate
on the physically different basis of band-to-band tunnel-
ing (BTBT) phenomena. The quantum mechanical process of
tunneling between valence and conduction bands removes the
aforementioned switching limitation and allows the possibility
of developing steep slope devices (SS < 60 mV/decade).
As a result, great effort in simulation, modeling, and fabri-
cation has been devoted to this type of transistors [2]—[8].
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Essentially, most of the TFETSs are based on asymmetrically
doped gated p-i-n structures in which the efficiency of the gate
to trigger and control BTBT is greatly correlated with the
orientation of the gate electric field induced by it [9]. It was
shown that the optimal configuration arises when both electric
field and tunneling directions are aligned [10]-[13]. In this last
case, the ON-current turns out to be proportional to the gate
length. However, for the sake of scalability, gate lengths cannot
be increased beyond certain limits and this imposes severe
constraints to the current levels that may be reached in the
ON-state. In addition, and to sharpen the switching behavior
of this type of transistors, it was proposed to exploit BTBT
between 2-D electron and hole gases to take an advantage
of the impact of carrier dimensionality on tunneling [14].
As a result, the electron—hole bilayer TFET (EHBTFET) [15]
was featured with very appealingly low SS values.
Current levels at low operating voltages were also reported
to be enhanced through direct BTBT processes in germanium
EHBTFETs [16]. Unfortunately, when field-induced quantum
confinement was considered in these devices [17], quantization
of the formerly continuous valence and conduction bands led
to reduced Ioy values. The appearance of harmful effects
coming from confinement has also been elucidated in different
TFET structures other than the EHBTFET [18]-[22].

Very recently, the combination of quantum confinement
assessment along with the possibility of determining dynam-
ically the BTBT path [23] showed—conversely to what hap-
pened in the semiclassical framework—that the EHBTFET
suffered from parasitic lateral tunneling processes [24], [25].
The presence of this unwanted lateral tunneling was demon-
strated to degrade the steepness of the Ips—Vgs curves.
To get rid of this deleterious contribution, a heterogate
EHBTFET (HG-EHBTFET) was proposed with very abrupt
switching behavior restored [24] and suitable for low operating
voltages [26], [27]. Heterogate structures in planar devices
with different gate materials above the same or different gate
dielectrics along the channel might be accomplished through
electron beam, selective/angle ion implantation, or precise
lithographic alignment.

Alternative configurations to those presented in this paper
might be achieved by the use of very highly doped pockets
(e.g., p™ pocket at the bottom of the overlap region combined
with an undoped top-side pocket; or both p* and n* pockets
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at the bottom and top of the overlap, respectively). However,
they would imply to resign the control of the inversion
layer formation by gate biasing. Other configurations with
symmetrically arranged gates and including lightly doped
drain—source regions were also proposed in [28], but turn out
to be unadvisable due to the persistence of the aforementioned
parasitic lateral tunneling processes that degrade their switch-
ing behavior.

In this paper, we demonstrate how, by means of asymmetric
configurations, it becomes possible to control the formation of
the electron inversion layer in the germanium HG-EHBTFET
for a fixed tunneling onset. The formation of this inversion
layer is known to be responsible of the energy subband pin-
ning and the subsequent BTBT distance saturation. Therefore,
the delayed formation of the inversion layer due to very
strong asymmetric layouts will lead to considerably enhanced
ON-state currents but at the expense of sacrificing to some
extent the sharp switching behavior. We show that a convenient
tradeoff can be obtained by moderate asymmetric setups where
steepness is preserved while oy values turn out to be still
boosted.

The structure of this paper is as follows. Section II
describes the device structure and outlines the simulation
setup. In Section III, we assess the impact of different
grades of asymmetry and find the optimal configuration for
a 10-nm-thick Ge HG-EHBTFET. Section IV elucidates the
effect of body thickness reduction, combined with different
asymmetric layouts, on the device performance. Finally, the
conclusion is drawn in Section V.

II. DEVICE STRUCTURE AND SIMULATION APPROACH

The structures shown in Fig. 1 feature a source p™' region
(102 atoms/cm?), an intrinsic channel region with central
overlap and side underlap regions (10" atoms/cm?), and
a drain n* region (10%° atoms/cm?). The germanium body
thickness is chosen to be 10 nm for the results and analysis
of Section III, and modified to lower values in Section IV.
Top- and bottom-gate dielectrics are 3-nm-thick HfO, layers.
Drain bias will be 0.3 V throughout this paper and bottom-
gate bias, Vpg, initially set to 0 V. The different asymmetric
configurations will be induced by gradual negative values
of Vgg. The top-gate workfunctions, ¢tg o1 and g u1, as well
as the bottom-gate workfunctions, ¢pg ol and ¢pg ul, need to
be wisely chosen in order to: 1) suppress parasitic lateral
tunneling between the overlap and underlap regions before
the onset of vertical BTBT (two constraints); 2) avoid lateral
BTBT (perpendicular to the gate electric field) from the
right underlap to the drain (one constraint); and 3) tune the
triggering of vertical BTBT by subband alignment to very low
top-gate voltage, namely, VG align = 0.04 V (one constraint).
As the number of constraints equals the number of workfunc-
tions understood as degrees of freedom, we will derive their
optimized values in Section III.

The quantization direction is along the [100] crystal ori-
entation of Ge. Along this direction, the L electron valleys
are fourfold degenerate with quantization effective mass
my = 0.12m¢ and transverse effective masses m, = 0.15myg
and m, = 0.58mg. For the I" valley, the effective masses of
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Fig. 1. (a) Schematic cross section (not to scale) of Ge EHBTFET
along with the dimensions considered in this paper. (b) Originally proposed
HG-EHBTFET structure with heterogate configuration at the top gate to
prevent lateral tunneling between the overlap and the right underlap regions.
(c) HG-EHBTFET structure considered in this paper. As a result of the vertical
BTBT onset adjustment to low Vg, an additional harmful lateral leakage
(crossed out arrows) apart from that reported in [24] led to the necessity of
similar heterogate setup at the bottom gate. Recall that, in (b) and (c), the
apparent pt doping at the bottom of the channel is not such, but the result of
the hole inversion layer formation is induced by opposite biasing at the gates
and the utilization of different metal workfunctions.

heavy holes, light holes, and electrons are mpy,
my, = 0.044mg, and m, = my;,, respectively [29].

The simulation approach was introduced in [24] and is
based on a TCAD hybrid integration that combines the
up-to-date versions of the two most widely used simulators:
1) Silvaco ATLAS (v.5.20.2.R) [30] and 2) Synopsys
Sentaurus (v.2014.09) [23]. Essentially, the simulation consists
of two successive steps in each of which we make use of the
simulator that provides the most accurate results depending
on what needs to be calculated. First, we choose ATLAS to
self-consistently solve the Schrodinger and Poisson equations
and obtain the electrostatics derived from the inclusion of
quantum mechanical confinement. Namely, the free charge
distribution is reshaped and the formerly continuous conduc-
tion and valence bands turn into a discrete set of energy
subbands as repeatedly shown in [17], [18], [20], and [31].
The Schrodinger—Poisson model of ATLAS allows 1-D and
2-D treatments and is known to offer good performance in
terms of convergence compared with the 1-D Schrodinger
model of Sentaurus which is mostly intended for calibration
purposes [23] and features frequent convergence issues [32].

Once the electrostatics is derived, BTBT is accounted as
a postprocessing step by means of the dynamic nonlocal
BTBT model of Sentaurus [23] which dynamically calculates
the tunneling paths based on the energy band profiles. This
segmented simulation scheme has been demonstrated to be
well-founded as long as tunneling generation does not modify
in a noticeable way the charge distribution obtained in the
absence of BTBT [17], [21], [22]. Nevertheless, prior to
this carrier injection, two main aspects need to be arranged
in order to employ the output of the first simulation step

= 0.33my,
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TABLE I
SEMICLASSICAL AND QUANTUM CORRECTED A AND B PARAMETERS FOR Ge IN THE DYNAMIC NONLOCAL BTBT MODEL.
QUANTUM CORRECTED VALUES CONSIDER ONLY THE CONTRIBUTION TO TUNNELING OF HEAVY HOLES

DIRECT BTBT INDIRECT BTBT [100]
PARAMETER
SEMICLASS. | QUANTUM CORRECTED | SEMICLASS. | QUANTUM CORRECTED
A (em™3s71) | 1.46 x 10%° 1.959 x 1020 1.67 x 1015 1.806 x 104
B (Vem™1) 6.04 x 106 8.028 x 106 6.55 x 106 11.12 x 108

as the input of the second. First, the potential and charge
distributions arising from the ATLAS Schroédinger—Poisson
model are accounted for in Sentaurus through appropriate
calibration of a density gradient model. Second, we modify
the band profiles of the conduction and valence bands via
structure editor tools to make them coincident with their first
bound states, therefore, managing BTBT to occur between
first subbands, and not between band edges (which now
become forbidden states) as it happened semiclassically. This
TCAD-based bandgap widening was originally proposed for
TFETs where BTBT direction was not aligned with the
gate electric field [20]; and later extended for the case of
alignment, as in line TFETs with a 1-D band structure
modification [22], or the HG-EHBTFET, with a more accurate
2-D bandgap adjustment [24]. Very recently, the quantization
bandgap widening effects for pocketed dual-metal-gate TFETSs
have been assessed using very similar techniques [32].

Phonon-assisted and direct BTBT parameters have been
conveniently modified compared with those presented in [29]
in order to remove from them light holes contribution to
tunneling. Severe quantization effects due to their low effective
mass prevent alignment between their first subband (Ej;1) and
that corresponding to electrons (E,.1). So far, the semiclas-
sical tunneling parameters and quantum corrected ones for
germanium are presented in Table I. Removing light holes
contribution represents, on one hand, an additional difficulty
that will lower Ion levels; but on the other, it reinforces
the necessity of optimization mechanisms in the presence of
confinement such as those, hereinafter, discussed based on
asymmetric setups. Gate leakage assessment [33] has not been
included in this paper and remains as a pending task for
future work.

III. SIMULATION RESULTS AND DEVICE OPTIMIZATION

In this section, we consider a fixed 10-nm value for the body
thickness of the HG-EHBTFET, as shown in Fig. 1(c). The
first workfunction to be analyzed, ¢yg ul, corresponds to the
top-gate underlap adjacent to the drain. It was established [24]
that in order to suppress the parasitic lateral leakage between
the overlap and the drain underlap, ¢ u needed to be raised
with respect to ¢g,01. However, given the doping profiles of
the different regions, the desired onset of vertical BTBT at
very low top-gate voltages (we choose V1Galign = 0.04 V)
imposes a constraint on the maximum value allowed for ¢g ul.
Otherwise, should this maximum value (which turns out to be

t‘galfl = 4.25 eV) exceed, the lateral BTBT from the right
underlap to the drain would appear, thus degrading the device
performance. Observe how indeed in Fig. 2, for ¢yg u = 4.3 eV
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Fig. 2. Top: 2-D plot displaying the electron BTBT generation rate at
Vps = 03 Vand Vg = Vg = 0 V for ¢rgu = (;5{2” = 4.25 eV.

ul —

Observe that no lateral BTBT exists flowing to the drain. Middle: 2-D plot
for electron BTBT generation rate for ¢y = 4.3 eV. In this case, a
certain BTBT is triggered between the underlap and the drain. Bottom: band
profile corresponding to a horizontal underlap-to-drain cut at the middle of
the channel for ¢gy = 4.3 €V showing the band alignment that allows
incipient BTBT.

and Vg = 0 V (OFF-state), a certain BTBT genera-
tion rate appears directly in the drain whereas a value of
¢rg,ul = 4.25 eV still prevents the appearance of this parasitic
tunneling. As quantization is taken along the y-direction given
the extended horizontal length of the device, the bound states
retain a dependence on x, i.e., E; = E;(x). The values of
the other workfunctions do not affect this channel-to-drain
tunneling and, in order to fix ¢t u1, they have simply been
chosen to avoid other tunneling phenomena.
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TABLE II
OPTIMIZED TOP- AND BOTTOM-GATE WORKFUNCTIONS FOR DIFFERENT ASYMMETRIC CONFIGURATIONS
IN THE Ge HG-EHBTFET FEATURING A BODY THICKNESS OF 10 nm WITH VG align = 0.04 V
Dtg,01(€V) | drgu1(€V) | dngo1(€V) | dpvgu(eV) | VBa(V) | Vine(V) | Fer,ul — Fe1,01(€V) | Enniol — Erniu(eV)
3.258 0 0.32 0.269 0.050
3.351 -0.25 0.48 0.192 0.036
3.414 425 595 4.60 -0.5 0.56 0.145 0.041
3.472 -0.75 0.64 0.101 0.050
3.529 -1.0 0.72 0.057 0.060
3.587 -1.25 0.78 0.014 0.069
03 T T T T T T T T T T T T T T 045 52 T T T T T T T T 52
1 VBG - —15,—125,,0\/ 0.4 5.0 i __ 5.0
—~ 0.25 0 35 4-8 T 4.8
> ' - ]
() —~ 4.6 4 4.6
~— 0.2 0.3 > — L |
o - g 44} Ve = —1.25,-1.0,...,0V{ 44
° 025 & = - :
K 015 = Z 42 4.2
- <] L J
| 02y 40t b 4.0
3 B ~3 | i
‘j 0.1 0.15 > 3.8 k- 3.8
€3] 0.1 3.6 B | 3.6
0.05 O 0 3 3
0.05 3.4 r Ve 3.4
< L TG,align
0.0 0.0 3.2 B —— : 3.2
3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 0.0 0.2 0.4 0.6 0.8 1.0
(btg,ol (GV) Vg (V)
Fig. 4. Minimum vertical BTBT distances versus Vpg for the different

Fig. 3. Values for the vertical tunneling onset, VTG, align (circle markers), and
energy difference E,|u — Eel,ol (triangle markers) as a function of g ol-
Appropriate values for ¢g o can be found for Vgg > —1.25 V satisfying

VTG,align =0.04 V and E.ju > Eel0l-

Once ¢igu is fixed to 4.25 eV, we proceed to find the
appropriate values for the workfunctions in the overlap region,
@rg,01 and ¢pg o1. Considering that any voltage applied to the
bottom gate might be absorbed by ¢yg 01, we have a certain
freedom to select its reference value at Vgg = 0 V. We choose
@Pbg,ol = 5.25 eV. Now, we have to fix ¢ o in order to
trigger the vertical BTBT at Vrg = VrG,align = 0.04 V and
provided that E.j y > E.1,01 to avoid the parasitic tunneling
leakage [24]. E.i,u and E.i o are extracted at the center
of the drain underlap and overlap regions, respectively [26].
Fig. 3 shows the dependence of the difference E.{ u1 — E¢1,0l
and V7G, align on the values of ¢y o for different bottom-gate
biases. It can be seen how for —1.25 V < Vgg < 0V,
it is possible, at least in theory, to find a suitable g o1
fulfilling the desired requirements. From a technological point
of view, binary alloys could be investigated as a way to
cope with this necessary workfunction tuning. Therefore, the
allowed asymmetric configurations for the HG-EHBTFET will
be controlled by the applied negative Vg up to —1.25 V.

Finally, we fit ¢pg u in order to suppress the detrimental
lateral BTBT from the source underlap to the overlap region
[see Fig. 1(c)]. To do so, we force that Eppi,01 > Epniul
at Vg = V1G,align- AS ¢bg,ol Was previously chosen to be
5.25 eV, if we impose that Eppi,01 — Eppt,u & 0.05 eV, we
obtain @pg u = 4.60 eV.

asymmetric configurations at Vpg = 0.3 V. The formation of the inversion
layer for electrons in each case determines the gate voltage at which tunneling
distances start to saturate. Notice the opposite behavior of dyynn before and
after Vipy.

A summary of the values obtained for the different work-
functions according to the degree of asymmetry (controlled
by VBg) is presented in Table II. We have also included the
top-gate voltages at which the inversion layer for electrons is
formed at the top of the channel, Vj,,, obtained as described
in [34].

We observe how, as the inversion for holes at the
bottom becomes stronger, the formation of the electron inver-
sion layer at the top of the channel is shifted to higher
Vrg values. The increasing asymmetry allows the top gate
to retain electrostatic control on the channel for a wider range
of voltages, which means that the energy subbands remain
longer unpinned. As a result, strong asymmetric setups will
allow vertical BTBT distances to be further reduced in the
ON-state.

Fig. 4 shows the evolution of the minimum tunneling
distance at the center of the overlap region for the different
bottom-gate voltages. Note that although stronger asymme-
tries provide lower dyn, values at high Vrg (as a result of
Vinv shifting), this behavior turns out to be the opposite at
V16 = V1G,align- The reason for this lies in the fact that
when we fix V1G to VrG,align and apply increasing negative
biases at the bottom gate, we gradually shift holes from
inversion to strong inversion, which means that the band
structure at the bottom of the channel gradually diverges from
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Fig. 5. Ips—V1g curves for different bottom-gate biases. Vpg = 0 V

features the steepest switching behavior at tunneling onset, whereas the lowest
ON-current at high Vpg. For operation voltages ~0.5 V, Vgg = —0.25 V
provides a convenient tradeoft.

TABLE III
POINT AND AVERAGE SSs ALONG WITH ON-CURRENT LEVELS
AT Vg = 0.5 AND 1 V FOR DIFFERENT ASYMMETRIC
CONFIGURATIONS IN THE 10-nm Ge HG-EHBTFET

VBa(V) | SSpt(mV/dec) | SSav(mV/dec) I%ii’,v (A/pm) I(l)\{\, (A/pm)
0 2.31 38.96 1.99 6.93
-0.25 4.80 36.56 6.00 33.25
-0.75 6.06 43.98 1.73 150.97
-1.25 5.77 43.97 0.68 476.88

a linear profile and adopts a more rounded shape with a
subsequent tunneling distance increase between electron and
hole subbands at the moment of alignment. Therefore, very
tough asymmetric setups would feature degraded switching
performance compared with the conventional EHBTFETs.
Considering the tunneling reduction ratios displayed in Fig. 4
when Vrg > Vipy (i.e., when tunneling distance has started
to saturate), it can be seen that Vgg = —0.25 V offers an
appealing tradeoff as can be indeed confirmed inspecting the
transfer characteristics, as shown in Fig. 5. We observe that the
steepest point SS (taken at V1 = VrG,align) corresponds to
VB = 0 V with SS,¢ = 2.31 mV/decade, but at the expense
of the lowest current level at Vyg = 1 V. Table III contains
the values for point SS, average SS (taken between VTG align
and VTG, align + Vbs), and ON-current at Vg = 0.5 and 1 V
for the curves shown in Fig. 5.

IV. BODY THICKNESS VARIATION

Body thickness reduction might be considered as a possible
solution in order to boost Ioy levels displayed in Section III
given that, in principle, the lower tunneling distances could be
reached this way. However, as we reduce fyody, the harmful
effects coming from quantum confinement become stronger,
which could make subband alignment more difficult to be
attained. Moreover, the role of the electron inversion layer
formation in such a scenario with tougher quantization would
also require a careful assessment. In this context, we aim to
analyze the potential benefits that a moderate asymmetric setup
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Fig. 6.  Transfer characteristics for fhogqy = 8 and 9 nm corresponding
to different asymmetric configurations Vgg = 0 V (triangle markers),
VBg = —0.25 V (square markers), and Vgg = —0.5 V (circle markers).

We have adjusted the gate workfunctions in order to make Vi, (Vg =0 V)
coincident with that for fyogy = 10 nm. We observe that the case
Vg = —0.25 V features again the most convenient behavior.

would provide for fpody = 8 and 9 nm and their implications
on SS and Iy values.

Let us start off by adjusting the top- and bottom-gate
workfunctions at Vgg = 0 V in order to fulfill the constraints
exposed in Section II and to make V1G,align and Viny coincident
with those shown in the first row of Table II (i.e., 0.04 and
0.32 V, respectively). In Table IV, we present these optimized
values along with the ones for a moderate asymmetric config-
uration corresponding to Vg = —0.25 and —0.5 V.

Notice that the induction of asymmetric conditions by
means of bottom-gate biasing has an interesting implication
shifting Vipy to higher values of Vrg as we reduce fpody.
Namely, for #,04y = 10 nm, we report a displacement of Viyy
at Vgg = —0.25 V of 50% (from Vj,y = 0.32 to 0.48 V),
whereas for fodqy = 9 and 8 nm, this shifting turns out to
be of 56% and 63%, respectively. This behavior associated
with #y0dy reduction is really appealing given that as Viny
increases, energy subband pinning is delayed and smaller
tunneling distances can be achieved as inferred from Fig. 4.
Transfer characteristics for fyogqy = 8 and 9 nm are shown
in Fig. 6. Advisable tradeoff between SS steepness and boosted
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TABLE IV
OPTIMIZED TOP- AND BOTTOM-GATE WORKFUNCTIONS FOR Vg = 0, —0.25, AND —0.5 V AND
Ibody = 8 AND 9 nm WITH V1G align = 0.04 V IN THE Ge HG-EHBTFET
thody (M) | @i 01(€V) | Pig ul(€V) | Pbg ol(€V) | dbg,ui(€V) | VBa(V) | Vinv(V) | AFEc1(eV) | AEpp1(eV)
3.150 0 0.32 0.286 0.045
9 3.248 4.25 5.33 4.60 -0.25 0.50 0.204 0.033
3.313 -0.5 0.58 0.156 0.041
3.013 0 0.32 0.300 0.047
8 3.111 4.25 5.45 4.60 -0.25 0.52 0.217 0.032
3.175 -0.5 0.62 0.169 0.040
tblod ' :I8 é llOnIIn " alvgg Lov ] rather be considered as a p§eudobilayer—based TFET feat'uring
0.6 Yo v VBG = T0-25V enhanced gate-to-gate efficiency values. Such a pseudobilayer
_______ configuration provides an additional advantage as it may alle-
————— viate the inconveniences of confining very large concentrations
p 0.5 e of opposite carriers in very reduced body thicknesses.
N
3% 0.4 V. CONCLUSION
qu In this paper, we have optimized the structure of the
< 03 heterogate germanium EHBTFET and investigated the impli-
cations that certain asymmetric configurations have on the
0.2 device performance in the presence of field-induced quantum
F X Virg = Vinw confinement. We have shown that a moderate asymmetric
0.1 1 0.1 setup proves to be an advisable mechanism to be explored for
00 01 02 03 04 05 06 07 boosting ON-state current levels while preserving very steep
Vra (V) SSs and improving gate-to-gate efficiencies. Moreover, the

Fig. 7. Behavior of the gate-to-gate efficiencies for fpody = 8,9, and 10 nm
corresponding to the asymmetric configurations induced by bottom-gate biases
of 0, —0.25, and —0.5 V. In spite of the efficiency decrease due to the
stronger confinement effects when we reduce #yoqy. the induction of moderate
asymmetries keeps the efficiencies over 0.5 for a wider range of Vg values.

Ion is obtained at Vgg = —0.25 V, similar to what happened
for fyody = 10 nm.

We investigate now the effect of these asymmetric layouts
on the behavior of the gate efficiency, understood as the
fraction of the total gate-to-gate incremental voltage mod-
ifying the energy overlap between the first subbands [33],
ie., dEo/dVrg, taken at the center of the channel. Fig. 7
shows how, for each of the different Vg values considered
in this section, the efficiency drops once Vi, is left behind.
Moreover, it is very interesting to see that the decreasing trend
of the efficiency observed for Vig < Vipy at Vgg = 0 V
disappears when we increase the negative bias applied at
the bottom gate (Vgg = —0.25 and —0.5 V). Therefore,
for low operating voltages such that Vpp < Vi, a mod-
erate asymmetry guarantees sustained efficiencies >0.5 for
fhody = 8 nm, which proves to be a noticeable result con-
sidering that the quantum confinement effects are known to
constrain efficiency values well below 1 [33].

These results make us conclude that in the presence of
field-induced quantum confinement, a moderate asymmetric
setup for the HG-EHBTFET reveals itself as a mechanism
for optimizing ON-state currents while preserving an abrupt
switching behavior. Furthermore, as long as the operation
voltage remains below Vi, (for example, Vrg = 0.5 V for
tbody = 8 nm at Vgg = —0.25 V), the HG-EHBTFET should

pseudobilayer configurations derived from these asymmetric
layouts may help to relieve the expected difficulties of keeping
apart very large electron and hole concentrations in very thin
structures.
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