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Algorithm for the Search for the Best Plane

In this document we describe in more details the algo-
rithm of Sec. 5 that searches for the most uncertain pla-
nar patch in the image stack. It uses a Branch-and-Bound
approach to quickly find the optimal plane in the search
space. We start by reformulating the problem and introduc-
ing some definitions and assumptions. Then, we define a
bounding function, which we introduced in Sec. 5, a search
procedure and a termination condition.

A. Problem formulation and definitions

Problem formulation. Let us consider the most uncertain
supervoxel si for which we would like to find a circular pro-
jection of maximum uncertainty with it in the center. Such
a patch can be seen as the intersection of a sphere of radius
r with a plane of arbitrary orientation going through si as
shown in Fig. 1.

Figure 1. Coordinate system for planes. We are looking for a circu-
lar patch that is defined as the intersection of a plane with a sphere.
Plane pi (yellow) is defined by two angles, φ – the intersection be-
tween plane p and plane XsiY (blue) and γ – the intersection
between plane p and plane Y siZ (red). Best seen in colour.

Supervoxel approximation. We assume that any super-
voxel sj can be well approximated by a spherical object of
radius κ (that is set to a constant for a particular dataset) and
its center wj (Fig. 2).
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Figure 2. Supervoxel approximation. Each supervoxel can be con-
sidered as a sphere of radius κ and center wj . We are interested in
the neighbourhood of supervoxel si defined by a sphere of radius
r.

We will refer to such an approximation as ŝj . Then, every
ŝj is characterised by its center wj and the common radius
κ: ŝj = (wj , κ).

Sphere. Let Ŝr
i be the set of supervoxels within radius r

from si. It defines a sphere of interest, as shown in Fig. 2:

Ŝr
i = {ŝj = (wj , κ) | ‖wj − wi‖ ≤ r}. (1)

We will operate exclusively on the objects from this set.

Plane. The Cartesian coordinate system does not serve
our purposes because it is cumbersome to find coordinates
of planes that satisfy certain properties. The Spherical coor-
dinate system, due to its non-symmetric coordinates, does
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not allow to divide regions into equal parts easily. We there-
fore introduce the coordinate system depicted by Fig. 1 that
makes it is easy to define planes and split the space into re-
gions of equal size, a requirement of the proposed Branch-
and-Bound search procedure.

Let Pi be the set of all planes bisecting the image volume
at the center of ŝi. Let us consider some p ∈ Pi (Fig. 1). It
intersects plane XsiY along some line that can be charac-
terised by a vector ~v1 = [x1, y1, 0], that we can choose such
that x1 > 0 and ||~v1|| = 1. Similarly, let us consider the
intersection of p with plane Y siZ and characterise it by the
vector ~v2 = [0, y2, z2] with y2 > 0 and ||~v2|| = 1. Let
~y0 = [0,−1, 0], ~z0 = [0, 0,−1]. With this, we can define
the plane p by two angles: φ = ^(~v1, ~y0) ∈ [0, π) and
γ = ^(~v2, ~z0) ∈ [0, π) (see Fig. 1). We will refer to the
plane’s angular coordinates as (φ, γ).

Sector. Suppose now that we have two planes: pmin =
(φmin, γmin) and pmax = (φmax, γmax), where φmin <
φmax and γmin < γmax. We will call the area between
them a sector and refer to it as [pmin, pmax]. For example,
in Fig. 3 the sector is the area that includes green points,
but not black ones. The sector can be seen as the con-
vex hull of {pmin, pmax} and any plane p0 = (α1φmin +
β1φmax, α2γmin+β2γmax), where α1+β1 = 1, α2+β2 =
1, is included in the sector [pmin, pmax].

Figure 3. Sector. Sector is the area between pmin and pmax. Points
correspond to supervoxel centres. Green points are included into
sector [pmin, pmax] and black points are not included. ~nmin and
~nmax are normals to planes pmin and pmax. Best seen in colour.

Uncertainty of a plane and a sector. Let us define by
Cr

i (p) the set of supervoxels ŝj ∈ Ŝr
i lying on p. Lying on

p means that there exists a voxel q that belongs to the plane
p and to ŝj .

Cr
i (p) = {ŝj | ∃q : q ∈ ŝj , ŝj ∈ Ŝr

i and q ∈ p}. (2)

We associate to each ŝj an uncertainty value U(ŝj) ≥ 0
according to Sec. 4. Then, we define the uncertainty of a
plane p as

U(p) =
∑

ŝj∈Cr
i (p)

U(ŝj). (3)

We take the uncertainty score of a sector to be the sum
of uncertainty scores of the supervoxels lying between the
two planes that define the sector. For a supervoxel to be in-
cluded in the sector, it is enough for its center to lie between
the planes or to be no further than 2κ away from any of
them. To find the supervoxels enclosed between planes pmin

and pmax, we first find normal vectors to these planes ~nmin

and ~nmax chosen such that they are pointing both inside or
both outside of the sector as shown in Fig. 3. To ensure the
orientation of the normals we examine their inner product
d = ~nmin · ~nmax. With acute angles of the sectors, to guar-
antee the orientation, it is enough to ensure that d is nega-
tive. Finally, the points enclosed between the planes should
have the inner products of their centres with the two nor-
mal vectors either both positive or both negative (this will
correspond to a set of points on the other side of the planes
intersection) with offset 2κ:

Cr
i ([pmin, pmax]) =

= {ŝj | ŝj ∈ Ŝr
i : {~wj ·~nmin > −2κ and ~wj ·~nmax > −2κ}

or {~wj · ~nmin < 2κ and ~wj · ~nmax < 2κ}}. (4)

Then the uncertainty of a sector is defined as sum of the
uncertainties of supervoxels in Cr

i ([pmin, pmax])

U([pmin, pmax]) =
∑

ŝj∈Cr
i ([pmin,pmax])

U(ŝj). (5)

Optimisation problem. Recall that our target is to find
a circular patch p∗ of maximum uncertainty. Finally, given
the above notation, this can be formulated as

p∗ = (φ∗, γ∗) = argmax
p∈Pi

U(p). (6)

B. Implementation

To find the optimal circular patch and solve Eq. (6), we
use a Branch-and-Bound optimization approach. It involves
evaluating entire subsets of the parameter space, i.e. φ and
γ, using a bounding function and progressively reducing
the search space. The optimal parameters are then attained
when the evaluated subset is a singleton. As such, we now
define a bounding function, a search procedure and then a
termination condition.

Bounding function. Sectors can be treated as subsets of
the parameter space and their properties allow us to define



Figure 4. Sector splitting procedure. U(p0) < U([pmin, pmax]).
We split the sector [pmin, pmax] into [pmin, p0] and [p0, pmax] and
evaluate their uncertainty values. Among all available sectors we
select a sector with the highest value to be split next. Best seen in
colour.

bounding function. Consider any plane p0 = (φ0, γ0) ∈
[pmin, pmax] as shown in Fig. 4. Given that U(ŝj) ≥ 0 and
that Eq. (6) is linear in U(ŝj), the score of this plane will
certainly be less or equal to the score of all the points in-
cluded between two planes pmin and pmax

U(p0) ≤ U([pmin, pmax]). (7)

This observation allows us to bound the score of any
plane on the top and to search for planes in the most promis-
ing parameter intervals.

Search procedure. We keep a priority queue L of sec-
tors. At each step of the algorithm we remove the sector
[pjmin, p

j
max] with the highest uncertainty U([pjmin, p

j
max])

according to Eq. (5) and process it as follows. We divide
each of the angles φjminsiφ

j
max and γjminsiγ

j
max into two

by a bisector plane pj0 = (φj0, γ
j
0), where φj0 = (φjmin +

φjmax)/2 and γj0 = (γjmin+γ
j
max)/2 as shown in Fig. 4. We

compute the uncertainty of sectors [pjmin, p
j
0] and [pj0, p

j
max]

and add them to the priority queue L. Note, that we always
operate on acute angles after the first iteration with initial-
isation [0;π), that allows us to compute uncertainty scores
of sectors as shown in Eq. (4) and Eq. (5).

Termination condition. The procedure of splitting areas
is continued while the range of angles of interest: φmax −
φmin or γmax − γmin is bigger than the angle that allows to
fit a spherical voxel at the end of a segment as depicted by
Fig. 5. This minimal angle is defined as

αmin = 2arctan
κ

r
. (8)

It is possible to find a single plane that includes voxels

Figure 5. Minimal angle of interest. The search procedure is ter-
minated when the angle of a sector becomes less than the angle
allowing to fit a single supervoxel at the end of the sector.

from each of supervoxels in this sector Cr
i ([pmin, pmax]).

C. Global optimization

Finally, recall that we performed all the operations de-
scribed above for the most uncertain supervoxel si. If we
consider the whole image stack, we would need to per-
form the search procedure for every possible supervoxel
sj , which would be prohibitively expensive. Thus, we re-
strict our search to t top supervoxels in the volume. We
assume that the uncertainty scores are often consistent in
small neighbourhoods, which is especially true for the Geo-
metric uncertainty described in Sec. 4.2. It enables us to find
a solution that is close to the optimal one with a low value
of t. So, the final algorithm is the following: we take all su-
pervoxels S with uncertainty U and fix t. Then, we find the
best plane for each of the t top supervoxels and choose the
best plane among them.


