Abstract

We propose an Active Learning approach to training a segmentation classifier that exploits geometric priors to streamline the annotation process in 3D image volumes. To this end, we use these priors not only to select voxels most in need of annotation but to guarantee that they lie on 2D planar patch, which makes it much easier to annotate than if they were randomly distributed in the volume. A simplified version of this approach is effective in natural 2D images.

We evaluated our approach on Electron Microscopy and Magnetic Resonance image volumes, as well as on natural images. Comparing our approach against several accepted baselines demonstrates a marked performance increase.

1. Introduction

Machine Learning techniques are a key component of modern approaches to segmentation, making the need for sufficient amounts of training data critical. As far as images of everyday scenes are concerned, this is addressed by compiling ever larger training databases and obtaining the ground truth via crowd-sourcing [18, 17]. By contrast, in specialized domains such as biomedical image processing, this is not always an option both because the images can only be acquired using very sophisticated instruments and because only experts whose time is scarce and precious can annotate them reliably.

Active Learning (AL) is an established way to reduce this labeling workload by automatically deciding which parts of the image an annotator should label to train the system as quickly as possible and with minimal amounts of manual intervention. However, most AL techniques used in Computer Vision, such as [14, 13, 34, 21], are inspired by earlier methods developed primarily for general tasks or Natural Language Processing [32, 15]. As such, they rarely account for the specific difficulties or exploit the opportunities that arise when annotating individual pixels in 2D images and 3D voxels in image volumes.

More specifically, 3D stacks such as those depicted by Fig. 1 are common in the biomedical field and are particularly challenging, in part because it is difficult both to develop effective interfaces to visualize the huge image data and for users to quickly figure out what they are looking at. In this paper, we will therefore focus on image volumes but the techniques we will discuss are nevertheless also applicable to regular 2D images by treating them as stacks of height one.

With this, we introduce here a novel approach to AL that is geared towards segmenting 3D image volumes and also applicable to ordinary 2D images. By design, it takes into account geometric constraints to which regions should obey and makes the annotation process convenient. Our contribution hence is twofold:

- We introduce a way to exploit geometric priors to more effectively select the image data the expert user is asked to annotate.

- We streamline the annotation process in 3D volumes so that annotating them is no more cumbersome than annotating ordinary 2D images, as depicted by Fig. 2.

In the remainder of this paper, we first review current approaches to AL and discuss why they are not necessarily the most effective when dealing with pixels and voxels. We then give a short overview of our approach and discuss in more details how we use geometric priors and simplify the annotation process. Finally, we compare our results against those of accepted baselines and state-of-the-art techniques.

2. Related Work and Motivation

In this paper, we are concerned with situations where domain experts are available to annotate images. However, their time is limited and expensive. We would therefore like to exploit it as effectively as possible. In such a scenario, AL [27] is a technique of choice as it tries to determine the smallest possible set of training samples to annotate for effective model instantiation.

In practice, almost any classification scheme can be incorporated into an AL framework. For image processing purposes, that includes SVMs [13], Conditional Random Fields [34], Gaussian Processes [14] and Random Forests
Figure 1. Interface of the FIJI Visualization API [25], which is extensively used to interact with 3D image stacks. The user is presented with three orthogonal planar slices of the stack. While effective when working slice by slice, this is extremely cumbersome for random access to voxels anywhere in the 3D stack, which is what a naive AL implementation would require.

![Figure 1](image1.jpg)

Figure 2. Our approach to annotation. The system selects an optimal plane in an arbitrary orientation—as opposed to only xy, xz, and yz—and presents the user with a patch that is easy to annotate. (a) The annotated area shown as part of the full 3D stack. (b) The planar patch the user would see. It could be annotated by clicking twice to specify the red segment that forms the boundary between the inside and outside of a target object within the green circle. Best viewed in color.

![Figure 2](image2.jpg)

Typical strategies for query selection rely on uncertainty sampling [13], query-by-committee [7, 12], expected model change [29, 31, 34], or measuring information in the Fisher matrix [11].

These techniques have been used for tasks such as Natural Language Processing [15, 32, 24], Image Classification [13, 11], and Semantic Segmentation [34, 12]. However, selection strategies are rarely designed to take advantage of image specificities when labeling individual pixels or voxels, such as the fact that neighboring ones tend to have the same labels or that boundaries between similarly labeled ones are often smooth. The segmentation methods presented in [16, 12] do however take such geometric constraints into account at classifier level but not in AL query selection, as we do.

Similarly, batch-mode selection [28, 11, 29, 5] has become a standard way to increase the efficiency by asking the expert to annotate more than one sample at a time [23, 2]. But again, this has been mostly investigated in terms of semantic queries without due consideration to the fact that, in images, it is much easier for annotators to quickly label many samples in a localized image patch than having to annotate random image locations. In 3D image volumes [16, 12, 8], it is even more important to provide the annotator with a patch in a well-defined plane, such as the one shown in Fig. 2, rather than having him move randomly in a complicated 3D volume, which is extremely cumbersome using current 3D image display tools such as the popular FIJI platform depicted by Fig. 1. The technique of [33] is an exception in that it asks users to label objects of interest in a plane of maximum uncertainty. Our approach is similar, but it has several distinctive features: 1) The procedure we use to find the plane requires far fewer parameters to be set, as discussed in the supplementary material. 2) We search for the most uncertain patch in the plane and do not require the user to annotate the whole plane. 3) Our approach can be used in conjunction with an ergonomic interface that requires at most three mouse clicks per iteration. Also, as we show in the result section, our method outperforms the earlier one.

3. Approach

We begin by broadly outlining our framework, which is set in a traditional AL context. That is, we wish to train a classifier for segmentation purposes, but have initially only few labeled and many unlabeled training samples at our disposal.

Since segmentation of 3D volumes is computationally expensive, supervoxels have been extensively used to speed up the process [3, 20]. We therefore formulate our problem in terms of classifying supervoxels as either part of a target object or not. As such, we start by oversegmenting the image using the SLIC algorithm [1] and computing for each resulting supervoxel s_j a feature vector x_j. Note that SLIC superpixels/supervoxels are always roughly circular/spherical, which allows us to characterize them by their center and radius.

Our AL problem thus involves iteratively finding the next set of supervoxels that should be labeled by an expert to improve segmentation performance as quickly as possible. To this end, our algorithm proceeds as follows:

1. Using the already manually labeled voxels S_L, we train a task specific classifier and use it to predict for all remaining voxels S_U the probability of being foreground or background.

2. Next, we score unlabeled supervoxels on the basis of
a novel uncertainty function that combines traditional Feature Uncertainty with Geometric Uncertainty. Estimating the former usually involves feeding the features attributed to each supervoxel to the previously trained classifier. To compute the latter, we look at the uncertainty of the label that can be inferred based on a supervoxel’s distance to its neighbors and their predicted labels. By doing so, we effectively capture the constraints imposed by the local smoothness of the image data.

3. We then automatically select the best plane through the 3D image volume in which to label additional samples, as depicted in Fig. 2. The expert can then effortlessly label the supervoxels from a circle in the selected plane by defining a line separating target from non-target regions. This removes the need to examine the relevant image data from multiple perspectives, as depicted in Fig. 1, and simplifies the labeling task.

The process is then repeated. In Sec. 4, we will discuss the second step and in Sec. 5 the third. In Sec. 6, we will demonstrate that this pipeline yields faster learning rates than competing approaches.

4. Geometry-Based Active Learning

Most AL methods were developed for general tasks and operate exclusively in feature space, thus ignoring the geometric properties of images and more specifically their geometric consistency. To remedy this, we introduce the concept of Geometric Uncertainty and then show how to combine it with more traditional Feature Uncertainty.

Our basic insight is that supervoxels that are assigned a label other than that of their neighbors ought to be considered more carefully than those that are assigned the same labels. In other words, under the assumption that neighbors more often than not have identical labels, the chance of the assign being wrong is higher. This is what we refer to as Geometric Uncertainty and we now formalize it.

4.1. Feature Uncertainty

For each supervoxel \(s_i \) and each class \(\hat{y} \), let \(p_0(y_i = \hat{y} | x_i) \) be the probability that its class \(y_i \) is \(\hat{y} \), given the corresponding feature vector \(x_i \). In this work, we will assume that this probability can be computed by means of a classifier which has been trained using parameters \(\theta \) and we take \(\hat{y} \) to be 1 if the supervoxel belongs to the foreground and 0 otherwise \(^1\). In many AL algorithms, the uncertainty of this prediction is taken to be the Shannon entropy

\[
H^\theta_i = - \sum_{\hat{y} \in \{0,1\}} p_0(y_i = \hat{y} | x_i) \log p_0(y_i = \hat{y} | x_i). \tag{1}
\]

\(^1\)Extensions to multiclass cases can be similarly derived.

Figure 3. Image represented as a graph: we treat supervoxels as nodes in the graphs and edge weights between them reflect the probability of transition of the same label to a neighbour. Supervoxel \(s_i \) has \(k \) neighbours from \(A_k(s_i) = \{ s_i^1, s_i^2, ..., s_i^k \} \), \(p_T(y_j = \hat{y}|y_i = \hat{y}) \) is the probability of node \(s_i \) having the same label as node \(s_j \), \(p_0(y_i = \hat{y}|x_i) \) is the probability that \(s_i \), class of \(s_i \), is \(\hat{y} \), given only the corresponding feature vector \(x_i \).

We will refer to this uncertainty estimate as the Feature Uncertainty.

4.2. Geometric Uncertainty

Note that estimating the uncertainty as described above completely ignores the correlations between neighboring supervoxels. To account for them, we can estimate the entropy of a different probability, specifically the probability that supervoxel \(s_i \) belongs to class \(\hat{y} \) given the classifier predictions of its neighbors and which we denote \(p_G(y_i = \hat{y}) \).

To this end, we treat the supervoxels of a single image volume as nodes of a weighted graph \(G \) whose edges connect neighboring ones, as depicted in Fig. 3. We let \(A_k(s_i) = \{ s_i^1, s_i^2, ..., s_i^k \} \) be the set of \(k \) nearest neighbors of \(s_i \) and assign a weight inversely proportional to the Euclidean distance between the voxel centers to each one of the edges. For each node \(s_i \), we normalize the weights of all incoming edges so that their sum is one and treat this as the probability \(p_T(y_i = \hat{y}|y_j = \hat{y}) \) of node \(s_i \) having the same label as node \(s_j \) \(\in A_k(s_i) \). In other words, the closer two nodes are, the more likely they are to have the same label.

To infer \(p_G(y_i = \hat{y}) \), we then use the well-studied Random Walk strategy \(G \) [19], as it reflects well our smoothness assumption and has been extensively used for image segmentation purposes [9, 33]. Given the \(p_T(y_i = \hat{y}|y_j = \hat{y}) \) transition probabilities, we can compute the probabilities \(p_G \) iteratively by initially taking \(p_G^0(y_i = \hat{y}) \) to be

\[
p_G^0(y_i = \hat{y}) = \sum_{s_j \in A_k(s_i)} p_T(y_i = \hat{y}|y_j = \hat{y}) p_0(y_j = \hat{y}|x_i), \tag{2}
\]

and then iteratively computing

\[
p_G^{n+1}(y_i = \hat{y}) = \sum_{s_j \in A_k(s_i)} p_T(y_i = \hat{y}|y_j = \hat{y}) p_G^n(y_j = \hat{y}), \tag{3}
\]
The procedure describes the propagation of labels to supervoxels from its neighborhood. The number of iterations \(\tau_{max} \) defines the radius of the neighborhood involved in the computation of \(p_G \) for \(s_i \) and encodes the smoothness priors.

Given these probabilities, we can now take the Geometric Uncertainty to be
\[
H_{i}^G = - \sum_{\hat{y} \in \{0,1\}} p_G(y_i = \hat{y}) \log p_G(y_i = \hat{y}),
\]
(4)
as we did in Sec. 4.1 to estimate the Feature Uncertainty.

4.3. Combining Feature and Geometric Entropy

As discussed above, from a trained classifier we can thus estimate the Feature and Geometric Uncertainties. To use them jointly, we should in theory estimate the joint probability distribution \(p_{\theta,G}(y_i \mid x_i) \) and the corresponding joint entropy. As this is computationally intractable in our model, we take advantage of the fact that the joint entropy is upper bounded by the sum of individual entropies \(H^\theta \) and \(H^G \). Thus, for each supervoxel, we take the Combined Uncertainty to be
\[
H_{i}^{\theta,G} = H_{i}^\theta + H_{i}^G
\]
(5)
that is, the upper bound of the joint entropy.

In practice, using this measure means that supervoxels that individually receive uncertain predictions and are in areas of transition between foreground and background will be considered first.

5. Batch-Mode Geometry Query Selection

The simplest way to exploit the Combined Uncertainty introduced in Sec. 4.3 would be to pick the most uncertain supervoxel, ask the expert to label it, retrain the classifier, and iterate. A more effective way however is to find appropriately-sized batches of uncertain supervoxels and ask the expert to label them all before retraining the classifier. As discussed in Sec. 2, this is referred to as batch-mode selection. A naive implementation of this would force the user to randomly view and annotate supervoxels in the volume regardless of where they are, which would be extremely cumbersome.

In this section, we therefore introduce an approach to using the uncertainty measure to first select a planar patch in 3D volumes and then to allow the user to quickly label positives and negatives within it, a shown in Fig. 2.

Since we are working in 3D and there is no preferential orientation in the data to work with, it makes sense to look for spherical regions where the uncertainty is maximal. However, for practical reasons, we only want the annotator to consider circular regions within planar patches such as the one depicted in Fig. 2 and Fig. 4. These can be understood as the intersection of the sphere with a plane of arbitrary orientation.

Formally, let us consider a supervoxel \(s_i \) and let \(P_i \) to be the set of planes bisecting the image volume and containing the center of \(s_i \). Each plane \(p_i \in P_i \) can be parameterized by two angles \(\phi \in (0, \pi) \) and \(\gamma \in (0, \pi) \) and its origin can be taken to be the center of \(s_i \), as depicted by Fig. 4. In addition, let \(C_i^p(p_i) \) be the set of supervoxels lying on \(p_i \) within distance \(r \geq 0 \) to its origin, shown in green in Fig. 2.

Recall from Sec. 4, that we have defined the uncertainty of a supervoxel as either the Feature Uncertainty of Eq. (1), the Geometric Uncertainty of Eq. (4), or the Combined Uncertainty of Eq. (5). In other words, we can associate each \(s_i \) with an uncertainty value \(u_i \geq 0 \) in one of three ways. Whichever way we choose, finding the circle of maximal uncertainty can be formulated as finding
\[
p_i^* = (\phi^*, \gamma^*) \arg\max_{p_i \in P_i} \sum_{s_j \in C_i^p(p_i)} u_j.
\]
(6)
In practice, we find the most uncertain plane \(p_i^* \) for the \(t \) most uncertain supervoxels \(s_i \) and present the overall most uncertain plane \(p^* \) to the annotator.

The idea of this strategy is to evaluate entire subsets of the parameter space, i.e. \(\phi \) and \(\gamma \), using a bounding function and progressively evaluating the best looking subsets. In the coordinates of Fig. 4 sectors of the sphere (for example, sector between planes \(p_{\text{min}} \) and \(p_{\text{max}} \) in Fig. 5) can be treated as subsets of the parameter space. Consider any plane \(p_0 = (\phi_0, \gamma_0) \) bisecting the sector between planes \(p_{\text{min}} \) and \(p_{\text{max}} \) as shown in Fig. 5. Given that \(u_i \geq 0 \) and that Eq. (6) is linear in \(u_i \geq 0 \), the score of the plane \(p_0 \) will certainly be less or equal to the score of all the points included between two planes \(p_{\text{min}} \) and \(p_{\text{max}} \). This observation allows us to bound the score of any plane on the top and to search for planes in the most promising parameter intervals. We keep a priority...
queue of sectors and at each step we divide the sector with the highest uncertainty in two new sectors by a bisector plane as in Fig. 5. The uncertainties of new sectors are computed added to the priority queue. The optimal parameters are then attained when the evaluated subset contain is a singleton. Formal definitions and more details on the procedure are given in the supplementary material.

By contrast to an exhaustive search that would be excruciatingly slow, our current MATLAB implementation on the 10 images of resolution $176 \times 170 \times 220$ of MRI dataset of Sec. 6.3 takes 0.12s per plane selection at supervoxel. This means that a C implementation would be real-time, which is critical to such an interactive method to being accepted by users.

Note that when the radius $r = 0$, this reduces to what single-supervoxel labeling does. By contrast, for $r > 0$, this allows annotation of many uncertain supervoxels with a few mouse clicks, as will be discussed further in Sec. 6. Although planar selection can be applied to any type of uncertainty value, we believe that it is the most beneficial when combined with Geometric Uncertainty as the latter already takes into account the most uncertain regions instead of isolated supervoxels.

6. Experiments

In this section, we evaluate our full approach both on two different Electron Microscopy (EM) datasets and a Magnetic Resonance Imaging (MRI) one. We then demonstrate that a simplified version is effective for natural 2D Images.

6.1. Setup and Parameters

For all our experiments, we used Boosted Trees selected by Gradient Boosting [30, 4] as our underlying classifier. Given that during early AL iterations rounds, only limited amounts of training data are available, we limit the depth of our trees to 2 to avoid over-fitting. Following standard practice, individual trees are optimized using 40% – 60% of the available training data chosen at random and 10 to 40 features are explored per split. We set the number k of nearest neighbors of Section 4.2 to be the number of immediately adjacent supervoxels on average, which is between 7 and 15 depending on the resolution of the image and size of supervoxels. However, experiments showed that the algorithm is not very sensitive to the choice of this parameter. We restrict the size of each planar patch to be small enough to contain typically not more than part of one object of interest. To this end, we take the radius r of Section 5 to be between 10 and 15, which yields patches such as those depicted by Fig. 6.

Baselines.

For each dataset, we compare our approach against several baselines. The simplest is Random Sampling (Rs), that is, randomly selecting samples to be labeled. It serves to gauge the difficulty of the segmentation problem and quantify the improvement brought by the more elaborate strategies.

The next simplest, but widely accepted approach is to perform Uncertainty Sampling [5, 18] of supervoxel by using the uncertainty measures of Section 4. Let H_i^U be the uncertainty score we use in a specific experiment. The strategy then is to select

$$s^* = \text{arg max}_{s_i \in S_U} (H_i^U).$$

We will refer to this as FUs when using the Feature Uncertainty of Eq. 1 and as CUs when using the Combined Uncertainty of Eq. 5. For the Random Walk, iterative procedure with $\tau_{\text{max}} = 20$ leads to high learning rates in our applications. Finally, the most sophisticated approach is to use Batch-Mode Geometry Query Selection, as described in Sec. 5, in conjunction with either Feature Uncertainty or Combined Uncertainty. We will refer to the two resulting strategies as pFUs and pCUs, respectively. Both plane selection strategies are using $t = 5$ best supervoxels in the optimization. Further increase of this value didn’t demonstrate significant growth of the learning rate.

Fig. 2, 6 jointly depict what a potential user would see for pFUs and pCUs given a small enough patch radius. Given a well designed interface, it will typically require to click only once or twice to provide the required feedback (see Fig. 6). In our performance evaluation, we will therefore estimate that each intervention of the user for pFUs and pCUs requires two clicks whereas for Rs, FUs, and CUs it requires only one. So, for the method comparison we measure annotation effort as 1 for Rs, FUs, and CUs and as 2 for pFUs and pCUs.

Note that pFUs is similar in spirit to the approach of [33] and can therefore be taken as a good indicator of how this other method would perform on our data. However, unlike [33], we do not require user to label the whole plane and keep our suggested interface for a fairer comparison.
Adaptive Thresholding. Recall from Section 4.1 that for all the approaches discussed here, the probability of a supervoxel being foreground is computed as $p(y_i = 1 | x_i) = (1 + \exp^{-2(F-h)})^{-1}$, where F is the output of the classifier and h is the threshold [10]. Usually, the threshold is chosen by cross-validation but this strategy may be misleading or not even possible for AL. We therefore assume that the scores of training samples in each class are Gaussian distributed with unknown parameters μ and σ. We then find an optimal threshold h^* by fitting Gaussian distributions to the scores of positive and negative classes and choosing the value that yields the smallest Bayesian error, as depicted by Fig. 7. We refer to this approach as Adaptive Thresholding and we use it for all our experiments.

Experimental Protocol. In all cases, we start with 5 positive and 5 negative labeled supervoxels and perform AL iterations until we receive 100 inputs from the user. Each method starts with the same random subset of samples and each experiment is repeated $N = 40$ times. We will therefore plot not only accuracy results but also indicate the variance of these results.

Fully annotated volumes of ground truth are available for us and we use them to simulate the expert’s intervention in our experiments. We detail the specific features we used for EM, MRI, and natural images below.

6.2. Results on EM data

Here, we work with two 3D Electron Microscopy stacks of rat neural tissue, one from the striatum and the other from the hippocampus. One stack of size $318 \times 711 \times 422$ ($165 \times 1024 \times 653$ for hippocampus) is used for training and another stack of size $318 \times 711 \times 450$ ($165 \times 1024 \times 883$) is used to evaluate the performance. Their resolution is 5nm in all three spatial orientations. The slices of Fig. 1 as well as patches in the upper row in Fig. 6 come from the striatum and hippocampus volume is shown in Fig. 9 with its patches shown in the lower row of Fig. 6.

The task is to segment mitochondria, which are the intracellular structures that supply the cell with its energy and are of great interest to neuroscientists. It is extremely laborious to annotate sufficient amounts of training data for learning segmentation algorithms to work satisfactorily. Furthermore, different brain areas have different characteristics, which means that the task must be repeated often. The features we feed our Boosted Trees rely on local texture and shape information using ray descriptors and intensity histograms as in [20].

![Figure 7. Estimate mean and standard deviation for classifier scores of positive class datapoints (red) – μ^+ and σ^+ and negative class datapoints (blue) – μ^-, σ^-, and fit 2 Gaussian distributions. Given their pdf estimate optimal Bayesian error with threshold h^*.](image)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>FUs</th>
<th>CUs</th>
<th>pFUs</th>
<th>pCUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus</td>
<td>0.172</td>
<td>0.1009</td>
<td>0.0848</td>
<td>0.0698</td>
</tr>
<tr>
<td>Striatum</td>
<td>0.1326</td>
<td>0.1053</td>
<td>0.1133</td>
<td>0.0904</td>
</tr>
<tr>
<td>MRI</td>
<td>0.0758</td>
<td>0.0642</td>
<td>0.0767</td>
<td>0.0545</td>
</tr>
<tr>
<td>Natural</td>
<td>0.1448</td>
<td>0.1389</td>
<td>0.1494</td>
<td>0.1240</td>
</tr>
</tbody>
</table>

Table 1. Variability of results by different AL strategies. 80% of the scores are lying within the indicated interval. Feature Uncertainty is always more variable than Combined Uncertainty, batch selection is always less variable than single-instance selection. The best result is highlighted in bold.

In Fig. 8, we plot the performance of all the approaches we consider in terms of the VOC [6] score, a commonly used measure for this kind of application, as a function of the annotation effort. The horizontal line at the top depicts the VOC scores obtained by using the whole training set, which comprises 276130 and 325880 supervoxels, for the striatum and the hippocampus respectively. FUs provides a boost over Rs, and CUs yields a larger one. In both cases, a further improvement is obtained by introducing the batch-mode geometry query selection of pFUs and pCUs, with the latter coming on top. Recall that these numbers are averages over many runs. In Table 1, we give the corresponding variances. Note that both using the Geometric Uncertainty and the batch-mode tend to reduce them, thus making the process more predictable. Note also the 100 number we use very much smaller than the total number of available samples.

Somewhat surprisingly, in the hippocampus case, the classifier performance given only 100 training data points is higher than the one obtained by using all the training data. In fact, this phenomenon has been reported in the AL literature [26] and suggests that a well chosen subset of datapoints can produce better generalisation performance than the complete set.

6.3. Results on MRI data

Here we consider multimodal brain tumor segmentation in MRI brain scans. Segmentation quality depends critically on the amount of training data and only highly-trained experts can provide it. T1, T2, FLAIR, and post-Gadolinium T1 MR images are available in the BRATS dataset for each one.
of 20 subjects [22]. We use standard filters such as Gaussian, gradient filter, tensor, Laplacian of Gaussian and Hessian with different parameters to compute the feature vectors we feed to our Boosted Trees.

In Fig. 10, we plot the performance of all the approaches we consider in terms of the dice score [8], a commonly used quality measure for brain tumor segmentation, as a function of the annotation effort and in Table 1, we give the corresponding variances. We observe the same pattern as in Fig. 8, with pCUs again doing best.

The patch radius parameter r of Sec. 5 plays an important role in plane selection. To evaluate its influence, we recomputed our pCUs results 50 times using three different values for $r = 10$, 15 and 20. The resulting plots are shown in Fig. 10. With a larger radius, the learning-rate is slightly higher as could be expected from since more voxels are labeled each time. However, as the patches become larger, it stops being clear that this can be done with only two mouse clicks and that is why we limited ourselves to radius sizes of 10 to 15.

6.4. Natural Images

Finally, we turn to natural 2D images and replace supervoxels by superpixels. In this case, the plane selection of pFUs and pCUs reduces to simple selection of image patches in the image. In practice, we simply select superpixels with their 4 neighbors. Increasing this number would lead to higher learning rates in the same way as increasing the patch radius r, but we restrict it to a small value to ensure labelling can be done with 2 mouse clicks on average. To compute image features, we use Gaussian, Laplacian, Laplacian of Gaussian, Prewitt, Sobel filters to filter intensity and color values, gather first-order statistics such as local standard deviation, local range, gradient magnitude and direction histograms, as well as SIFT features.

We plot our results on the Weizmann horse database in Fig. 11 and give the corresponding variances in Table 1. The pattern is again similar to the one observed in Figs. 8 and 10, with the difference between CUs and pCUs being smaller due to the fact that 2D batch-mode approach is much less sophisticated than the 3D one. Note, however, that the first few iterations are disastrous for all methods, however, plane-based methods are able to recover from it quite fast.

7. Conclusion

In this paper we introduced an approach to exploiting the geometric priors inherent to images to increase the effectiveness of Active Learning for segmentation purposes. For 2D images, it relies on an approach to Uncertainty Sampling that accounts not only for the uncertainty of the prediction at a specific location but also in its neighborhood. For 3D image stacks, it adds to this the ability to automatically select a planar patch in which manual annotation is easy to do.

We have formulated our algorithms in terms of background/foreground segmentation but the entropy functions that we use to express our uncertainties can handle multiple classes with little change to the overall approach. In future work, we will therefore extend our approach to more general segmentation problems.

Acknowledgements

This work was supported in part by the EU project MicroNano. We would also like to thank Carlos Becker and Lucas Maystre for useful and inspiring discussions, Agata Mosinska and Róger Bermúdez-Chacón for their proofreading and comments on the text.
Figure 6. Circular patches to be annotated by the expert highlighted by the yellow circle in (a) Electron Microscopy data, (b) MRI data, and (c) natural images. The patches can be entirely foreground, entirely background. Alternatively, the boundary between foreground and background within the patch can be indicated by tracing a red line segment. In all cases, that would require at most two mouse clicks.

Figure 8. Comparison of various AL strategies for mitochondria segmentation. Left: striatum dataset, right: hippocampus dataset.

Figure 10. Comparison of various AL strategies for MRI data for tumor segmentation. Left: dice score for BRATS2012 dataset, right: pCUs strategy with patches of different radius.
References

