Noname manuscript No.
(will be inserted by the editor)

A Modular Approach to Learning Manipulation Strategies from Human

Demonstration

Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

the date of receipt and acceptance should be inserted later

Abstract Object manipulation is a challenging task for
robotics, as the physics involved in object interaction is com-
plex and hard to express analytically. Here we introduce a
modular approach for learning a manipulation strategy from
human demonstration. Firstly we record a human perform-
ing a task that requires an adaptive control strategy in differ-
ent conditions, i.e. different task contexts. We then perform
modular decomposition of the control strategy, using phases
of the recorded actions to guide segmentation. Each mod-
ule represents a part of the strategy, encoded as a pair of
forward and inverse models. All modules contribute to the
final control policy; their recommendations are integrated
via a system of weighting based on their own estimated er-
ror in the current task context. We validate our approach by
demonstrating it, both in a simulation for clarity, and on a
real robot platform to demonstrate robustness and capacity
to generalise. The robot task is opening bottle caps. We show
that our approach can modularize an adaptive control strat-

B. Huang (X)
The Hamlyn Centre, Imperial College London, United Kingdom
E-mail: b.huang @imperial.ac.uk

J.J. Bryson

Intelligent Systems Group (IS), Computer Science Department,
University of Bath, United Kingdom

E-mail: jjb@cs.bath.ac.uk

M.Li - R.L. de Souza - A. Billard

Learning Algorithms and Systems Laboratory (LASA), Swiss Federal
Institute of Technology Lausanne (EPFL), Switzerland

E-mail: miao.li@epfl.ch

R.L. de Souza

E-mail: ravin.desouza@epfl.ch

A. Billard
E-mail: aude.billard@epfl.ch

egy and generate appropriate motor commands for the robot
to accomplish the complete task, even for novel bottles.

1 Introduction

With robots moving into human-centered environments such
as households and offices, human-like motor skills are be-
coming increasingly desirable. In everyday life, object ma-
nipulation is one of the most commonly used manual skills.
Object manipulation includes a large category of activities
ranging from the simple pick-and-place task to complicated
dexterous manipulation.

Here we provide a framework for learning a human
object-manipulation skill and transferring it to a robot. Gen-
erally, manipulation tasks are very difficult, due to the com-
plicated contact situations between the manipulator and the
object, and the changing kinematic and dynamic contexts
that result. Humans can perform these skilled tasks and
adapt to changes in context without difficulty. At the heart of
this skill is prediction (Flanagan et all [2006). Studies from
neuroscience suggest that humans develop internal models
for motor control, which allow us to predict the future state
of the environment. By comparing the predictive state with
the actual sensory state, the internal models monitor the pro-
gression of tasks, and launch any corresponding motor cor-
rection and motor reaction required to adapt to anything un-
expected.

Inspired by this concept, we propose an approach to
learn human adaptive control strategy, i.e. how to apply
force or torque to accomplish a task according to the task
context. By task context we mean the dominant factors that
will affect the performance of the task, e.g. frictions, object
sizes and masses. Because the context is represented directly
by the control modules produced by the learning algorithm,
the model can generalise to novel contexts within the appro-

2 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

priate task domain. The adaptive control strategy is modeled
by a modular approach. The key concept of this modular
approach is to decompose the adaptive control strategy into
several modules often active simultaneously, allowing each
to contribute according to its own perceived applicability to
the final control command.

From multiple human demonstrations, we extract a set
of strategies, each of which takes charge of one specific task
context. These strategies include the number of task con-
texts, which is automatically identified in our approach and
also represented by the modules. Each strategy is encoded
as a module, which includes a forward model for context es-
timation, and an inverse model for motor command genera-
tion. The forward and inverse models are learnt with a rep-
resentation that can be easily transferred to a robot. When
the robot executes a similar task, the forward models esti-
mate the context of the task and ‘contextualize’ the inverse
models, allowing them to generate the proper commands.

Our work contributes a framework composed of both au-
tomated and bespoke components for creating the modular
representation of human adaptive control-strategies and to
transfer these learnt internal models to a robot. To both com-
municate and verify our approach, we present two demon-
strations: the first a simulation controlling the motion of an
object moving through a viscous environment of varying
fluid properties, and the second a robot task, Opening Bot-
tle Caps. An adaptive control strategy is required for both.
For example, for the robot, the friction between the bottle’s
and the cap’s surfaces has multiple phases. In the full robot
demonstration, we show how the algorithm modularizes a
human-demonstrated control strategy, and how this can be
transferred to an arbitrary robot without consideration of
the correspondance problem, and demonstrate that the trans-
ferred strategy can be used to open both familiar and novel
bottles.

The rest of this article is organized as follows: Section 2]
provides an overview of related work; Section [3| presents
our approach of learning a multiple-module model of a hu-
man manipulation strategy. The experiments on the opening-
bottle-cap task and their results are shown in Section [5
along with details of the hardware specifications and the ex-
perimental setup. Section [§] discusses the proposed method
and a look towards future work, followed by the conclusion
in Section

2 Related Work

In this section, we give an overview of the area of the
machine-learning of manipulation tasks for robots, and of
modular approaches.

2.1 Learning Manipulation Tasks

Demonstration-based learning has been extensively stud-
ied as a promising approach for building robot intelli-
gence (Calinon et al, [2007; Dillmannl 2004} |[Kuli¢ et al,
2012). Manipulation tasks are one of the main applications
of this approach. The physical properties of a manipulation
task are hard to express analytically, and as a result the con-
trol strategy is hard to derive. Modeling an expert’s demon-
stration of strategies has been used as an alternative to fully
analytical solutions.

Two major forms of demonstration are used in teaching
manipulation tasks: kinesthetic teaching and tele-operation.
In kinesthetic teaching, a human directly contacts the robot
and guides the robot’s movements to accomplish a task (Ko-
rkinof and Demiris, 2013; [Pais and Billardl [2014; [Pastor
et al, 20115 |L1 et al, |2014). The trajectory of movements
and contact force are recorded by the robot’s sensors. This
method is simple and effective, but it is limited in the
number of controllable end effectors. While a manipulation
task usually involves multifinger movement, a human can
only operate one finger with each hand and hence two fin-
gers simultaneously at most. To control multi-finger hands,
some researchers use tele-operation (Bernardino et al, 2013}
Kondo et all |2008}; [Fischer et al, [1998). This usually re-
lies on data gloves or other motion-capture systems, which
sense the human hand and arm motions. The human motion
is mapped to the robot’s to generate motions in the robot
in real time, allowing the robot to record its own interac-
tions with the environment. In fine manipulation tasks, the
robot platforms are usually restricted to anthropomorphic
hands for better mapping. Neither kinesthetic teaching nor
tele-operation methods provide direct force feedback to the
human demonstrator during manipulation. With only visual
feedback, it is difficult for the human to conduct manipula-
tion naturally.

Another approach involves the human demonstrating
manipulation tasks with their own bodies, rather than di-
recting the robot (Asfour et al, 2008). With direct interac-
tion with the object, the human demonstrator is able to per-
form the task most naturally and with a more delicate con-
trol strategy. However, the task information captured from
these human demonstrations must then be transferred to
robots. This involves the problem of creating a mapping
between the motions of a human and those of a robot, a
problem known as the correspondence problem (Nehaniv
and Dautenhahn| 2002). Various methods for mapping be-
tween human and robot have been proposed (Hueser et al,
2006; |Asfour et al, 2008; Do et al, 2011). These may be
augmented with correction by humans (Calinon and Billard,
2007} [Sauser et al, 2011; Romano et al, 2011)) and by self-
correction via learning (Huang et al, 2013a)). In general, the

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 3

effective transfer of human skills to robots remains a chal-
lenge.

Our proposed method derives from this last class of
demonstrations. We allow the subject to perform a manipu-
lation task directly on an object and experience natural feed-
back. Our contribution is to encode the strategy in a way that
can then be easily transferred to any robot platform. In our
task demonstration, a human wears tactile sensors mounted
on a dataglove, and directly interacts with objects. The
demonstration is recorded and expressed from an object-
centric viewpoint. The object-centric viewpoint (Okamura
et al, |2000; Jain and Kemp, 2013} L1 et al, [2014) centers
the representation of the manipulation task on the manipu-
lated object, rather than on the robot. This suggests that the
goal of a manipulation task is to produce a desired object
movement rather than a robot end-effector movement. Our
approach takes this principle and learns a control strategy for
producing a desired object behavior. The demonstrated strat-
egy expressed from the object perspective can then be trans-
ferred to a robot platform by converting the exerted force to
robot joint torque.

With an object-centric viewpoint, we need to learn the
correlation between the exerted force of the object and the
desired object motion. A classic model of this correlation
is impedance (Howard et al, |2010; Wimbock et al, 2012).
Given the desired impedance of a task, we can compute
proper motor commands for the robot to accomplish it.
Fixed impedance control is limited to simple tasks. In many
manipulation tasks such as opening a bottle cap, variable
impedance is required: at the beginning we need a large
impedance to break the contact between the bottle and the
cap, and later we need a small impedance to drive the cap
smoothly. For such tasks, fixed impedance control will ei-
ther lead to task failure or cause hardware damage. How-
ever, computing the impedance for a given task involving
variable impedance is difficult. In many cases the impedance
is roughly approximated by a linear model, but this is inad-
equate for nonlinear tasks.

Variable impedance can be learnt by a human physically
correcting the robot’s impedance—for example, wiggling
the robot’s arm—in different stages of the task (Kronan-
der and Billard, 2012). For learning manipulation, however,
wiggling the robot’s fingers will interrupt the task and may
cause task failure. Variable impedance can also be learnt
with the reinforcement learning algorithm Policy Improve-
ment with Path Integrals (Pl 2y with a task specific cost func-
tion (Buchli et al, [2011)). Designing this cost function re-
quires insight into the task and usually is difficult. Therefore,
in our approach we directly model the correlation of the ex-
erted force and the object motion by a nonlinear statistical
model.

In the approaches mentioned above, a single model is
built for the entire task. For tasks involving of multiple

phases of dynamics, such as are generated by friction, a sin-
gle control strategy may be inadequate. To handel varying
task contexts, robots operating in human-centric environ-
ments need to be equipped with multiple strategies. In the
next section we give a brief overview of multiple model ap-
proaches, that is, of modular approaches.

2.2 Modular Approaches to Learning Manipulation

Modular approaches are widely used in adaptive control and
its benefit has been long discussed (Athans et all [1977; Ja-
cobs et all, 1991} Narendra et al, [1995; INarendra and Bal-
akrishnan, [1997)). In manipulation tasks, context changing
is a common phenomenon due to object interactions. These
changes are often rapid or discontinuous. Classic adaptive
control approaches such as model identification (Khalil and
Dombre, [2004) are inadequate for these tasks, as instabil-
ity or error may occur during the optimization of the model
variables. To quickly adapt, a modular approach referred to
as the Multiple Model Adaptive Control (MMAC, |Athans
et all|1977) has been proposed. The paradigm of this method
is to design multiple controllers, each of which is in charge
of a certain task context. During control, the task context
is estimated online and the corresponding controllers are
activated. Some authors have relatively recently presented
promising modular approaches to solve such control prob-
lems (Fekri et all, 2007; [Kuipers and Ioannoul, [2010). Mod-
ular arechitectures have also been shown to be effective
for building intelligent systems (Kortenkamp et al| |1998;
Bryson, 2000; Bryson and Stein, |2001). In robotics, this ap-
proach is particularly useful for tasks in non-stationary en-
vironments (Sugimoto et al, 2012).

The modular approach we describe here is inspired by
MOSAIC (MOdular Selection And Identification for Con-
trol, |[Haruno et all 2001). MOSAIC is a paradigm of
multiple-module control, where each module is composed
of a forward model and an inverse model. The forward mod-
els are responsible for estimating the task context in real
time, and the inverse models are used to generate appro-
priate motor commands for the current context. The inverse
models are weighted by the accuracy of the estimations of
their corresponding forward models. The final motor com-
mand is the linear combination of the commands factored
by their weights. This paradigm has also been extended to
a hierarchical architecture HAMMER (Hierarchical Atten-
tive Multiple Models for Execution and Recognition) to plan
high level behaviours (Johnson and Demiris} 2005; | Demiris
and Khadhouri, [2006). In HAMMER, the lowest level of the
hierarchy represents the primitive motions, while the higher-
level models represent complex behaviours composed by the
primitive motions.

We take the paradigm of MOSAIC but implement the
modular model in our own manner. In earlier work, [Wolpert

4 Ridan Huang _Miao Li_Ravin Iuis De Souza_loanna I _Rryson_Aude Rillard

and Kawatol| (1998)) used Artificial Neural Network (ANN)
to encode the internal models, i.e. the forward models and
the inverse models. The variance of a forward model, which
decides how much the multiple modules collaborate, has
to be manually tuned. MOSAIC addresses this hand-tuning
problem by modeling the transition between modules us-
ing a Hidden Markov Model (HMM) and optimizing the
variance with the Expectation Maximization (EM) algo-
rithm (Haruno et al, [2001). However, this method requires
the forward models to be approximated by linear systems.
In order to solve the hand tuning problem of the variance
without restricting the complexity of the internal models,
we encode our internal models with Gaussian Mixture Mod-
els (GMM, |Cohn et al,|1996). Training the GMM by the EM
algorithm, we compute the optimal values of the models’ pa-
rameters. GMM has been shown to be efficient for capturing
the nonlinearity of data (Calinon and Billard}, 2007 [Sauser
et al, [2011; |[Huang et al, 2013b)). This allows us to approx-
imate more complex internal models. We call each pair of
forward-inverse pair a module, hence our system is a multi-
ple module system. Our system focuses on building adaptive
control policies for primitive tasks such as opening bottle
caps or drawers. Each module both handles and detects an
aspect of task context. Multiple modules may be expressed
simultaneously, and their outputs integrated. Contexts there-
fore are not discrete, and some generalisation across and
even beyond demonstrated contexts can be performed by the
learned model. The combination of the modules thus imple-
ments a single task in varying task contexts. This is different
from the HAMMER architecture mentioned above, which is
for learning high level tasks, combining the primitive tasks
hierarchically and forming complex behaviour (Johnson
and Demiris| 2005). HAMMER assumes a library of primi-
tive tasks, and an attention mechanism is used to pre-select
the high level inverse models, i.e. to only select the inverse
models that are required for the task.

In another approach, |Petkos et al| (2006) have united the
forward model and inverse model into a single model. For
the particular task described in their paper, i.e. moving a 3-
joint arm on a pre-defined trajectory, the action (a,) taking
the current task state (s;) to the desired task state (s;11) is
always unique. However, in many cases this mapping is not
unique and hence the inverse model has to include extra vari-
ables in order to resolve the non-uniqueness. To take a more
general approach, we build the forward and inverse models
separately.

In our model, the final motor command is the sum of the
outputs of all modules. This stands in contrast to the switch-
ing modular method (Narendra and Balakrishnan, [1997),
where only one module will be activated to generate motor
commands per time step. Our approach therefore requires
fewer modules to approximate the system dynamics.

Despite the many implementations of the modular ap-
proach, its application in robotics is not yet wide-spread.
One main challenge is how to modularize a given task —
that is, how to decompose the task, and how to determine
the number of modules. This is a fundamental problem in
the research of motion primitives. [Kuli¢ et all (2008)) use
a hierarchical clustering method to extract primitives from
human motion sequences. Different cut-off parameters are
tested to evaluate the trade-off effects between facilitating
quick group formation and introducing misclassification.
Our modularized approach is similar to this, but goes one
step further. We cluster the demonstration data with a hier-
archical method. Instead of hand tuning the cut-off parame-
ter, we determine its value by the variance of the data. This
provides us with a proper grouping of the data, which can
generate proper motor commands for control.

Figure [3]illustrates the workflow of our approach. To the
best of our knowledge, our work is the first realization of the
modular approach in learning an object manipulation task
with a real robot.

3 Methodology

We have briefly introduced our method in the previous sec-
tion and justified our design decisions in the light of related
literature. In this section we present our method for modu-
larizing human demonstrations of manipulation tasks. Our
goal is to acquire a modular control policy for an object ma-
nipulation task from human demonstration. To this end, we
take a three-step approach:

1. Human demonstration of a task in several different con-
texts (Section[3.1).

2. Extraction and modular decomposition of human control
strategies for different contexts, building multiple inter-
nal models (Section [3.2).

3. Robot control using the integrated modules to compute
motor commands (Section [3.3)).

Figure [T shows an overview of our framework.

3.1 Human demonstration

The first step is recording the human demonstrations of a
task. Based on the object-centric principle, we collect the
object’s trajectory and the force driving it. We collected this
data by a vision-based motion-capture system, force-torque
sensor and wearable haptic devices. Figure 2] shows a few of
the sensors we used in the opening-bottle-caps task.

In the demonstrations, the demonstrator performs a task
a number of times to generate enough data to reliably cap-
ture its key features. The demonstrator also performs the
task under a variety of conditions, e.g. a range of friction

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 5

{1.Human Demonstration in different contexts'
. ¥ :

lLug?

- =

{F,T, s}: object level exert force,
object level exert torque,
object movement ‘

2.Model Learning
Clustering
’ Clusterl ‘ ’ Cluster 2 ‘
Module 1 Module2 | Module n
1 I I
Summation

{F,T}: object level exert force
(converted to robot joint torque)

Flg 1: System overview. Our system takes a three-step approach. 1) A human
demonstrates a task in a variety of contexts. In the opening-bottle-cap experiment,
the demonstrations are done with different bottles and caps. The object-level exerted
forces and torque, and the the object’s movements are used for training. 2) Clustering
is run over the data from the human control strategies. Each cluster is then modeled as
one module. 3) The multiple modules are integrated to compute motor commands to
control a robot performing the same task in similar contexts

(a) Optitrack markers (b) Force torque sensor (C) Texscan tactile sensors

attaching to a cap mounted on a glove

Flg 2: Sensors used in the human demonstration of opening a bottle cap task

conditions, in order to explore how humans adapt to dif-
ferent task contexts. These different configurations must be
chosen to cover a wide range. For example, in an opening-
bottle-cap task, the demonstration of opening the tightest
bottle within the capability of the learner is included. This
wide range of demonstrations is then used to learn a multi-
ple module model. Details including the exact numbers and
durations of our trials are described in the next Section.

3.2 Learning a Multiple Module Model

Here we detail our modeling method, explaining how we
model the human manipulation strategy. This requires deter-
mining the number of modules to represent a task strategy,
learning the internal models for driving each module, and
determining how to integrate the output of the modules.

3.2.1 Object centric manipulation strategy

As mentioned in Section [2] one of the challenges in imita-
tion learning is the correspondence problem, i.e. how to map
the demonstrator’s motions to the robot’s motions so that
they produce the same effects, such as reaching the same
point. In an object manipulation task, the goal is to deliver
the object from the current state to a desired state. During
this process the movement of the manipulator is bounded by
the movement of the object. Thus it is more important to
imitate how the human applies force to achieve the object’s
desired movement than to imitate human limb movement.
This is part of what justifies our object-centric representa-
tional approach.

The object-centric approach means that our model en-
codes a force and torque profile rather than the end effector
movement trajectory. The imitation-learning objective here
is not to find a policy for the end effector movement but
to find a policy that maps force and torque to object move-
ments. This policy allows the robot to efficiently acquire
new behaviors to accomplish the task. Given the robots’
kinematics and the desired exerted force and torque on the
object, the robot joint torques can be deduced by their Jaco-
bian matrix (Okamura et al, 2000)). To this end, we focus on
the force-torque-displacement tuple: {F,7,s} demonstrated
in the task, where F' is the exerted force in all directions in-
cluding the grip force, 7 is the exerted torque in all directions
and s is the object displacement. In later sections, we refer
{F, 1} as the motor command (action) with notation {a}. In
each demonstration, a time series of the tuple is recorded.

We found that cyclic tasks, i.e. tasks that involve a few
iterations of similar motions such as rotating an object, fur-
ther require segmenting the time series. This allows the clus-
tering algorithm to more easily detect repeated or discrimi-
nated primitives in the sequence. The problem of automatic
segmentation is not in the scope of this work, however pos-
sible solutions of it are available in the literature (Demiris
and Khadhouril 2006} [Kulic et all, [2009; [Pais et al, 2013)).

3.2.2 Deciding the number of modules

Due to physical interactions with an object, a manipulation
task frequently encounters abrupt changes of the system dy-
namics, for example transfer between statuses with no con-
tact and with contact, between statuses driven by static fric-
tion and by dynamic friction. Different strategies should be

6 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

used to handle different dynamics. This motivates our multi-
ple module representation. Our approach is to extract strate-
gies from multiple demonstrations and build one module for
each of the strategies.

Different tasks will require different numbers of mod-
ules. In the human demonstrations, the same task is demon-
strated with a few different setups to explore how humans
adapt to them. The number of setups also does not necessar-
ily equal to the number of modules needed in the task. Hu-
mans may regard different setups as the same task context
and handle them with the same control strategies. In order
to find a proper number of modules, we need to differentiate
different types of strategies. The differences can be reflected
in different patterns of the force-torque-displacement tuple.
We differentiate the patterns in a data-driven manner: clus-
tering across the force-torque-displacement tuple. Data in
the same cluster is considered to be governed by the same
strategy. The number of clusters determines the number of
modules.

The goal of clustering is to separate a set of data into a
few groups according to their similarities. The first step of
clustering is to measure the similarities, i.e. the distances,
between different data points. The data we need to cluster
are a set of time series: the demonstrations. Here we use the
Dynamic Time Warping technique (DTW) to measure the
distance between each pair of time series (Berndt and Clif-
ford, |1994). Dynamic time warping is suitable for measur-
ing the similarity between two time series, which may have
different speeds or durations. It warps the data in the time
dimension and finds the optimal match between the time se-
ries. The similarity is computed as the average distance be-
tween the corresponding points in two series.

We compute the similarity (distance) between each pair
of time series by DTW and get a distance matrix. In this dis-
tance matrix, each element contains a measurement of the
distance between two time series. We then cluster these time
series into a few groups by a threshold of the distance. This
threshold is set by using the variance of the data demon-
strated under the same condition as a reference. As men-
tioned above, a task is demonstrated a few times. Demon-
strations with the same condition, i.e. the same experimen-
tal setup and at the same stage of the task, are presumed to
be handled with the same strategy and hence belong to the
same cluster. For example, our opening bottle cap task is a
cyclic task — humans need to do a few cycles of rotation of
the cap in order to unscrew and lift it. In this task, demon-
strations with the same bottle and cap, and at the same cy-
cle of the rotation are considered to be in the same group
(details in Section [5.2). The variance of these demonstra-
tions give a reference of a proper variance of a cluster. The
largest variance, across the variance of all setups, is used as
the threshold for the clustering.

Many clustering methods require the specification of the
number of clusters. In our case, however, the number of
clusters is an unknown variable. Therefore we use the hi-
erarchical agglomerative clustering method (Willett, [1988))
to group our data. Agglomerative clustering is a method that
merges similar data iteratively until the stop criteria is satis-
fied — this does not require a predefined number of clusters.
Our clustering method only requires the distance threshold
of merging and is described as follows:

1. At the beginning, each single time series is considered
to be one cluster.

2. Compute the distances between each pair of clusters.

3. Starting from the first cluster, find its nearest cluster. We
define the distance between two clusters to be the aver-
age distance across all the time series pairs in each clus-
ter. If the distance to the nearest cluster is smaller than
the threshold, merge these two clusters. Otherwise leave
these two separated.

4. Move to the next cluster. Repeat the last step for the rest
of the clusters.

5. A new set of clusters will have been formed by the last
few steps. Move to the next level of the hierarchy and
repeat the step 2 to 4 until no new clusters can be formed,
i.e. no pairs of clusters have distance smaller than the
threshold.

Pseudocode of the complete algorithm is shown in Al-
gorithm T]

Algorithm 1 Agglomerative Hierarchical Clustering

1: Init(): Make each time series a cluster; set the threshold
2: mergeable = true
3: function MERGE(all clusters, distance matrix)

4: while mergeable is true do
5: mergeable = false
6: for each cluster do
7: ClusterA = current cluster
8: ClusterB = nearest neighbor of ClusterA
9: if distance(ClusterA,ClusterB) < clustering threshold
then
10: Merge ClusterB into ClusterA
11: mergeable = true
12: end if
13: end for

14: end while
15: end function

When the clusters cannot be merged further, we define
the number of modules for this task: it is the number of the
remaining clusters. Each cluster is used as a module. The
pattern of the data in a cluster represents a strategy for han-
dling a specific task context.

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 7

3.2.3 Learning Internal Models for Each Module

After identifying the number of modules and the data as-
signed to each, we build models for each module from its
associated data. In this section, we explain the way we en-
code human manipulation strategies using machine learning
to build the modules.

During demonstrations, we constantly acquire the ob-
ject displacements and the force and torque applied by the
demonstrator. The demonstrator is the only source of exerted
force and torque in the system. The relationship between the
exerted force and torque and their resulting object displace-
ment shows the dynamic characteristics of the task.

We model the correlation of the force and the displace-
ment with GMM. The task dynamics is hence encoded as
a joint distribution of the object status displacement s and
the action a taken by the human, p(s,a, |Q). In our experi-
ment, s is the one-dimensional angular displacement of the
cap, and a a vector containing the one-dimensional exerted
torque and the one-dimensional grip force (Section[5). Mod-
eling their distribution by GMM allows us to capture the
nonlinearity in the data, and also to compute the likelihood
of a query data point in the model. This provides a good es-
timation of the reliability of the module in the current task
context, which is crucial in choosing the correct modules
for control (discussed in Section @ Further, as a gen-
erative model, a GMM is able to generate new data—that
is, it allows us to generate motor commands. This is done
by Gaussian Mixture Regression (GMR). Table [I] explains
the encoding process of GMM and the generative process of
GMR.

We aim to build a model that closely emulates the human
motor strategy in order to make the best use of the human
data. A forward model is held to anticipate the outcome of
the motor command, while an inverse model is held to gen-
erate motor commands to take the system from the current
state to the next state. The discrepancy between the antici-
pations of the forward model and the actual feedback is used
to correct the motor commands generated from the inverse
model (Section [3.3.1)). Figure [3(a) shows the basic control
flow of a forward-inverse model pair, while Figure [3(b) il-
lustrates how three pairs of forward-inverse models work to-
gether to generate control commands.

We encode the forward model Qf by the joint dis-
tributions of the current system state (object displace-
ment), previous system state and the previous motor com-
mand, i.e. p(s;, 81,41 | QF), and similarly encode the
inverse model €2; by the joint distributions of the cur-
rent system state, the desired next system state, previ-
ous motor command and the current motor command, i.e.
P(st,8;1,a:-1,0;|2r). The previous motor command a; 1
is necessary for the inverse model. In some tasks, the sys-
tem status can remain unchanged for a certain period until

Table 1: Encoding process of GMM and computation pro-
cess of GMR

With a Gaussian Mixture Model (GMM)), the joint distribution €2
of a set of variables {1} is expressed as a sum of N Gaussian
components:

N
pr(n| Q)= Z Tup (N |ty Zn)

n=1

7, L mem) E)

1y/en)? |5,

@

[
M=

=
Il

where 7, is the prior of the /" Gaussian component and the ,,
X, the corresponding mean and covariance, and D the number of
variables.

Gaussian Mixture Regression (GMR) allows us to estimate the
conditional expectation value of a variable ¢ given a query point
N4 where {n} = {n?,n°}. To compute this expectation value, first

we define:
qu qu
2=l @

Secondly we compute the expected distribution of ¢ from the
n —th component:

B = i+ Z30 (20 7 (7 -))

Ly =Zy - r(zin o @

Finally, all the N Gaussian components are taken into account, and
the expectation value of variable 1¢ is computed as the mean [1¢
with the covariance X¢¢:

N . N .
ﬂe = Z ﬁnﬂn = Z ﬁnzzn (5)
n=1

where

B — (gl Zi%)
.
Y, Tup(qlud, 27

Note that in a multiple module model, different modules may have
different numbers of Gaussian components.

(©)

the exerted force reaches a threshold to change it. This will
cause degeneracy in the inverse model; hence we include the
previous motor command in the model to tackle it.

3.3 Modular adaptive control and integration

Once the number of modules is found and a pair of forward
and inverse models has been learnt for each, the modules can
be used to compute motor commands for task execution. In
our system of action selection, this process of computing the
commands also computes a weight which allows integration
of the modules by simple summation. We consider the hu-

8 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

Desired I C o d Robot Robot
Action nverse omman N obof obol

Models Motors Sensors

A
Efference
copy
Forward
Models Sensory Feedback

(a)

Desired

State ’
|

alll+a2(2+a3(3
Inverse
’ Model 3 ‘

Inverse
Model 2

Inverse Models

f

Forward ‘

Inverse ‘ ’

Model 1

Forward
Model 2

Responsibility Factors

f
"oy

Forward

Model 1 Model 3

Forward Forward Forward Sensory
Model 1 Model 2 Model 3 . Feedback

Forward Models

(d)

Flg . 3: Control flow diagram of forward-inverse model in motor control. (a) Sys-
tem overview. Pairs of forward and inverse models work together to generate motor
commands. The detailed mechanism inside the red box is shown underneath. (b) An
example of a 3-module model. The forward models predict the current task context
(s1, s2, s3) and estimate the accuracy of their prediction (11, 22, 13). These accu-
racy estimates are called “Responsibility Factors” as they also determine how much
responsibility each inverse model should take in the final command. The inverse mod-
els generate commands (al, a2, a3) and the final command is the summation of these,
each weighted by its individual responsibility factor (al A 1+a2A2+a3A3).

man motor system acted upon at time ¢ by motor command
a; with current system status s;. A function f maps a; and s;
to the system status at time ¢ 4 1:

Sev1 = f (1, a) (N

The goal of the controller is to generate a motor command
a; that brings the current system status from s, to a desired
state s,

ar =g (711,51 3

In some tasks, the previous action a,_; is included in
the inverse model. This is because there may be more than
one action (a,) that can take the current task state (s;) to
the desired task state (s;, ;) and the previous action a; 1 is
needed to be taken as reference. Hence the controller needs
to be:

az =g(Sf+1,St,at-1) 9)

Equation [7|represents the forward model and Equation
represents the inverse model. In the modular approach, it
takes two steps to compute the motor command a;:

1. Anticipate the sensory output and compute the responsi-
bility factor A,.

2. Compute the motor command of each inverse model and
compute the final composite motor command a;.

3.3.1 Responsibility factor

In a modular approach, choosing the proper modules to con-
trol the system at every time increment is a crucial step. For
this we rely on a system of responsibility factors, which act
as the weights of the inverse models. The responsibility fac-
tor is a measurement of the reliability of using one module
to represent the current system context.

With the k" forward model we can anticipate the current
state s”f by using GMR (Table :

= (slsi-1,a01,9F) (10)

By comparing the anticipated current state §¢ with the
actual current state s; detected by the sensors, we can eval-
uate how well the k" module represents the current sys-
tem. The actual current state, previous state and the previ-
ous motor command form a data point 1, = {s;,8,—1,a—1 }-
As the forward models are built as GMM, it is easy to com-
pute the likelihood of one data point belongs to a particular
model (the k" forward model): p(n,|QK). The discrepancy
between §* and s, is embedded in this likelihood and hence
in practice we only compute the p(1,|QX) and skip §¥. The
responsibility factor of the k”* inverse model is the likeli-
hood of the data point 17; belongs to the k"* module, normal-
ized by the total sum:

k
Ak = _ p(m|2F) (11)

Z§:1 p(n:I%)

where J is the number of modules.

In the case that the denominator is very close to zero,
the whole control process will be terminated as it indicates
that the model is used on a different task. At every time step,
we compute the responsibility factor for each module. The
final motor command at that time step is the linear combi-
nation of the commands generated from each inverse model
multiplied by its respective responsibility factor.

3.3.2 Generating motor commands by inverse models

The motor command a¥ for the k" inverse model is com-
puted by GMR with the steps explained in Table [T} At each
time step, the responsibility factors A} weight its corre-
sponding inverse model: the higher the responsibility is, the

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 9

F damping

Flg 4: Tlustration of the task. A object moves in an environment with changing
damping. This can be understood as moving in a think liquid.

more responsibility the inverse model takes in the control.
The final motor command generated by this multiple model
system is:

Zxk k— Zl E(a,|s,+1,st,at 1791) (12)

where K is the number of modules.

These three steps are all computed with a closed form
solution. This ensures that this system can react quickly to
the changes in the environment by adjusting the responsibil-
ity factor.

4 Simulation

In the previous section we described the details of our
multiple module approach for learning manipulation strate-
gies. In this section, we evaluate this approach by a nonlin-
ear and non-stationary control task in simulation.

We simulate an object moving in an environment with
changing damping, e.g. a thick liquid (Figure [d). The target
is to apply force onto the object so that it moves with con-
stant speed. We simulate three different task contexts, i.e.
three different damping conditions:

1. context 1: damping = Dv
2. context 2: damping = Dsin(v)
3. context 3: damping = Dtanh(v)

where v is the object velocity and D is the parameter of
damping.

During the task execution, the task context randomly
switches from one to another. This requires the controller to
quickly recognise and adapt to the changes. There is not an
easy way to build a single module controller for such an en-
vironment without providing an explicit measure of damp-
ing as input. We apply our multiple module approach in this
task to evaluate its efficiency. The simulation is performed
in Matlab. The mass of the object is set to be SN, D to be 15
N.s/m and the target velocity is set to be 4m/s.

context 1

context 1

context 1

context 2

context 2

context 2 1 0.2

context 3

context 3

context 3

O %#Nﬁﬁﬁﬁb@ >

2 \‘?’ N4 ,@ ,@ ,@ @
QO O N QO
S o° S & & &S S

Flg 5:A heatmap representation of the distance matrix of the 9 sets of training
data.

To learn a control policy for this system, we first demon-
strate in the different task contexts. For each context, we
generate three demonstrations by applying a sinusoidal
varying force (F) to the object for a period of time. Ran-
domly generated small noise is added to the force at each
time step to simulate natural variability across the demon-
strations. During the demonstrations, once the object starts
to move, the force, previous velocity, and current velocity
{F;,v;,v;4+1} are recorded. After recording a total of 9 sets
of demonstrations, we use DTW to compute the similarities
between these demonstrations. The distance matrix is shown
in Figure [5] As can be seen from the figure, the three task
contexts can be clearly distinguished. This shows that by
using this approach, different task contexts and their corre-
sponding strategies can be properly separated into different
modules.

We hence group the demonstrations into 3 clusters and
learn three modules for the task. As mentioned in the previ-
ous section, each module is composed of a forward and an
inverse model. In this task, the relation between the action
and the state is always unique, hence we encode the forward
and inverse models by the same GMM {F;,v;,v,y; | 2}
With the forward model, we computed the expectation value
of the next velocity E{v;11 | 2,F,v;} by using GMR. The
responsibility factors of each forward model are then com-
puted according to the Equation [T1] Finally, the motor com-
mands are computed by the linear combination of the inverse
models according to the Equation[I2]

We apply the above mechanism to move the object. The
damping of the environment is constantly switching across
conditions. Figure [6] shows the results. As can be seen from
the figure, when the task context switches, the forward mod-
els can quickly recognize the correct context and hence
guide the inverse models to produce the proper command
to maintain the object’s velocity. After the switches, the ob-
ject’s velocity can quickly be corrected to the target value.
This simulation experiment shows that the proposed ap-

10 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

Velocity (mfs)
©w &~ o o

L L I L L L |
0 20 40 60 80 100 120 140 160 180 200

(a) Object velocity. The target velocity is 4m/s

Froce (N)
N
8
{

|

| —

0 20 40 60 80 100 120 140 160 180 200

(b) Force applied to object

—— Cluster 1
Cluster 2
= Cluster 3

Responsibility Factor

]
0 20 40 60 80 100 120 140 160 180 200
Frame

(c) Responsibility factor for each module during task execution. The background
colors represent the actual task context: pink-context 1, light blue-context 2 and
light green-context 3.

Flg 6: Simulation results of moving an object in a changing environment

proach can indeed properly recognize the current task con-
text and generate fast adaptive motor commands.

The full Matlab code for this demonstration is provided
as an electronic appendix.

5 Robot Experiment

In the previous sections we have described the details of our
multiple module approach to manipulation task learning in
a generic way, and demonstrated it in a relatively simplifed
though non-linear and non-stationary simulation task. In this
section, we describe the experimental details for our appli-
cation to the bottle-opening task. We demonstrate that the
multiple module approach is able to acquire a human adap-
tive control policy and enable the robot to master this ma-
nipulation task.

We implemented our multiple module approach on a real
robot system consisting of a 7 DOF Light Weight KUKA
robot arnﬂ with a 4 DOF Barrett Han(ﬂ The target manipu-
lation task is to unscrew a tightened cap until it can be lifted
from its bottle. This task is chosen because it is a common
task in human daily life, and at the same time a complex

! http://www.kuka-labs.com/en/medical_robotics/lightweight _robotics

2 http://www.barrett.com/robot/products-hand.htm

task from the control point of view. The friction between
the bottle and the cap plays an important role in the task: it
largely determines the exerted torque required to open the
cap. However, the friction, and the way it changes as the cap
unscrews, varies between different bottles.

Estimating the friction coefficient (FCO) solely accord-
ing to the material is difficult, as it is affected by many
factors such as the load force, movement velocity, contact
surface situation, composition of the material, temperature,
etc. (Gustafsson, [2013). A deterministic control strategy
based on the value of the FCO is not practical in this task.
A small estimation error in the FCO may produce either too
small a torque, which leads to task failure, or too large a
torque, which may cause hardware damage. Therefore an
adaptive control strategy is desired for this task. We use our
multiple module approach to model the adaptive strategy.

5.1 Human demonstration and experimental setup

Opening a bottle cap is a common task for human but not
an easy one for robot. Before the task begins, the human
does not possess any information about the tightness of the
cap. This information can only be estimated once the task
is started. During the task, a human will constantly update
the motor commands, i.e. how much torque to apply to the
cap and with how much force to grip the cap, according to
the sensory feedback. This plan can only be made in real
time as the contact surface condition changes throughout the
task process. Humans have to cope with these uncertainties
and adapt to the changes. Figure[7|shows three different pat-
terns of human control strategies for three different contexts.
This task requires an adaptive strategy that controls the turn-
ing torque, gripping force and the displacement of the cap.
Learning from human demonstration allows us to gain such
a control strategy without fully analyzing the dynamics of
the whole system.

In each demonstration, data is recorded from the first
time a finger touches the cap to when the cap is finally open
and lifted. Opening a bottle cap is a cyclic task. Each cycle
includes three stages: reaching, turning and releasing. In our
experiments, four to six cycles need to be completed to open
the bottles. During the reaching and releasing stages, neither
torque nor gripping force is applied to the cap and the cap re-
mains still. During the turning stages, humans continuously
apply torque to the cap and it starts moving once the friction
is overcome.

5.1.1 Demonstration in different task contexts

In order to explore different task contexts, we demonstrated
the task with different setups, which are the combination
of four different plastic bottles (b1 — b4) and four differ-
ent plastic caps (c1 — c4) (Figure [§). The caps are made

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 11

35

—bic3
—b2c3
—b4c3

Torque (N.m)

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (msec)

Flg. 7: Exerted torque for opening three different bottles. These three demonstra-
tions show different control patterns. Significant differences can be observed from the
first cycles. For the most difficult bottle b4 (blue), the torque reaches its peak and
drops slowly until the end of the cycle. This shows the friction between the bottle and
cap keeps decreasing as the cap starts moving. For the easier bottle b2 (green), the
torque drops straight from its peak to a (relatively) constant value, which suggests that
the friction remains constant when the cap is moving. For bl (red), the torque slowly
climbs to a peak, then drops sharply for a short while and then more slowly. These
different patterns indicate the different types of friction governing different contexts.

of light materials such that their masses and inertias can be
neglected in the computation of motor commands. The re-
lationship of driving force/torque and mass/inertias is well
established. In this study, we focus on learning the strate-
gies for handling friction, which is not well understood and
hard to predict. According to the surface conditions of the
bottles and the caps, the difficulty of opening the bottles
varies. b1 — b4 are labeled by increasing difficulty. The bot-
tle b1 is the easiest one, which originally contained body
lotion. We lubricated bottle b1 with its body lotion to make
it even easier. The bottle b4 is the most difficult one; it orig-
inally contains honey which is very sticky. We left honey
on the surfaces of b4 to make it more difficult. The dif-
ficulty is estimated qualitatively. It is judged according to
the friction coefficient between the contact surfaces. Gener-
ally speaking, the friction coefficient between lubricated sur-
faces is smaller than between dry surfaces, while between
smooth surfaces is smaller than between sticky surfacesﬂ
The c1 — c4 are labeled by the increasing diameters of the
caps.

We chose to vary the setups in surface condition and cap
size as these are the main points of variation between the
different bottles affecting the control strategy. The intention
is to see how these two variables affect human behaviour. To
this end, we combine the bottles and the caps by mounting
the caps c1 — c4 onto the ‘actual’ (manufactured) caps of the
bottles (Figure[9). To investigate the effects of different caps

3 The precise value of the friction coefficient between plastics varies
by type of the plastic. According to an Internet resource
[2014), the dry dynamic friction coefficient between plastic-
plastic surface is 0.2-0.4 and the lubricated dynamic friction coefficient
is 0.04-0.1.

Flg 8: Bottles and caps for human demonstrations. From left to right: b1 cI, b2 c2,
b3 c3, b4 c4

Table 2: Different setups of bottles and caps for demonstra-
tion. Bottles 1 to 4 are in increasing order of the difficulty
to open. Caps 1 to 4 are in increasing order of the cap sizes,
with diameters are shown. Note that where multiple caps
were used with the same bottle, this was achieved by affix-
ing the cap to the bottle’s matching cap (see Figure E[)

b
Cap 1 | Cap 2 | Cap 3| Cap 4
25mm 42mm 56mm 80mm
blc3

Bottle 1

Bottle 2 b2c3

Bottle 3 b3cl b3c2 b3c3 b3c4

Bottle 4 b4c3

and different bottles separately, we conducted two groups
of demonstrations: a fixed bottle with four different caps
(b3c1,b3c2,b3c3,b3c4) and a fixed cap with four different
bottles (b1c3,b2¢3,b3c3,b4c3). Demonstrations on the first
group allow us to explore human grasping strategies with
different cap sizes. Demonstrations on the second group al-
low us to explore human control strategies in adapting to
different bottle conditions. In total, we have seven different
setups for the human demonstration (Table 2).

12 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

Cap to grasp

(®)

Flg. 9: Experimental setup for the task of opening a bottle cap. (a) Setup b3c4:
bottle 3 combined with cap 4. A force-torque sensor is mounted between the ‘cap
of the bottle’ and the ‘cap to grasp’ (c4), so that the exerted force and torque can
be measured. A set of Optitrack markers are connected with the cap to record its
displacement. The bottle is fixed on a table. (b) A human demonstrating how to open
a bottle cap. To avoid extra torque, only one hand is used during the demonstration.
The human grips the cap from the top and applies torque to the system

5.1.2 Sensors

In each setup the demonstrator demonstrates the task of
opening the bottle cap three times. Before each demonstra-
tion, the bottle is tighten with the cap with the same scale
of tightness. In total we recorded 21 sets of demonstrations.
In this section, we describe the sensor recording of these
demonstrations.

As explained in section [3.2.1] we focus on the tuple
{7,F,s} of the task. Three different sets of sensors are used
in the experiment to capture them:

1. Force torque sensorﬂ for exerted torque (7);
2. OptiTrackE| for cap displacement (s);
3. Tekscalﬁ for exerted force (F).

Data from these three sensors stream from three different
channels. Due to hardware limitations, the raw data stream
from the different channels does not come at the same time,
and cannot be recorded at a regular frequency. To synchro-
nize the data, we produce a synchronization signal at the be-
ginning of each demonstration: the demonstrator taps on the
cap three times. The movement of the hand and impulses on
the cap produce simultaneous pulses in all three channels.

4 https://www.ati-ia.com/
3 http://www.naturalpoint.com/optitrack/
6 http://www.tekscan.com/

After recording, the data from the different channels is syn-
chronized by aligning the synchronization signal.

In this task, the turning torque is the essential variable.
This is measured and recorded by an ATI force torque sen-
sor. It is mounted between the bottle and the cap (Figure [9).
During the task, the demonstrator grasps the cap on the top
of the force-torque sensor and applies torque to open the
bottle mounted below the sensor. As the bottle is fixed to the
table, the movement of the cap is restricted to the rotation
along the bottle’s axis. Under the approximation of zero an-
gular momentum, the reading of the sensor shows the force
and torque applied to the cap. Besides the torque, force ap-
plied to the z-axis direction is also recorded for the purpose
of synchronization (Section[5.2).

We track the displacement of the cap by a motion track-
ing system OptiTrack. The OptiTrack system tracks move-
ment by the infrared reflecting markers attached to the ob-
ject. In order to avoid obstacles tothe demonstration, we at-
tach markers to a stick, which is fixed to the cap from one
end and the other end coming out from the bottom of the
bottle (Figure [9). We also recorded the human hand move-
ments, by tracking markers attached to the human’s hand.
The movement of the human hand is used later for synchro-
nization (Section [5.2).

During the task, the human also applies grip force on
the cap in order to grasp it firmly for turning. This force
cannot be sensed by the force torque sensor. Therefore, we
used a pressure sensor (Tekscan Grip System) for measur-
ing the grip force. The Tekscan Grip System is a flexible
tactile pressure sensor that can be built into a glove. It has
18 patches of sensors to cover the human’s hand’s front sur-
face. For manipulation, humans use not only the front sur-
face, but also the side surface of our fingers. In order to mea-
sure the force applied by those surfaces, we mount two sets
of Tekscan Grip System sensors onto a glove to cover also
the side surfaces (Section.[5.2)). The method of mounting the
sensors to the glove is detailed by|de Souza et al| (2014).

With different sizes of caps or in different stages of the
task, the way a human grasps the cap may vary. For example,
a human may use two fingers to grip the smallest cap c1, and
four fingers to grip the biggest cap c4. The patches receiving
contact in each grasp are recorded. In the computation of the
total grip force, only the patches used are taken into account.
All patches are calibrated to give readings in the unit of N-m.

5.2 Data Analysis

In this section we explain how we manage the raw data
and extra training data. The raw data from the three sen-
sors streams is in three separate channels. Each stream has a
different format and hence is handled differently.

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 13

— Exerted torque As the movement of the cap is restricted
to rotation around the z-axis, we are concerned only with
the torque applied in this direction. Another dimension
of concern is the force applied in the z direction. The
three taps on the cap before each demonstration create
three pulses in the z direction and hence is used for syn-
chronization.

— Object displacement From the OptiTrack, the cap’s dis-
placement is originally expressed in the position vector
and the rotation matrix. The angular displacement of the
cap is computed by the rotation matrix of the cap, and
the hand movement by the position vector of the hand.
The accumulated angular displacement is used to learn
the model and the hand movement is used to synchronize
the data.

— Grip Force As mentioned in previous section, we used
two sets of Tekscan to cover the front and the side of the
human hand. This enables the demonstrator to use any
grasp they like for the task — the human was not re-
stricted to using just two or three fingers as is the case in
most other grasping experiments. For each type of grasp,
the reading from the patches contacting with the cap are
summed and multiplied by their surface area to compute
the total grip force.

Data from these three channels is synchronized by align-
ing the synchronization pulses. The time of the last detected
pulse is set as the zero-reference point. After synchroniza-
tion we re-sample all the temporal sequences to 1000Hz.
Thus each single data point is synchronized. Finally, we fil-
ter the noise by a low pass filter (200Hz). Figure [I0] shows
an example of the data from three different channels.

In this task we focus on the turning stage of each cycle.
More specifically, we focus on the data starting from the mo-
ment that the fingers contact the cap and ending at the mo-
ment that the turning is finished and the cap is released. The
reaching and releasing cycles do not involve contact with the
environment and hence are not addressed here.

In order to collect data from only the turning cycles,
we trim the data by the contact signal: only parts of the se-
quence with non-zero contact force are kepﬂ The trimmed
sequences are labeled by their associated equipment setup
and the order in which they occur, e.g. the first cycle of the
bottle 1 with cap 3 is labeled by b1c3_1.

As can be seem from Figure there are dramatic dif-
ference between cycle one (the first cycle) and the rest of
the cycles: the exerted force and torque are much higher in
the first cycle. This is caused by the difference between the
static friction and the kinetic friction of the bottles. At the
beginning of the task we have to first break the contact be-
tween the bottle and the cap. The friction we need to break

7 1In this task the segmentation is done manually. The data can also
be segmented by other algorithms but here we do not focus on task
segmentation; cf. Section@

o

=]

=)
T

Displacement(degree)
s B 8 &
§ = ¢ 8

o

0 2000 4000 6000 8000 10000

€ og-
=
3 0.6
T 04r
o
= 0.2
ot . n
0 2000 4000 6000 8000 10000
1201
. 1001
Z
< gl
()
2 eor
£
o 4or
5 wr \.
ot , M\—f/"%""\,—/’”"’“r"'_/""\'—‘;
0 2000 4000 6000 8000 10000
Time (msec)

Flg 10: Aligned data of all three channels. Highlighted parts mark the turning
process: blue blocks denote the first cycle (phase I), and green blocks denote the later
cycles, (phase II). Phase I is significantly different from phase II

at this stage is determined by the static FCO. Once the cap
starts to move, the FCO between bottle and cap transitions
to kinetic FCO, which is usually smaller than the static FCO
for the same surface conditions. As a result, the torque and
hence the grip force required to turn the cap decreases in
the later cycles. This phenomenon implies that at lease two
modules are needed for this task. In the later section we will
discuss these two phases separately and referring the cycle
one as “phase I’ and the later cycles as “phase I1”.

In different demonstrations, the number of cycles used
to open the cap is different, varying from four to six. The
pattern of the later cycles are similar because the demon-
strator just repeats the same strategy for rotating the cap.
For training, we take the first four cycles from each of the
demonstrations. As mentioned above, ahuman demonstrates
the task in seven different setups, each for three times. This
results in 84 time series in total for the learning.

5.3 Learning Modules

In this section, we explain how we encoded the training
data into just a few different modules. As explained in Sec-
tion [3.2] the first step is to cluster the data and find out the
number of modules required in this task.

14 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

18

161 —Db3cl 1
141 b3c3 1
12 —b3c4

0.8

0.6

Torque (N.m)

04r

0.2

-0.2

0 5000 10000
Time (msec)

15000

Flg 12: Exerted torque for opening bottle b3 with three different cap sizes

5.3.1 Data clustering

To cluster the 84 time series Q{s, T, F} obtained from hu-
man demonstration, we first compute the distance between
each pair of series by the DTW technique. As this task is
time independent, “warping” of the data in the dimension of
time does not affect the control policy encoded in the time
series. The distances between each pair of the time series
is shown in the heatmap (Figure [TT). As can be observed
from the heatmap, the trials with the same setup and in the
same cycle are very similar to each other. Hence we regard
these trials as representing the same control strategy and use
their variance as the threshold of the clustering. Trails with
distance less than this threshold are considered to be in the
same cluster. This is to say, our clustering is based on the
assumption that trials with the same setup and in the same
cycle are governed by the same control strategy. This as-
sumption helps us cluster the large amount of data to a small
number of modules.

From this heatmap we can also see that within the same
cycle, the trials with the same bottle but with different caps,
e.g. b3cl,b3c3 and b3c4, are similar to each other. In the
first cycle, the trials with the same cap but with different
bottles, e.g. b1c3,b2c3,b3c3 and b4c3, are significantly dif-
ferent from each other. In the later cycles, this difference
decreases gradually. This result shows that in the opening-
bottle-cap task, the surface condition between the bottle and
the cap plays an important role in the control strategy, while
the role of cap size is relatively minor. Figure[I2]shows three
trials of opening bottle b2 with different sizes of caps. It can
be seen that their patterns are similar.

As mentioned before, the demonstration of each setup
is repeated three times. Those three time series from the
same setup and same cycle are presumed to belong to the
same group. To set a threshold for clustering, we check the
distances between the three time series in the same group.

The largest distance we found is 0.04 (normalized) from the
b3c2 phase 4. We add a 10% margin on this (resulting to
0.044) and use it as the threshold of clustering. Time-series
distances less than the threshold are grouped into the same
cluster. We use hierarchical agglomerative clustering (Sec-
tion [3.2.2) to merge the data into fewer clusters. After five
mergings, the clusters are no longer mergeable and three
clusters remain.
These three clusters contain the data from:

1. phase I of b4c3 (most difficult bottle), 3 time series;

2. phase I of b3c1,b3c2,b3c3,b3c4,b2c3 and phase II of
b4c3, 24 time series;

3. phase I of b1c3 (easiest bottle) and phase II of the other
setups, 57 time series.

The result of clustering is shown in Table [3] This result
suggests that humans use three different strategies for open-
ing bottles: one for handling phase I of the most difficult
bottle with adhesive materials on the bottle and cap surfaces;
one for handling phase I of most bottles and phase II of the
most difficult bottle; and one for handling phase I of the lu-
bricated bottle and phase II of the other bottles. The size of
the cap turns out to be play a less important role in the con-
trol strategies. According to these results, we encode these
three clusters separately.

5.3.2 Learning Modules

We encode the data in each of the modules by means
of GMM. As explained in Section [3.2.3] a forward
model and an inverse model are built for each module.
The forward model is encoded by the joint distribution
p{st,si—1,a,—1 | Qr}, while the inverse model is encoded
by p{s:,st + 1,a;,a,_1 | £;}. For each model, the number of
Gaussians is determined by the Bayesian information crite-
rion (BIC). We use 25 Gaussian for cluster 1, 40 for cluster 2
and 15 for cluster 3. The BIC tests for each module / cluster
are shown in Figure [[3]

5.4 Generating robot motor commands for manipulation

Our approach is independent of the robot system and can po-
tentially be applied to any robot. We chose to implement this
work with a Barrett hand mounted on a KUKA lightweight
robot arm as these were available in our lab. We imple-
mented the multiple module system on this platform to en-
able the robot to open bottle caps.

In this experiment, we control the wrist joint (last joint
of the KUKA) for producing torque to turn the bottle cap. A
force torque sensor is fixed under the bottle to provide torque
feedback. Each finger of the Barrett hand is mounted with a

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 15

0.2

-jll I“I"ll
Al N !llll
1 i
T r
BH dEEEEE EE

0.18

- 1016

- 1014

- 1012

- 10.08

0.06

0.04

0.02

Flg RN heatmap representation of the distance matrix of 84 time series (7 setups x 4 ycles x 3 trials). The labels are in the format of “setup_cycle”. For example, “blc3_1"
represents the first cycle of the b1¢3 setup. The yellow lines divide the x and y axis by the 4 cycles and hence form 16 large blocks. In each block, the black lines divide the x and
y axis by the 7 experimental setups and hence form 49 smaller blocks

Syntouclﬂ tactile sensor, which is calibrated to provide con- The target bottle is fixed to the top of a table with its cap
tact force information, for the grip force feedback. The cap tightened. The robot is placed above it at a distance that al-
displacement is measured by the wrist joint displacement, lows a proper grasp on the cap. The Barrett hand then closes
assuming that there is no slippage between the fingers and the fingers until the bottle cap is touched. This position is
the cap. recorded as the initial position, where the cap displacement
is marked as zero. In the experiment we focus on the turning
cycle. The releasing and reaching cycles are programmed by

8 http://www.syntouchllc.com/

Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

Table 3: Clustering results

EEEw

Bottle 1

Bottle 2

Bottle 3

Bootle 4

Cap 1 Cap 2 Cap 3 Cap 4
(blc3)
Phase I Cluster 3
Phase II Cluster 3
(b2c¢3)
Phase T Cluster 2
Phase II Cluster 3
(b3cl) (b3c2) (b3c3) (b3c4)
Phase T Cluster 2 Cluster 2 Cluster 2 Cluster 2
Phase II Cluster 3 Cluster 3 Cluster 3 Cluster 3
(b4c3)
Phase I Cluster 1
Phase II Cluster 2

Algorithm 2 Control Algorithm

1: forr=1:4do
2 REACHING(): Robot moves to the initial position
3 function TURNING()
4: Read previous sensor information {s,—1,%—1,F—1}
5: for k=1:3 do
6: §* = FORWARD(s,_1,T;—1,2})
7 end for
8: for k=1:3 do
o: Ak = ResponsibilityFactor(s¥, s;)
10: end for
11: Read current sensor information {s, }
12: for k=1:3 do
13: {a*} = INVERSE(s#/41,8,d_1)
14: end for
15: {ar} = Xim1 23 Ak{d"}
16: Add compensating torque to T,
17: Execute motor command {a, }
18: RELEASING(): Release the cap;
19: end function
20: end for

21: while LIFTCAP() is false do
22: REACHING();

23: TURNING();

24: RELEASING();

25: end while

opening the fingers and restoring to the initial position. The
information gathered from the Tekscan during the demon-
strations is transferred to the Syntouch and used to guide the
grip force. During the process, the tactile sensors are used to
ensure the fingers are touching the cap and providing enough
grip force to avoid slippage between the hand and the cap.

We first tested the model with the trained bottles and
then with two new bottles. With each bottle, the turning—
releasing—restoring cycles are repeated four times. Data
streams from the sensors are filtered to 100Hz. Once the
turning cycle starts, the forward models take the torque and
displacement at the last time step as input, compute the ex-
pected displacement of the current time step. These expected
displacements are compared with the actual displacement
measured at the sensor to evaluate the reliability, expressed
as a normalized responsibility factor (7L,k), of each module
(k). The inverse models take the current displacement, de-
sired next displacement, and the previous torque as input
to compute the a proper action (torque) to take on the cap.
Each of the three outputs is weighted by multiplication with
its responsibility factor, and the final output is the sum of the
three weighted outputs (Algorithm 2).

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 17

BIC

15 25 35
Number of components

(a) Cluster 1. Optimal number of Gaussians is 25.

BIC

30 40 50
Number of components

(b) Cluster 2. Optimal number of Gaussians is 40.

x10°

10 15 20
Number of components

(c) Cluster 3. Optimal number of Gaussians is 15.

Flg . 13: BIC test results for clusters, determining the number of gaussians used in
each module

In the process of implementation on a real robot, we
found that without putting any restriction on the responsi-
bility factor, it can change very rapidly. This is caused by
the environmental noise in the sensory input and results in
instability of the control system. We therefore apply a low-
pass filter (100 Hz) on the responsibility factor klk to reduce
the fluctuations. This filtering implies that the real dynamics
do not switch back and forth with high frequency, which is
consistent with the character of our task.

Before applying the final output on the robot, a compen-
sational torque is added to it in order to compensate the lag
causing by the distortion of the robot hand during turning.

The control algorithm described above is shown in Algo-
rithm 2

5.5 Experiment results

We validated the algorithm to control cap opening by our
robot. We first tested the ability of the system to open two of
the bottles seen during training (b1 and b4). We then tested
the generalization capacity of the system by opening two
bottles (b5 and b6) not seen during training. Bottle b1 and b4
are the easiest and most difficult bottle to open in the train-
ing set. Bottle b5 is a large bottle, which is hard for human
to grasp and open. Bottle b6 is a glass bottle with a plastic
cap. The surface interaction between these two materials had
not been demonstrated. As the Barrett hand is significantly
larger than a human hand, b1,b4,b6 are mounted with ¢5
(the cap of b5 with diameter 110mm) on the top to ensure
a firm grasp. In total, four different setups were used in the
experiment: blc5,b4c5,b5¢5 and b6¢S. As discuss above,
the size of the cap has minor effect on the control strategy.
Therefore we expected the setups blcS and b4c5 to result
in similar behavior as those of b1c3 and b4c3 in the train-
ing. The experimental results and demonstration snapshots
are shown in figures Figure |18|is a similar plot to
the figure from the demonstration, figure[7] which aligns the
exerted torque of the four experiments.

In each experiment we record the cap displacement, ex-
erted torque, and the responsibility factors of all three mod-
ules. Bottle b1 is the easiest bottle to open in the training set,
the control policies of both phase I and phase II are grouped
into cluster 3. As a result, in the b1 experiment, module 3
takes most of the responsibility (Figure [14).

Bottle b4 is the most difficult bottle to open in the train-
ing set and its phase I requires more than 3Nm (Figure [7).
Due to the smooth contact surfaces between the Barrett hand
and the cap, it is difficult to apply 3Nm torque to the cap
without slipping. To avoid damaging the robot, we tested
b4 phase II only: the cap is loosely screwed on the bottle.
Without knowing this, in the experiment the robot is able to
properly estimate the current task context. As can be seen
from the ﬁgure which is different from b1, the dominant
module is module 2 which corresponds to b4, phase II. This
performance would be hard to achieved with a deterministic
system based on expected values for friction coefficients.

Bottle b5 is a novel one but is made of a similar material
(plastic) to the training bottles. A very similar torque profile
to b2 and b3 is generated for b5: phase I is sharp, while
phase II is flatter and significantly smaller than phase I (b2:
Figure [7, b3: Figure [12] b5: Figure [I6). This is because b5

° Demonstration videos are available at
http://www.cs.bath.ac.uk/ bh325/opencap.rar and will be provided as
an electronic supplement to the article.

18 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

has a dry contact surface as b2 and b3, and b1 is lubricated
and b4 is attached with a sticky material, honey.

Bottle b6 is also a novel one but with novel surface mate-
rials (plastic and glass@b. Its torque profile is different from
what we observed in training set. Despite this, b6 is opened
with this torque profile generated by the three learnt mod-
ules.

5.6 Discussion of results

In these experiments, the combination of modules applied
was determined completely algorithmically, with no human
intervention. This is made possible firstly by the variance of
the forward models. The variance of a GMM represents the
variance of the training data, i.e. human demonstrations, and
a GMM can have locally large variance. In our approach,
each GMM is learned independently, without knowing the
boundaries of other modules. This can result in a GMM hav-
ing a non-zero probability at the borders of other modules.
Secondly and even more importantly, the computation of the
responsibility factor as a real rather than a binary value en-
courages cooperation between modules. The mixed activa-
tion of multiple modules allow the algorithm to generalise
better to novel task contexts, as more modules will con-
tribute to generate new motor commands. As can be seen
from the results, our method can generate commands prop-
erly to accomplish the task in both trained and novel task
contexts. Other ways of computing the responsibility factor
that bring less coordination may cause instability when gen-
eralised to new task contexts.

With the above four different setups, the modular model
adapts accordingly and successfully generates torque com-
mands to open the bottles. Successful cap opening is
achieved when the cap is unscrewed far enough that it can be
lifted up. Though no prior information is provided about the
bottles, the task contexts are properly estimated and “con-
textualized” motor commands are generated to unscrew the
caps. These experiments show that our multiple modular ap-
proach is indeed effective in manipulation tasks.

6 Discussion

In this article we have presented a modular approach for
learning manipulation tasks from human demonstration. We
discover the number of modules needed in a task by hier-
archical clustering. From each cluster we use forward and
inverse model pairs to model the motor control mechanism.

10 A common way of measuring the FCO of a material is measuring
it against metal: the static FCO between glass and metal is 0.5-0.7,
while between two polythene and steel is around 0.2. This implies that
the plastic and glass are indeed very different in FCO. There is not a
universal measurement of the FCO between plastic and glass.

0.45

041 —Dblch5

0351 b4ch
—Db5c5
o3¢ —b6c5

0.251

0.2

Torque (N.m)

0.1r

0.05F

N S

0 500 1000 1500 2000 2500 3000 3500 4000
Frame

Flg 18: Robot exerted torque for opening four bottles: bl, b4, b5, and b6. Time is
warped and shifted so that the cycles are aligned for visual comparison.

The forward models predict the effect of the previous motor
command, while the inverse models compute a motor com-
mand to bring the current state to a desired state. The statis-
tical approach enables us to estimate the reliability of the in-
ferences of each module under the current task context. The
final motor command is the sum of the weighted commands
generated by each module. By exploiting an object-centric
viewpoint, the learnt human internal models can be easily
transferred to a robot. Our experiments verify that by this
modular approach, the robot can automatically recognize the
current task context and compute proper motor commands
to accomplish a manipulation task, here moving a simulated
object through shifting fluid dynamics, and opening bottle
caps with a real robot, including on novel bottles.

Our approach is applicable to manipulation tasks that re-
quire adaptive control strategies. It has a number of ben-
efits compared to existing, pervasive methods for adaptive
control such as classic model identification adaptive control
and reinforcement learning (Narendra et all |1995; |Khalil and!
Dombrel [2004; Buchli et all, [2011]). Because we imitate hu-
man behaviors, we do not need to derive the system dynam-
ics nor the cost function of the tasks, which involve deep in-
sight into the task and can be painstaking. The difficulty of
modeling an adaptive strategy is further reduced by a modu-
lar approach: dividing the large state space into several sub-
spaces, where the local strategies can be approximated more
accurately. With this approach, we divide a complex human
strategy into a few modules, and combine them to generate
contextualized motor commands.

Our object-centric approach is a practical approach for
teaching a robot manipulation tasks that require proprio-
ception. This allows human demonstration of the task with
physical contact with the object, which means the demon-
strator can have direct feedback from their own senses and
perform the task naturally. We bypass the problem of direct
mapping of human movement and degrees of freedom to
a robot’s by expressing the strategy from an object-centric
viewpoint. This can greatly benefit learning manipulation

A Modular Approach to Learning Manipulation Strategies from Human Demonstration

Torque (N.m) Displacement (degree)

Responsibility Factor

100

50 -

500 1000 1500 2000 2500 3000 3500 4000 4500

Time (msec)

(b) Cap displacement during the robot’s opening

0.06

0.04 -

0.02} -

I . A g e L ce——

10 20 30 40 50 60 70 80 90 100

Displacement (degree)

(c) Torque exerted by the robot against cap displacement

m—— Cluster 1| :
Cluster 2 | -
m—— C|uster 3 |-

10 20 30 40 50 60 70 80 90 100

(d

Displacment

Responsibility factor against cap displacement, for each module

F]g 14: The robot opens bottle b1.

20

Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

o)
o
4]
b
o)
@

O

N—r

=
c
@
(S
@
Q

<
o
N2
(@]

Torque (N.m)

Responsibility Factor

60 T T T T T
40 : e
20 y
0 i i i i i
0 1 2 3 4 5 6
Time (msec) % 10°
(b) Cap displacement during the robot’s opening
1 T T T T T T T T
0.5F i
0 j i i i i
0 5 10 15 20 25 30 35 40 45
Displacement (degree)
(c) Torque exerted by the robot against cap displacement
1
m Cluster 1
Cluster 2
0.5
0 j
0 5 10 15 20 25 30 35 40 45

Displacment

(d) Responsibility factor against cap displacement, for each module

Flg 15: The robot opens bottle b4

A Modular Approach to Learning Manipulation Strategies from Human Demonstration

21

—
(O]
(O]
=
(@]
(]

©

=

—
c
(O]
S
[¢]
Q

<
o

§%

(a)

Torque (N.m)

Responsibility Factor

100

50

1500 2000 2500 3000 3500
Time (msec)

500 1000

(b) Cap displacement during the robot’s opening

e O B,

10 20 30 40 50 60 70 80 90 100
Displacement (degree)

(c) Torque exerted by the robot against cap displacement

m—— Cluster 1
Cluster 2 | -
= C|uster 3

Displacment

(d) Responsibility factor against cap displacement, for each module

Flg 16: The robot opens bottle bS5

22

Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

~—
o
9]
S
>
@
ke
N—r'
=
c
@
S
@
Q
K
o
B2
@]

0.06

Torgue (N.m)

Responsibility Factor

0.04

0.02

D
o

N
o
T

N
o
T

/

o
o

500 1000 1500 2000 2500 3000
Time (msec)

(b) Cap displacement during the robot’s opening

10 20 30 40 50 60
Displacement (degree)

(c) Torque exerted by the robot against cap displacement

m——— Cluster 1
Cluster 2
m——— C|uster 3

10 20 30 40 50 60
Displacment

(d) Responsibility factor against cap displacement, for each module

Fi g. 17 The robot opens bottle b6

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 23

tasks such as impedance control, as measuring human mus-
cle impedance is hard while measuring the impedance of an
object is more feasible. Our approach focuses on imitating
object movement rather than human movement. For gener-
ating natural looking manipulation strategies, however, the
object-centric approach does not guarantee good results.

We compute the final motor command by summing the
weighted output of each module. This makes an assumption
that the state space is continuous. For tasks with discon-
tinuous space, switching between different modules would
be more applicable (Narendra et al, [1995; Nakanishi et all
2013).

An assumption we make during the learning is that the
human always uses a single control strategy to handle a par-
ticular task context. Based on this assumption, we cluster the
training data and modularize the strategy to several mod-
ules. The linear combination of these modules can span a
large neighbourhood and generate new adaptive strategies
for novel task contexts. It is possible that the demonstra-
tions are combinations of more fundamental human control
strategies. Decomposing them to these fundamental strate-
gies may allow us to span to a larger space, or even gener-
alize to different tasks. Finding these fundamental strategies
will require more demonstrations for different tasks. This
will be the next step for extending our approach.

There are many promising directions of further studies
extending the work presented here. The first is to apply this
approach to other contact tasks and learn a more general hu-
man control strategy in handling the instability caused by
friction. In our study, we have focussed on the control strat-
egy of unscrewing the cap. We hardly analyzed the effect of
changing the cap size and or the positioning of the fingers
on the cap, which is revealed in the tactile signature. For the
task here, these were not important and did not cluster sep-
arately, but for other contexts these could be important. We
expect this analysis to advance the study of the task specific
grasping strategy (El-Khoury et all |2013; [Dang and Allen|
2014) from the force perspective.

To extend our approach to learn tasks involving multi-
ple steps, one could also integrate this framework with task
segmentation techniques, to break down the task into atomic
steps and recognize the steps needed, still using a modular
approach. However, we could expect this to complicate the
point of module integration and require better-informed ac-
tion selection.

7 Conclusion

In summary, tasks involving multiple phases or different
contexts are hard to implement with a single monolithic
model. A modular architecture is a practical approach for
both learning and controlling these tasks. As manipulation

usually involves multi-phase friction and multi-body inter-
action, learning manipulation tasks with a modular approach
can simplify the modeling problem to a significant extent.
We have presented here a framework for training a modu-
lar model on observed human demonstrations, discovering
the strategies used by the humans through a system of clus-
ter analysis, and encoding the results in generative models
capable of driving robots. We have demonstrated that we
can use this framework to transfer strategies used by a hu-
man to a robot, using the task of bottle-cap opening. The
demonstration showed not only ‘simple’ transference from
human to robot, but the capacity for generalizing to similar
but previously-unobserved contexts, and to adapt sequences
of actions in response to the current context.

Acknowledgements This work was funded primarily by the Swiss
National Foundation through the National Center of Competence in
Research (NCCR) in Robotics. Ravin de Souza was also supported by
a doctoral grant (SFRH /BD /51071 /2010) from the Portuguese Fun-
dacao para a Ciencia e a Tecnologia and Miao Li was supported by the
European Union Seventh Framework ProgrammeP7 /2007-2013 under
grant agreement n° 288533 ROBOHOW.COG. Bidan Huang was also
supported by a studentship from the University of Bath. The authors
would like to thank Sahar El-Khoury for her valuable comments.

References

Asfour T, Azad P, Gyarfas F, Dillmann R (2008) Imita-
tion learning of dual-arm manipulation tasks in humanoid
robots. International Journal of Humanoid Robotics
5(02):183-202

Athans M, Castanon D, Dunn KP, Greene C, Lee W,
Sandell Jr N, Willsky AS (1977) The stochastic control of
the f-8c aircraft using a multiple model adaptive control
(MMAC) method—Part I: Equilibrium flight. Automatic
Control, IEEE Transactions on 22(5):768-780

Bernardino A, Henriques M, Hendrich N, Zhang J (2013)
Precision grasp synergies for dexterous robotic hands. In:
Robotics and Biomimetics (ROBIO), 2013 IEEE Interna-
tional Conference on, IEEE, pp 62-67

Berndt DJ, Clifford J (1994) Using dynamic time warping to
find patterns in time series. In: KDD Workshop, Seattle,
WA, vol 10, pp 359-370

Bryson JJ (2000) Cross-paradigm analysis of autonomous
agent architecture. Journal of Experimental and Theoreti-
cal Artificial Intelligence 12(2):165—-190

Bryson JJ, Stein LA (2001) Modularity and design in reac-
tive intelligence. In: Proceedings of the 17" International
Joint Conference on Artificial Intelligence, Morgan Kauf-
mann, Seattle, pp 1115-1120

Buchli J, Stulp F, Theodorou E, Schaal S (2011) Learning
variable impedance control. The International Journal of
Robotics Research 30(7):820-833

24 Bidan Huang, Miao Li, Ravin Luis De Souza, Joanna J. Bryson, Aude Billard

Calinon S, Billard A (2007) Incremental learning of gestures
by imitation in a humanoid robot. In: Proceedings of the
ACM/IEEE international conference on Human-robot in-
teraction, ACM, pp 255-262

Calinon S, Guenter F, Billard A (2007) On learning, repre-
senting, and generalizing a task in a humanoid robot. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 37(2):286-298

Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning
with statistical models. arXiv preprint ¢s/9603104

Dang H, Allen PK (2014) Semantic grasping: planning task-
specific stable robotic grasps. Autonomous Robots pp 1-
16

Demiris Y, Khadhouri B (2006) Hierarchical attentive mul-
tiple models for execution and recognition of actions.
Robotics and autonomous systems 54(5):361-369

Dillmann R (2004) Teaching and learning of robot tasks
via observation of human performance. Robotics and Au-
tonomous Systems 47(2):109-116

Do M, Asfour T, Dillmann R (2011) Towards a unifying
grasp representation for imitation learning on humanoid
robots. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on, IEEE, pp 482-488

El-Khoury S, Li M, Billard A (2013) On the generation of
a variety of grasps. Robotics and Autonomous Systems
61(12):1335-1349

Fekri S, Athans M, Pascoal A (2007) Robust multiple
model adaptive control (RMMAC): A case study. Interna-
tional Journal of Adaptive Control and Signal Processing
21(1):1-30

Fischer M, van der Smagt P, Hirzinger G (1998) Learn-
ing techniques in a dataglove based telemanipulation sys-
tem for the DLR hand. In: Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference
on, IEEE, vol 2, pp 1603-1608

Flanagan JR, Bowman MC, Johansson RS (2006) Control
strategies in object manipulation tasks. Current opinion
in neurobiology 16(6):650—659

Gustafsson E (2013) Investigation of friction between plas-
tic parts. Master’s thesis, Chalmers University of Tech-
nology, Gothenburg, Sweden

Haruno M, Wolpert DM, Kawato M (2001) Mosaic model
for sensorimotor learning and control. Neural computa-
tion 13(10):2201-2220

Howard M, Mitrovic D, Vijayakumar S (2010) Transferring
impedance control strategies between heterogeneous sys-
tems via apprenticeship learning. In: Humanoid Robots
(Humanoids), 2010 10th IEEE-RAS International Con-
ference on, IEEE, pp 98-105

Huang B, Bryson J, Inamura T (2013a) Learning Motion
Primitives of Object Manipulation Using Mimesis Model.
In: Proceedings of 2013 IEEE International Conference
on Robotics and Biomimetics. ROBIO

Huang B, El-Khoury S, Li M, Bryson JJ, Billard A (2013b)
Learning a real time grasping strategy. In: Robotics and
Automation (ICRA), 2013 IEEE International Confer-
ence on, IEEE, pp 593-600

Hueser M, Baier T, Zhang J (2006) Learning of demon-
strated grasping skills by stereoscopic tracking of human
head configuration. In: Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Con-
ference on, IEEE, pp 2795-2800

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991)
Adaptive mixtures of local experts. Neural computation
3(1):79-87

Jain A, Kemp CC (2013) Improving robot manipulation with
data-driven object-centric models of everyday forces. Au-
tonomous Robots 35(2-3):143-159

Johnson M, Demiris Y (2005) Hierarchies of coupled in-
verse and forward models for abstraction in robot action
planning, recognition and imitation. In: Proceedings of
the AISB 2005 Symposium on Imitation in Animals and
Artifacts, Citeseer, pp 69-76

Khalil W, Dombre E (2004) Modeling, identification and
control of robots. Butterworth-Heinemann

Kondo M, Ueda J, Ogasawara T (2008) Recognition of in-
hand manipulation using contact state transition for mul-
tifingered robot hand control. Robotics and Autonomous
Systems 56(1):66-81

Korkinof D, Demiris Y (2013) Online quantum mixture re-
gression for trajectory learning by demonstration. In: In-
telligent Robots and Systems (IROS), 2013 IEEE/RSJ In-
ternational Conference on, IEEE, pp 3222-3229

Kortenkamp D, Bonasso RP, Murphy R (eds) (1998) Artifi-
cial Intelligence and Mobile Robots: Case Studies of Suc-
cessful Robot Systems. MIT Press, Cambridge, MA

Kronander K, Billard A (2012) Online learning of vary-
ing stiffness through physical human-robot interaction.
In: Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, leee, pp 18421849

Kuipers M, Ioannou P (2010) Multiple model adaptive con-
trol with mixing. Automatic Control, IEEE Transactions
on 55(8):1822-1836

Kuli¢ D, Takano W, Nakamura Y (2008) Incremental
learning, clustering and hierarchy formation of whole
body motion patterns using adaptive hidden Markov
chains. The International Journal of Robotics Research
27(7):761-784

Kulic D, Takano W, Nakamura Y (2009) Online segmen-
tation and clustering from continuous observation of
whole body motions. Robotics, IEEE Transactions on
25(5):1158-1166

Kuli¢ D, Ott C, Lee D, Ishikawa J, Nakamura Y (2012)
Incremental learning of full body motion primitives and
their sequencing through human motion observation. The
International Journal of Robotics Research 31(3):330—

A Modular Approach to Learning Manipulation Strategies from Human Demonstration 25

345

Li M, Yin H, Tahara K, Billard A (2014) Learning object-
level impedance control for robust grasping and dexter-
ous manipulation. In: Proceedings of International Con-
ference on Robotics and Automation (ICRA), 2014., (ac-
cepted)

Nakanishi J, Radulescu A, Vijayakumar S (2013) Spatio-
temporal optimization of multi-phase movements: Deal-
ing with contacts and switching dynamics. In: Intelli-
gent Robots and Systems (IROS), 2013 IEEE/RS]J Inter-
national Conference on, IEEE, pp 5100-5107

Narendra KS, Balakrishnan J (1997) Adaptive control using
multiple models. Automatic Control, IEEE Transactions
on 42(2):171-187

Narendra KS, Balakrishnan J, Ciliz MK (1995) Adaptation
and learning using multiple models, switching, and tun-
ing. Control Systems, IEEE 15(3):37-51

Nehaniv CL, Dautenhahn K (2002) The correspondence
problem. In: Dautenhahn K, Nehaniv CL (eds) Imitation
in animals and artifacts, MIT Press, chap 2, pp 41-62

Okamura AM, Smaby N, Cutkosky MR (2000) An overview
of dexterous manipulation. In: Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Confer-
ence on, IEEE, vol 1, pp 255-262

Pais AL, Billard A (2014) Encoding bi-manual coordination
patterns from human demonstrations. In: Proceedings of
the 2014 ACM/IEEE international conference on Human-
robot interaction, ACM, pp 264-265

Pais L, Umezawa K, Nakamura Y, Billard A (2013) Learn-
ing robot skills through motion segmentation and con-
straints extraction. In: HRI Workshop on Collaborative
Manipulation

Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal
S (2011) Skill learning and task outcome prediction for
manipulation. In: Robotics and Automation (ICRA), 2011
IEEE International Conference on, IEEE, pp 3828-3834

Petkos G, Toussaint M, Vijayakumar S (2006) Learning
multiple models of non-linear dynamics for control under
varying contexts. In: Artificial Neural Networks—-ICANN
2006, Springer, pp 898-907

Romano JM, Hsiao K, Niemeyer G, Chitta S, Kuchenbecker
KJ (2011) Human-inspired robotic grasp control with tac-
tile sensing. Robotics, IEEE Transactions on 27(6):1067—
1079

Sauser E, Argall B, Metta G, Billard A (2011) Iterative
learning of grasp adaptation through human corrections.
Robotics and Autonomous Systems

de Souza R, El Khoury S, Santos-Victor J, Billard A (2014)
Towards comprehensive capture of human grasping and
manipulation skills. In: 13th International Symposium on
3D Analysis of Human Movement

Sugimoto N, Morimoto J, Hyon SH, Kawato M (2012)
The eMOSAIC model for humanoid robot control. Neural

Networks 29:8-19

Tribology-abccom (2014) Coefficient of friction, rolling
resistance, air resistance, aerodynamics. URL http:
//www.tribology-abc.com/abc/cof .htm, accessed:
2014-08-09

Willett P (1988) Recent trends in hierarchic document clus-
tering: a critical review. Information Processing & Man-
agement 24(5):577-597

Wimbéck T, Ott C, Albu-Schiffer A, Hirzinger G (2012)
Comparison of object-level grasp controllers for dy-
namic dexterous manipulation. The International Journal
of Robotics Research 31(1):3-23

Wolpert DM, Kawato M (1998) Multiple paired forward
and inverse models for motor control. Neural Networks
11(7):1317-1329

http://www.tribology-abc.com/abc/cof.htm
http://www.tribology-abc.com/abc/cof.htm

	Introduction
	Related Work
	Methodology
	Simulation
	Robot Experiment
	Discussion
	Conclusion

