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A KERNEL COMPRESSION SCHEME FOR FRACTIONAL
DIFFERENTIAL EQUATIONS∗

DANIEL BAFFET† AND JAN S. HESTHAVEN†

Abstract. The nonlocal nature of the fractional integral makes the numerical treatment of
fractional differential equations expensive in terms of computational effort and memory requirements.
In this paper we propose a method to reduce these costs while controlling the accuracy of the scheme.
This is achieved by splitting the fractional integral of a function f into a local term and a history
term. Observing that the history term is a convolution of the history of f and a regular kernel, we
derive a multipole approximation to the Laplace transform of the kernel. This enables the history
term to be replaced by a linear combination of auxiliary variables defined as solutions to standard
ordinary differential equations. We derive a priori error estimates, uniform in f , and obtain estimates
on the number of auxiliary variables required to satisfy an error tolerance. The resulting formulation
is discretized to produce a time stepping method. The method is applied to some test cases to
illustrate the performance of the scheme.
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1. Introduction. The nonlocal nature of fractional differential equations (FDEs)
makes their numerical treatment considerably more difficult than that of standard dif-
ferential equations. Direct approaches (e.g., [1, 2, 3, 4] and the references therein) for
discretizing FDEs require that the entire solution history is stored and used through-
out the computation. This may be expensive both in terms of computational and
memory costs. In this paper we propose a method to address this difficulty.

Some methods for treating this issue have been proposed. It is worth mentioning
the fixed memory principle [5] due to its simplicity. The use of nested meshes [6] has
also been proposed to this end. Both these methods rely on storing past information
and the direct evaluation of the convolution.

In this paper we take an approach more commonly used in the derivation of ab-
sorbing or nonreflecting boundary conditions (see, e.g., [7] and the references therein).
In this context, the method is designed to approximate the convolution

(1.1) wδ ∗ f(t) =

∫ t

0

wδ(t− s) f(s) ds

by a linear combination of solutions ψ1, . . . , ψJ to initial value problems for standard
ordinary differential equations (ODEs) of the form

(1.2) ψ′ = λψ + f, ψ(0) = 0,

where λ ∈ C. Here, wδ(t) = w(t+ δ), and w(t) = t−1+α/Γ(α) is the kernel of the
fractional integral. In the following we refer to ψ1, . . . , ψJ as the auxiliary variables
of the scheme.
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The idea to reduce the costs of evaluating the history term of the fractional
integral [8], or more generally [9, 10, 11] a convolution K ∗ f , by approximating it
by a linear combination of solutions to ODEs (1.2) has been explored in the past.
In [8], this amounts to the approximation of the kernel w by a linear combination of
exponentials

(1.3) S(Λ, σ; t) =

J∑
j=1

σje
λjt

at some positive distance δ from the singularity. The kernel w is approximated by a
sum (1.3) with real nodes λj and weights σj on the interval [δ,∞), where the estimate
|w − S| ≤ ε of the absolute pointwise error holds for

J = O
(
(1− α)−1(log(αε)−1 + log δ−1)2

)
.

While the idea to approximate the kernel w in the entire half line t ≥ δ is appealing,
it comes at the expense of the type of the error estimate possible. The reader may
notice that a uniform estimate of the relative pointwise error of such approximation is
impossible on [δ,∞), as it requires the asymptotic behavior of a linear combination of
exponentials to match the algebraic decay of w as t tends to infinity. The procedure
in [12] also prescribes an approximation (1.3) with real nodes and weights. The au-
thors discuss the approximation of some functions by sums of exponentials, including
functions of the form t−β . This approximation satisfies an estimate of the relative
pointwise error |w − S| ≤ εw in [δ, 1] for

J = O

((
log δ−1 + (1− α)−1 log ε−1 + log log ε−1

)
log

1− α
ε

)
.

The algorithm presented in [9] has been used as the foundation for several methods [10,
13] and extended to allow variable step size [11]. To begin the discussion we outline the
scheme proposed in [9]. The scheme is stated for the approximation of a convolution
K ∗ f , but we restrict the discussion to the problem of approximating the fractional
integral. Suppose we wish to approximate the fractional integral of a function f in
(0, T ). Let δ > 0. The interval [δ, T ] is covered by a set of geometrically growing,
overlapping intervals I` with ` = 1, . . . , L. In each I`, the kernel w is approximated
by a sum S` of the form (1.3) obtained by the application of the trapezoidal rule to
the inverse Laplace transform formula

w(t) =
1

2πi

∫
C`

etλ ŵ(λ) dλ,

where ŵ is the Laplace transform of w. Each contour C` is chosen [11, 14] so that the
estimate |w−S`| ≤ εw holds in I` with J = O(log(αε)−1) independent of `. As it takes
L = O(log δ−1T ) intervals I` to cover [δ, T ], the total number of auxiliary variables re-
quired by this scheme to satisfy an error tolerance ε in [δ, T ] is O

(
log δ−1T log(αε)−1

)
.

Thus the approximation to the history term of the fractional integral of f is given by
a linear combination of auxiliary variables ψ satisfying the ODE ψ′ = λψ + f with
different λ ∈ C and homogenous initial conditions at different times. The strength of
this approach is that it offers a way to discard past values of f and nonetheless account
for their contribution efficiently. However, this approach results in complicated time
stepping schemes, even when the step size ∆t = δ remains constant. At each step,
new auxiliary variables may be introduced, as f is usually not known a priori, and
old ones arded since they will not contribute to the procedure anymore. In addition,
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to be able to discard past values of f , at each step, all auxiliary variables must be
advanced, but only some are actively used for the approximation of the history term.

Here, we take a different approach. We postpone describing the approximation
to section 3 and in the following only discuss the properties of the method and the
main result of the paper, given by Theorem 3.3. While for positive δ, wδ is smooth in
[0,∞) and thus allows for the procedure, the singularity in the kernel w = w0 of the
fractional integral prevents the application of the method directly to w0∗f = w∗f . As
a consequence, the resulting approximation is not uniform in δ. In the time stepping
schemes below, we take δ to be the step size ∆t, but for the sake of generality, we
distinguish the two. For the proposed method to be cost effective, the number of
auxiliary variables J must be small. To measure this, it is natural to compare J
to the number of steps N = T/∆t. The analysis, however, is performed at the
continuous level and provides uniform in f error estimates. The main result of this
paper, Theorem 3.3, yields the following a priori estimate of J : Let Iδ be the operator
defined by Iδf = wδ ∗ f . For T > 0, δ > 0, and an error tolerance ε > 0, there exists
an approximation operator Iδ,r, of the form Iδ,rf = S ∗ f with J = pm,

(1.4) p = O

(
log δ−1T + log log

1− α
ε

)
, m = O

(
log ε−1

)
,

such that

(1.5) ‖Iδf − Iδ,rf‖L2(0,T ) ≤ ε ‖Iδf‖L2(0,T ) ∀ f ∈ L2(0, T ) .

Moreover, the analysis prescribes the approximation operator Iδ,r explicitly, up to the
evaluation of some integrals.

Thus, the scheme satisfies error estimates that show asymptotic behavior compa-
rable to that of the estimates for the algorithm in [9]. The estimates are, however,
on the relative error of the convolution approximation in the L2-norm, rather than
the relative pointwise error. Nevertheless, we obtain an estimate of the latter type
as a corollary. We also note that the estimates, stated by Theorem 3.3, show that
the number of poles J required to satisfy a prescribed error tolerance is bounded
uniformly for α ∈ (0, 1). In fact, the estimates show that the error term associated
with p tends to zero when α tends to one. This is also demonstrated by our numer-
ical results. While our estimates provide a uniform in α bound on the error term
associated with m, in our numerical tests, near α = 1 we measure errors smaller than
elsewhere. We emphasize that this is not reflected in our estimates and therefore we
cannot conclude whether the error term associated with m vanishes at the limit α→ 1
or not. Nevertheless, the numerical results support the proposition that this term is
also bounded uniformly for α ∈ (0, 1).

In contrast to the methods inspired by [9], where different sets of auxiliary vari-
ables are used at different time “windows,” here we use a single set of auxiliary
variables. That is, in the entire time interval, the same set of auxiliary variables is
used. This leads to relatively simple time stepping schemes. The kernel compression
scheme also has features making it convenient for use with adaptive step size meth-
ods. In [15] we propose high order adaptive methods for FDEs based on the kernel
compression scheme developed in this paper.

The rest of the paper is structured as follows. In section 2 we present an overview
of the method, discuss its incorporation into a time stepping scheme and introduce
some notation. The main results of the paper and their proofs are presented in section
3, where we also state the approximation explicitly. In section 4 we provide details
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on the implementation of the kernel compression scheme and the fully discrete time
stepping methods used in the numerical tests, whereas section 5 presents numerical
results showing the approximation of the kernel wδ, and the application to two exam-
ples, including a fractional Van der Pol equation. We conclude with some remarks in
section 6. Appendix A states and proves two lemmas on the multipole approximation
and estimation of functions, and Appendix B provides some results on convolutions
and the Laplace transform.

2. Overview. For α > 0, let

(2.1) Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)−1+αf(s) ds

be the fractional integral of f . Consider Iαf(t+ δ) for some t ≥ 0 and δ > 0. We
split the integral into a local term

(2.2)

∫ δ

0

w(δ − s) f(t+ s) ds

and a history term

(2.3) Iδf(t) =

∫ t

0

wδ(t− s) f(s) ds,

where

(2.4) wδ(t) = w(t+ δ) w(t) =
t−1+α

Γ(α)
.

In what follows we present the main idea of the method, propose an approach for
incorporating it into a fully discrete time stepping scheme, and introduce the notation
used subsequently.

2.1. Kernel compression. We denote by either f̂ or L[f ] the Laplace transform

(2.5) f̂(λ) =

∫ ∞
0

e−λtf(t) dt

of a function f . Let α ∈ (0, 1), f : (0, T ) → Rd and δ > 0. We may extend f to
(0,∞) by setting f = 0 in [T,∞). Consider the history term (2.3) of Iαf(t+ δ), the
fractional integral of f at t+ δ. Its Laplace transform is given by

(2.6) L[Iδf ](λ) = ŵδ(λ) f̂(λ) .

As our goal is to approximate the convolution (2.3), we seek a multipole approximation

(2.7) r(λ) =

J∑
j=1

σj
λ− λj

to ŵδ that satisfies a uniform estimate of the relative error

(2.8) |ŵδ(λ)− r(λ) | ≤ ε|ŵδ(λ) |, Reλ ≥ η.

The reason for requiring (2.8) is that it implies the following estimate of the relative
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L2-error:

(2.9) ‖Iδf − Iδ,rf‖L2(0,T ) ≤ εeηT ‖Iδf‖L2(0,T ) ∀f ∈ L2(0, T ) ,

where Iδ,rf is defined as the inverse Laplace transform of rf̂ . Explicitly, Iδ,rf is given
by Iδ,rf = S ∗ f , where

(2.10) S(t) =

J∑
j=1

σje
λjt

is the inverse Laplace transform of r.
Given an approximation (2.7) to ŵδ, Iδ,rf may also be expressed in terms of

the solution to an initial value problem for a standard ODE system. Suppose r is a
multipole approximation (2.7) to ŵδ. For each j = 1, . . . , J , define

(2.11) ψ̂j = (λ− λj)−1
f̂ .

Inverting the Laplace transform we recover

(2.12) ψj(t) =

∫ t

0

eλj(t−s)f(s) ds.

To simplify the notation we organize ψ1, . . . , ψJ as the columns of a matrix Ψ = (ψj).
Thus the approximation Iδ,rf of Iδf associated with r is

(2.13) Iδ,rf =

J∑
j=1

σjψj = Ψσ,

where σ = (σ1, . . . , σJ)T . Observing that each ψj is the solution to the ODE ψ′j =
λjψ + f satisfying ψj(0) = 0, we recover

(2.14) Ψ′ = ΨΛ + f1, Ψ(0) = 0,

where 1 = (1, . . . , 1) ∈ RJ , and Λ = diag(λ1, . . . , λJ). It is left to specify the multipole
approximation r to ŵδ and derive the error estimate for the approximation Iδ,rf of
the history term Iδf . These issues are addressed in section 3.

2.2. Incorporation into a time stepping scheme. While the main focus of
this paper is the approximation of (2.3), the goal of the method is to be incorporated
into fully discrete time stepping schemes. In particular, schemes for initial value
problems

(2.15) Dαu = f(t, u) , u(0) = u0

in (0, T ), where α ∈ (0, 1), f : [0, T ] × Π → Rd, T > 0, Π ⊂ Rd open, and Dα is the
Caputo α-derivative

(2.16) Dαu = I1−αu′.

Below we propose a setup for the application of the kernel compression method as a
part of a fully discrete time stepping scheme for (2.15).
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Applying Iα to (2.15), we get

(2.17) u = u0 + Iα(f ◦ u) ,

where f ◦ u(t) = f(t, u(t)). In fact, (2.15) and (2.17) are equivalent. A standard
approach for the derivation of numerical methods for (2.17), and thus for (2.15), is as
follows. Fix t ≥ 0 and ∆t > 0, and let δ ∈ (0,∆t). Owing to (2.17), we have

u(t+ δ) =

∫ δ

0

w(δ − s) f(t+ s, u(t+ s)) ds+H(t, δ) ,(2.18a)

H(t, δ) = u0 + Iδ(f ◦ u)(t) .(2.18b)

Observing that (2.18a) may be rewritten as

(2.19) U(δ) = Iα(F ◦ U)(δ) +H(t, δ) ,

where U(δ) = u(t+ δ) and F (δ, u) = f(t+ δ, u), we find that two ingredients are
required for the time stepping scheme. The first ingredient—the local time stepping
scheme—is a method for approximating Volterra equations (2.19) on short intervals
(0,∆t), assuming H is given. This scheme is applied to (2.18a) to advance the nu-
merical solution from t to t+∆t and perhaps compute approximations of u at a small
number of points in (t, t + ∆t). In this paper we employ a one-step scheme of local
order 2+α, but other schemes may also be viable. In practice, schemes approximating
(2.19) require H to be evaluated at some points in (0,∆t]. The computation of H
requires computing the history term and is therefore expensive to perform. To re-
duce the costs of evaluating the history term, we require the second ingredient of the
scheme—the kernel compression scheme. This scheme prescribes the approximation
in terms of the matrix of auxiliary variables Ψ, defined as the solution to (2.14). Thus
we also need a method for approximating (2.14). For that purpose, we may use an
A-stable method. The reason an A-stable method is required is that some of the λj-s
have large negative real parts. In this paper we test the application of the trapezoidal
rule and backward Euler scheme. Other schemes may also be used, e.g., A-stable
diagonally implicit Runge–Kutta methods. Since Λ is diagonal, this does not require
solving a large algebraic system.

3. Kernel compression. To derive a rational approximation to ŵδ, we repre-
sent it as an integral of the form

(3.1) ŵδ(λ) =

∫
C0

ρ(ζ)

λ− ζ dζ

over a contour C0 in the complex plane and approximate this integral by some quadra-
ture. Thus, different approximations may be obtained by choosing different contours
and different quadratures. In the following we develop an error estimate for the ap-
proximation obtained with a specific integral representation of ŵδ and the quadrature
proposed by Lemma 3.5 of [7]. We rely on the following lemma which is inspired by
that result. For the proof, see Appendix A.

Lemma 3.1. Let

(3.2) φ(z) =

∫
C

ρ(ζ)

z − ζ dζ,

where C is a contour in the complex plane, and ρ is integrable. Suppose C ⊂ ⋃pk=1Dk,
where for each k = 1, . . . , p, Dk is the closed disk of radius rk > 0 centered at ck ∈ C.
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Let

(3.3a) r(z) =

p∑
k=1

m−1∑
j=0

σkj
z − (ck + rkωj)

,

where ω = e2πi/m,

(3.3b) σkj =
1

m

m−1∑
l=0

ω−jlQkl, Qkl =

∫
Ck
ρ(ζ)

(
ζ − ck
rk

)l
dζ

for each k = 1, . . . , p, Ck = C ∩ (Dk \ Uk), and Uk =
⋃k−1
j=1 Dj. Suppose a > 1, and

z ∈ C satisfies |z − ck| ≥ ark for each k = 1, . . . , p. Then, the following estimate
holds:

(3.4) |φ(z)− r(z) | ≤ 2

am − 1

∫
C

∣∣∣∣ ρ(ζ)

z − ζ

∣∣∣∣ d|ζ|.

The error estimate for the approximation of ŵδ is stated by Theorem 3.2 in section
3.2. As corollaries, we obtain the main results of the paper, Theorem 3.3 and Corollary
3.4, which provide estimates in the time domain of the errors of the approximations
to the convolution and the kernel, respectively. Both Theorem 3.3 and Corollary 3.4
are stated in section 3.2, where an overview of their proofs is also provided. The proof
of Theorem 3.2 is presented in section 3.3. The technical details of all the proofs are
provided in the appendices.

3.1. The multipole expansion. In what follows, we state the multipole ap-
proximation r to ŵδ and discuss the idea of its derivation. The analysis of the paper
relies on properties of the upper incomplete gamma function [16, 17]. For convenience,
we state these results without further reference. The Laplace transform ŵδ of wδ is
given by

(3.5)

ŵδ(λ) =

∫ ∞
0

e−λtw(t+ δ) dt =
eδλ

Γ(α)

∫ ∞
δ

e−λt t−1+α dt

= λ−αeδλ
Γ(α, δλ)

Γ(α)
,

where Γ(α, z) is the upper incomplete gamma function,

(3.6) Γ(α, z) =

∫ ∞
z

e−ssα−1 ds.

Owing to

(3.7) Γ(α, z) =
zαe−z

Γ(1− α)

∫ ∞
0

x−αe−x

z + x
dx,

valid for α ∈ (0, 1) and Re z > 0, we recover

(3.8) ŵδ(λ) = Kα

∫ ∞
0

x−αe−δx

λ+ x
dx,

where

(3.9) Kα =
1

Γ(α) Γ(1− α)
=

sin(πα)

π
.
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ηc1c2c3

C

Fig. 1. The setup in the complex plane: the half plane Re z ≥ η and the contour C covered by
the disks Dk centered at ck of radii rk.

Let α ∈ (0, 1), η > 0, and p,m ∈ N. The resulting expansion is given by

(3.10a) r(λ) =

p∑
k=1

m−1∑
j=0

σkj
λ− λkj

, λkj = ck + rkω
j ,

where ω = e2πi/m, for each k = 1, . . . , p and j = 0, . . . ,m− 1,

σkj =
1

m

m−1∑
l=0

ω−jlQkl,(3.10b)

Qkl = Kα

∫ xk

xk−1

x−αe−δx
(−x+ |ck|

rk

)l
dx,(3.10c)

(3.10d) rk = η 2k−2 ck = −η
(
3 · 2k−2 − 1

)
,

and

(3.10e) xk(η) = η(2k − 1), k = 0, . . . , p.

The general idea of the derivation of the approximation is as follows. For η > 0 and
p ∈ N we approximate (3.8) by an integral over the truncated interval (0, xp). To be
consistent with the spirit of the proof of Theorem 3.2, we treat the resulting integral as
a contour integral over the segment (−xp, 0), directed from ζ = 0 to ζ = −xp. Thus,
we apply Lemma 3.1 to approximate that contour integral. We divide the integral
over (−xp, 0) into a sum of integrals over the disjoint intervals Ik = (−xk,−xk−1) with
k = 1, . . . , p. Note that for each k = 1, . . . , p, the center and radius of Ik are ck and
rk, respectively. Finally, the approximation (3.10) is obtained by replacing, for each
k = 1, . . . , p, the integral over Ik, by a sum of m poles located on the circle of radius
rk centered at ck. Figure 1 shows an illustration of the setup in the complex plane.

3.2. Statement of main results. The main results are stated below. Theorem
3.2 provides an error estimate for the approximation of the Laplace transform of the
kernel.

Theorem 3.2. Let α ∈ (0, 1), η > 0, and δ > 0. Then, r given by (3.10) satisfies

(3.11) |ŵδ(λ)− r(λ)| ≤ Cmp(α, δη) |ŵδ(λ) |
for all Reλ ≥ η, where

(3.12a) Cmp(α, η) = CaAm + CbBp(α, η)
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with

(3.12b) Am = 3−m, Bp(α, η) =
Γ(1− α, η(2p − 1))

Γ(1− α)
.

The constants Ca and Cb are positive and independent of α, η, δ, p, and m.

The reader is referred to section 3.3 for the proof. While the term Bp in (3.12b)
seems to describe the error very well (see the numerical results in section 5.1), it
may not be convenient for use in applications, as it relies on the incomplete gamma
function. In that case, one may consider using the inequality

(3.13) Bp(α, η) ≤ C (1− α)x−αp (η) e−xp(η),

which captures the asymptotic behavior of Bp for large p, to estimate the error.
Owing to Theorem 3.2, we have the following estimate of the global error of the

convolution approximation.

Theorem 3.3. Let α ∈ (0, 1), T > 0, η > 0, δ > 0, and m, p ∈ N. Suppose
r is given by (3.10), and Iδ,r is the approximation operator associated with r, i.e.,
Iδ,rf = S ∗ f , where S = L−1[r]. Then, the estimate

(3.14) ‖Iδf − Iδ,rf‖L2(0,T ) ≤ eηTCmp(α, δη) ‖Iδf‖L2(0,T )

holds for every f ∈ L2(0, T ).

Proof. Estimate (3.14) follows immediately from Lemma B.2. The hypotheses of
that lemma hold due to Theorem 3.2, (3.5), and Lemma A.1, which implies that ŵδ
has no zeros in the right half plane.

As a corollary to Theorem 3.3, we obtain an estimate of the relative pointwise
error of the kernel approximation; an estimate of the type obtained for the methods in
[12, 14]. This estimate follows from (3.14) and Lemma B.3, as wδ and S are continuous
on [0,∞). Thus, we have the following.

Corollary 3.4. Let α ∈ (0, 1), T > 0, η > 0, δ > 0, and m, p ∈ N. Then
S = L−1[r], where r is given by (3.10), satisfies the estimate

(3.15) |wδ(t)− S(t) | ≤ eηTCmp(α, δη) |wδ(t) |

holds for all t ∈ [0, T ].

3.3. Proof of Theorem 3.2. It is convenient to perform the analysis on the
Laplace transform

(3.16) v̂(z) = δ−αŵδ
(
δ−1z

)
= z−αez

Γ(α, z)

Γ(α)

of

(3.17) v(t) = w1(t) = δ1−αwδ(δt) =
1

Γ(α)
(1 + t)

−1+α

and deduce the conclusion for ŵδ at the end. Observing that Γ(α, z) /Γ(α) = 1 −
zαγ∗(α, z), where γ∗ is an entire function, we find that v̂(z) is given by

v̂(z) =
(
z−α − γ∗(α, z)

)
ez

and is therefore analytic and single valued in C \ (−∞, 0]. To obtain a rational
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approximation to v̂ we rely on the representation (3.7) of the incomplete gamma
function which yields

(3.18) v̂(z) = Kα

∫ ∞
0

x−αe−x

z + x
dx.

For the approximation of (3.18) we use the quadrature proposed by Lemma 3.5 of
[7]. Although different, the lemma used in this paper, Lemma 3.1, is inspired by that
result. The proof of Theorem 3.2 relies on a similar result for v̂, given by Lemma 3.6
below, which requires the following proposition.

Proposition 3.5. Let α ∈ (0, 1) and

(3.19) V1(a, z) = Kα

∫ a

0

∣∣∣∣x−αe−x

z + x

∣∣∣∣ dx, V2(a, z) = Kα

∫ ∞
a

∣∣∣∣x−αe−x

z + x

∣∣∣∣ dx

for a ∈ [0,∞) and 0 6= z ∈ C with Re z ≥ 0. There exist constants C0, C1, and C2,
independent of α such that for all a ≥ 0 and 0 6= z ∈ C with Re z ≥ 0, the following
estimates hold:

v̂(|z|) ≤ C0|v̂(z) |,(3.20)

V1(a, z) ≤ C1|v̂(z) |,(3.21)

V2(a, z) ≤ C2
Γ(1− α, a)

Γ(1− α)
|v̂(z) |.(3.22)

Proof. Estimate (3.20) follows readily from (3.18) and Lemma A.1. To prove
(3.21) and (3.22), it suffices to show they hold for z = µ real and positive, due to
(3.20), (3.18), and Lemma A.1. For z = µ > 0, (3.21) is trivial. Thus, it is left to
show (3.22) with z = µ > 0. Specifically, we show (3.22) with z = µ > 0 and C2 = 1,
or equivalently, we show that

(3.23) ∆(a, µ) = Γ(1− α, a) v̂(µ)− Γ(1− α)V2(a, µ)

is nonnegative. Observing that for µ > 0, v̂(µ) = V1(a, µ) + V2(a, µ), and Γ(1− α) =
Γ(1− α, a)+γ(1− α, a), where γ is the lower incomplete gamma function, we recover

(3.24) ∆(a, µ) = Γ(1− α, a)V1(a, µ)− γ(1− α, a)V2(a, µ) ,

after the cancellation of terms. Explicitly, we have

(3.25) ∆(a, µ) =

∫ a

0

∫ ∞
a

y − x
(µ+ x)(µ+ y)

(xy)−αe−(x+y) dy dx,

and the conclusion follows.

We are now in a position to prove the error estimate for the multipole approxi-
mation to v̂.

Lemma 3.6. Let α ∈ (0, 1) and η > 0. Then, r given by (3.10) with δ = 1 satisfies

(3.26) |v̂(z)− r(z)| ≤ Cmp(α, η) |v̂(z) |

for all Re z ≥ η, where Cmp is given by (3.12), and the constants Ca and Cb are
positive and independent of α, η, p, and m.
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Proof. The proof is based on the integral representation (3.18) of v̂ and Lemma
3.1. We begin by sketching the construction of the multipole approximation and
the argument justifying the application of Lemma 3.1. We refer to Figure 1 for an
illustration of the setup. For p ∈ N, define xp = xp(η) = η(2p − 1) and

(3.27) v̂1(z) = Kα

∫ xp

0

x−αe−x

z + x
dx, v̂2(z) = Kα

∫ ∞
xp

x−αe−x

z + x
dx.

Note that v̂1 has the form

v̂1(z) =

∫
C

ρ(ζ)

z − ζ dζ,

where ρ(ζ) = −Kα(−ζ)−αeζ , and the contour C is the segment (−xp, 0) in the complex
plane directed from ζ = 0 to ζ = −xp. Also note that C is covered by the disks

(3.28) Dk =
{
ζ ∈ C : |ζ − ck| ≤ rk

}
, k = 1, . . . , p,

where rk and ck are given by (3.10d). The reader may verify that for each k = 1, . . . , p
and z ∈ C with Re z ≥ η, there holds |z−ck| ≥ 3rk. By Lemma 3.1, (3.10) with δ = 1
satisfies

(3.29) |v̂1(z)− r(z) | ≤ 2

3m − 1
V1(xp, z)

for all Re z ≥ η, where V1 is given by (3.19). By v̂ = v̂1 + v̂2, the triangle inequality,
(3.29), and

(3.30) |v̂2(z) | ≤ V2(xp, z) ,

where V2 is given by (3.19), we have

(3.31) |v̂(z)− r(z) | ≤ 2

3m − 1
V1(xp, z) + V2(xp, z) ,

and thus Proposition 3.5 yields the conclusion.

This now allows us to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Suppose δ0 > 0. Let η̃ = δ0η. By Lemma 3.6, r̃ given by
(3.10) with δ = 1 satisfies (3.26) for all Re z ≥ η̃. That is,

(3.32) |v̂(δ0λ)− r̃(δ0λ) | ≤ Cmp(α, δ0η) |v̂(δ0λ) |

holds for all Reλ ≥ η. We multiply (3.32) by δα0 and use ŵδ0(λ) = δα0 v̂(δ0λ) to recover
(3.11) with δ = δ0 and r(λ) = δα0 r̃(δ0λ). Observing that r may written in the form
(3.10) with δ = δ0, we have the conclusion.

4. Implementation. The scheme has two main components, comprising the
kernel compression scheme to treat the time history and the local time stepping
scheme. We discuss these separately in the following.

4.1. Kernel compression scheme. The scheme requires the weights σkj and
poles λkj prescribed in (3.10). These parameters depend only on α, η, and the distance
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from the kernel singularity δ. In the time stepping methods tested below, η = 1/T ,
where T is the simulation interval length, and δ = ∆t, where ∆t is the time step size
∆t. Thus, provided the step size ∆t is constant, we may compute the weights and
poles once and use them throughout.

While it is straightforward to compute the poles λkj , the computation of the
weights σkj deserves attention. Observing (3.10b), we note that for each k = 1, . . . , p,
(σkj)j is the discrete Fourier transform of (Qkl)l and thus may be computed efficiently—
even for large m, although this is not expected in practice. Computing Qkl requires
the evaluation of the integrals (3.10c). In our implementation, each Qkl is approxi-
mated by an appropriate Gauss–Jacobi quadrature. In each interval (xk−1, xk) with
k ≥ 2, the integrand of (3.10c) is smooth and thus (3.10c) may be approximated by
a Gauss–Legendre quadrature. In (x0, x1), however, the integrand has a singularity
at the left endpoint x0 = 0. We, therefore, employ the Gauss–Jacobi quadrature
corresponding to the singularity for the approximation of (3.10c) with k = 1. In the
tests below we use quadratures with 4m+ 1 nodes.

The number J = pm of auxiliary variables may be reduced in computations to
about half. We exploit that the poles are distributed symmetrically around the real
line to remove poles with negative imaginary parts and real duplicate poles to recover

(4.1)

p∑
k=1

m−1∑
j=0

σkjψkj = Re

P∑
j=1

θjψj .

The procedure is outlined in Algorithm 1.
Algorithm 1 treats the cases where m is even or odd differently. The resulting

number of poles P in the current implementation is given by P = pm/2 + 1 if m is
even and P = p(m+ 1)/2 if m is odd. This has the following implication. Let m be
an odd number. The accuracy of the scheme is determined by the effective number
of poles J = pm, and the computational cost is that of computing P = p(m + 1)/2
auxiliary variables. However, replacing m by m + 1 provides the accuracy obtained
by J1 = p(m+ 1) = J + p poles at the cost of computing only P1 = p(m+ 1)/2 + 1 =
P + 1 auxiliary variables. That is, when m is odd, the added computational cost of
increasing m by one is small compared to the potential added accuracy.

To avoid the appearance of different behaviors of errors with respect to P and
the switching between the two different algorithms (when m is odd or even), in this
paper, the numerical results are obtained with odd m.

4.2. Time stepping schemes. Consider the initial value problem (2.15). Let
N ∈ N, ∆t = T/N , and tn = n∆t with n = 0, . . . , N . Below, v and Φ = (ϕj)
denote the numerical approximations to u and Ψ = (ψj), respectively, θj and λj ,
with j = 1, . . . , P , are obtained from applying Algorithm 1 to the weights σkj and
nodes λkj given by (3.10) with δ = ∆t. Following the discussion in section 2.2, we
approximate (2.18a) by

(4.2) vn+1 = ∆tα
1∑
k=0

akf
n+k +Hn,

where fn = f(tn, v
n), and

(4.3) a0 =
α

Γ(2 + α)
, a1 =

1

Γ(2 + α)
, Hn = u0 + Re

P∑
j=1

θjϕ
n
j .
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Algorithm 1 Removing poles

Input: λkj = ck + rkω
j and σkj defined by (3.10b) (k = 1, . . . , p, j = 0, . . . ,m− 1).

Output: θ = (θ1, . . . , θP ) and λ = (λ1, . . . , λP )

1: if m is even then
2: Let m = 2µ.
3: σ(tmp) = (σkµ : 1 ≤ k ≤ p)
4: λ(tmp) = (λkµ : 1 ≤ k ≤ p)
5: Remove poles with negative imaginary parts:

λ← (λkj : 1 ≤ k ≤ p, 0 ≤ j ≤ µ− 1)

6: Remove corresponding weights:

σ ← (σkj : 1 ≤ k ≤ p , 0 ≤ j ≤ µ− 1)

7: Correct weights corresponding to complex poles:

σkj ← 2σkj 1 ≤ k ≤ p, 1 ≤ j ≤ µ− 1

8: Correct weights corresponding to real poles:

σk0 ← σk0 + σ
(tmp)
k−1 2 ≤ k ≤ p

9: σ ← reshape(σ, 1, pµ) (Rearrange the matrix σ = (σkj) as a line vector (σj).)
10: λ← reshape(λ, 1, pµ)

11: Define θ = (σ, σ
(tmp)
p ) (P = pm/2 + 1)

12: λ← (λ,λ
(tmp)
p )

13: else (m is odd)
14: Let m = 2µ− 1.
15: Remove poles with negative imaginary parts:

λ← (λkj : 1 ≤ k ≤ p, 0 ≤ j ≤ µ− 1)

16: Remove corresponding weights:

σ ← (σkj : 1 ≤ k ≤ p, 0 ≤ j ≤ µ− 1)

17: Correct weights corresponding to complex poles:

σkj ← 2σkj 1 ≤ k ≤ p, 1 ≤ j ≤ µ− 1

18: Define θ = reshape(σ, 1, pµ) (P = p(m+ 1)/2)
19: λ← reshape(λ, 1, pµ)
20: end if

Note that (4.2) requires the solution of an algebraic equation; this is done by a Newton
solver.

Since some of the poles λ1, . . . , λP have large negative real parts, we use a one-
step A-stable method to approximate (2.14). Note that coupling in (2.14) occurs only
through f . Also note that f is only a function of v and that vn+1 depends only on
Φn. Thus, applying one-step implicit schemes to (2.14) is simple. (Recall that Λ is
diagonal.) We test the application of a trapezoidal rule,

(4.4) Φn+1 =

[
Φn
(
I +

∆t

2
Λ

)
+

∆t

2

(
fn+1 + fn

)
1

](
I − ∆t

2
Λ

)−1

,
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Fig. 2. The relative error ∆ given by (5.1) as a function of t; results are obtained with T = 102

and δ = 10−4, on the left, and T = 105 and δ = 10−5, on the right.

and the backward Euler scheme,

(4.5) Φn+1 =
(
Φn + ∆tfn+11

)
(I −∆tΛ)

−1
,

where Λ = diag(λ1, . . . , λP ), and 1 = (1, . . . , 1) ∈ RP . To advance the numerical
solution from tn to tn+1 = tn+ ∆t, the schemes above only require vn and Φn. Given
these values, we proceed by computing vn+1 by (4.2). Now we may evaluate fn+1 and
compute Φn+1 by either (4.4) or (4.5). Thus we obtain all the information required for
another step. To initiate the procedure we set Φ0 = 0, owing to the initial condition
in (2.14).

5. Numerical tests. In section 5.1, we test the kernel compression scheme di-
rectly. Thus, the tests do not involve time stepping. The results in sections 5.2 and
5.3 are obtained using the time stepping methods described in section 4.2. In the
following, p is the number of circles, m is the number of poles on each circle, and
P is the number of auxiliary variables used in the calculation, excluding unnecessary
poles.

5.1. The kernel compression scheme. In this section we test the kernel com-
pression scheme directly, without involving time stepping. Specifically, we test esti-
mate (3.15). Thus, let

(5.1) ∆(t) =

∣∣∣∣w(t)− S(t− δ)
w(t)

∣∣∣∣ , S(t) = Re

P∑
j=1

θje
λjt

be the relative error of the kernel approximation. The results are obtained with
η = 1/T . Unless mentioned otherwise, α = 1/2. Figure 2 shows the relative error ∆
as a function of t in [δ, T ] for approximations computed with different p and m. The
results are obtained for T = 102 and δ = 10−4 on the left, and T = 105 and δ = 10−5

on the right. The relative error seems to be bounded uniformly in [δ, T ] as (3.15)
suggests.

In the following we fix T = 102. Figure 3 shows

(5.2) M = max
n

∆(τn)
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Fig. 3. The maximum value M , given by (5.3), of the relative error ∆ on the grid τn as a
function of p; the different graphs correspond to different values of δ; results are obtained with m = 7
on the left and m = 11 on the right.

as a function of p, where for each n = 0, . . . , Nsamp, τn ∈ [δ, T + δ10q] is given by

(5.3) τn = δ 10qn, q = 10−2, Nsamp =

⌈
log δ−1T

q log 10

⌉
.

The dashed lines are the graphs of Bp(α, δη), given by (3.12b), indicating the theo-
retical estimate (3.15). Results on the left and right are obtained with m = 7 and
m = 11, respectively, and the different graphs correspond to different δ. We use τn
given by (5.3) to cover the interval [δ, T ] uniformly on a logarithmic scale. A similar
grid is used for plotting Figure 2. Figure 3 shows that when m is sufficiently large,
the theoretical estimate predicts the error very well. The figure shows the rapid con-
vergence in p until the error reaches a value, which seems independent of δ, where it
levels. At that point the error is saturated by the term associated with m and can
only be reduced by increasing m. In particular, the results show that the number m
of poles on each circle required to achieve a given error tolerance is independent of
δ. This behavior is consistent with the theoretical estimate (3.15), as Am, given by
(3.12b), is independent of η and δ. Tests performed with different m show a similar
behavior.

In Figure 4 we compare two extreme cases where α is near the boundaries of its
interval (0, 1). The results are obtained with α = 0.01 on the left and α = 0.99 on
the right. In this test, m = 7 is fixed. Note that the graphs of Bp trace the graphs
of the error M very well when m is sufficiently large. Comparing the figures on the
left and right and Figure 3, we observe that near α = 1, the error is smaller than
elsewhere. This is compatible with the theoretical estimates, as Bp(α, η) tends to zero
as α tends to one. However, note that the value at which the errors level due to m
being too small, is also smaller near α = 1. This is not reflected in our estimates and
is slightly better than their prediction. We therefore cannot conclude whether this
trend continues at the limit α→ 1 or not.

In Figure 5 we examine the convergence rate in m. The figure shows M , given by
(5.2), as a function of m and the different graphs are obtained with different values of
p. The results are obtained with δ = 10−2 on the left and δ = 10−3 on the right. The
dashed line is the graph of Am, given by (3.12b), indicating the theoretical estimate
(3.15). The relative error shows the expected behavior. For sufficiently large p, the
error decays exponentially with m and (3.15) predicts the error decay well.
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Fig. 5. The maximum value M , given by (5.3), of the relative error ∆ on the grid τn as a
function of m; the different graphs correspond to different values of p.

5.2. The Mittag–Leffler function. We consider the initial value problem

(5.4) Dαu = −u, u(0) = u0 = 1,

in (0, T ). Its solution is given by

(5.5) u(t) = Eα(−tα) , Eα(t) =

∞∑
k=0

tk

Γ(αk + 1)
.

Let tn = n∆t with n = 0, . . . , N , where ∆t = T/N is the step size and N ∈ N. The
results are obtained with the methods described in section 4.2, α = 0.5, T = 5, and
η = 1/T = 0.2. Unless mentioned otherwise, the scheme used for approximation of
the auxiliary variables is the trapezoidal rule (4.4).

Figure 6 shows the local error eh = |u − v| as a function of time. The results
are obtained by discretizing the auxiliary variables by the trapezoidal rule (4.4). The
figure shows that as P grows, the error is reduced until it is saturated by the local
discretization error. Then, the error can only be reduced by refining the step size.

Figure 7 shows the local error eh as a function of t, where the auxiliary variables
are discretized by the backward Euler scheme (4.5), showing a similar behavior of the
error to that illustrated in Figure 6. Here, however, the errors are larger and become
saturated by the discretization error at a significantly smaller P .
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Fig. 6. Accuracy tests for problem (5.4); the local error eh as a function of t; auxiliary variables
discretized by the trapezoidal rule.
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Fig. 7. Accuracy tests for problem (5.4); the local error eh as a function of t; auxiliary variables
discretized by the backward Euler scheme.
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Fig. 8. Accuracy tests for problem (5.4); the local error eh as a function of t. A comparison
of the errors produced by the two methods.

In Figure 8 we retain only the graphs corresponding to the errors obtained with
the highest number of auxiliary variables and compare the results obtained when
discretizing the auxiliary variables by the trapezoidal rule (solid lines) and backward
Euler scheme (dashed lines).

To test the validity of the theoretical estimates on p and m we set ∆t = 10−4 and
compute the 2-norm of the error E = ‖eh‖2, where

‖v‖22 = ∆t

N∑
n=0

|vn|2.
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Fig. 9. Accuracy tests for problem (5.4)—verification of estimates (3.14) and (3.15).

Here, vn is the value of the grid function v at tn = n∆t. Figure 9 shows ‖eh‖2 as a
function of m and p. The dashed lines correspond to the theoretical estimates (3.14)
and (3.15). We remark that estimate (3.14) is of the 2-norm of (I∆t − I∆t,r)f , and
estimate (3.15) is of the kernel approximation error (both on the continuous level and
relative to the approximated quantity), while Figure 9 shows the error of the (discrete)
numerical solution. Therefore the results shown in Figure 9 should be compared to
estimates derived from a convergence analysis, which may differ from the present
estimates. Nevertheless, Figure 9 shows that (3.14) and (3.15) predict the error decay
rate well.

5.3. Fractional Van der Pol equation. Consider the nonlinear fractional dif-
ferential equation

(5.6a) (Dα)
2
x− ε

(
1− x2

)
Dαx+ x = 0

in (0, T ) with initial conditions

(5.6b) x(0) = x0, Dαx(0) = y0.

Here ε is a nonnegative constant, and x0, y0 ∈ R. For α = 1, (5.6a) is reduced to the
classical Van der Pol equation. In this case it can be shown to have a stable periodic
solution. To apply the scheme we write (5.6a) as a system by substituting y = Dαx.
Thus,

Dαx = y, x(0) = x0,(5.7a)

Dαy = ε
(
1− x2

)
y − x, y(0) = y0,(5.7b)

in (0, T ). Let tn = n∆t with n = 0, . . . , N , where ∆t = T/N is the step size and
N ∈ N. In the tests below we fix α = 0.8, ε = 4, T = 12, and η = 1/T . The scheme
used for approximation of the auxiliary variables is the trapezoidal rule (4.4).

First we look at the behavior of the error with respect to the step size. Hence,
we choose p and m sufficiently large and compare numerical solutions computed with
different ∆t. In this test we use p = 25 and m = 25. Figure 10 shows on the left the
reference solution computed ∆t = 10−4, and on the right, the difference between the
reference solution and other numerical solutions computed with different ∆t.

In Figure 11, numerical solutions computed with different parameters p and m are
compared to the reference solution computed with p = 25, m = 25, and ∆t = 10−4.
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Fig. 10. Fractional Van der Pol equation (5.7); on the left is a reference solution vref computed
with p = m = 25 and ∆t = 10−4; on the right, numerical solutions computed with p = m = 25 and
different ∆t are compared with vref.
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Fig. 11. Fractional Van der Pol equation rm (5.7); numerical solutions computed with ∆t =
10−2 (left) and ∆t = 10−3 (right) are compared with vref. Here E = ‖v − vref‖2, where vref is a
reference solution computed with p = m = 25 and ∆t = 10−4.

The figure shows E = ‖v − vref‖2 as a function of m; the different graphs correspond
to different p.

Finally, we look at how the error of the history term behaves for numerical so-
lutions. To eliminate the discretization error we compare the numerical solutions to
reference solutions computed with the same step size but large p and m. We repeat
the test for two step sizes ∆t = 10−2 and ∆t = 10−3. The reference solutions are
computed with p = 25 and m = 25. Figure 12 shows E as a function of m; the
different graphs correspond to different values of p.

6. Concluding remarks. In this work we propose a method for the localization
of the convolution (1.1). We present a priori error estimates, showing that for a given
time interval (0, T ), local time step δ > 0, and error tolerance ε > 0, the number of
terms required to achieve (1.5) is J = pm, with p and m satisfying (1.4). Moreover,
the estimates, stated by Theorem 3.3, show that the number of poles J required to
satisfy a prescribed error tolerance is bounded uniformly for α ∈ (0, 1). In fact, the
estimates show that the error term associated with p tends to zero when α tends to
one.

We have tested the performance of the scheme approximating the kernel wδ inde-
pendently, or as part of a time stepping method. The results are consistent with the
theoretical estimates showing the predicted rapid convergence and qualitative behav-
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Fig. 12. Fractional Van der Pol equation (5.7); numerical solutions computed with ∆t = 10−2

(left) and ∆t = 10−3 (right) are compared with vref. Here E = ‖v − vref‖2, where vref is a reference
solution computed with p = m = 25 and the same step size as v, i.e., ∆t = 10−2 on the left and
∆t = 10−3 on the right.

ior of the approximation. While our estimates provide a uniform in α bound on the
error term associated with m, in our numerical tests, near α = 1 we measure errors
smaller than elsewhere. We emphasize that this is not reflected in our estimates, and
therefore we cannot conclude whether the error term associated with m vanishes at
the limit α → 1, or not. Nevertheless, the numerical results support the proposition
that this term is also bounded uniformly for α ∈ (0, 1).

The incorporation of the kernel compression scheme into a time stepping method
involves the introduction of a set of auxiliary variables. In contrast to the methods
inspired by [9], where different sets of auxiliary variables are used at different time
“windows,” here we use a single set of auxiliary variables. That is, in the entire time
interval, the same set of auxiliary variables is used. This leads to relatively simple
time stepping schemes. We have tested two time stepping schemes incorporating the
kernel compression method on two problems: corresponding to the Mittag–Leffler
function and a fractional Van der Pol equation. The results illustrate the strength
of the method, i.e., its ability to reduce the memory and computational costs. This
will be of particular importance for large systems requiring long time integration. For
applications, however, methods are required to possess some additional features such
as adaptive step size and high-order convergence. We explore some ideas addressing
this in [15]. Another topic deserving attention in future work is the study of fully
discrete schemes of the type proposed. In particular, the accuracy, stability, and
convergence of such schemes should be understood.

Appendix A. Multipole approximation. Below are the proof of Lemma 3.1
and an additional lemma used in the derivation of the relative error estimate. Lemma
3.1, inspired by Lemma 3.5 of [7], states the approximation and provides an error
estimate.

Proof of Lemma 3.1. Let

(A.1) Φ(z) =

∫
C

∣∣∣∣ ρ(ζ)

z − ζ

∣∣∣∣ d|ζ|.

Define

(A.2) φ =

p∑
k=1

φk, φk(z) =

∫
Ck

ρ(ζ)

z − ζ dζ,
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and similarly, Φ =
∑
k Φk, and r =

∑
k gk. Fix some 1 ≤ k ≤ p. Owing to the identity

(A.3)
1

x− y =

m−1∑
s=0

ys

xs+1
+

1

xm
ym

x− y ,

we have

(A.4) φk(z) =

m−1∑
s=0

rsk
(z − ck)s+1

Qks +

(
rk

z − ck

)m ∫
Ck

ρ(ζ)

z − ζ

(
ζ − ck
rk

)m
dζ

and

(A.5) gk(z) =

m−1∑
s=0

rsk
(z − ck)s+1

m−1∑
j=0

σkjω
js +

(
rk

z − ck

)m m−1∑
j=0

σkjω
jm

z − (ck + rkωj)
.

Observing that ωm = 1 and

(A.6)

m−1∑
j=0

σkjω
js = Qks,

we find

(A.7) gk(z) =

m−1∑
s=0

rsk
(z − ck)s+1

Qks +

(
rk

z − ck

)m
gk

and thus obtain

(A.8) |φk(z)− gk(z) | ≤ a−m
∣∣∣∣∫
Ck

ρ(ζ)

z − ζ

(
ζ − ck
rk

)m
dζ

∣∣∣∣+ a−m|gk|.

Due to

(A.9)

∣∣∣∣∫
Ck

ρ(ζ)

z − ζ

(
ζ − ck
rk

)m
dζ

∣∣∣∣ ≤ ∫
Ck

∣∣∣∣ ρ(ζ)

z − ζ

∣∣∣∣ d|ζ| = Φk(z) ,

estimate (A.8) yields

(A.10)
am|φk(z)− gk(z) | ≤ Φk(z) + |gk(z) |

≤ Φk(z) + |φk(z)− gk(z) |+ |φk(z) |,
and finally, by |φk(z) | ≤ Φk(z), we get

(A.11) |φk(z)− gk(z) | ≤ 2

am − 1
Φk(z) ,

and thus the conclusion.

The following lemma is useful for estimating the relative error in cases where the
contour C is contained in the negative half line (−∞, 0].

Lemma A.1. Let

(A.12) φ(z) =

∫ ∞
0

ρ(x)

z + x
dx,

where ρ ≥ 0 is integrable and 0 6= z ∈ C with Re z ≥ 0. Then, the following inequalities
hold:

(A.13)
1√
2
φ(|z|) ≤ |φ(z) | ≤

√
2φ(|z|) .
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Proof. The upper estimate of |φ| is due to

|z + x|2 = |z|2 + x2 + 2xRe z ≥ |z|2 + x2

and the inequality

(A.14)
(a+ b)2

2
≤ a2 + b2, a, b ≥ 0,

which together imply

(A.15)
1

|z + x| ≤
√

2

|z|+ x
.

To prove the lower estimate of |φ|, we note that

1

z + x
=

z + x

|z + x|2 ,

and thus

(A.16) |φ(z) |2 =

∣∣∣∣∫ ∞
0

ρ(x) (a+ x)

|z + x|2 dx

∣∣∣∣2 + b2
∣∣∣∣∫ ∞

0

ρ(x)

|z + x|2 dx

∣∣∣∣2 ,
where a, b ∈ R are such that z = a + ib. Applying inequality (A.14) once more, we
recover

(A.17) |φ(z) | ≥ 1√
2

∫ ∞
0

ρ(x) (a+ |b|+ x)

|z + x|2 dx.

Thus, due to |z + x| ≤ |z|+ x and

(A.18) |z + x| = |a+ ib+ x| ≤ a+ |b|+ x,

we have the conclusion.

Appendix B. Convolutions and the Laplace transform. In this section
we provide some general results pertaining convolutions and the Laplace transform.
In the following W k,p and Hk denote the standard Sobolev spaces. For φ ∈ L2(0,∞),
Parseval’s relation,

(B.1)

∫ ∞
0

e−2ηt|φ(t) |2 dt =
1

2π

∫ ∞
−∞
|φ̂(η + iξ) |2 dξ,

holds.

Lemma B.1. Let b ∈ W 1,1(0,∞) with b(0) 6= 0, and |̂b| > 0 in Re z ≥ 0, and
f ∈ H1(0,∞) with f(0) = 0. There exists a unique ρ ∈ L2(0,∞) satisfying

(B.2) b ∗ ρ = f in (0,∞).

Moreover, there exists a constant C, depending only on b, such that

(B.3)

∫ ∞
0

|ρ(t) |2 dt ≤ C
∫ ∞

0

|f ′(t) |2 dt.
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Proof. Since |̂b| > 0 in Re z ≥ 0, we may define

(B.4) ρ̂ =
f̂

b̂
.

Owing to f(0) = 0, f ∈ H1(0,∞), and b ∈W 1,1(0,∞), we have

(B.5) ρ̂ =
f̂ ′

b̂′ + b(0)
.

By the Riemann–Lebesgue lemma, it holds that

(B.6) lim
|ξ|→∞

b̂(η + iξ) = lim
|ξ|→∞

b̂′(η + iξ) = 0

for all η ≥ 0. Hence, the denominator of (B.5) is bounded at a positive distance from
zero on each line Re z = η with η ≥ 0. Thus, Parseval’s relation (B.1) yields the
conclusion.

Lemma B.2. Let T > 0 and η > 0. Suppose a ∈ eηtL1(0,∞), b ∈ eηtW 1,1(0,∞),

b(0) 6= 0, |̂b| > 0 in Re z ≥ η, and

(B.7) |â| ≤ |̂b| on C(η) = η + iR.

Then, for each u ∈ L2(0, T ), the following estimate holds:

(B.8)

∫ T

0

e−2ηt|a ∗ u(t) |2 dt ≤
∫ T

0

e−2ηt|b ∗ u(t) |2 dt.

Proof. Fix u ∈ L2(0, T ), and suppose w ∈ L2(0,∞) satisfies w = u in (0, T ).
Then, by Parseval’s relation (B.1),

(B.9)

∫ T

0

e−2ηt|a ∗ u|2 dt ≤ 1

2πi

∫
C(η)

|â(z) ŵ(z) |2 dz

≤ 1

2πi

∫
C(η)

|̂b(z) ŵ(z) |2 dz =

∫ ∞
0

e−2ηt|b ∗ w|2 dt,

and thus

(B.10)

∫ T

0

e−2ηt|a ∗ u|2 dt ≤
∫ T

0

e−2ηt|b ∗ u|2 dt+

∫ ∞
T

e−2ηt|b ∗ w|2 dt.

Hence we show that for each ε > 0, there exists w ∈ L2(0,∞) satisfying w = u in
(0, T ), and

(B.11)

∫ ∞
T

e−2ηt|b ∗ w|2 dt ≤ ε.

We extend u to (0,∞) by setting u = 0 in (T,∞); hence u ∈ L2(0,∞). Let v be such
that v = 0 in (0, T ) and

(B.12) v(t) = ṽ(t− T ) , t ∈ (T,∞),

where ṽ is the solution to

(B.13) b ∗ ṽ = −f + βe−µτ in (0,∞)
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with µ > 0,

(B.14) f(τ) = b ∗ u(τ + T ) =

∫ T

0

b(τ + T − s)u(s) ds,

and β = f(0). We note that

(B.15) f = q ∗ u, q(τ) = b(τ + T )χ(0,∞)(τ) ,

where q ∈ eητW 1,1(0,∞), and u ∈ eηtL2(0,∞), and therefore f ∈ eητH1(0,∞). Thus
ṽ ∈ eητL2(0,∞), by Lemma B.1. Let w = u + v. Owing to the above, we have
w ∈ eηtL2(0,∞). In addition, due to

(B.16) b ∗ w(t) = b ∗ u(t) + b ∗ v(t) = βe−µ(t−T ), t ∈ (T,∞),

we recover

(B.17)

∫ ∞
T

e−2ηt|b ∗ w|2 dt =
|β|2

2

e−2ηT

η + µ
.

Observing that the right-hand side of (B.17) tends to zero as µ tends to infinity, we
have the conclusion.

Lemma B.3. Suppose a, b ∈ L2
loc[0,∞) are such that for each T > 0, the estimate

(B.18) ‖a ∗ f‖L2(0,T ) ≤ ‖b ∗ f‖L2(0,T )

holds for all f ∈ L2(0, T ); then

(B.19) |a(t) | ≤ |b(t) | a.e. t ∈ (0,∞).

Proof. Note that (B.18) holds for all f ∈ L1(0, T ): Suppose T > 0 and f ∈
L1(0, T ). Recall that L2(0, T ) ⊂ L1(0, T ), and the operators g 7→ a ∗ g and g 7→ b ∗ g
are continuous from L1(0, T ) into L2(0, T ). Thus, by approximating f in L1(0, T ) by
L2(0, T ) functions, we recover (B.18).

Let I = [t1, t2] ⊂ [0,∞) be closed and bounded. We substitute

(B.20) fβ(t) =
t−1+β

Γ(β)
χI(t) , β > 0,

for f in (B.18) with T = t2. Note that, indeed, fβ ∈ L1(0, t2). The following
assertions hold: for each g ∈ L2(I), the limit, limβ→0+ g ∗ fβ = g exists in L2(I), and
a ∗ fβ = b ∗ fβ = 0 a.e. in (0, t1). Due to the above, we obtain

(B.21) ‖a‖L2(I) ≤ ‖b‖L2(I)

and thus the conclusion, since I is arbitrary.
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