Characterization of multidirectional pedestrian flows based on three-dimensional Voronoi tessellations

Marija Nikolić Michel Bierlaire Flurin Hänseler

hEART 2015
Technical University of Denmark, Copenhagen

September 9, 2015
Traffic characteristics

- **Density**: the number of pedestrians present in an area at a certain time instance [\#ped/m²]
- **Flow**: the number of pedestrians passing a line segment in a unit of time [\#ped/ms]
- **Velocity**: the average of the velocities of pedestrians present in an area at a certain time instance / passing a line segment in a unit of time [m/s]

- LOS indicators
- Fundamental diagram specification
- Models of pedestrian dynamics
Pedestrian flow characterization

- Several approaches proposed in the literature [Duives, 2012; Zhang, 2012]
- Arbitrary discretization
- Inconsistent results
- Multi-directional flow composition neglected
Pedestrian flow characterization - Issues

Arbitrary discretization

- It may generate noise in the data [Openshaw, 1983]
- Results may be highly sensitive to minor changes of discretization
Pedestrian flow characterization - Issues

Inconsistent results in observations and modeling

- Averaging over different degrees of freedom may lead to incomparable results [Seyfried et al., 2005]

Multi-directional nature of pedestrian flows

- Definitions may not result in the desired outcome if pedestrians do not walk in the same direction [van Wageningen-Kessels et al., 2014]
Voronoi-based spatial discretization

• Assigns a personal region A_i to each pedestrian i: each point in the personal region is closer to i than to any other pedestrian, with respect of the Euclidean distance

$$A_i = \{ p | d_E(p, p_i) \leq d_E(p, p_j), \forall j \}$$
Voronoi-based characterization

Steffen and Seyfried, 2010

- Density and speed are defined per unit of space via Voronoi diagrams

\[
k = \frac{\int \int \rho_{xy} \, dx \, dy}{\Delta x \Delta y}, \quad v = \frac{\int \int \nu_{xy} \, dx \, dy}{\Delta x \Delta y}
\]

\[\rho_{xy} = \frac{1}{A_i}, \quad \rho_{xy} \text{ - density distribution, } A_i \text{ - area of Voronoi cell associated to pedestrian } i\]

\[\nu_{xy} \text{ - instantaneous speed of pedestrian } i\]
Characterization based on Edie’s definitions

van Wageningen-Kessels et al., 2014

Density: \(k(V) = \frac{\sum_{i} t_i}{dx \times dy \times dt} \)

Flow: \(\bar{q}(V) = \left(\begin{array}{c} \sum_{i} x_i \\ \sum_{i} y_i \\ \end{array} \right) \frac{\sum_{i} t_i}{dx \times dy \times dt} \)

Velocity: \(\bar{v}(V) = \frac{\bar{q}(V)}{k(V)} = \left(\begin{array}{c} \sum_{i} x_i \\ \sum_{i} y_i \\ \end{array} \right) \frac{1}{\sum_{i} t_i} \)
Pedestrian trajectories

- The trajectory of pedestrian i is a curve in space and time

$$p_i(t) = (x_i(t), y_i(t), t)$$

- Voronoi diagram associated with trajectories

- A point $p(t)$ belongs to the set $V_i(t)$ if

$$d(p(t), p_i(t)) \leq d(p(t), p_j(t)), \forall j$$

- Each pedestrian i is associated with a Voronoi tube V_i
Voronoï-based traffic indicators

The set of all points in V_i corresponding to a specific time t

$$V_i(t) = \{(x, y, t) \in V_i\} \sim [m^2]$$

Density indicator

$$k_i(x, y, t) = \frac{1}{V_i(t)}$$
Voronoi-based traffic indicators

The set of all points in V_i corresponding to a given location x and y

$$V_i(x) = \{(x, y, t) \in V_i\} \sim [\text{ms}]$$

$$V_i(y) = \{(x, y, t) \in V_i\} \sim [\text{ms}]$$

Flow indicator

$$\vec{q}_i(x, y, t) = \left(\frac{1}{V_i(x)} \right)$$

Velocity indicator

$$\vec{v}_i(x, y, t) = \frac{\vec{q}_i(x, y, t)}{k_i(x, y, t)}$$
Pedestrian trajectory data

- In practice, collected through an appropriate tracking technology [Daamen and Hoogendoorn, 2003, Alahi et al., 2011]
- Time is discretized: \(t_s = [t_0, t_1, ..., t_f] \)
- The trajectory is described as a finite collection of triplets

\[p_{is} = (x_{is}, y_{is}, t_s) \]
Characterization based on the sample of points

- Interpolation
 - Introduces errors

- Voronoi diagrams at t_s
 - Needs data that are synchronized
 - Otherwise, the density is underestimated

- 3D Voronoi diagrams for the sample of points
 - The points at t_s are the only available data
 - Spatio-temporal distance (assignment rule)
Data-driven discretization

- Voronoi diagram associated with the points p_{is}
- Each point p_{is} is associated with a Voronoi cell V_{is}
- A point p belongs to the set V_{is} if

$$d_*(p, p_{is}) \leq d_*(p, p_{js}), \forall j$$

- $d_*(p, p_{is})$ - spatio-temporal distance
Voronoi-based traffic indicators

- The set of all points in V_{is} corresponding to a given location (x, y)

$$V_{is}(x, y) = \{(x, y, t) \in V_{is}\} \sim [s]$$

Density indicator

$$k_i(x, y, t) = \frac{V_{is}(x_{is}, y_{is})}{Vol(V_{is})}$$
Voronoi-based traffic indicators

- The set of all points in V_{is} corresponding to a specific time t

 $V_{is}(t) = \{(x, y, t) \in V_{is}\} \sim [m^2]$

Flow indicator

$$\vec{q}_i(x, y, t) = \left(\begin{array}{c} \frac{x_i}{V_{is}} \\ \frac{y_i}{V_{is}} \end{array} \right)$$

x_i - a maximum distance in x direction in $V_{is}(t_{is})$

y_i - a maximum distance in y direction in $V_{is}(t_{is})$

Velocity indicator

$$\vec{v}_i(x, y, t) = \frac{\vec{q}_i(x, y, t)}{k_i(x, y, t)}$$
Spatio-temporal distances

Euclidean distance

\[d_E(p, p_{is}) = \sqrt{(p - p_{is})^T(p - p_{is})} \]

Mahalanobis distance

\[d_M(p, p_{is}) = \sqrt{(p - p_{is})^T M_{is} (p - p_{is})} \]

- \(M_{is} \) - symmetric, positive-definite matrix
- \(M_{is} \) - defines how distances are measured from the perspective of pedestrian \(i \)
Spatio-temporal distances

Euclidean distance

\[d_E(p, p_{is}) = \sqrt{(p - p_{is})^T (p - p_{is})} \]

Mahalanobis distance

\[d_M = \sqrt{(p - p_{is})^T M_{is} (p - p_{is})} \]

- \(M_{is} \) - symmetric, positive-definite matrix
- \(M_{is} \) - defines how distances are measured from the perspective of pedestrian \(i \)
3D Voronoi discretization

Euclidean distance
Voronoi-based density maps

Euclidean distance

Reproduces settings with uniform and non-uniform movement
Delft case study

Bidirectional flow [Daamen and Hoogendoorn, 2003]

- Trajectories extracted from the digital video sequences
- The position of each individual is available every 0.1s
- Total number of trajectories: 1,123
- The average length of the trajectories: 10 meters
- The average time of the trajectories: 10 seconds.
Voronoi-based velocity maps

Lane formation

Allows to correlate the momentary speed of an individual pedestrian (or a group of pedestrians) with the availability of space
3D Voronoi vs. grid-based method

Density sequences

Voronoi-based approach leads to smooth transitions in measured characteristics
Spatio-temporal distances

Euclidean distance

\[d_E(p, p_{is}) = \sqrt{(p - p_{is})^T(p - p_{is})} \]

Mahalanobis distance

\[d_M(p, p_{is}) = \sqrt{(p - p_{is})^T M_{is} (p - p_{is})} \]

- \(M_{is} \) - symmetric, positive-definite matrix
- \(M_{is} \) - defines how distances are measured from the perspective of pedestrian \(i \)
Mahalanobis distance

Directions of interest

\[p_{is} = (x_{is}, y_{is}, t_s), \quad v_i(t_s) = \frac{1}{t_{(s+1)}-t_s} \begin{pmatrix} x_i(s+1) - x_{is} \\ y_i(s+1) - y_{is} \\ 1 \end{pmatrix} \]

\[d^1(t_s) = \frac{v_i(t_s)}{||v_i(t_s)||}, \quad ||d^1(t_s)|| = 1 \]

\[d^2(t_s) = \begin{pmatrix} d^1_x(t_s) \\ d^1_y(t_s) \\ 0 \end{pmatrix}, \quad d^1(t_s)^T d^2(t_s) = 0, \quad ||d^2(t_s)|| = 1 \]

\[d^3(t_s) = \begin{pmatrix} 0 \\ 0 \\ t_{(s+1)} - t_s \end{pmatrix}, \quad ||d^3(t_s)|| = t_{(s+1)} - t_s \]
Mahalanobis distance

Change of coordinates

\[S_1(t_s, \delta) = p_{is} + (t_{(s+1)} - t_s)v_i(t_s) + \delta d^1(t_s) \]
\[S_2(t_s, \delta) = p_{is} - (t_{(s+1)} - t_s)v_i(t_s) - \delta d^1(t_s) \]
\[S_3(t_s, \delta) = p_{is} + \delta d^2(t_s) \]
\[S_4(t_s, \delta) = p_{is} - \delta d^2(t_s) \]
\[S_5(t_s, \delta) = p_{is} + \delta d^3(t_s) \]
\[S_6(t_s, \delta) = p_{is} - \delta d^3(t_s) \]

\[d_M = \sqrt{(S_j(t_s, \delta) - p_{is})^T M_{is}(S_j(t_s, \delta) - p_{is})} = \delta, j = 1, \ldots, 6 \]
3D Voronoi discretization

Mahalanobis distance
Numerical analysis

Scenarios

Benchmark
- Synthetic pedestrian trajectories
- Voronoi-based method for trajectories

Sample of points from trajectories
- Different sampling frequency
- Method
 - Voronoi diagrams with d_E
 - Voronoi diagrams with d_M
Numerical analysis

Scenarios

Benchmark
- Synthetic pedestrian trajectories
- Voronoi-based method for trajectories

Sample of points from trajectories
- Different sampling frequency
- Method
 - Voronoi diagrams with d_E
 - Voronoi diagrams with d_M
Density indicator
Speed indicator
More numerical analysis

- Different scenarios
- Importance sampling
- Comparison with interpolation
- Different assignment rules - anticipation of the forward movement of pedestrians
Conclusions

- The framework for pedestrian-oriented flow characterization
- Edie’s definitions adapted through a data-driven discretization
- Reproduces the settings with uniform and non-uniform movement
- Reflects the self-organization phenomena
- Leads to smooth transitions in measured traffic characteristics
- Sampling frequency affects the accuracy of 3D Voronoi results
Future research

- More numerical analysis
- Real case study: train stations in Lausanne and Basel [Alahi et al., 2014]
- Stream-based definitions of indicators and their interaction [Nikolić and Bierlaire, 2014]
- Stream-based fundamental relationships for pedestrians
Thank you for your attention