
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J. R. Larus, président du jury
Prof. M. Odersky, directeur de thèse

Prof. J. Vitek, rapporteur
Prof. M. Zaharia, rapporteur
Prof. V. Kuncak, rapporteur

Language Support for Distributed Functional Programming

THÈSE NO 6784 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 16 OCTOBRE 2015

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE MÉTHODES DE PROGRAMMATION 1

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Heather MILLER

To Philipp. I’d never have

gotten through it without you.

Acknowledgements

A PhD is never easy for anyone. For most, it’s a road fraught with challenges, technical and

ideological. I had a rougher start than most, bouncing around completely disparate fields

for two full years, an entire ocean away from home, in a country where I knew no one and

couldn’t speak the local language before I joined the LAMP group. Therefore, I must first and

foremost thank my advisor, Martin Odersky, for looking at this oddball PhD student with a

background in signal processing and electrical engineering, in another research group, doing

something totally different, and giving me a chance to try and build meaningful frameworks

and abstractions as part of the Scala team at EPFL these past four years. Without his support

and insight, this dissertation would not have been possible.

I’d also like to thank my friends in Lausanne and colleagues at EPFL, those in LAMP and those

not. If it wasn’t for you, I’d not have gotten here. Switzerland can be a lonely place for those

from far away. You were the people I could speak to, joke with, and generally relax around

during these long six years. The list is long, and I hope I manage to mention everybody.

To my friends who started this journey with me; roommates and EDIC office colleagues,

thank you. Yuliy Schwarzburg, a longtime friend from Cooper Union in New York City, and

roommate here in Switzerland, and his fiancée Lyvia Fishman. Arash Farhang, my best

mountain buddy and now caretaker of my old best friend, Umlaut. Evan Williams and Davide

de Masi – ’MURICAH! – thanks for all of the good times and solidarity in being ignorant

Americans lost on this continent without HVAC and diners together. Petr Susil, Iulian Dragos,

Tanja Petricevic, Cristina Ghiurcuta, Jennifer Sartor, Eva Darulova, Tihomir Gvero, Horesh Ben

Shitrit, Adar Hoffman, and Alla Merzakreeva, thank you for being some of my first friends in

Switzerland.

One person that stood out during these years in Switzerland is Liz Daley. Liz didn’t live in

any one place. She rode big mountains and climbed epic splitter all over the world, based

often in Seattle or Chamonix/Lausanne. She lived her dreams and became one of the first

and few pro woman snowboarders and mountaineers. I never had the chance to tell her how

inspiring she was. Liz, you constantly remind me what stoke is. Even I (one of a thousand

distant non-mountaineering buddies) think of you often. You were an example to myself and

many. Your time with us was far too short.

i

Acknowledgements

Importantly, I want to thank my colleagues in the LAMP laboratory. You all were the source of

so many deep discussions, explorations of ideas, and of course many beers, ski trips, or other

unforgettable shenanigans. Sandro Stucki, Manohar Jonnalagedda, Alex Prokopec, Ingo Maier,

Vojin Jovanovic, Hubert Plociniczak, Tobias Schlatter, Donna Malayeri, Vlad Ureche, Lukas

Rytz, Adriaan Moors, Gilles Dubochet, Tiark Rompf, Miguel Garcia, Denys Shabalin, Eugene

Burmako, Sébastien Doeraene, Christopher Jan Vogt, Dmitry Petrashko, Samuel Grütter, Nada

Amin, and Antonio Cunei – thank you for the camaraderie all these years. And of course,

thank you to Danielle Chamberlain and Fabien Salvi for fielding all of my administrative and

computer-related questions, respectively.

Being in a position to start a PhD is one thing, and a PhD thesis acknowledgement section

wouldn’t be complete without thanking those unknowing mentors who are largely responsible

for me taking this path to higher education at all. Firstly, I must thank a high school teacher of

mine, all the way back to the days where I majored in fine arts at Alexander W. Dreyfoos School

of the Arts back home in West Palm Beach, Florida. Jenny Gifford helped me to realize that I

had any potential at all. Without her encouragement, I’d have never ended up at univeristy at

all, let alone a top university like Cooper Union. So Jenny, thank you for seeing something in

me. Without you, I’d not be where I am. Secondly, I’d like to thank Professor Bethanie Stadler,

a short-term advisor I had while I participated in a US National Science Research Experience

for Undergrads (REU) program at the University of Minnesota. Professor Stadler is a professor

of Materials Science – a field I knew nothing about upon starting an REU with her. Professor

Stadler helped me to realize that I was capable of doing independent research, even if I was

entering a new field where I had little to no experience at the onset. The encouragement

she showed me during my time in Minnesota led to a trip to present our work at a scientific

conference in the French Alps – my first trip to Europe, and the turning point that helped me

to realize (1) I can do a PhD, and (2) in Switzerland. Beth introduced me to EPFL. Without her,

I’d likely not have gone to grad school, and I’d never have heard of EPFL.

I would like to thank my close friends here in Switzerland and back home in the US. Darja

Jovanavic and (not-so) little David Jovanovic, you were my buddies in Lausanne through all of

the moments when life and the PhD got tough – a mere thank you is not enough. I’d also like

to thank my lifelong friends back home in the US, Lindsay Hebrank, Beth Bachelor, thanks for

always being a friend, no matter how far apart we are.

I’d also like to thank my siblings for teaching me so much about life and even kids. Thank

you to my little sisters Ashley Marcantonio and Kayla Marcantonio for always teaching me

something new and for always such being a riot. And of course, thank you to my little brother

Sean Miller for teaching me the virtue of patience.

I’d like to thank my parents, my mother Christina Ellis Marcantonio, my step-father Timothy

Marcantonio, and my father Steve Miller for being there for me all these years. I know we didn’t

come from a lot, but you did the best for me that you could, and I will always be thankful. Mom

ii

Acknowledgements

– if you hadn’t patiently spent your days teaching me how to read and write as a toddler, I might

not have ever realized the power of knowledge and thought. You gave me the educational

foundation that I have built upon throughout my entire life, and for that I am eternally grateful.

I want to thank my husband Daniel Klug for his everlasting patience and unconditional love

and support. Daniel has had to put up with many late nights spanning from from paper

deadlines, to lectures, to organizing conferences, as well as months of me traveling, from India

to San Francisco, and all the while, he has been there for me, helping me through life with an

uplifiting smile, and always a hilarious pun. I’m truly lucky to have you by my side in this life,

and I still don’t know what I did to deserve you.

Last but not least, I’d like to thank Philipp Haller, my closest friend these past five years, and

my co-author. Philipp, you were the one that stood next to me through all of the toughest

moments and greatest triumphs during the PhD these past five years. I will never forget what

we went through together – the paper pushes, the epic travels, the times when life in general

got immeasurably difficult. Not only did you stand with me through unspeakably hard times

and the good, always kind, forgiving, and patient, but you also spent countless hours teaching

me much of what I know about Computer Science and Programming Languages. I know I can

never repay the time that you invested in me, and for that, know that I am forever grateful.

Thank you from the bottom of my heart.

Basel, Switzerland, July 26th, 2015 H. M.

iii

Abstract
Software development has taken a fundamental turn. Software today has gone from simple,

closed programs running on a single machine, to massively open programs, patching together

user experiences byway of responses received via hundreds of network requests spanning

multiple machines. At the same time, as data continues to stockpile, systems for big data

analytics are on the rise. Yet despite this trend towards distributing computation, issues at

the level of the language and runtime abound. Serialization is still a costly runtime affair,

crashing running systems and confounding developers. Function closures are being added to

APIs for big data processing for use by end-users without reliably being able to transmit them

over the network. And much of the frameworks developed for handling multiple concurrent

requests byway of asynchronous programming facilities rely on blocking threads, causing

serious scalability issues.

This thesis describes a number of extensions and libraries for the Scala programming language

that aim to address these issues and to provide a more reliable foundation on which to build

distributed systems.

This thesis presents a new approach to serialization called pickling based on the idea of

generating and composing functional pickler combinators statically. The approach shifts

the burden of serialization to compile time as much as possible, enabling users to catch

serialization errors at compile time rather than at runtime. Further, by virtue of serialization

code being generated at compile time, our framework is shown to be significantly more

performant than other state-of-the-art serialization frameworks. We also generalize our

technique for generating serialization code to generic functions other than pickling.

Second, in light of the trend of distributed data-parallel frameworks being designed around

functional patterns where closures are transmitted across cluster nodes to large-scale persis-

tent datasets, this thesis introduces a new closure-like abstraction and type system, called

spores, that can guarantee closures to be serializable, thread-safe, or even have custom user-

defined properties. Crucially, our system is based on the principle of encoding type informa-

tion corresponding to captured variables in the type of a spore. We prove our type system

sound, implement our approach for Scala, evaluate its practicality through a small empirical

study, and show the power of these guarantees through a case analysis of real-world distributed

and concurrent frameworks that this safe foundation for closures facilitates.

Finally, we bring together the above building blocks, pickling and spores, to form the basis of a

new programming model called function-passing. Function-passing is based on the idea of a

v

Abstract

distributed persistent data structure which stores in its nodes transformations to data rather

than the distributed data itself, simplifying fault recovery by design. Lazy evaluation is also

central to our model; by incorporating laziness into our design only at the point of initiating

network communication, our model remains easy to reason about while remaining efficient

in time and memory. We formalize our programming model in the form of a small-step

operational semantics which includes a precise specification of the semantics of functional

fault recovery, and we provide an open-source implementation of our model in and for Scala.

Key words: distributed programming, functional programming, closure, serialization, pro-

gramming model, concurrency, asynchronous programming, dataflow.

vi

Zusammenfassung
Die Software-Entwicklung hat eine grundlegende Wendung durchlaufen. Software hat sich

heutzutage von einfachen geschlossenen Programmen, die auf einem einzigen Rechner laufen,

hin zu „massive open programs“ gewandelt, die Nutzeranfragen zusammenführen, die als Ant-

worten von hunderten von Netzwerkanfragen an eine Vielzahl an Diensten eingegangen sind.

Zeitgleich dazu werden Daten weiterhin angesammelt und Systeme für Big Data Analytics sind

auf dem Vormarsch. Trotz des Trends zum verteilten Computing, sind Fragen zu Programmier-

sprachen und Laufzeitsystemen im Überfluss vorhanden. Serialisierung ist hinsichtlich der

Laufzeit nach wie vor eine kostspielige Angelegenheit, die laufende Systeme zum Abstürzen

bringt und Entwickler verwirrt. Funktions-Closures werden zu APIs hinzugefügt, um durch

Anwendungsentwickler zum Bearbeiten von Datensätzen massiver Grösse genutzt werden zu

können, jedoch ohne sicherzustellen, dass diese über das Netzwerk gesendet werden können.

Und ein Grossteil der Frameworks, die zur Verarbeitung multipler, gleichzeitiger Anfragen

durch asynchrone Programmierabstraktionen entwickelt wurden, basiert auf dem Blockieren

von Threads, was schwerwiegende Skalierungsprobleme verursacht.

Die vorliegende Dissertation beschreibt eine Reihe von Erweiterungen und Bibliotheken für

die Programmiersprache Scala, um die genannten Probleme anzugehen und eine zuverlässi-

gere Grundlage für die Konstruktion verteilter Systeme zu entwickeln.

Die Arbeit stellt einen neuen Ansatz zur Serialisierung, Pickling, vor, welcher auf der Idee

der Generierung und Komposition statischer Pickling-Funktionen beruht. Dieser Ansatz

verlagert den Aspekt der Serialisierung so stark wie möglich auf die Übersetzungszeit, um

Anwendern zu ermöglichen, Serialisierungsfehler zur Übersetzungszeit zu erkennen statt

zur Laufzeit. Des Weiteren ist unser Framework durch den Serialisierungscode, der beim

Kompilieren erzeugt wird, deutlich performanter als andere existierende Serialisierungs-

Frameworks. Zudem verallgemeinern wir unseren Ansatz zur Generierung weiterer Datentyp-

generischer Funktionen neben der Serialisierung.

In Anbetracht der Tendenz verteilter daten-paralleler Frameworks, die für funktionelle Muster

entworfen wurden, bei denen Closures über Cluster-Knoten zu großen persistenten Datensät-

zen übertragen werden, stellt diese Arbeit eine neue Closure-artige Abstraktion und Typsystem,

Spores, vor, dass garantieren kann, dass Closures serialisierbar sind, Thread-sicher sind, und

sogar benutzerdefinierte Eigenschaften haben. Entscheidend ist, dass unser System auf dem

Prinzip basiert, im Typ eines Spores Typinformation zu kodieren, welche den gefangenen Va-

riablen entspricht. Wir beweisen die Korrektheit unseres Typsystems, implementieren unseren

vii

Zusammenfassung

Ansatz in Scala, evaluieren dessen Praktikabilität mithilfe einer kleinen empirischen Studie,

und zeigen die Mächtigkeit dieser Garantien mithilfe einer Fallstudie realistischer verteilter

und nebenläufiger Frameworks, die durch diese sichere Grundlage für Closures unterstützt

werden.

Schließlich bringen wir die obengenannten Bausteine, Pickling und Spores, zusammen, um

die Basis eines neuen Programmiermodells, genannt Function-Passing, zu bilden. Function-

Passing basiert auf der Idee einer verteilten persistenten Datenstruktur, die in ihren Knoten

Daten-Transformationen anstelle der verteilten Daten selbst enthält, was die Fehlerbesei-

tigung per Konstruktion vereinfacht. Lazy Evaluation ist auch von zentraler Bedeutung für

unser Modell; da Lazy Evaluation in unserem Design nur an der Stelle der Initiierung von

Netzwerk-Kommunikation Bedeutung hat, bleibt die logische Grundlage unseres Modells

leicht verständlich, während es hinsichtlich Zeit und Speicherverbrauch effizient bleibt. Wir

formalisieren unser Programmiermodell in Form einer strukturierten operationellen Seman-

tik, die eine präzise Spezifikation der Semantik funktionaler Fehlerbeseitigung umfasst, und

wir stellen eine Open-Source-Implementierung unseres Modells in und für Scala bereit.

Stichwörter: Verteilte Programmierung, Funktionale Programmierung, Closure, Serialisierung,

Programmiermodell, Nebenläufigkeit, Asynchrone Programmierung, Datenfluss

viii

Contents
Acknowledgements i

Abstract (English/Deutsch) v

Table of Contents xii

List of figures xiii

List of tables xvii

1 Introduction 1

1.1 Contributions . 3

1.2 Structure . 5

1.3 Previously Published Material . 5

2 Asynchronous Programming 7

2.1 Futures . 7

2.1.1 Basic Usage . 9

2.1.2 Callbacks . 10

2.1.3 Higher-Order Combinators . 11

2.1.4 Exceptions and Recovery . 13

2.1.5 Execution Contexts . 15

2.1.6 Blocking . 16

2.2 FlowPools . 17

2.2.1 Model of Computation . 18

2.2.2 Programming Interface . 20

2.2.3 Implementation . 23

2.2.4 Correctness . 26

2.2.5 Evaluation . 28

2.3 Related Work . 31

2.4 Conclusion . 33

3 Pickling 35

3.1 Introduction . 35

3.1.1 Design Constraints . 36

ix

Contents

3.1.2 Contributions . 37

3.2 Overview and Usage . 38

3.2.1 Basic Usage . 38

3.2.2 Advanced Usage . 40

3.3 Object-Oriented Picklers . 42

3.3.1 Picklers in Scala . 42

3.3.2 Formalization . 48

3.3.3 Summary . 51

3.4 Generating Object-Oriented Picklers . 52

3.4.1 Overview . 52

3.4.2 Model of Inheritance . 53

3.4.3 Pickler Generation Algorithm . 55

3.4.4 Runtime Picklers . 59

3.4.5 Generics and Arrays . 60

3.4.6 Object Identity and Sharing . 61

3.5 Implementation . 63

3.6 Experimental Evaluation . 63

3.6.1 Experimental Setup . 63

3.6.2 Microbenchmark: Collections . 63

3.6.3 Wikipedia: Cyclic Object Graphs . 66

3.6.4 Microbenchmark: Evactor . 67

3.6.5 Microbenchmark: Spark . 67

3.6.6 Microbenchmark: GeoTrellis . 68

3.6.7 Data Types in Distributed Frameworks and Applications 69

3.7 Related Work . 69

3.8 Conclusion . 71

4 Static and Extensible Datatype Generic Programming 73

4.1 Introduction . 73

4.1.1 Design Constraints . 74

4.1.2 Contributions . 75

4.2 Type Classes and a Boilerplate Problem . 76

4.2.1 Implicits . 76

4.2.2 Type Classes . 77

4.2.3 Pretty Printing Complex Structures . 79

4.2.4 A Boilerplate Problem . 81

4.3 Type-Safe Meta-Programming in Scala . 81

4.3.1 Definition . 81

4.3.2 Properties . 82

4.4 Basic Self-Assembly . 82

4.4.1 Basic Usage . 83

4.4.2 Generation Mechanism . 84

x

Contents

4.4.3 Customization . 88

4.5 Self-Assembly for Object Orientation . 88

4.5.1 Subtyping . 88

4.5.2 Object Identity . 91

4.6 Transformations . 92

4.7 Generic Properties: Custom Lightweight Static Checks 94

4.7.1 Generic Properties: Definition . 94

4.7.2 Example: Immutable Types . 96

4.7.3 Generic Properties as Implemented in self-assembly 98

4.8 Implementation and Case Study . 98

4.9 Related Work . 99

4.10 Conclusion . 101

5 Spores 103

5.1 Introduction . 103

5.1.1 Design Constraints . 106

5.1.2 Contributions . 107

5.2 Spores . 107

5.2.1 Spore Syntax . 108

5.2.2 The Spore Type . 109

5.2.3 Basic Usage . 110

5.2.4 Advanced Usage and Type Constraints . 112

5.2.5 Transitive Properties . 117

5.3 Formalization . 118

5.3.1 Subtyping . 119

5.3.2 Typing rules . 120

5.3.3 Operational semantics . 121

5.3.4 Soundness . 123

5.3.5 Relation to spores in Scala . 123

5.3.6 Excluded types . 124

5.4 Implementation . 125

5.5 Evaluation . 126

5.5.1 Using Spores Instead of Closures . 127

5.5.2 Spores and Apache Spark . 128

5.5.3 Spores and Akka . 129

5.6 Case Study . 130

5.7 Related Work . 131

5.8 Conclusion . 133

6 Function-Passing 135

6.1 Introduction . 135

6.1.1 Contributions . 137

6.2 Overview of Model . 138

xi

Contents

6.2.1 Basic Usage . 140

6.2.2 Primitives . 141

6.2.3 Fault Handling . 147

6.3 Higher-Order Operations . 148

6.3.1 Higher-Order Operations . 148

6.3.2 Peer-to-Peer Patterns . 150

6.4 Formalization . 152

6.4.1 Operational semantics . 152

6.4.2 Fault handling . 156

6.5 Implementation . 157

6.5.1 Serialization in the presence of existential quantification 158

6.5.2 Type-based optimization of serialization 159

6.6 Related Work . 160

6.7 Conclusion . 162

Conclusion 163

A FlowPools, Proofs 165

A.1 Introduction . 165

A.2 Proof of Correctness . 167

B Spores, Formally 179

B.1 Overview . 179

B.1.1 Context bounds . 181

B.2 Formalization . 183

B.2.1 Subtyping . 184

B.2.2 Typing rules . 185

B.2.3 Operational semantics . 186

B.2.4 Soundness . 186

B.2.5 Relation to spores in Scala . 191

B.2.6 Excluded types . 191

Bibliography 195

Curriculum Vitae 205

xii

List of Figures
2.1 Illustration of blocking futures, as in Java. The central green arrow can be thought

of as the main program thread. 8

2.2 Illustration of fully asynchronous, non-blocking futures, as in Scala. The central

green arrow can be thought of as the main program thread. 8

2.3 Futures and promises can be thought of as a single concurrency abstraction. . 9

2.4 Other collections, such as parallel collections, have barriers between nodes in the

DAG. This means that all parallel computation happens only on the individual

nodes (collections) meaning there is no parallelism between nodes in the DAG. 19

2.5 FlowPools are fully asynchronous and barrier-free between nodes in the DAG.

This means that parallel computation can happen both on the individual node

(within the same collection) as well as between nodes (collections) along edges

in the DAG. 19

2.6 FlowPool operations pseudocode . 24

2.7 Syntax . 27

2.8 Execution time vs parallelization across three different architectures on three

important FlowPool operations; insert, map, reduce. 29

2.9 Execution time vs parallelization on a real histogram application (top), & commu-

nication benchmark (bottom) showing memory efficiency, across all architectures. 30

3.1 Core language syntax. C ,D are class names, f ,m are field and method names,

and x, y are names of variables and parameters, respectively. 48

3.2 Heaps, environments, objects, and picklers. 48

3.3 Reduction rules for pickling. 49

3.4 Results for pickling and unpickling an immutable Vector[Int] using different

frameworks. Figure 3.4(a) shows the roundtrip pickle/unpickle time as the size

of the Vector varies. Figure 3.4(b) shows the amount of free memory available

during pickling/unpickling as the size of the Vector varies. Figure 3.4(c) shows

the pickled size of Vector. 64

3.5 Results for pickling/unpickling a partition of Wikipedia, represented as a graph

with many cycles. Figure 3.5(a) shows a “pickling” benchmark across scala/pickling,

Kryo, and Java. In Figure 3.5(b), results for a roundtrip pickling/unpickling is

shown. Here, Kryo is removed because it crashes during unpickling. 65

xiii

List of Figures

3.6 Results for pickling/unpickling evactor datatypes (numerous tiny messages

represented as case classes containing primitive fields.) Figure 3.6(a) shows

a benchmark which pickles/unpickles up to 10,000 evactor messages. Java

runs out of memory at this point. Figure 3.6(b) removes Java and scales up the

benchmark to more evactor events. 66

3.7 Results for pickling/unpickling data points from an implementation of linear

regression using Spark. 66

3.8 Results for pickling/unpickling geotrellis datatypes (case classes and large primi-

tive arrays). 68

3.9 Scala types used in industrial distributed frameworks and applications. 68

4.1 |Show| type class and corresponding instance for integers. 77

4.2 Trees of integers and corresponding Show instance. 79

4.3 Parametrized trees and corresponding Show instance. 80

4.4 Implementing the Show type class using self-assembly. 83

4.5 Macro-based generation: set-up . 85

4.6 Basic generation of type classes. 87

4.7 Open class hierarchy . 89

4.8 Deep immutability checking using self-assembly 97

5.1 The syntactic shape of a spore. 108

5.2 The evaluation semantics of a spore is equivalent to that of a closure, obtained

by simply leaving out the spore marker. 109

5.3 The Spore type. 109

5.4 An example of the Captured type member. Note: we omit the Excluded type

member for simplicity; we detail it later in Section 5.2.4. 110

5.6 Core language syntax . 118

5.7 Subtyping . 120

5.8 Typing rules . 120

5.9 Operational Semantics . 122

5.10 Helper function insert . 122

5.11 Core language syntax extensions . 124

5.12 Subtyping extensions . 125

5.13 Operational semantics extensions . 125

5.14 Typing extensions . 125

5.15 Evaluating the practicality of using spores in place of normal closures 127

5.16 Evaluating the impact and overhead of spores on real distributed applications.

Each project listed is an active and noteworthy open-source project hosted on

GitHub that is based on Apache Spark. represents the number of “stars” (or in-

terest) a repository has on GitHub, and represents the number of contributors

to the project. 128

5.17 Conventions used in production to avoid serialization errors. 130

xiv

List of Figures

6.1 Basic F-P model. 141

6.2 A simple DAG in the F-P model. 142

6.3 Example of peer-to-peer style processing in F-P. 150

6.4 Using fault handlers to introduce a backup host in F-P. 151

6.5 Core language syntax. 152

6.6 Elements of the operational model. 153

6.7 Deterministic reduction. 153

6.8 Nondeterministic reduction. 155

6.9 Fault handling. 157

6.10 Impact of Static Types on Performance, End-to-End Application (groupBy + join).160

A.1 FlowPool operations pseudocode . 166

A.2 Syntax . 167

B.1 Core language syntax . 183

B.2 Subtyping . 184

B.3 Typing rules . 185

B.4 Operational Semantics . 187

B.5 Helper function insert . 187

B.6 Core language syntax extensions . 192

B.7 Subtyping extensions . 192

B.8 Typing extensions . 192

B.9 Operational semantics extensions . 193

xv

List of Tables
4.1 Results of porting scala/pickling to self-assembly 99

xvii

1 Introduction

Developing professional software these days has become quite an involved affair. Not long ago,

a team of engineers would sit down to develop an application that would simply and modestly

run on a single computer. Such software would operate completely in its own world, blissfully

unaware of the internet, only making a network call on seldom occasions, e.g., to phone home

to its vendor to ask for software updates. This was the state of software development a few

short years ago.

Today, large swaths of most applications have been woven into “the cloud” or other network

services. Web applications are becoming patchwork quilts made up of calls to multitudes of

different microservices. Modest mobile “apps” now make network calls to dozens or even

hundreds of services. Meanwhile as software becomes evermore pervasive, weaving itself more

into more of our daily habits in more places, content providers are focusing their energies on

collecting any and all seemingly innocuous pieces of our data that they can, in an attempt to

unlock some sort of market value in peoples’ trails of digital breadcrumbs. With all of this data

piling up, industry and academia are scrambling to build distributed systems that can help

more users make sense of it–clusters of machines working together to churn through datasets

too large to fit in the memory of a single machine.

This is the new computing landscape; the network has become ubiquitous and is now baked

into much of the programming that professional developers do.

Meanwhile, at the same time, we are witnessing a renaissance of functional programming

so prevalent that it has permeated the daily routines of software developers on all ends of

the software development spectrum, from the client side1 to the server side.2 Further, the

distributed system cores of services like Twitter are based on functional APIs [Eriksen, 2013],

and frameworks for big data analytics like Spark [Zaharia et al., 2012] credit functional patterns

for enabling more powerful computation patterns; i.e., general graphs of computations built

1Popular functional languages for the client side include: numerous JavaScript libraries such as Underscore.js,
Elm [Czaplicki, 2012], PureScript, Scala.js, amongst many others.

2Popular functional languages for the server side include: Scala [Odersky et al., 2010], Clojure [Hickey, 2008],
Erlang [Armstrong, 2010], Haskell [Peyton Jones, 2014], amongst many others.

1

http://underscorejs.org
http://www.purescript.org/
http://www.scala-js.org/

Chapter 1. Introduction

up of compositions of higher-order combinators rather than just maps and reduces like

in MapReduce [Zaharia, 2014]. Just about everywhere you look nowadays, you will find

functionally-inspired software springing up in the wild.

But how have our most important tools in professional software development – programming

languages – kept up as the network and functional programming have begun to proliferate

software development environments?

As it turns out, there are still numerous issues using language constructs such as objects

and functions in a distributed setting. Moreover, due to their nature of being built-in to the

language, it is impossible to rely on libraries and frameworks to provide support for the reliable

distribution of these constructs. As a result, even mature libraries and frameworks can exhibit

bugs that are hard to diagnose and fix.

For example, in mainstream languages like Java, even the serialization of simple objects, a

prerequisite for sending them across the network, can lead to runtime errors that can be

difficult to diagnose and fix. Consequently, many frameworks and systems use alternative

serialization frameworks, such as Google’s Protocol Buffers, Apache Avro, or Kryo. However,

these typically have their own set of limitations: weaker or no type safety, a fixed serialization

format, more restrictions placed on the objects to-be-serialized, or only rudimentary language

integration.

This issue is exacerbated when using closures, which are increasingly appearing in popular

distributed frameworks such as Spark [Zaharia et al., 2012] and Scalding [Twitter, 2015]. One

of the main reasons is that closures, as they exist in virtually all wide-spread languages, leave

essential components, such as their captured variables, implicit, preventing customizations

necessary to make closures safer and more efficient to distribute.

The goal of this dissertation is to revisit the fundamental concepts of modern languages,

objects and functions, and to make them safer and more efficient to use in a distributed

environment. We focus on three important and orthogonal building blocks for distributed

programming:

• Pickling (serialization)

• Functions

• Asynchronous programming

This thesis is concerned with two essential aspects of distribution: communication and con-

currency. First, we present a new approach to communicate both objects and functions

between distributed nodes safely and efficiently. Second, we present novel lock-free concur-

rency abstractions suitable for building large-scale distributed systems. Finally, we integrate

the two approaches in the context of a new distributed programming model. Designed from

2

1.1. Contributions

the ground up using our new primitives for distribution, the model generalizes existing widely-

used programming systems for data-intensive computing.

More specifically, this dissertation aims to address the following questions:

• How can existing programming-language features be improved in order to better sup-

port concerns like performance and latency across a general slice of distributed systems?

• Which important features and aspects of existing programming languages are left un-

supported by the language in the face of distribution? Is it possible to support such

features?

• How can core ideas behind the development of functional programming be applied

to the distributed scenario? What other models for functional programming in a dis-

tributed environment are there?

• What are good abstractions for reasoning about concerns like network I/O and failure at

the level of the compiler and programming language?

1.1 Contributions

This dissertation describes a number of extensions and libraries in and for Scala which aim to

provide a more reliable foundation for building distributed systems atop of.

In detail, our contributions are the following:

• We describe an abstraction and underlying data structure for parallel dataflow program-

ming, FlowPools. FlowPools are fully asynchronous, and functionally-inspired, and as a

result are composable. We prove several important properties about FlowPools, includ-

ing lock-freedom, linearizability, and determinism. We also show through a detailed

evaluation that FlowPools can outperform similar concurrent collections in the Java

standard library.

• We introduce an extension to pickler combinators, well-known in functional program-

ming, to support the core concepts of object-oriented programming namely subtyping

polymorphism, open class hierarchies, and object identity.

• We provide a framework called scala/pickling based on object-oriented pickler combi-

nators which (a) enables retrofitting existing types with pickling support, (b) supports

automatically generating picklers at compile time and at runtime, (c) supports pluggable

pickle formats, and (d) does not require changes to the host language or the underlying

virtual machine. We also provide an experimental evaluation that shows scala/pickling

to outperform Java serialization and Kryo on a number of data types used in real-world,

large-scale distributed applications and frameworks.

3

Chapter 1. Introduction

• We generalize the generation technique used in scala/pickling to generic functions other

than pickling. The technique, called Self Assembly, is a general technique for defining

generic operations or properties that operate over a large class of types which requires

little boilerplate; shares the extensibility and customizability properties of type classes;

and, due to compile-time code generation, provides high performance. Importantly,

our approach enables the definition of datatype-generic functions that support features

present in production OO languages, including subtyping, object identity, and generics.

• We describe how self-assembly enables the definition of custom lightweight static

type checks to guarantee that certain static properties hold at runtime, e.g., immutability.

• We cover the self-assembly library, a complete and full-featured implementation

of our technique in and for Scala. The library includes several auxiliary definitions,

such as generic queries and transformations, that help define new lightweight static

checks of generic properties. Importantly, self-assembly doesn’t require any extension

to the language or compiler. We also evaluate the expressivity and performance of

self-assembly by porting scala/pickling, keeping the same published performance

numbers while reducing the code size for type class instance generation by 56%.

• We introduce a closure-like abstraction and type system, called spores which avoids

typical hazards when using closures in a concurrent or distributed setting through

controlled variable capture and customizable user-defined constraints for captured

types. Further, we describe an approach for type-based constraints on spores that can

be combined with existing type systems to express a variety of properties from the

literature, including, but not limited to, serializability and thread-safety/immutability.

We formalize spores with these type constraints and prove soundness of the type system.

• We present an implementation of spores in and for the full Scala language, and (a)

demonstrate the practicality of spores through a small empirical study using a collection

of real-world Scala programs, and (b) show the power of the guarantees spores provide

through case studies using parallel and distributed frameworks.

• We introduce a new data-centric programming model called function-passing, based on

pickling and spores, for functional processing of distributed data which makes important

concerns like fault tolerance simpler by design. The main computational principle is

based on the idea of sending safe, guaranteed serializable functions to stationary data.

Using standard monadic operations our model enables creating immutable DAGs of

computations, supporting decentralized distributed computations. Lazy evaluation

enables important optimizations while keeping programs simple to reason about. We

describe a distributed implementation of the programming model in and for Scala.

• A provide a formalization of our programming model based on a small-step operational

semantics. Inspired by widespread systems like Spark [Zaharia et al., 2012], our formal-

ization is a first step towards a formal, operational account of real-world fault recovery

mechanisms. The presented semantics is clearly stratified into a deterministic layer

4

1.2. Structure

and a concurrent/distributed layer. Importantly, reasoning techniques for sequential

programs are not invalidated by the distributed layer.

1.2 Structure

The rest of this dissertation is organized as follows.

• Chapter 2 describes futures and FlowPools, functionally-inspired and fully asynchronous

and non-blocking single-assignment variables (futures) and pools (FlowPools) useful for

reducing coordination in distributed systems. The chapter sketches a proof of lineariz-

ability, lock-freedom, and determinism of FlowPools. The full proof of lock freedom can

be found in Appendix A, and the full proofs of linearizability and determinism can be

found in the companion technical report [Prokopec et al., 2012b].

• Chapter 3 introduces object-oriented picklers and scala/pickling, a new distribution-

focused approach to serialization that generates serialization code statically, allowing

for more type safety. The chapter includes a formalization of object-oriented picklers as

well as a description of the generation algorithm used for automatically generating pick-

lers for arbitrary types. A performance evaluation is also included which examines the

performance of the serialization framework across different sorts of serialization work-

loads, and which compares scala/pickling against other state-of-the-art serialization

systems like Java and Kryo, and reports significant speedups.

• Chapter 4 covers a new technique for extensible and static datatype-generic program-

ming. In this chapter, the generation technique used for generating pickling code is

generalized to be able to generate arbitrary type class instances, at compile time.

• Chapter 5 introduces spores, a new abstraction and type system designed to enable

function closures to be serializable by design. The type system presented here also

generalizes its added static checking capabilities to arbitrary user-defined properties,

e.g., immutability.

• Chapter 6 describes a new programming model for functional distributed programming

called function-passing which aims to simplify the implementation of and reasoning

about fault-recovery mechanisms. This programming model can be thought of as a

generalization of the Spark or MapReduce programming model.

• Chapter 7 concludes and discusses possible directions for future work.

1.3 Previously Published Material

This dissertation draws heavily on earlier work described in the following papers, written

jointly with several collaborators (in the order of appearance in this dissertation):

5

Chapter 1. Introduction

• Prokopec, Miller, Schlatter, Haller, and Odersky (2012). FlowPools: A lock-free determin-

istic concurrent dataflow abstraction. In proceedings of Languages and Compilers for

Parallel Computing (LCPC).

• Miller, Haller, Burmako, and Odersky (2013). Instant Pickles: Generating object-oriented

pickler combinators for fast and extensible serialization. In proceedings of the ACM SIG-

PLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA).

• Miller, Haller, and Odersky (2014). Spores: A type-based foundation for closures in the

age of concurrency and distribution. In proceedings of the European Conference on

Object-Oriented Programming (ECOOP).

• Haller and Miller (2015). Distributed Programming via Safe Closure Passing. In pro-

ceedings of Programming Language Approaches to Concurrency and Communication-

centric Software (PLACES).

Works that this dissertation draws upon that have been submitted but at the time of the writing

remain in technical report form include:

• Miller, Haller, and C. D. S. Oliveira (2015). Self-Assembly: Lightweight language ex-

tension and datatype generic programming, all-in-one! EPFL technical report #EPFL-

CONF-199389.

• Miller and Haller (2015). Function Passing: A model for typed, distributed functional

programming. EPFL technical report #EPFL-CONF-205822.

6

http://infoscience.epfl.ch/record/180265
http://infoscience.epfl.ch/record/180265
http://infoscience.epfl.ch/record/188383
http://infoscience.epfl.ch/record/188383
http://infoscience.epfl.ch/record/191239
http://infoscience.epfl.ch/record/191239
https://infoscience.epfl.ch/record/205039
http://infoscience.epfl.ch/record/199389
http://infoscience.epfl.ch/record/199389
http://infoscience.epfl.ch/record/205822
http://infoscience.epfl.ch/record/205822

2 Asynchronous Programming

Nowadays, providing a modest experience on a mobile app, or even rendering simple web

pages typically requires the collaboration of dozens of network services each speaking many

different languages or protocols to one another. Such systems are one of many flavors of a

distributed system, and as such must coordinate between many network requests to, as quickly

and reliably as possible, piece together an interface or some other user experience.

Responsiveness is a requirement. Yet providing a responsive experience is at odds with

the need to piece together the results from many calls over the network to other services.

Synchronously making a request to a remote service and blocking, or waiting, until that request

is fulfilled before moving on to the next request is slow – roundtrip network communication is

known to be 1,000,000 to 10,000,000 times slower than roundtrips to main memory [Norvig

and Dean, 2012] – and making requests sequentially, one by one, is also often unnecessary.

Asynchronous programming solves these problems by separating the execution of individual

tasks (e.g., calls to network services) from the main program flow. In a language like Scala

where tasks can be executed by multiple threads, this reduces blocking because rather than

stopping a thread to wait on the completion of another task, a separate task is simply scheduled

to proceed when the resource its waiting for becomes available. Thus freeing up the thread

that would otherwise be waiting to do more meaningful work.

In this chapter, we will see two abstractions for fully non-blocking, asynchronous program-

ming; functionally-inspired futures and promises in Scala [Haller et al., 2012] in Section 2.1 and

a generalization of futures to a pool or multiset-type data structure called FlowPools [Prokopec

et al., 2012a] in Section 2.2.

2.1 Futures

Futures and promises can be thought of as, together, a unified abstraction used for synchro-

nization in programming languages with support for concurrency. Futures and promises

in Scala [Haller et al., 2012] stand out from their Java counterparts in two ways; (a) they are

7

Chapter 2. Asynchronous Programming

Future
Promise
Future with value

Green: meaningful work
Red: thread waiting on the result
of another thread

Figure 2.1 – Illustration of blocking futures, as in Java. The central green arrow can be thought
of as the main program thread.

Future
Promise
Future with value

Green: meaningful work
Red: thread waiting on the result
of another thread

Figure 2.2 – Illustration of fully asynchronous, non-blocking futures, as in Scala. The central
green arrow can be thought of as the main program thread.

functionally-inspired with monadic combinators and are thus composable, and (b) they are

fully asynchronous and non-blocking by default. A visualization of this blocking difference

and definition is shown in Figures 2.1 and 2.2. Here, the central green arrow in each figure can

be thougth of as the main program thread.

A future can be thought of as a container which represents a value that will eventually be

computed. They’re related to promises in that a future is a read-only window to a single-

assignment (write-once) variable called a promise. This relationship is illustrated in Figure 2.3.

Before a future’s result is computed, we say that the future is not completed. If the compu-

tation representing a future is finished with a value or an exception, we say that the future

is completed. Completion can take one of two forms: (a) when a future is completed with a

8

2.1. Futures

Future Promise

WRITE-ONCE
READ-MANY

Figure 2.3 – Futures and promises can be thought of as a single concurrency abstraction.

value, we say the future was successfully completed with that value, or (b) when a future is

completed with an exception thrown by the computation, we say the future was failed with

that exception.

2.1.1 Basic Usage

The type of Future and Promise is as follows: (simplified)

trait Future[T] {

def onSuccess(f: T => Unit): Unit

}

trait Promise[T] {

def success(elem: T): Unit

def future[T]: Future[T]

}

As depicted visually in Figure 2.3, every Promise[T] can return a reference to its corresponding

Future with the future method.

An example of how a future can be created is as follows. Let’s assume that we want to use a

hypothetical API of some popular social network to obtain a list of friends for a given user. We

will open a new session and then send a request to obtain a list of friends of a particular user:

val session = ... // obtain a list of friends for some user/credentials

val f: Future[List[Friend]] = Future {

session.getFriends() // network call to get a list of that user’s friends

}

To obtain the list of friends of a user, a request has to be sent over a network, which can

take a long time. This is illustrated with the call to the method getFriends that returns

List[Friend]. To better utilize the CPU until the response arrives, we should not block the

rest of the program – this computation should be scheduled asynchronously. The future

method does exactly that–it performs the specified computation block concurrently, in this

case sending a request to the server and waiting for a response.

The list of friends becomes available in the future f once the server responds.

9

Chapter 2. Asynchronous Programming

An unsuccessful attempt may result in an exception. In the following example, the ses-

sion value is incorrectly initialized, so the computation in the future block will throw a

NullPointerException. This future f is then failed with this exception instead of being

completed successfully:

val session = null

val f: Future[List[Friend]] = Future {

session.getFriends

}

We now know how to start an asynchronous computation to create a new future value, but we

have not shown how to use the result once it becomes available, so that we can do something

useful with it. Once created, a future may be used in one of two ways, either via:

• callbacks, or

• composable higer-order combinators, such as map, flatMap, and filter.

We will see how to use both callbacks and higher-order functions to interact with to-be-

computed values in the following two subsections.

2.1.2 Callbacks

One way to interact with the result of a future computation in a non-blocking way is to

attach a callback to perform some side-effecting operation such as completing another future.

Callbacks are a typical way to do asynchronous computation–a callback is a function that is

called once its arguments become available. There are three methods provided to work with

callbacks on Scala’s futures:

• def foreach[U](f: (T) => U): Unit

• def onComplete[U](f: (Try[T]) => U): Unit

• def onSuccess[U](pf: PartialFunction[T, U]): Unit

• def onFailure[U](pf: PartialFunction[Throwable, U]): Unit

The most general form of registering a callback is by using the onComplete method, which

takes a callback function of type Try[T]=>U 1. The callback is applied to the value of type

Success[T] if the future completes successfully, or to a value of type Failure[T] otherwise.

1Try[T] can be thought of as being similar to Option[T] or an Either[T, S] in that it is a container type.
However, it has been specifically designed to either hold a value or some throwable object. Try[T] is a Success[T]
when it holds a value and otherwise Failure[T], which holds an exception. Another way to think of Try[T] is
to consider it as a special version of Either[Throwable, T], specialized for the case when the left value is a
Throwable.

10

2.1. Futures

To get a feeling for how onComplete is used, let’s use a running example. Let’s assume for a

given social network, we want to fetch a list of our own recent posts and render them to the

screen. We can do this with onComplete:

val f: Future[List[String]] = Future {

session.getRecentPosts

}

f onComplete {

case Success(posts) => for (post <- posts) println(post)

case Failure(t) => println("An error has occured: " + t.getMessage)

}

The onComplete method is general in the sense that it allows the client to handle the result

of both failed and successful future computations. To handle only successful results, the

onSuccess callback is used (which takes a partial function). Similarly, to handle failed results,

the onFailure callback is used:

val f: Future[List[String]] = Future {

session.getRecentPosts

}

f onFailure {

case t => println("An error has occured: " + t.getMessage)

}

f onSuccess {

case posts => for (post <- posts) println(post)

}

The onComplete, onSuccess, and onFailure methods have result type Unit, which means

invocations of these methods cannot be chained. This design is intentional, to avoid suggesting

that chained invocations may imply an ordering on the execution of the registered callbacks

(callbacks registered on the same future are unordered).

2.1.3 Higher-Order Combinators

While callbacks work reasonably well in simple situations, they can quickly get out of hand

and when numerous, they can become difficult to reason about. Programmers affectoinately

refer to this situation as callback hell.

Scala’s futures provide combinators which allow a more straightforward composition. What’s

more, due to the type signature of these methods (they each return another Future), it’s

possible to compose operations on futures and to build up rich computation graphs. The three

basic functional combinators on futures include:

11

Chapter 2. Asynchronous Programming

• def map[S](f: (T) => S): Future[S]

• def flatMap[S](f: (T) => Future[S]): Future[S]

• def filter(p: (T) => Boolean): Future[T] (Also, withFilter)

To get a feeling for how to use these combinators, and later, how to pipeline or chain them

together to build up computation graphs, let’s start with a simple example.

Assume we have an API for interfacing with a currency trading service. Suppose we want to

buy US dollars, but only when it’s profitable. One of the basic combinators is map, which, given

a future and a mapping function for the value of the future, produces a new future that is

completed with the mapped value once the original future is successfully completed. We can

use the map combinator to handle the successful case:

val rateQuote = Future {

connection.getCurrentValue(USD)

}

val purchase = rateQuote map { quote =>

if (isProfitable(quote)) connection.buy(amount, quote)

else throw new Exception("not profitable")

}

purchase onSuccess {

case _ => println("Purchased " + amount + " USD")

}

Here, we start by creating a future rateQuote which gets the current exchange rate. After

this value is obtained from the server and the future successfully completed, we call map on

rateQuote, which applies the function which checks whether or not it’s profitable to buy US

dollars, and if so, it buys some amount of the currency. If we now decide to sell some other

currency, it suffices to use map on purchase again.

But what happens if isProfitable returns false, hence causing an exception to be thrown? In

this case, purchase is failed with that exception. Furthermore, imagine that the connection

was broken and that getCurrentValue threw an exception, failing rateQuote. In this case

there would be no value to map, so the purchase would automatically be failed with the same

exception as rateQuote.

In conclusion, if the original future is completed successfully then the returned future is

completed with a mapped value from the original future. If the mapping function throws

an exception the future is completed with that exception. If the original future fails with

an exception then the returned future also contains the same exception. This exception

propagating semantics is present in the rest of the combinators, as well.

12

2.1. Futures

Importantly, since the methods map, flatMap, and withFilter methods are provided on

futures (there is an automatic desugaring from for-comprehensions to calls of these meth-

ods), Scala can provide built-in support using for-comprehensions on futures. We will now

see an example where a for-comprehension is desirable over using chained higher-order

combinators.

In this example, let’s assume that we want to exchange US dollars for Swiss francs (CHF). We

have to fetch quotes for both currencies, and then decide on buying based on both quotes.

Here is what this example would look like using for-comprehension syntax:

val usdQuote = Future { connection.getCurrentValue(USD) }

val chfQuote = Future { connection.getCurrentValue(CHF) }

val purchase = for {

usd <- usdQuote

chf <- chfQuote

if isProfitable(usd, chf)

} yield connection.buy(amount, chf)

purchase onSuccess {

case _ => println("Purchased " + amount + " CHF")

}

The purchase future is completed only once both usdQuote and chfQuote are completed–it

depends on the values of both these futures so its own computation cannot begin earlier.

The for-comprehension above is translated into:

val purchase = usdQuote flatMap {

usd =>

chfQuote

.withFilter(chf => isProfitable(usd, chf))

.map(chf => connection.buy(amount, chf))

}

Here, the flatMap operation maps its own value into some other future. Once this different

future is completed, the resulting future is completed with its value. In our example, flatMap

uses the value of the usdQuote future to map the value of the chfQuote into a third future

which sends a request to buy a certain amount of Swiss francs. The resulting future purchase

is completed only once this third future returned from map completes.

2.1.4 Exceptions and Recovery

Futures in Scala also come with a number of combinator methods specialized on handling

failures by providing alternate operations in the event of a failure. The three main combinators

13

Chapter 2. Asynchronous Programming

for managing failure are:

• def recover[U >: T](pf: PartialFunction[Throwable, U]): Future[U]

• def recoverWith[U >: T](pf: PartialFunction[Throwable, Future[U]]): Future[U]

• def transform[S](s: T => S, f: Throwable => Throwable): Future[S]

To get a feeling for how these work, let’s return to the previous example of purchasing cur-

rencies. Let’s assume that based on the rateQuote introduced above, we decide to buy a

certain amount of some currency. The connection.buy method takes an amount to buy and

the expected quote. It returns the amount bought. If the quote has changed in the meantime,

it will throw a QuoteChangedException and it will not buy anything. If we want our future to

contain 0 instead of the exception, we use the recover combinator:

val purchase: Future[Int] = rateQuote map {

quote => connection.buy(amount, quote)

} recover {

case QuoteChangedException() => 0

}

Here, recover combinator creates a new future which holds the same result as the original

future if it completed successfully. If it did not complete successfully, then the partial function

argument is applied to the Throwablewhich failed the original future. If it maps the Throwable

to some value, then the new future is successfully completed with that value. If the partial

function is not defined on that Throwable, then the resulting future is failed with the same

Throwable.

The recoverWith combinator creates a new future which holds the same result as the original

future if it completed successfully. Otherwise, the partial function is applied to the Throwable

which failed the original future. If it maps the Throwable to some future, then this future is

completed with the result of that future. Its relation to recover is similar to that of flatMap to

map.

Combinator fallbackTo creates a new future which holds the result of this future if it was

completed successfully, or otherwise the successful result of the argument future. In the

event that both this future and the argument future fail, the new future is completed with the

exception from this future, as in the following example which tries to print US dollar value,

but prints the Swiss franc value in the case it fails to obtain the dollar value:

14

2.1. Futures

val usdQuote = Future {

connection.getCurrentValue(USD)

} map {

usd => "Value: " + usd + "$"

}

val chfQuote = Future {

connection.getCurrentValue(CHF)

} map {

chf => "Value: " + chf + "CHF"

}

val anyQuote = usdQuote fallbackTo chfQuote

anyQuote onSuccess { println(_) }

2.1.5 Execution Contexts

Throughout this chapter, we have covered asynchronous completion of tasks without actually

detailing how tasks are eventually executed. All tasks are eventually completed and made

available through a future are executed via a so-called ExecutionContext, typically, but not

necessarily, backed by a thread pool.

In fact many methods, such as all higher-order combinators (map, flatMap, filter), callback-

based methods (onComplete, onSuccess, onFailure) and more take an implicit ExecutionContext

as an argument. For example:

def flatMap[S](f: (T) => Future[S])(implicit executor: ExecutionContext): Future[S]

For all of these methods, this implicit executor, passed via implicit scope, acts as the thread

pool or event loop which the given task is executed upon. To globally import a default

ExecutionContext, one must simply use the following import:

import ExecutionContext.Implicits.global

This imports an ExecutionContext backed by a pre-configured implementation of Java’s

ForkJoin pool [Lea, 2000].

It’s also possible to provide a custom ExecutionContext to execute code which blocks on

IO or performs long-running computations. For example one may implement a custom

ExecutionContext by simply extending the ExecutionContext trait and importing the pre-

ferred execution scheme, such as an implementation of an event loop or a Java ExecutorService,

and then by implementing a few basic methods such as execute and reportFailure.

The intent of ExecutionContext is to lexically scope code execution. That is, each method,

class, file, package, or application should be the one to determine how to run its own code.

15

Chapter 2. Asynchronous Programming

This avoids issues such as running application callbacks on a thread pool belonging to a

networking library. The size of a networking library’s thread pool can be safely configured,

knowing that only that library’s network operations will be affected while application callback

execution can be configured separately.

2.1.6 Blocking

Scala’s futures and promises have been designed to be asynchronous in order to gain perfor-

mance by avoiding blocking. Nonetheless, on occasion, the need to block in an application

does unavoidably arise. Thus we cover the methods our framework provides both to manage

blocking code, and to accommodate the need to block.

As a running example, let’s assume that we want to use a hypothetical API to fetch a potentially

large list of images over the network given a list of URLs. Assume that the download method

for fetching each image is itself a blocking operation:

// Retrieve URLs from somewhere

val urls: List[String] = ...

// Download image (blocking operation)

val imagesFuts: List[Future[...]] = urls.map {

url => future { blocking { download url } }

}

// Do something (display) when complete

val futImages: Future[List[...]] = Future.sequence(imagesFuts)

Await.result(futImages, 10 seconds).foreach(display)

Here, imagesFuts uses managed blocking via the method blocking. blocking notifies the

thread pool that the block of code passed to it contains long-running or blocking operations.

This allows the pool to temporarily spawn new workers to make sure that it never happens that

all of the workers are blocked. This is done to prevent starvation in blocking applications. Note

that the thread pool also knows when the code in a managed blocking block is complete–so it

will remove the spare worker thread at that point, which means that the pool will shrink back

down to its expected size.

Later on, the Await object used to ensure that display is executed on the calling thread–

Await.result simply forces the current thread to wait until the future that it is passed is

completed. (This uses managed blocking internally.) Here, Await.result must be used

to block on futImages so as to prevent the program’s main thread from completing before

imagesFuts or futImages completes.

16

2.2. FlowPools

2.2 FlowPools

In our treatment of futures, we focused mainly on applying individual asynchronous op-

erations to future values. We alluded to the possibility of chaining together composable

operations on futures in order to build up rich computation graphs. Such chaining amounts

to building up a directed acyclic graph (DAG) of computations and can be viewed as a sort of

asynchronous dataflow.

Thus, from a bird’s eye view, one can think of Scala’s futures as single-element asynchronous

dataflow, capable of building up rich and interesting DAGs of computation.

FlowPools are a fundamental dataflow collections abstraction which can be used as a build-

ing block for larger and more complex deterministic and parallel dataflow programs. That

is, one can think of FlowPools as a fully asynchronous pool-like collection of individually

asynchronous elements like futures.

Our FlowPool abstraction is backed by an efficient non-blocking data structure. As a result,

our data structure benefits from the increased robustness provided by lock-freedom [Herlihy,

1990], since its operations are not blocked by delayed threads. We provide a lock-freedom

proof, which guarantees progress regardless of the behavior, including the failure, of concur-

rent threads.

In combining lock-freedom with a functional interface, we go on to show that FlowPools, like

futures, are composable. That is, using prototypical higher-order functions such as foreach

and aggregate, one can concisely form dataflow graphs, in which associated functions are

executed asynchronously in a completely non-blocking way, as elements of FlowPools in the

dataflow graph become available.

Finally, we present how FlowPools are able to overcome practical issues, such as out-of-

memory errors, thus enabling programs based upon FlowPools to run indefinitely. By using

a builder abstraction, instead of something like iterators or streams (which can lead to non-

determinism) we are able to garbage collect parts of the data structure we no longer need,

thus reducing memory consumption.

This chapter outlines the following contributions:

1. The design and Scala implementation2 of a parallel dataflow abstraction and underlying

data structure that is deterministic, lock-free, & composable.

2. Proofs of lock-freedom, linearizability, and determinism.

3. Detailed benchmarks comparing the performance of our FlowPools against other popu-

lar concurrent data structures.

2See https://github.com/heathermiller/scala-dataflow

17

https://github.com/heathermiller/scala-dataflow

Chapter 2. Asynchronous Programming

2.2.1 Model of Computation

FlowPools are similar to a typical collections abstraction. Operations invoked on a FlowPool

are executed on its individual elements. However, FlowPools do not only act as a data container

of elements. Unlike a typical collection, FlowPools also act as nodes and edges of a directed

acyclic computation graph (DAG), in which the executed operations are registered with the

FlowPool.

Nodes in this DAG are data containers which are first class values. This makes it possible

to use FlowPools as function arguments or to receive them as return values. Edges, on the

other hand, can be thought of as combinators or higher-order functions whose user-defined

functions are the previously-mentioned operations that are registered with the FlowPool. In

addition to providing composability, this means that the DAG does not have to be specified at

compile time, but can be generated dynamically at run time instead.

This structure allows for complete asynchrony, allowing the runtime to extract parallelism as

a result. That is, elements can be asynchronously inserted, all registered operations can be

asynchronously executed, and new operations can be asynchronously registered. Put another

way, invoking several higher-order functions in succession on a given FlowPool does not

add barriers between nodes in the DAG, it only extends the DAG. This means that individual

elements within a FlowPool can flow through different edges of the DAG independently.

To illustrate this, let’s examine a simple example, visualizing how elements are processed

within a FlowPool as compared to how elements within a parallel collection like ParVector

are processed. Let’s assume we have a collection (either a FlowPool or a ParVector) full of

users of some social network. Ultimately, we would like to obtain a list of each user’s friends

who are the same age as the user:

val users: FlowPool[User] = ... // consider also ParVector[Users]

users.map(user => (user.age, user.getFriends())) // network call, long-running

.map {

case (userAge, friends) =>

friends.filter(friend => userAge == friend.age)

}

While the programming interface remains identical across FlowPools and parallel collections,

elements are processed differently between the two. The differences are illustrated in Fig-

ures 2.4 and 2.5. As is depicted for parallel collections in Figure 2.4, elements are processed

with barriers between stages, that is, the processing of all elements in the first stage (the users

parallel collection) must be complete before processing in the second stage (the first map

operation) can even begin. FlowPools on the other hand, as depicted in Figure 2.5, remove

such barriers–when an element in users is finished being processed, the first map operation

can be applied to that element individually, we need not wait until all other elements are

18

2.2. FlowPools

Barrier

Barrier

Parallel task #1 Parallel task #2

users: ParVector[User]

users.map(user => (user.age, user.getFriends()))

 .map {
 case (userAge, friends) =>
 friends.filter(friend => userAge == friend.age)
 }

Figure 2.4 – Other collections, such as parallel collections, have barriers between nodes in
the DAG. This means that all parallel computation happens only on the individual nodes
(collections) meaning there is no parallelism between nodes in the DAG.

users: FlowPool[User]

users.map(user => (user.age, user.getFriends()))

 .map {
 case (userAge, friends) =>
 friends.filter(friend => userAge == friend.age)
 } Completed element

Element being processed

Unprocessed element

Figure 2.5 – FlowPools are fully asynchronous and barrier-free between nodes in the DAG. This
means that parallel computation can happen both on the individual node (within the same
collection) as well as between nodes (collections) along edges in the DAG.

completed in the first stage (in the users FlowPool) before beginning the second stage of

processing (the first map operation). We thus refer to FlowPools as barrier-free between nodes

in the computation DAG.

Properties of FlowPools. FlowPools have certain properties which ensure that resulting

programs are deterministic.

1. Single-assignment - an element added to the FlowPool cannot be removed.

2. No order - data elements in FlowPools are unordered.

3. Purity - traversals are side-effect free (pure), except when invoking FlowPool operations.

4. Liveness - callbacks are eventually asynchronously executed on all elements.

We claim that FlowPools are deterministic in the sense that all execution schedules either lead

to some form of non-termination (e.g., some exception), or the program terminates and no

19

Chapter 2. Asynchronous Programming

difference can be observed in the final state of the resulting data structures. This definition

is practically useful, because in the case of non-termination it is guaranteed that on some

thread an exception is thrown which aids debugging, e.g., , by including a stack trace. For a

more formal definition and proof of determinism, see section 2.2.4.

2.2.2 Programming Interface

A FlowPool can be thought of as a concurrent pool data structure, i.e., it can be used similarly

to a collections abstraction, complete with higher-order functions, or combinators, for com-

posing computations on FlowPools. In this section, we describe the semantics of several of

those functional combinators and other basic operations defined on FlowPools.

Append (<<). The most fundamental of all operations on FlowPools is the concurrent thread-

safe append operation. As its name suggests, it simply takes an argument of type Elem and

appends it to a given FlowPool.

Foreach and Aggregate. A pool containing a set of elements is of little use if its elements

cannot be manipulated in some manner. One of the most basic data structure operations

is element traversal, often provided by iterators or streams– stateful objects which store the

current position in the data structure. However, since their state can be manipulated by several

threads at once, using streams or iterators can result in nondeterministic executions.

Another way to traverse the elements is to provide a higher-order foreach operator which

takes a user-specified function as an argument and applies it to every element. For it to be

deterministic, it must be called for every element that is eventually inserted into the FlowPool,

rather than only on those present when foreach is called. Furthermore, determinism still

holds even if the user-specified function contains side-effecting FlowPool operations such

as <<. For foreach to be non-blocking, it cannot wait until additional elements are added to

the FlowPool. Thus, the foreach operation must execute asynchronously, and be eventually

applied to every element. Its signature is def foreach[U](f: T => U): Future[Int], and its

return type Future[Int] is an integer value which becomes available once foreach traverses

all the elements added to the pool. This integer denotes the number of times the foreach has

been called.

The aggregate operation aggregates the elements of the pool and has the following signature:

def aggregate[S](zero: =>S) (cb: (S, S) => S)(op: (S, T) => S): Future[S],

where zero is the initial aggregation, cb is an associative operator which combines several

aggregations, op is an operator that adds an element to the aggregation, and Future[S] is the

final aggregation of all the elements which becomes available once all the elements have been

added. The aggregate operator divides elements into subsets and applies the aggregation

operator op to aggregate elements in each subset starting from the zero aggregation, and

then combines different subset aggregations with the cb operator. In essence, the first part of

aggregate defines the commutative monoid and the functions involved must be non-side-

effecting. In contrast, the operator op is guaranteed to be called only once per element and it

20

2.2. FlowPools

can have side-effects.

While in an imperative programming model, foreach and aggregate are equivalent in the

sense that one can be implemented in terms of the other, in a single-assignment programming

model aggregate is more expressive. The foreach operation can be implemented using

aggregate, but not vice versa.

Builders. The FlowPool described so far must maintain a reference to all the elements at

all times to implement the foreach operation correctly. Since elements are never removed,

the pool may grow indefinitely and run out of memory. However, it is important to note

that appending new elements does not necessarily require a reference to any of the existing

elements. This observation allows us to move the << operation out of the FlowPool and into a

different abstraction called a builder. Thus, a typical application starts by registering all the

foreach operations, and then it releases the references to FlowPools, leaving only references

to builders. In a managed environment, the GC then can automatically discard the no longer

needed objects.

Seal. After deciding that no more elements will be added, further appends can be disallowed

by calling seal. This has the advantage of discarding the registered foreach operations. More

importantly, the aggregate can complete its future– this is only possible once it is known

there will be no more appends.

Simply preventing append calls after the point when seal is called, however, yields a nonde-

terministic programming model. Imagine a thread that attempts to seal the pool executing

concurrently with a thread that appends an element. In one execution, the append can pre-

cede the seal, and in the other the append can follow the seal, causing an error. To avoid

nondeterminism, there has to be an agreement on the current state of the pool. A convenient

and sufficient way to make seal deterministic is to provide the expected pool size as an argu-

ment. The semantics of seal is such that it fails if the pool is already sealed with a different

size or the number of elements is greater than the desired size. Note that we do not guarantee

that the same exception always occurs on the same thread– rather, if any thread throws some

exception in some execution schedule, then in all execution schedules some thread will throw

some exception.

Higher-order operators. We now show how these basic abstractions can be used to build

higher-order abstractions. To start, it is convenient to have generators that create certain

pool types. In a dataflow graph, FlowPools created by generators can be thought of as source

nodes. As an example, tabulate (below) creates a sequence of elements by applying a user-

specified function f to natural numbers. One can imagine more complex generators, which

add elements from a network socket or a file, for example.

21

Chapter 2. Asynchronous Programming

def tabulate[T]

(n: Int, f: Int => T) {

val p = new FlowPool[T]

val b = p.builder

def recurse(i: Int) {

b << f(i)

if i < n recurse(i + 1)

}

future { recurse(0) }

p

}

def map[S](f: T => S) {

val p = new FlowPool[S]

val b = p.builder

for (x <- this) {

b << f(x)

} map {

sz => b.seal(sz)

}

p

}

def foreach[U](f: T => U) {

aggregate(0)(_ + _) {

(acc, x) =>

f(x)

acc + 1

}

}

The tabulate generator starts by creating a FlowPool of an arbitrary type T and creating its

builder instance. It then starts an asynchronous computation using the future construct

(Appendix A for explanation and examples), which recursively applies f to each number

and adds it to the builder. The reference to the pool p is returned immediately, before the

asynchronous computation completes.

A typical higher-order collection operator map is used to map each element of a dataset to

produce a new dataset. This corresponds to chaining or pipelining the dataflow graph nodes.

Operator map traverses the elements of this FlowPool and appends each mapped element

to the builder. The for loop is syntactic sugar for calling the foreach method on this. We

assume that the foreach return type Future[Int] has map and flatMap operations, executed

once the future value becomes available. The Future.map above ensures that once the current

pool (this) is sealed, the mapped pool is sealed to the appropriate size.

As argued before, foreach can be expressed in terms of aggregate by accumulating the

number of elements and invoking the callback f each time. However, some patterns cannot

be expressed in terms of foreach. The filter combinator filters out the elements for which

a specified predicate does not hold. Appending the elements to a new pool can proceed as

before, but the seal needs to know the exact number of elements added– thus, the aggregate

accumulator is used to track the number of added elements.

22

2.2. FlowPools

def filter

(pred: T => Boolean) {

val p = new FlowPool[T]

val b = p.builder

aggregate(0)(_ + _) {

(acc, x) => if pred(x){

b << x

1

} else 0

} map {sz => b.seal(sz)}

p

}

def flatMap[S]

(f: T => FlowPool[S]) {

val p = new FlowPool[S]

val b = p.builder

aggregate(future(0))(add){

(af, x) =>

val sf = for (y <- f(x))

b << y

add(af, sf)

} map {sz => b.seal(sz)}

p

}

def add(f: Future[Int], g: Future[Int]) =

for (a <- f; b <- g) yield a + b

def union[T]

(that: FlowPool[T]) {

val p = new FlowPool[T]

val b = p.builder

val f =

for (x <- this) b << x

val g =

for (y <- that) b << y

for (s1 <- f; s2 <- g)

b.seal(s1 + s2)

p

}

The flatMap operation retrieves a pool for each element of this pool and adds its elements

to the resulting pool. Given two FlowPools, it can be used to generate the Cartesian product

of their elements. The implementation is similar to that of filter, but we reduce the size on

the future values of the sizes– each intermediate pool may not yet be sealed. The operation

q union r, as one might expect, produces a new pool which has elements of both pool q and

pool r.

The last two operations correspond to joining nodes in the dataflow graph. Note that if we

could somehow merge the two different foreach loops to implement the third join type zip,

zipwould be nondeterministic. The programming model does not allow us to do this, however.

The zip function is better suited for data structures with deterministic ordering, such as Oz

streams, which would in turn have a nondeterministic union.

type Terminal {

sealed: Int

callbacks:

List[Elem => Unit]

}

type Elem

type Block {

array: Array[Elem]

next: Block

index: Int

blockindex: Int

}

type FlowPool {

start: Block

current: Block

}

LASTELEMPOS = BLOCKSIZE - 2

NOSEAL = -1

2.2.3 Implementation

We now describe the FlowPool and its basic operations. In doing so, we omit the details

not relevant to the algorithm3 and focus on a high-level description of a non-blocking data

structure. One straightforward way to implement a growing pool is to use a linked list of nodes

3Specifically the builder abstraction and the aggregate operation. The aggregate can be implemented using
foreach with a side-effecting accumulator.

23

Chapter 2. Asynchronous Programming

def create()1
new FlowPool {2

start = createBlock(0)3
current = start4

}5
6

def createBlock(bidx: Int)7
new Block {8

array = new Array(BLOCKSIZE)9
index = 010
blockindex = bidx11
next = null12

}13
14

def append(elem: Elem)15
b = READ(current)16
idx = READ(b.index)17
nexto = READ(b.array(idx + 1))18
curo = READ(b.array(idx))19
if check(b, idx, curo) {20

if CAS(b.array(idx + 1), nexto, curo) {21
if CAS(b.array(idx), curo, elem) {22

WRITE(b.index, idx + 1)23
invokeCallbacks(elem, curo)24

} else append(elem)25
} else append(elem)26

} else {27
advance()28
append(elem)29

}30
31

def check(b: Block, idx: Int, curo: Object)32
if idx > LASTELEMPOS return false33
else curo match {34

elem: Elem =>35
return false36

term: Terminal =>37
if term.sealed = NOSEAL return true38
else {39

if totalElems(b, idx) < term.sealed40
return true41

else error("sealed")42
}43

null =>44
error("unreachable")45

}46
47

def advance()48
b = READ(current)49
idx = READ(b.index)50
if idx > LASTELEMPOS51

expand(b, b.array(idx))52
else {53

obj = READ(b.array(idx))54
if obj is Elem WRITE(b.index, idx + 1)55

}56
57

def expand(b: Block, t: Terminal)58
nb = READ(b.next)59
if nb is null {60

nb = createBlock(b.blockindex + 1)61
nb.array(0) = t62
if CAS(b.next, null, nb)63
expand(b, t)64

} else {65
CAS(current, b, nb)66

}67

def totalElems(b: Block, idx: Int)68
return b.blockindex * (BLOCKSIZE - 1) + idx69

70
def invokeCallbacks(e: Elem, term: Terminal)71

for (f <- term.callbacks) future {72
f(e)73

}74
75

def seal(size: Int)76
b = READ(current)77
idx = READ(b.index)78
if idx <= LASTELEMPOS {79

curo = READ(b.array(idx))80
curo match {81

term: Terminal =>82
if ¬tryWriteSeal(term, b, idx, size)83
seal(size)84

elem: Elem =>85
WRITE(b.index, idx + 1)86
seal(size)87

null =>88
error("unreachable")89

}90
} else {91

expand(b, b.array(idx))92
seal(size)93

}94
95

def tryWriteSeal(term: Terminal, b: Block,96
idx: Int, size: Int)97
val total = totalElems(b, idx)98
if total > size error("too many elements")99
if term.sealed = NOSEAL {100

nterm = new Terminal {101
sealed = size102
callbacks = term.callbacks103

}104
return CAS(b.array(idx), term, nterm)105

} else if term.sealed 6= size {106
error("already sealed with different size")107

} else return true108
109

def foreach(f: Elem => Unit)110
future {111

asyncFor(f, start, 0)112
}113

114
def asyncFor(f: Elem => Unit, b: Block, idx: Int)115

if idx <= LASTELEMPOS {116
obj = READ(b.array(idx))117
obj match {118

term: Terminal =>119
nterm = new Terminal {120

sealed = term.sealed121
callbacks = f ∪ term.callbacks122

}123
if ¬CAS(b.array(idx), term, nterm)124

asyncFor(f, b, idx)125
elem: Elem =>126

f(elem)127
asyncFor(f, b, idx + 1)128

null =>129
error("unreachable")130

}131
} else {132

expand(b, b.array(idx))133
asyncFor(f, b.next, 0)134

}135

Figure 2.6 – FlowPool operations pseudocode

24

2.2. FlowPools

that wrap elements. Since we are concerned about the memory footprint and cache-locality,

we store the elements into arrays instead, which we call blocks. Whenever a block becomes

full, a new block is allocated and the previous block is made to point to the next block. This

way, most writes amount to a simple array-write, while allocation occurs only occasionally.

Each block contains a hint index to the first free entry in the array, i.e. one that does not

contain an element. An index is a hint, since it may actually reference an entry that comes

earlier than the first free entry. Additionally, a FlowPool also maintains a reference to the first

block called start. It also maintains a hint to the last block in the chain of blocks, called

current. This reference may not always be up-to-date, but it always points to some block in

the chain.

Each FlowPool is associated with a list of callbacks which have to be called in the future as new

elements are added. Each FlowPool can also be in a sealed state, meaning there is a bound

on the number of elements it can have. This information is stored as a Terminal value in

the first free array entry. At all times, we maintain the invariant that the array in each block

starts with a sequence of elements, followed by a Terminal delimiter. From a higher-level

perspective, appending an element starts by copying the Terminal value to the next entry and

then overwriting the current entry with the element being appended.

The append operation starts by reading the current block and the index of the free position.

It then reads nexto after the first free entry, followed by a read of the curo at the free entry.

The check procedure checks the conditions of the bounds, whether the FlowPool was already

sealed or if the current array entry contains an element. In either of these events, the current

and index values need to be set– this is done in the advance procedure. We call this the slow

path of the append method. Notice that there are several situations which trigger the slow

path. For example, if some other thread completes the append method but is preempted

before updating the value of the hint index, then the curo will have the type Elem. The same

happens if a preempted thread updates the value of the hint index after additional elements

have been added, via unconditional write in line 158. Finally, reaching an end of block triggers

the slow path.

Otherwise, the operation executes the fast path and appends an element. It first copies the

Terminal value to the next entry with a CAS instruction in line 156, with nexto being the

expected value. If it fails (e.g. due to a concurrent CAS), the append operation is restarted.

Otherwise, it proceeds by writing the element to the current entry with a CAS in line 157,

the expected value being curo. On success, it updates the b.index value and invokes all the

callbacks (present when the element was added) with the future construct. In the imple-

mentation, we do not schedule an asynchronous computation for each element. Instead, the

callback invocations are batched to avoid the scheduling overhead– the array is scanned for

new elements until the first free entry is reached.

Interestingly, note that inverting the order of the reads in lines 153 and 154 would cause a race

in which a thread could overwrite a Terminal value with some older Terminal value if some

25

Chapter 2. Asynchronous Programming

other thread appended an element in between.

The seal operation continuously increases the index in the block until it finds the first free

entry. It then tries to replace the Terminal value there with a new Terminal value which

has the seal size set. An error occurs if a different seal size is set already. The foreach

operation works in a similar way, but is executed asynchronously. Unlike seal, it starts from

the first element in the pool and calls the callback for each element until it finds the first free

entry. It then replaces the Terminal value with a new Terminal value with the additional

callback. From that point on the append method is responsible for scheduling that callback for

subsequently added elements. Note that all three operations call expand to add an additional

block once the current block is empty, to ensure lock-freedom.

Multi-Lane FlowPools. Using a single block sequence (i.e. lane) to implement a FlowPool

does not take full advantage of the lack of ordering guarantees and may cause slowdowns due

to collisions when multiple concurrent writers are present. Multi-Lane FlowPools overcome

this limitation by having a lane for each CPU, where each lane has the same implementation

as the normal FlowPool.

This has several implications. First of all, CAS failures during insertion are avoided to a high

extent and memory contention is decreased due to writes occurring in different cache-lines.

Second, aggregate callbacks are added to each lane individually and aggregated once all of

them have completed. Finally, seal needs to be globally synchronized in a non-blocking

fashion.

Once seal is called, the remaining free slots are split amongst the lanes equally. If a writer

finds that its lane is full, it writes to some other lane instead. This raises the frequency of CAS

failures, but in most cases happens only when the FlowPool is almost full, thus ensuring that

the append operation scales.

2.2.4 Correctness

We give an outline of the correctness proof here. More formal definitions, and the full lock-

freedom proof can be found in Appendix A. Linearizability and determinism proofs can be

can be found in the companion technical report [Prokopec et al., 2012b].

We define the notion of an abstract poolA= (el ems,cal l backs, seal) of elements in the pool,

callbacks and the seal size. Given an abstract pool, abstract pool operations produce a new

abstract pool. The key to showing correctness is to show that an abstract pool operation

corresponds to a FlowPool operation– that is, it produces a new abstract pool corresponding

to the state of the FlowPool after the FlowPool operation has been completed.

Lemma 2.2.1. Given a FlowPool consistent with some abstract pool, CAS instructions in lines

156, 198 and 201 do not change the corresponding abstract pool.

Lemma 2.2.2. Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a suc-

cessful CAS in line 157 changes it to the state consistent with an abstract pool ({el em} ∪

26

2.2. FlowPools

t ::= terms
create p pool creation
p << v append
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(v s,σ,cbs) | v s ⊆ El em,σ ∈ {−1}∪N,
cbs ⊂ El em ⇒Uni t }
v ∈ Elem
f ∈ El em ⇒Uni t
n ∈N

Figure 2.7 – Syntax

el ems,cbs, seal). There exists a time t1 ≥ t0 at which every callback f ∈ cbs has been called on

el em.

Lemma 2.2.3. Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a suc-

cessful CAS in line 259 changes it to the state consistent with an abstract pool (el ems, (f ,;)∪
cbs, seal) There exists a time t1 ≥ t0 at which f has been called for every element in elems.

Lemma 2.2.4. Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a success-

ful CAS in line 240 changes it to the state consistent with an abstract pool (el ems,cbs, s), where

either seal =−1∧ s ∈N0 or seal ∈N0 ∧ s = seal .

Theorem 2.2.1 (Safety). Operations append, foreach and seal are consistent with the abstract

pool semantics.

Theorem 2.2.2 (Linearizability). Operations append and seal are linearizable.

Lemma 2.2.5. After invoking a FlowPool operation append, seal or foreach, if a non-consistency

changing CAS in lines 156, 198, or 201 fails, they must have already been completed by another

thread since the FlowPool operation began.

Lemma 2.2.6. After invoking a FlowPool operation append, seal or foreach, if a consistency

changing CAS in lines 157, 240, or 259 fails, then some thread has successfully completed a

consistency changing CAS in a finite number of steps.

Lemma 2.2.7. After invoking a FlowPool operation append, seal or foreach, a consistency

changing instruction will be completed after a finite number of steps.

Theorem 2.2.3 (Lock-freedom). FlowPool operations append, foreach and seal are lock-free.

Determinism. We claim that the FlowPool abstraction is deterministic in the sense that

a program computes the same result (possibly an error) regardless of the interleaving of

execution steps. Here we give an outline of the determinism proof. A complete formal proof

can be found in the technical report [Prokopec et al., 2012b].

The following definitions and the determinism theorem are based on the language shown

in Figure A.2. The semantics of our core language is defined using reduction rules which

define transitions between execution states. An execution state is a pair T | P where T is a set

of concurrent threads and P is a set of FlowPools. Each thread executes a term of the core

27

Chapter 2. Asynchronous Programming

language (typically a sequence of terms). State of a thread is represented as the (rest of) the

term that it still has to execute; this means there is a one-to-one mapping between threads

and terms. For example, the semantics of append is defined by the following reduction rule (a

complete summary of all the rules can be found in the appendix):

t = p << v ; t ′ p = (v s,cbs,−1) p ′ = ({v}∪ v s,cbs,−1)

t ,T, p,P −→ t ′,T, p ′,P
(APPEND1)

Append simply adds the value v to the pool p, yielding a modified pool p ′. Note that this

rule can only be applied if the pool p is not sealed (the seal size is −1). The rule for f or each

modifies the set of callback functions in the pool:

t = p foreach f ; t ′ p = (v s,cbs,n)

T ′ = {g (v) | g ∈ { f }∪ cbs, v ∈ v s} p ′ = (v s, { f }∪ cbs,n)

t ,T, p,P −→ t ′,T,T ′, p ′,P
(FOREACH2)

This rule only applies if p is sealed at size n, meaning that no more elements will be appended

later. Therefore, an invocation of the new callback f is scheduled for each element v in the

pool. Each invocation creates a new thread in T ′.

Programs are built by first creating one or more FlowPools using create. Concurrent threads

can then be started by (a) appending an element to a FlowPool, (b) sealing the FlowPool and

(c) registering callback functions (foreach).

Definition 2.2.1 (Termination). A term t terminates with result P if its reduction ends in

execution state {t : t = {ε}} | P.

Definition 2.2.2 (Interleaving). Consider the reduction of a term t: T1 | P1 −→ T2 | P2 −→
. . . −→ {t : t = {ε}} | Pn . An interleaving is a reduction of t starting in T1 | P1 in which reduction

rules are applied in a different order.

Definition 2.2.3 (Determinism). The reduction of a term t is deterministic iff either (a) t

does not terminate for any interleaving, or (b) t always terminates with the same result for all

interleavings.

Theorem 2.2.4 (FlowPool Determinism). Reduction of terms t is deterministic.

2.2.5 Evaluation

We evaluate our implementation (single-lane and multi-lane FlowPools) against the Linked-

TransferQueue [III et al., 2009] for all benchmarks and the ConcurrentLinkedQueue [Michael

and Scott, 1996] for the insert benchmark, both found in JDK 1.7, on three different archi-

tectures; a quad-core 3.4 GHz i7-2600, 4x octa-core 2.27 GHz Intel Xeon x7560 (both with

hyperthreading) and an octa-core 1.2GHz UltraSPARC T2 with 64 hardware threads. In this

28

2.2. FlowPools

1 2 4 8 16 32
102

103

104
Insert

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8 16 32
102

103

104
Map

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8 16 32
102

103

104
Reduce

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

UltraSPARC T2 Architecture

Intel i7 Architecture

1 2 4 8
101

102

103

104
Insert

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Map

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Reduce

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

Intel Xeon Architecture

1 2 4 8
101

102

103

104
Insert

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Map

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Reduce

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

Operations on FlowPools Across Architectures

Figure 2.8 – Execution time vs parallelization across three different architectures on three
important FlowPool operations; insert, map, reduce.

section, we focus on the scaling properties of the above-mentioned data structures, Figures

2.8 & 2.9.

In the Insert benchmark, Figure 2.8, we evaluate concurrent insert operations, by distributing

the work of inserting N elements into the data structure concurrently across P threads. In

Figure 2.8, it’s evident that both single-lane FlowPools and concurrent queues do not scale

well with the number of concurrent threads, particularly on the i7 architecture. They quickly

slow down, likely due to cache line collisions and CAS failures. On the other hand, multi-

29

Chapter 2. Asynchronous Programming

Intel Xeon ArchitectureIntel i7 Architecture

2e+06 4e+06 1.2e+07 2.5e+07

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Java LTQ
MultiLane FlowPool

2e+06 4e+06 1.2e+07 2.5e+07

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

Java LTQ
MultiLane FlowPool

2.5e+07 5e+07 1e+08 2e+08 4e+08

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

Java LTQ
MultiLane FlowPool

1 2 4 8 16 32
102

103

104

105

Number of CPUs

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
102

103

104

105

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
102

103

104

105

Number of CPUs

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

UltraSPARC T2 Architecture

Histogram Application Histogram Application Histogram Application

Communication/Garbage Collection Communication/Garbage Collection Communication/Garbage Collection

Figure 2.9 – Execution time vs parallelization on a real histogram application (top), & commu-
nication benchmark (bottom) showing memory efficiency, across all architectures.

lane FlowPools scale well, as threads write to different lanes, and hence different cache lines,

meanwhile also avoiding CAS failures. This appears to reduce execution time for insertions up

to 54% on the i7, 63% on the Xeon and 92% on the UltraSPARC.

The performance of higher-order functions is evaluated in the Reduce, Map (both in Figure

2.8) and Histogram benchmarks (Figure 2.9). It’s important to note that the Histogram bench-

mark serves as a “real life” example, which uses both the map and reduce operations that are

benchmarked in Figure 2.8. Also note that in all of these benchmarks, the time it takes to insert

elements into the FlowPool is also measured, since the FlowPool programming model allows

one to insert elements concurrently with the execution of higher-order functions.

In the Histogram benchmark, Figure 2.9, P threads produce a total of N elements, adding them

to the FlowPool. The aggregate operation is then used to produce 10 different histograms

concurrently with a different number of bins. Each separate histogram is constructed by its

own thread (or up to P , for multi-lane FlowPools). A crucial difference between queues and

FlowPools here, is that with FlowPools, multiple histograms are produced by invoking several

aggregate operations, while queues require writing each element to several queues– one for

each histogram. Without additional synchronization, reading a single queue is not an option,

30

2.3. Related Work

since elements have to be removed from the queue eventually, and it is not clear to each reader

when to do this. With FlowPools, elements are automatically garbage collected when no longer

needed.

Finally, to validate the last claim of garbage being automatically collected, in the Communica-

tion/Garbage Collection benchmark, Figure 2.9, we create a pool in which a large number of

elements N are added concurrently by P threads. Each element is then processed by one of P

threads through the use of the aggregate operation. We benchmark against linked transfer

queues, where P threads concurrently remove elements from the queue and process it. For

each run, we vary the size of the N and examine its impact on the execution time. Especially

in the cases of the Intel architectures, the multi-lane FlowPools perform considerably better

than the linked transfer queues. As a matter of fact, the linked transfer queue on the Xeon

benchmark ran out of memory, and was unable to complete, while the multi-lane FlowPool

scaled effortlessly to 400 million elements, indicating that unneeded elements are properly

garbage collected.

2.3 Related Work

An introduction to linearizability and lock-freedom is given by Herlihy and Shavit [Herlihy and

Shavit, 2008]. A detailed overview of concurrent data structures is given by Moir and Shavit

[Moir and Shavit, 2005]. To date, concurrent data structures remain an active area of research–

we restrict this summary to those relevant to this work.

Concurrently accessible queues have been present for a while, an implementation is described

by [Mellor-Crummey, 1987]. Non-blocking concurrent linked queues are described by Michael

and Scott [Michael and Scott, 1996]. This CAS-based queue implementation is cited and used

widely today, a variant of which is present in the Java standard library. More recently, Scherer,

Lea and Scott [III et al., 2009] describe synchronous queues which internally hold both data

and requests. Both approaches above entail blocking (or spinning) at least on the consumer’s

part when the queue is empty.

While the abstractions above fit well in the concurrent imperative model, they have the

disadvantage that the programs written using them are inherently nondeterministic. Roy

and Haridi [Roy and Haridi, 2004] describe the Oz programming language, a subset of which

yields programs deterministic by construction. Oz dataflow streams are built on top of single-

assignment variables and are deterministically ordered. They allow multiple consumers,

but only one producer at a time. Oz has its own runtime which implements blocking using

continuations.

The concept of single-assignment variables is used to provide logical variables in concurrent

logic programming languages [Shapiro, 1989]. It is also embodied in futures proposed by Baker

and Hewitt [Henry C. Baker and Hewitt, 1977], and promises first mentioned by Friedman and

Wise [Friedman and Wise, 1976]. Futures were first implemented in MultiLISP [Halstead, 1985],

31

Chapter 2. Asynchronous Programming

and have been employed in many languages and frameworks since. Futures have been gener-

alized to data-driven futures, which provide additional information to the scheduler [Tasirlar

and Sarkar, 2011]. Many frameworks have constructs that start an asynchronous computation

and yield a future holding its result, for example, Habanero Java [Budimlic et al., 2011] (async)

and Scala [Odersky et al., 2010] (future).

A number of other models and frameworks recognized the need to embed the concept of

futures into other data-structures. Single-assignment variables have been generalized to I-

Structures [Arvind et al., 1989] which are essentially single-assignment arrays. CnC [Budimlic

et al., 2010, Burke et al., 2011] is a parallel programming model influenced by dynamic dataflow,

stream-processing and tuple spaces [Gelernter, 1985]. In CnC the user provides high-level

operations along with the ordering constraints that form a computation dependency graph.

FlumeJava [Chambers et al., 2010a] is a distributed programming model which relies heavily

on the concept of collections containing futures. An issue that often arises with dataflow

programming models are unbalanced loads. This is often solved using bounded buffers which

prevent the producer from overflowing the consumer.

Opposed to the correct-by-construction determinism described thus far, a type-systematic

approach can also ensure that concurrent executions have deterministic results. Recently,

work on Deterministic Parallel Java showed that a region-based type system can ensure

determinism [Jr. et al., 2009]. X10’s constrained-based dependent types can similarly ensure

determinism and deadlock-freedom [Saraswat et al., 2007].

LVars [Kuper and Newton, 2013] are a generalization of single-assignment variables to multiple-

assignment that are provably deterministic in a concurrent setting. LVars are based on a lattice

and ensure determinism by allowing only monotonic writes and threshold reads. LVars were

extended with freezing and handlers [Kuper et al., 2014] resembling some of the capabilities

and interface of FlowPools. FlowPools differ in that they use many of the same properties

(monotonicity, callbacks, and sealing) to solve a slightly different problem–FlowPools aim to

provide a deterministic multiset or pool abstraction of single-assignment variables and prov-

ably non-blocking implementation. LVars aim to be a foundation for ensuring determinism

based on lattices, which can be realized as a number of different types of data structures such

as single variables, sets, or maps.

CRDTs [Shapiro et al., 2011a,b] are data structures with specific well-definied properties

designed for replicating data across multiple machines in a distributed system. While generally

useful for a different purpose (FlowPools don’t aim to replicate state across a network, instead

they intend to be deterministic in the face of concurrent writes), both FlowPools and CRDTs

share the need for monotonic updates. One convenience FlowPools have over CRDTs is

their composability. However, Lasp [Meiklejohn and Van Roy, 2015] attempts to remedy this

limitation of CRDTs through a new programming model designed for building convergent

computations by composing CRDTs.

32

2.4. Conclusion

2.4 Conclusion

In this chapter, we’ve presented two libraries and abstractions for asynchronous dataflow pro-

gramming. Futures in Scala, are a fully asynchronous and non-blocking futures and promises

library with a monadic interface that enables operations on futures to be composed. FlowPools

are an abstraction for concurrent dataflow programming that also provides a composable

programming model similar to futures. We showed that FlowPools are provably deterministic

and can be implemented in a provably non-blocking manner. Finally, we showed that in

addition to having a richer more functional interface than other similar data structures in

Java’s concurrency library, FlowPools are also efficient and out perform a number of standard

Java concurrent data structures in our benchmarks.

33

3 Pickling

Central to a distributed application is the need to communicate with the outside world.

However, in order to do this, data must be transformed from an in-memory representation to

one that can be sent over the network, e.g., a binary representation. This act of transforming

in-memory data to some form of external representation is called pickling or serialization.

This chapter covers a new approach to this foundational aspect of distributed programming.

In this chapter, we detail object oriented picklers and scala/pickling, a framework for generating

them at compile time.

3.1 Introduction

As more and more traditional applications migrate to the cloud, the demand for interoperabil-

ity between different services is at an all-time high, and is increasing. At the center of all of

this communication – communication that must often take place in various ways, in many

formats, even within the same application. However, a central aspect to this communication

that has received surprisingly little attention in the literature is the need to serialize, or pickle

objects, i.e., to persist in-memory data by converting them to a binary, text, or some other rep-

resentation. As more and more applications develop the need to communicate with different

machines or services, providing abstractions and constructs for easy-to-use, typesafe, and

performant serialization is becoming more important than ever.

On the JVM, serialization has long been acknowledged as having a high overhead [Carpenter

et al., 1999, Welsh and Culler, 2000], with some estimates purporting object serialization to

account for 25-65% of the cost of remote method invocation, and which go on to observe

that the cost of serialization grows with growing object structures up to 50% [Maassen et al.,

1999, Philippsen et al., 2000]. Due to the prohibitive cost of using Java Serialization in high-

performance distributed applications, many frameworks for distributed computing, like

Akka [Typesafe, 2009], Spark [Zaharia et al., 2012], SCADS [Armbrust et al., 2009], and others,

provide support for higher-performance alternative frameworks such as Google’s Protocol

35

Chapter 3. Pickling

Buffers [Google, 2008], Apache Avro [Apache, 2013], or Kryo [Nathan Sweet, 2013]. However,

the higher efficiency typically comes at the cost of weaker or no type safety, a fixed serialization

format, more restrictions placed on the objects to-be-serialized, or only rudimentary language

integration.

This chapter presents object-oriented picklers and scala/pickling, a framework for their gener-

ation either at runtime or at compile time. The introduced notion of object-oriented pickler

combinators extends pickler combinators known from functional programming [Kennedy,

2004] with support for object-oriented concepts such as subtyping, mix-in composition, and

object identity in the face of cyclic object graphs. In contrast to pure functional-style pickler

combinators, we employ static, type-based meta programming to compose picklers at compile

time. The resulting picklers are efficient, since the pickling code is generated statically as much

as possible, avoiding the overhead of runtime reflection [Dubochet, 2011, Gil and Maman,

2008].

Furthermore, the presented pickling framework is extensible in several important ways. First,

building on an object-oriented type-class-like mechanism [Oliveira et al., 2010], our approach

enables retroactively adding pickling support to existing, unmodified types. Second, our

framework provides pluggable pickle formats which decouple type checking and pickler

composition from the lower-level aspects of data formatting. This means that the type safety

guarantees provided by type-specialized picklers are “portable” in the sense that they carry

over to different pickle formats.

3.1.1 Design Constraints

The design of our framework has been guided by the following principles:

• Ease of use. The programming interface aims to require as little pickling boilerplate

as possible. Thanks to dedicated support by the underlying virtual machine, Java’s

serialization [Oracle, Inc., 2011] requires only little boilerplate, which mainstream Java

developers have come to expect. Our framework aims to be usable in production

environments, and must, therefore, be able to integrate with existing systems with

minimal changes.

• Performance. The generated picklers should be efficient enough so as to enable their

use in high-performance distributed, “big data”, and cloud applications. One factor

driving practitioners away from Java’s default serialization mechanism is its high runtime

overhead compared to alternatives such as Kryo, Google’s Protocol Buffers or Apache’s

Avro serialization framework. However, such alternative frameworks offer only minimal

language integration.

• Extensibility. It should be possible to add pickling support to existing types retroactively.

This resolves a common issue in Java-style serialization frameworks where classes have

to be marked as serializable upfront, complicating unanticipated change. Furthermore,

36

3.1. Introduction

type-class-like extensibility enables pickling also for types provided by the underlying

runtime environment (including built-in types), or types of third-party libraries.

• Pluggable Pickle Formats. It should be possible to easily swap target pickle formats, or

for users to provide their own customized format. It is not uncommon for a distributed

application to require multiple formats for exchanging data, for example an efficient

binary format for exchanging system messages, or JSON format for publishing feeds.

Type-class-like extensibility makes it possible for users to define their own pickle format,

and to easily swap it in at the use-site.

• Type safety. Picklers should be type safe through (a) type specialization and (b) dynamic

type checks when unpickling to transition unpickled objects into the statically-typed

“world” at a well-defined program point.

• Robust support for object-orientation. Concepts such as subtyping and mix-in com-

position are used very commonly to define regular object types in object-oriented

languages. Since our framework does without a separate data type description language

(e.g., a schema), it is important that regular type definitions are sufficient to describe the

types to-be-pickled. The Liskov substitution principle is used as a guidance surrounding

the substitutability of both objects to-be-pickled and first-class picklers. Our approach

is also general, supporting object graphs with cycles.

3.1.2 Contributions

This chapter outlines the following contributions:

• An extension to pickler combinators, well-known in functional programming, to support

the core concepts of object-oriented programming, namely subtyping polymorphism,

open class hierarchies, and object identity.

• A framework based on object-oriented pickler combinators which (a) enables retrofitting

existing types with pickling support, (b) supports automatically generating picklers at

compile time and at runtime, (c) supports pluggable pickle formats, and (d) does not

require changes to the host language or the underlying virtual machine.

• A complete implementation of the presented approach in and for Scala.1

• An experimental evaluation comparing the performance of our framework with Java seri-

alization and Kryo on a number of data types used in real-world, large-scale distributed

applications and frameworks.

1See http://github.com/scala/pickling/

37

http://github.com/scala/pickling/

Chapter 3. Pickling

3.2 Overview and Usage

3.2.1 Basic Usage

Scala/pickling was designed so as to require as little boilerplate from the programmer as

possible. For that reason, pickling or unpickling an object obj of type Obj requires simply,

import scala.pickling._

val pickle = obj.pickle

val obj2 = pickle.unpickle[Obj]

Here, the import statement imports scala/pickling, the method pickle triggers static pickler

generation, and the method unpickle triggers static unpickler generation, where unpickle is

parameterized on obj’s precise type Obj. Note that not every type has a pickle method; it is

implemented as an extension method using an implicit conversion. This implicit conversion

is imported into scope as a member of the scala.pickling package.

Implicit conversions. Implicit conversions can be thought of as methods which can be

implicitly invoked based upon their type, and whether or not they are present in implicit

scope. Implicit conversions carry the implicit keyword before their declaration. The pickle

method is provided using the following implicit conversion (slightly simplified):

implicit def PickleOps[T](picklee: T) =

new PickleOps[T](picklee)

class PickleOps[T](picklee: T) {

def pickle: Pickle = ...

...

}

In a nutshell, the above implicit conversion is implicitly invoked, passing object obj as an

argument, whenever the pickle method is invoked on obj. The above example can be written

in a form where all invocations of implicit methods are explicit, as follows:

val pickle = PickleOps[Obj](obj).pickle

val obj2 = pickle.unpickle[Obj]

Optionally, a user can import a PickleFormat. By default, our framework provides a Scala

Binary Format, an efficient representation based on arrays of bytes, though the framework

provides other formats which can easily be imported, including a JSON format. Furthermore,

38

3.2. Overview and Usage

users can easily extend the framework by providing their own PickleFormats (see Section

3.4.3).

Typically, the framework generates the required pickler itself inline in the compiled code, using

the PickleFormat in scope. In the case of JSON, for example, this amounts to the generation

of string concatenation code and field accessors for getting runtime values, all of which is

inlined, generally resulting in high performance (see Section 5.5).

In rare cases, however, it is necessary to fall back to runtime picklers which use runtime

reflection to access the state that is being pickled and unpickled. For example, a runtime

pickler is used when pickling instances of a generic subclass of the static class type to-be-

pickled.

Using scala/pickling, it’s also possible to pickle and unpickle subtypes, even if the pickle and

unpickle methods are called using supertypes of the type to-be-pickled. For example,

abstract class Person {

def name: String

}

case class Firefighter(name: String, since: Int)

extends Person

val ff: Person = Firefighter("Jim", 2005)

val pickle = ff.pickle

val ff2 = pickle.unpickle[Person]

In the above example, the runtime type of ff2 will correctly be Firefighter.

This perhaps raises an important concern– what if the type that is passed as a type argument to

method unpickle is incorrect? In this case, the framework will fail with a runtime exception at

the call site of unpickle. This is an improvement over other frameworks, which have less type

information available at runtime, resulting in wrongly unpickled objects often propagating to

other areas of the program before an exception is thrown.

Scala/pickling is also able to unpickle values of static type Any. Scala’s pattern-matching syntax

can make unpickling on less-specific types quite convenient, for example:

pickle.unpickle[Any] match {

case Firefighter(n, _) => println(n)

case _ => println("not a Firefighter")

}

39

Chapter 3. Pickling

Beyond dealing with subtypes, our pickling framework supports pickling/unpickling most

Scala types, including generics, case classes, and singleton objects. Passing a type argument

to pickle, whether inferred or explicit, which is an unsupported type leads to a compile-time

error. This avoids a common problem in Java-style serialization where non-serializable types

are only discovered at runtime, in general.

Function closures, however, are not supported by scala/pickling in its standalone form. It

turns out that function closures are tricky to serialize due to the complicated enviornments

that they can have. Chapter 5 focuses on this problem and introduces a new abstraction and

type system designed to ensure that closures are always serializable.

3.2.2 Advanced Usage

@pickleable Annotation. To handle subtyping correctly, the pickling framework generates

dispatch code which delegates to a pickler specialized for the runtime type of the object

to-be-pickled, or, if the runtime type is unknown, which is to be expected in the presence of

separate compilation, to a generic, but slower, runtime pickler.

For better performance, scala/pickling additionally provides an annotation which, at compile-

time, inserts a runtime type test to check whether the runtime class extends a certain class/trait.

In this case, a method that returns the pickler specialized for that runtime class is called. If

the class/trait has been annotated, the returned pickler is guaranteed to have been generated

statically. Furthermore, the @pickleable annotation (implemented as a macro annotation) is

expanded transitively in each subclass of the annotated class/trait.

This @pickleable annotation enables:

• library authors to guarantee to their clients that picklers for separately-compiled sub-

classes are fully generated at compile-time;

• faster picklers in general because one need not worry about having to fallback on a

runtime pickler.

For example, assume the following class Person and its subclass Firefighter are defined in

separately-compiled code.

// Library code

@pickleable class Person(val name: String)

// Client code

class Firefighter(override val name: String, salary: Int)

extends Person(name)

40

3.2. Overview and Usage

Note that class Person is annotated with the @pickleable annotation. @pickleable is a

macro annotation which generates additional methods for obtaining type-specialized picklers

(and unpicklers). With the @pickleable annotation expanded, the code for class Person looks

roughly as follows:

class Person(val name: String)

extends PickleableBase {

def pickler: SPickler[_] =

implicitly[SPickler[Person]]

...

}

First, note that the supertypes of Person now additionally include the trait PickleableBase;

it declares the abstract methods that the expansion of the macro annotation “fills in” with con-

crete methods. In this case, a pickler method is generated which returns an SPickler[_].2

Note that the @pickleable annotation is defined in a way where pickler generation is triggered

in both Person and its subclasses.

Here, we obtain an instance of SPickler[Person] by means of implicits. The implicitly

method, part of Scala’s standard library, is defined as follows:

def implicitly[T](implicit e: T) = e

Annotating the parameter (actually, the parameter list) using the implicit keyword means

that in an invocation of implicitly, the implicit argument list may be omitted if, for each

parameter of that list, there is exactly one value of the right type in the implicit scope. The

implicit scope is an adaptation of the regular variable scope; imported implicits, or implicits

declared in an enclosing scope are contained in the implicit scope of a method invocation.

As a result, implicitly[T] returns the uniquely-defined implicit value of type T which is in

scope at the invocation site. In the context of picklers, there might not be an implicit value of

type SPickler[Person] in scope (in fact, this is typically only the case with custom picklers).

In that case, a suitable pickler instance is generated using a macro def.

Macro defs. Macro defs are methods that are transparently loaded by the compiler and

executed (or expanded) during compilation. A macro is defined as if it is a normal method,

but it is linked using the macro keyword to an additional method that operates on abstract

syntax trees.

2The notation SPickler[_] is short for the existential type SPickler[t] forSome { type t }. It is necessary
here, because picklers must be invariant in their type parameter, see Section 3.3.1.

41

Chapter 3. Pickling

def assert(x: Boolean, msg: String): Unit = macro assert_impl

def assert_impl(c: Context)

(x: c.Expr[Boolean], msg: c.Expr[String]):

c.Expr[Unit] = ...

In the above example, the parameters of assert_impl are syntax trees, which the body of

assert_impl operates on, itself returning an AST of type Expr[Unit]. It is assert_impl that

is expanded and evaluated at compile-time. Its result is then inlined at the call site of assert

and the inlined result is typechecked. It is also important to note that implicit defs as described

above can be implemented as macros.

Scala/pickling provides an implicit macro def returning picklers for arbitrary types. Slightly

simplified, it is declared as follows:

implicit def genPickler[T]: SPickler[T]

This macro def is expanded when invoking

implicitly[SPickler[T]] if there is no implicit value of type SPickler[T] in scope.

Custom Picklers. It is possible to use manually written picklers in place of generated picklers.

Typical motivations for doing so are (a) improved performance through specialization and

optimization hints, and (b) custom pre-pickling and post-unpickling actions; such actions

may be required to re-initialize an object correctly after unpickling. Creating custom picklers

is greatly facilitated by modular composition using object-oriented pickler combinators. The

design of these first-class object-oriented picklers and pickler combinators is discussed in

detail in the following Section 3.3.

3.3 Object-Oriented Picklers

In the first part of this section (3.3.1) we introduce picklers as first-class objects, and, using

examples, motivate the contracts that valid implementations must guarantee. We demon-

strate that the introduced picklers enable modular, object-oriented pickler combinators,

i.e., methods for composing more complex picklers from simpler primitive picklers.

In the second part of this section (3.3.2) we present a formalization of object-oriented picklers

based on an operational semantics.

3.3.1 Picklers in Scala

In scala/pickling, a static pickler for some type T is an instance of trait SPickler[T] which has

a single abstract method, pickle:

42

3.3. Object-Oriented Picklers

trait SPickler[T] {

def pickle(obj: T, builder: PBuilder): Unit

}

For a concrete type, say, class Person from Section 3.2, the picklemethod of an SPickler[Person]

converts Person instances to a pickled format, using a pickle builder (the builder parameter).

Given this definition, picklers “are type safe in the sense that a type-specialized pickler can

be applied only to values of the specialized type” [Elsman, 2005]. The pickled result is not

returned directly; instead, it can be requested from the builder using its result() method.

Example:

val p = new Person("Jack")

...

val personPickler = implicitly[SPickler[Person]]

val builder = pickleFormat.createBuilder()

personPickler.pickle(p, builder)

val pickled: Pickle = builder.result()

In the above example, invoking implicitly[SPickler[Person]] either returns a regular

implicit value of type SPickler[Person] that is in scope, or, if it doesn’t exist, triggers the

(compile-time) generation of a type-specialized pickler (see Section 3.4). To use the pick-

ler, it is also necessary to obtain a pickle builder of type PBuilder. Since pickle formats

in scala/pickling are exchangeable (see Section 3.4.3), the pickle builder is provided by the

specific pickle format, through builder factory methods.

The pickled result has type Pickle which wraps a concrete representation, such as a byte

array (e.g., for binary formats) or a string (e.g., for JSON). The abstract Pickle trait is defined

as follows:

trait Pickle {

type ValueType

type PickleFormatType <: PickleFormat

val value: ValueType

...

}

The type members ValueType and PickleFormatType abstract from the concrete represen-

tation type and the pickle format type, respectively. For example, scala/pickling defines a

Pickle subclass for its default binary format as follows:

case class BinaryPickle(value: Array[Byte]) extends Pickle {

type ValueType = Array[Byte]

43

Chapter 3. Pickling

type PickleFormatType = BinaryPickleFormat

override def toString = ...

}

Analogous to a pickler, an unpickler for some type T is an instance of trait Unpickler[T] that

has a single abstract method unpickle; its (simplified) definition is as follows:

trait Unpickler[T] {

def unpickle(reader: PReader): T

}

Similar to a pickler, an unpickler does not access pickled objects directly, but through the

PReader interface, which is analogous to the PBuilder interface. A PReader is set up to read

from a pickled object as follows. First, we need to obtain an instance of the pickle format

that was used to produce the pickled object; this format is either known beforehand, or it can

be selected using the PickleFormatType member of Pickle. The pickle format, in turn, has

factory methods for creating concrete PReader instances:

val reader = pickleFormat.createReader(pickled)

The obtained reader can then be passed to the unpickle method of a suitable Unpickler[T].

Alternatively, a macro def on trait Pickle can be invoked directly for unpickling:

trait Pickle {

...

def unpickle[T] = macro ...

}

It is very common for an instance of SPickler[T] to also mix in Unpickler[T], thereby

providing both pickling and unpickling capabilities.

Pickling and Subtyping

So far, we have introduced the trait SPickler[T] to represent picklers that can pickle ob-

jects of type T. However, in the presence of subtyping and open class hierarchies providing

correct implementations of SPickler[T] is quite challenging. For example, how can an

SPickler[Person] know how to pickle an arbitrary, unknown subclass of Person? Regardless

of implementation challenges, picklers that handle arbitrary subclasses are likely less efficient

than more specialized picklers.

44

3.3. Object-Oriented Picklers

To provide flexibility while enabling optimization opportunities, scala/pickling introduces two

different traits for picklers: the introduced trait SPickler[T] is called a static pickler; it does

not have to support pickling of subclasses of T. In addition, the trait DPickler[T] is called a

dynamic pickler; its contract requires that it is applicable also to subtypes of T. The following

section motivates the need for dynamic picklers, and shows how the introduced concepts

enable a flexible, object-oriented form of pickler combinators.

Modular Pickler Combinators

This section explores the composition of the pickler abstractions introduced in the previous

section by means of an example. Consider a simple class Position with a field of type String

and a field of type Person, respectively:

class Position(val title: String, val person: Person)

To obtain a pickler for objects of type Position, ideally, existing picklers for type String and

for type Person could be combined in some way. However, note that the person field of a

given instance of class Position could point to an instance of a subclass of Person (assuming

class Person is not final). Therefore, a modularly re-usable pickler for type Person must be

able to pickle all possible subtypes of Person.

In this case, the contract of static picklers is too strict, it does not allow for subtyping. The

contract of dynamic picklers on the other hand does allow for subtyping. As a result, dynamic

picklers are necessary so as to enable modular composition in the presence of subtyping.

Picklers for final class types like String, or for primitive types like Int do not require support

for subtyping. Therefore, static picklers are sufficient to pickle these effectively final types.

Compared to dynamic picklers, static picklers benefit from several optimizations.

Implementing Object-Oriented Picklers

The main challenge when implementing OO picklers comes from the fact that a dynamic

pickler for type T must be able to pickle objects of any subtype of T. Thus, the implementation

of a dynamic pickler for type T must, in general, dynamically dispatch on the runtime type

of the object to-be-pickled to take into account all possible subtypes of T. Because of this

dynamic dispatch, manually constructing dynamic picklers can be difficult. It is therefore

important for a framework for object-oriented picklers to provide good support for realizing

this form of dynamic dispatching.

There are various ways across many different object-oriented programming languages to

handle subtypes of the pickler’s static type:

• Data structures with shallow class hierarchies, such as lists or trees, often have few

45

Chapter 3. Pickling

final leaf classes. As a result, manual dispatch code is typically simple in such cases.

For example, a manual pickler for Scala’s List class does not even have to consider

subclasses.

• Java-style runtime reflection can be used to provide a generic DPickler[Any] which

supports pickling objects of any type [Oracle, Inc., 2011, Philippsen et al., 2000]. Such a

pickler can be used as a fallback to handle subtypes that are unknown to the pickling

code; such subtypes must be handled in the presence of separate compilation. In

Section 3.4.4 we present Scala implementations of such a generic pickler.

• Java-style annotation processing is commonly used to trigger the generation of addi-

tional methods in annotated class types. The purpose of generated methods for pickling

would be to return a pickler or unpickler specialized for an annotated class type. In C#,

the Roslyn Project [Ng et al., 2012] allows augmenting class definitions based on the

presence of annotations.

• Static meta programming [Burmako and Odersky, 2012, Skalski, 2005] enables genera-

tion of picklers at compile time. In Section 3.4 we present an approach for generating

object-oriented picklers from regular (class) type definitions.

Supporting Unanticipated Evolution

Given the fact that the type SPickler[T], as introduced, has a type parameter T, it is reason-

able to ask what the variance of T is. Ruling out covariance because of T’s occurrence in a

contravariant position as the type of a method parameter, it remains to determine whether T

can be contravariant.

For this, it is useful to consider the following scenario. Assume T is declared to be contravariant,

as in SPickler[-T]. Furthermore, assume the existence of a public, non-final class C with a

subclass D:

class C {...}

class D extends C {...}

Initially, we might define a generic pickler for C:

46

3.3. Object-Oriented Picklers

implicit val picklerC = new SPickler[C] {

def pickle(obj: C): Pickle = { ... }

}

Because SPickler[T] is contravariant in its type parameter, instances of D would be pickled

using picklerC. There are several possible extensions that might be unanticipated initially:

• Because the implementation details of class D change, instances of D should be pickled

using a dedicated pickler instead of picklerC.

• A subclass E of C is added which requires a dedicated pickler, since picklerC does not

know how to instantiate class E (since class E did not exist when picklerC was written).

In both cases it is necessary to add a new, dedicated pickler for either an existing subclass (D)

or a new subclass (E) of C:

implicit val picklerD = new SPickler[D] { ... }

However, when pickling an instance of class D this new pickler, picklerD, would not get

selected, even if the type of the object to-be-pickled is statically known to be D. The reason is

that SPickler[C] <: SPickler[D] because of contravariance which means that picklerC is

more specific than picklerD. As a result, according to Scala’s implicit look-up rules picklerC

is selected when an implicit object of type SPickler[D] is required. (Note that this is the case

even if picklerD is declared in a scope that has higher precedence than the scope in which

picklerC is declared.)

While contravariant picklers do not support the two scenarios for unanticipated extension

outlined above, invariant picklers do, in combination with type bounds. Assuming invariant

picklers, we can define a generic method picklerC1 that returns picklers for all subtypes of

class C:

implicit def picklerC1[T <: C] = new SPickler[T] {

def pickle(obj: T): Pickle = { ... }

}

With this pickler in scope, it is still possible to define a more specific SPickler[D] (or SPickler[E])

as required:

implicit val picklerD1 = new SPickler[D] { ... }

47

Chapter 3. Pickling

P ::= cde f t program

cde f ::= class C extends D { f ld meth} class
f ld ::= var f : C field
meth ::= def m(x : C) : D = e method
t ::= let x = e in t let binding

| x. f := y assignment
| x variable

e ::= new C (x) instance creation
| x. f selection
| x.m(y) invocation
| t term

Figure 3.1 – Core language syntax. C ,D are class names, f ,m are field and method names, and
x, y are names of variables and parameters, respectively.

H ::= ; | (H ,r 7→ v) heap
V ::= ; | (V , y 7→ r) environment (y ∉ dom(V))
v ::= o | ρ value
o ::= C (r) object
ρ ::= (Cp ,m,C) pickler
r ∈ Re f Locs reference location

Figure 3.2 – Heaps, environments, objects, and picklers.

However, the crucial difference is that now picklerD1 is selected when an object of static type

D is pickled, since picklerD1 is more specific than picklerC1.

In summary, the combination of invariant picklers and generics (with upper type bounds) is

flexible enough to support some important scenarios of unanticipated evolution. This is not

possible with picklers that are contravariant. Consequently, in scala/pickling the SPickler

trait is invariant in its type parameter.

3.3.2 Formalization

To define picklers formally we use a standard approach based on an operational semantics

for a core object-oriented language. Importantly, our goal is not a full formalization of a core

language; instead, we (only) aim to provide a precise definition of object-oriented picklers.

Thus, our core language simplifies our actual implementation language in several ways. Since

our basic definitions are orthogonal to the type system of the host language, we limit types to

non-generic classes with at most one superclass. Moreover, the core language does not have

first-class functions, or features like pattern matching. The core language without picklers is a

simplified version of a core language used in the formal development of a uniqueness type

system for Scala [Haller and Odersky, 2010].

Figure 3.1 shows the core language syntax. A program is a sequence of class definitions

48

3.3. Object-Oriented Picklers

followed by a (main) term. (We use the common over-bar notation [Igarashi et al., 2001] for

sequences.) Without loss of generality, we use a form where all intermediate terms are named

(A-normal form [Flanagan et al., 1993]). The language does not support arbitrary mutable

variables (cf. [Pierce, 2002], Chapter 13); instead, only fields of objects can be (re-)assigned.

We assume the existence of two pre-defined class types, AnyRef and Pickle. All class hier-

archies have AnyRef as their root. For the purpose of our core language, AnyRef is simply a

member-less class without a superclass. Pickle is the class type of objects that are the result

of pickling a regular object.

We define the standard auxiliary functions mt y pe and mbod y as follows. Let def m(x : C) :

D = e be a method defined in the most direct superclass of C that defines m. Then mbod y(m,C) =
(x,e) and mt y pe(m,C) =C → D .

Dynamic semantics

V (x) = rp H(rp) = (Cp , s,C)
V (y) = r H(r) =C (_)

mbody(p,Cp) = (z,e)

H ,V ,let x ′ = x.p(y) in t
−→ H , (V , z 7→ r),let x ′ = e in t

(R-PICKLE-S)

V (x) = rp H(rp) = (Cp ,d ,C)
V (y) = r H(r) = D(_) D <: C

mbody(p,Cp) = (z,e)

H ,V ,let x ′ = x.p(y) in t
−→ H , (V , z 7→ r),let x ′ = e in t

(R-PICKLE-D)

V (x) = r H(r) =C (_)
V (y) = r1 . . .rn

mbody(m,C) = (x,e)

H ,V ,let x ′ = x.m(y) in t
−→ H , (V , x 7→ r),let x ′ = e in t

(R-INVOKE)

Figure 3.3 – Reduction rules for pickling.

We use a small-step operational semantics to formalize the dynamic semantics of our core

language. Reduction rules are written in the form H ,V , t −→ H ′,V ′, t ′. That is, terms t are

reduced in the context of a heap H and a variable environment V . Figure 3.2 shows their

syntax. A heap maps reference locations to values. In our core language, values can be either

objects or picklers. An object C (r) stores location ri in its i-th field. An environment maps

variables to reference locations r . Note that we do not model explicit stack frames. Instead,

method invocations are “flattened” by renaming the method parameters before binding them

to their argument values in the environment (as in LJ [Strnisa et al., 2007]).

A pickler is a tuple (Cp ,m,C) where Cp is a class that defines two methods p and u for pickling

and unpickling an object of type C , respectively, where mt y pe(p,Cp) = C → Pickle and

mt y pe(u,Cp) = Pickle → C . The second component m ∈ {s,d} is the pickler’s mode; the

operational semantics below explains how the mode affects the applicability of a pickler in the

presence of subtyping.

49

Chapter 3. Pickling

As defined, picklers are first-class, since they are values just like objects. However, while

picklers are regular objects in our practical implementation, picklers are different from objects

in the present formal model. The reason is that a pickler has to contain a type tag indicating

the types of objects that it can pickle (this is apparent in the rules of the operational semantics

below); however, the alternative of adding parameterized types (as in, e.g., FGJ [Igarashi et al.,

2001]) is beyond the scope of this work.

According to the grammar in Figure 3.1, expressions are always reduced in the context of

a let-binding, except for field assignments. Each operand of an expression is a variable y

that the environment maps to a reference location r . Since the environment is a flat list of

variable bindings, let-bound variables must be alpha-renamable: let x = e in t ≡ let x ′ =
e in [x ′/x]t where x ′ ∉ FV (t). (We omit the definition of the FV function to obtain the free

variables of a term, as it is standard [Pierce, 2002].)

In the following we explain the subset of the reduction rules suitable to formalize the properties

of picklers. We start with the reduction rule for method invocations, since the reduction rules

pertinent to picklers are variants of that rule.

Figure 3.3 shows the reduction rules for pickling and unpickling an object.

Rule (R-PICKLE-S) is a refinement of rule (R-INVOKE) for method invocations. When using a

pickler x to pickle an object y such that the pickler’s mode is s (static), the type tag C of the

pickler indicating the type of objects that it can pickle must be equal to the dynamic class

type of the object to-be-pickled (the object at location r). This expresses the fact that a static

pickler can only be applied to objects of a precise statically-known type C , but not a subtype

thereof.

In contrast, rule (R-PICKLE-D) shows the invocation of the pickling method p for a pickler

with mode d (dynamic). In this case, the type tag C of the pickler must not be exactly equal to

the dynamic type of the object to-be-pickled (the object at location r); it is only necessary that

D <: C .

Property. The pickling and unpickling methods of a pickler must satisfy the property that

“pickling followed by unpickling generates an object that is structurally equal to the original

object”. The following definition captures this formally:

Definition 3.3.1. Given variables x, x ′, y, y ′, heaps H , H ′, variable environments V ,V ′,
and a term t such that

50

3.3. Object-Oriented Picklers

V (y) = r H(r) =C (r)

V (x) = rp H(rp) = (Cp ,m,D){
D =C if m = s

D <: C if m = d

V ′(y ′) = r ′

and

H ,V ,let x ′ = x.u(x.p(y)) in t

−→∗ H ′,V ′,let x ′ = y ′ in t

Then r and r ′ must be structurally equivalent in heap H ′, written r ≡H ′ r ′.

Note that in the above definition we assume that references in heap H are not garbage collected

in heap H ′. The definition of structural equivalence is straight-forward.

Definition 3.3.2. (Structural Equivalence)

Two picklers rp ,r ′
p are structurally equal in heap H , written rp ≡H r ′

p iff

H(rp) = (Cp ,m,C)∧H(r ′
p) = (C ′

p ,m′,C ′) ⇒
m = m′∧C <: C ′∧C ′ <: C

(3.1)

Two reference locations r,r ′ are structurally equal in heap H , written r ≡H r ′ iff

H(r) =C (r)∧H(r ′) =C ′(p) ⇒
C <: C ′∧C ′ <: C ∧∀ri ∈ r , pi ∈ p. ri ≡H pi

(3.2)

Note that the above definition considers two picklers to be structurally equal even if their

implementation classes Cp and C ′
p are different. In some sense, this is consistent with our

practical implementation in the common case where picklers are only resolved using im-

plicits: Scala’s implicit resolution enforces that an implicit pickler of a given type is uniquely

determined.

3.3.3 Summary

This section has introduced an object-oriented model of first-class picklers. Object-oriented

picklers enable modular pickler combinators with support for subtyping, thereby extending a

well-known approach in functional programming. The distinction between static and dynamic

picklers enables optimizations for final class types and primitive types. Object-oriented pick-

51

Chapter 3. Pickling

lers can be implemented using various techniques, such as manually written picklers, runtime

reflection, or Java-style annotation processors. We argue that object- oriented picklers should

be invariant in their generic type parameter to allow for several scenarios of unanticipated

evolution. Finally, we provide a formalization of a simple form of OO picklers.

3.4 Generating Object-Oriented Picklers

An explicit goal of our framework is to require little to no boilerplate in client code, since

practitioners are typically accustomed to serialization supported by the underlying runtime

environment like in Java or .NET. Therefore, instead of requiring libraries or applications to

supply manually written picklers for all pickled types, our framework provides a component

for generating picklers based on their required static type.

Importantly, compile-time pickler generation enables efficient picklers by generating as much

pickling code as possible statically (which corresponds to a partial evaluation of pickler

combinators). Section 5.5 reports on the performance improvements that our framework

achieves using compile-time pickler generation, compared to picklers based on runtime

reflection, as well as manually written picklers.

3.4.1 Overview

Our framework generates type-specialized, object-oriented picklers using compile-time meta

programming in the form of macros. Whenever a pickler for static type T is required but

cannot be found in the implicit scope, a macro is expanded which generates the required

pickler step-by-step by:

• Obtaining a type descriptor for the static type of the object to-be-pickled,

• Building a static intermediate representation of the object-to-be-pickled, based on the

type descriptor, and

• Applying a pickler generation algorithm, driven by the static pickler representation.

In our Scala-based implementation, the static type descriptor is generated automatically

by the compiler, and passed as an implicit argument to the pickle extension method (see

Section 3.2). As a result, such an implicit TypeTag1 does not require changing the invocation

in most cases. (However, it is impossible to generate a TypeTag automatically if the type or

one of its components is abstract; in this case, an implicit TypeTag must be in scope.)

Based on the type descriptor, a static representation, or model, of the required pickler is built;

we refer to this as the Intermediate Representation (IR). The IR specifies precisely the set of

types for which our framework can generate picklers automatically. Furthermore, these IRs

are composable.

52

3.4. Generating Object-Oriented Picklers

We additionally define a model for composing IRs, which is designed to capture the essence of

Scala’s object system as it relates to pickling. The model defines how the IR for a given type is

composed from the IRs of the picklers of its supertypes. In Scala, the composition of an IR for

a class type is defined based on the linearization of its supertraits.2 This model of inheritance

is central to the generation framework, and is formally defined in the following Section 3.4.2

3.4.2 Model of Inheritance

The goal of this section is to define the IR, which we’ll denoteΥ, of a static type T as it is used

to generate a pickler for type T . We start by defining the syntax of the elements of the IR (see

Def. 3.4.1).

Definition 3.4.1. (Elements of IR)

We define the syntax of values of the IR types.

F ::= (fn ,T)

Υ ::= (T,Υopt ,F)

Υopt ::= ε |Υ

F represents a sequence of fields. We write X as shorthand for sequences, X1, . . . , Xn , and

we write tuples (X1, . . . , Xn). fn is a string representing the name of the given field, and T

is its type.

Υ represents the pickling information for a class or some other object type. That is, anΥ

for type T contains all of the information required to pickle instances of type T , including

all necessary static info for pickling its fields provided by F .

Υopt is an optionalΥ; a missingΥ is represented using ε.

In our implementation the IR types are represented using case classes. For example, the

following case class representsΥs:

case class ClassIR(

tpe: Type,

parent: ClassIR,

fields: List[FieldIR]

) extends PickleIR

1TypeTags are part of the mainline Scala compiler since version 2.10. They replace the earlier concept of
Manifests, providing a faithful representation of Scala types at runtime.

2Traits in Scala can be thought of as a more flexible form of Java-style interfaces that allow concrete members,
and that support a form of multiple inheritance (mix-in composition) that is guaranteed to be safe based on a
linearization order.

53

Chapter 3. Pickling

We go on to define a number of useful IR combinators, which form the basis of our model of

inheritance.

Definition 3.4.2. (IR Combinators - Type Definitions)

We begin by defining the types of our combinators before we define the combinators

themselves.

Type Definitions

concat : (F,F) ⇒ F

extended : (Υ,Υ) ⇒Υ

linearization : T ⇒ T

superIRs : T ⇒Υ

compose :Υ⇒Υ

flatten :Υ⇒Υ

We write function types X ⇒ Y , indicating a function from type X to type Y .

The linearization function represents the host language’s semantics for the linearized

chain of supertypes.3

Definition 3.4.3. (IR Combinators - Function Defns)

Function Definitions

concat(f , g) = f , g

extended(C ,D) = (T,C ,fields(T))

where D = (T,_,_) ∧T <: C .1

superIRs(T) = [(S,ε,fields(S)) | S ∈ linearization(T)]

compose(C) = reduce(superIRs(C .1),extended)

flatten(C) =

(C .1,C .2,concat(C .3,flatten(C.2).3)),

if C .2 6= ε

C , otherwise

The function concat takes two sequences as arguments. We denote concatenation of

sequences using a comma. We introduce the concat function for clarity in the definition

3For example, in Scala the linearization is defined for classes mixing in multiple traits [Odersky, 2013, Odersky
and Zenger, 2005]; in Java, the linearization function would simply return the chain of superclasses, not including
the implemented interfaces.

54

3.4. Generating Object-Oriented Picklers

of flatten (see below); it is simply an alias for sequence concatenation.

The function extended takes twoΥs, C and D , and returns a newΥ for the type of D such

that C is registered as its superΥ. Basically, extended is used to combine a completedΥC

with an incompleteΥD yielding a completedΥ for the same type as D . When combining

theΥs of a type’s supertypes, the extended function is used for reducing the linearization

sequence yielding a single completedΥ.

The function superIRs takes a type T and returns a sequence of the IRs of T ’s supertypes

in linearization order.

The function compose takes anΥC for a type C .1 and returns a newΥ for type C .1 which

is the composition of the IRs of all supertypes of C .1. The resultingΥ is a chain of super

IRs according to the linearization order of C .1.

The function flatten, given anΥC produces a newΥ that contains a concatenation of all

the fields of each nestedΥ. Given these combinators, theΥ of a type T to-be-pickled is

obtained usingΥ= f l at ten(compose((T,ε, [])).

The above IR combinators have direct Scala implementations in scala/pickling. For example,

function super I Rs is implemented as follows:

private val f3 = (c: C) =>

c.tpe.baseClasses

.map(superSym => c.tpe.baseType(superSym))

.map(tp => ClassIR(tp, null, fields(tp)))

Here, method baseClasses returns the collection of superclass symbols of type c.tpe in

linearization order. Method baseType converts each symbol to a type which is, in turn, used

to create a ClassIR instance. The semantics of the fields method is analogous to the above

f i eld s function.

3.4.3 Pickler Generation Algorithm

The pickler generation is driven by the IR (see Section 3.4.2) of a type to-be-pickled. We

describe the generation algorithm in two steps. In the first step, we explain how to generate

a pickler for static type T assuming that for the dynamic type S of the object to-be-pickled,

erasure(T) =:= S. In the second step, we explain how to extend the generation to dynamic

picklers which do not require this assumption.

55

Chapter 3. Pickling

Pickle Format

The pickling logic that we are going to generate contains calls to a pickle builder that is used

to incrementally construct a pickle. Analogously, the unpickling logic contains calls to a

pickle reader that is used to incrementally read a pickle. Importantly, the pickle format that

determines the precise persisted representation of a completed pickle is not fixed. Instead, the

pickle format to be used is selected at compile time– efficient binary formats, and JSON are

just some examples. This selection is done via implicit parameters which allows the format

to be flexibly selected while providing a default binary format which is used in case no other

format is imported explicitly.

The pickle format provides an interface which plays the role of a simple, lower-level “backend”.

Besides a pickle template that is generated inline as part of the pickling logic, methods provided

by pickle builders aim to do as little as possible to minimize runtime overhead. For example,

the JSON PickleFormat included with scala/pickling simply uses an efficient string builder to

concatenate JSON fragments (which are just strings) in order to assemble a pickle.

The interface provided by PickleFormat is simple: it basically consists of two methods (a) for

creating an empty builder, and (b) for creating a reader from a pickle:3

def createBuilder(): PBuilder

def createReader(pickle: PickleType): PReader

The createReader method takes a pickle of a specific PickleType (which is an abstract

type member in our implementation); this makes it possible to ensure that, say, a pickle

encapsulating a byte array is not erroneously attempted to be unpickled using the JSON pickle

format. Moreover, pickle builders returned from createBuilder are guaranteed to produce

pickles of the right type.

class PBuilder {

def beginEntry(obj: Any): PBuilder

def putField(n: String, pfun: PBuilder => Unit): PBuilder

def endEntry(): Unit

def result(): Pickle

}

In the following we’re going to show how the PBuilder interface is used by generated picklers;

the PReader interface is used by generated unpicklers in an analogous way. The above example

summarizes a core subset of the interface of PBuilder that the presented generation algorithm

3In our actual implementation the createReader method takes an additional parameter which is a “mirror”
used for runtime reflection; it is omitted here for simplicity.

56

3.4. Generating Object-Oriented Picklers

is going to use.4 The beginEntry method is used to indicate the start of a pickle for the

argument obj. The field values of a class instance are pickled using putField which expects

both a field name and a lambda encapsulating the pickling logic for the object that the field

points to. The endEntry method indicates the completion of a (partial) pickle of an object.

Finally, invoking result returns the completed Pickle instance.

Tree Generation

The objective of the generation algorithm is to generate the body of SPickler’s pickle

method:

def pickle(obj: T, builder: PBuilder): Unit = ...

As mentioned previously, the actual pickling logic is synthesized based on the IR. Importantly,

the IR determines which fields are pickled and how. A lot of the work is already done when

building the IR; therefore, the actual tree generation is rather simple:

• Emit builder.beginEntry(obj).

• For each field fld in the IR, emit

builder.putField(${fld.name},b => pbody) where

${fld.name} denotes the splicing of fld.name into the tree. pbody is the logic for

pickling fld’s value into the builder b, which is an alias of builder. pbody is generated

as follows:

1. Emit the field getter logic:

val v: ${fld.tpe} = obj.${fld.name}. The expression ${fld.tpe} splices

the type of fld into the generated tree; ${fld.name} splices the name of fld into

the tree.

2. Recursively generate the pickler for fld’s type by emitting either

val fldp = implicitly[DPickler[${fld.tpe}]] or

val fldp = implicitly[SPickler[${fld.tpe}]], depending on whether fld’s

type is effectively final or not.

3. Emit the logic for pickling v into b: fldp.pickle(v, b)

A practical implementation can easily be refined to support various extensions of this basic

model. For example, support for avoiding pickling fields marked as transient is easy with this

model of generation– such fields can simply be left out of the IR. Or, based on the static types

of the picklee and its fields, we can emit hints to the builder to enable various optimizations.

4It is not necessary that PBuilder is a class. In fact, in our Scala implementation it is a trait. In Java, it could be
an interface.

57

Chapter 3. Pickling

For example, a field whose type T is effectively final, i.e., it cannot be extended, can be opti-

mized as follows:

• Instead of obtaining an implicit pickler of type DPickler[T], it is sufficient to obtain an

implicit pickler of type SPickler[T], which is more efficient, since it does not require a

dynamic dispatch step like DPickler[T]

• The field’s type does not have to be pickled, since it can be reconstructed from its owner’s

type.

Pickler generation is compositional; for example, the generated pickler for a class type with

a field of type String re-uses the String pickler. This is achieved by generating picklers for

parts of an object type using invocations of the form implicitly[DPickler[T]]. This means

that if there is already an implicit value of type DPickler[T] in scope, it is used for pickling

the corresponding value. Since the lookup and binding of these implicit picklers is left to a

mechanism outside of pickler generation, what’s actually generated is a pickler combinator

which returns a pickler composed of existing picklers for parts of the object to-be-pickled.

More precisely, pickler generation provides the following composability property:

Property 3.4.1. (Composability) A generated pickler p is composed of implicit picklers of

the required types that are in scope at the point in the program where p is generated.

Since the picklers that are in scope at the point where a pickler is generated are under pro-

grammer control, it is possible to import manually written picklers which are transparently

picked up by the generated pickler. Our approach thus has the attractive property that it is an

“open-world” approach, in which it is easy to add new custom picklers for selected types at

exactly the desired places while integrating cleanly with generated picklers.

Dispatch Generation

So far, we have explained the generation of the pickling logic of static picklers. Dynamic

picklers require an additional dispatch step to make sure subtypes of the static type to-

be-pickled are pickled properly. The generation of a DPickler[T] is triggered by invoking

implicitly[DPickler[T]] which tries to find an implicit of type DPickler[T] in the current

implicit scope. Either there is already an implicit value of the right type in scope, or the only

matching implicit is an implicit def provided by the pickling framework which generates a

DPickler[T] on-the-fly. The generated dispatch logic has the following shape:

val clazz = if (picklee != null) picklee.getClass else null

val pickler = clazz match {

case null => implicitly[SPickler[NullTpe]]

58

3.4. Generating Object-Oriented Picklers

case c1 if c1 == classOf[S1] => implicitly[SPickler[S1]]

...

case cn if cn == classOf[Sn] => implicitly[SPickler[Sn]]

case _ => genPickler(clazz)

}

The types S1, . . . ,Sn are known subtypes of the picklee’s type T . If T is a sealed class or trait with

final subclasses, this set of types is always known at compile time. However, in the presence

of separate compilation it is, generally, possible that a picklee has an unknown runtime type;

therefore, we include a default case (the last case in the pattern match) which dispatches to a

runtime pickler that inspects the picklee using (runtime) reflection.

If the static type T to be pickled is annotated using the @pickleable annotation, all subclasses

are guaranteed to extend the predefined PickleableBase interface trait. Consequently, a more

optimal dispatch can be generated in this case:

val pickler =

if (picklee != null) {

val pbase = picklee.asInstanceOf[PickleableBase]

pbase.pickler.asInstanceOf[SPickler[T]]

}

else implicitly[SPickler[NullTpe]]

3.4.4 Runtime Picklers

One goal of our framework is to generate as much pickling code at compile time as possible.

However, due to the interplay of subclassing with both separate compilation and generics, we

provide a runtime fall back capability to handle the cases that cannot be resolved at compile

time.

Subclassing and separate compilation A situation arises where it’s impossible to statically

know all possible subclasses. In this case there are three options: (1) provide a custom pickler,

and (2) use an annotation which is described in Section 3.2.2. In the case where neither a

custom pickler nor an annotation is provided, our framework can inspect the instance to-be-

pickled at runtime to obtain the pickling logic. This comes with some runtime overhead, but

in Section 5.5 we present results which suggest that this overhead is not necessary in many

cases.

For the generation of runtime picklers our framework supports two possible strategies:

• Runtime interpretation of a type-specialized pickler

59

Chapter 3. Pickling

• Runtime compilation of a type-specialized pickler

Interpreted runtime picklers. If the runtime type of an object is unknown at compile time,

e.g., if its static type is Any, it is necessary to carry out the pickling based on inspecting the type

of the object to-be-pickled at runtime. We call picklers operating in this mode “interpreted

runtime picklers” to emphasize the fact that the pickling code is not partially evaluated in this

case. An interpreted pickler is created based on the runtime class of the picklee. From that

runtime class, it is possible to obtain a runtime type descriptor:

• to build a static intermediate representation of the type (which describes all its fields

with their types, etc.)

• to determine in which way the picklee should be pickled (as a primitive or not).

In case the picklee is of a primitive type, there are no fields to be pickled. Otherwise, the value

and runtime type of each field is obtained, so that it can be written to the pickle.

3.4.5 Generics and Arrays

Subclassing and generics. The combination of subclassing and generics poses a similar

problem to that introduced above in Section 3.4.4. For example, consider a generic class C,

class C[T](val fld: T) { ... }

A Pickler[C[T]]will not be able to pickle the field fld if its static type is unknown. To support

pickling instances of generic classes, our framework falls back to using runtime picklers for

pickling fields of generic type. So, when we have access to the runtime type of field fld, we

can either look up an already-generated pickler for that runtime type, or we can generate a

suitable pickler dynamically.

Arrays. Scala arrays are mapped to Java arrays; the two have the same runtime represen-

tation. However, there is one important difference: Java arrays are covariant whereas Scala

arrays are invariant. In particular, it is possible to pass arrays from Java code to Scala code.

Thus, a class C with a field f of type Array[T] may have an instance at runtime that stores an

Array[S] in field f where S is a subtype of T. Pickling followed by unpickling must instantiate

an Array[S]. Just like with other fields of non-final reference type, this situation requires

writing the dynamic (array) type name to the pickle. This is possible, since array types are not

erased on the JVM (unlike generic types). This allows instantiating an array with the expected

dynamic type upon unpickling.

60

3.4. Generating Object-Oriented Picklers

3.4.6 Object Identity and Sharing

Object identity enables the existence of complex object graphs, which themselves are a corner-

stone of object-oriented programming. While in Section 3.6.7 we show that pickling flat object

graphs is most common in big data applications, a general pickling framework for use with an

object-oriented language must not only support flat object graphs, it must also support cyclic

object graphs.

Supporting such cyclic object graphs in most object-oriented languages, however, typically

requires sophisticated runtime support, which is known to incur a significant performance

hit. This is due to the fact that pickling graphs with cycles requires tracking object identities

at runtime, so that pickling terminates and unpickling can faithfully reconstruct the graph

structure.

To avoid the overhead of tracking object identities unanimously for all objects, “runtime-based”

serialization frameworks like Java or Kryo have to employ reflective/introspective checks to

detect whether identities are relevant.5

Scala/pickling, on the other hand, employs a hybrid compile-time/runtime approach. This

makes it possible to avoid the overhead of object identity tracking in cases where it is statically

known to be safe, which we show in Section 3.6.7 is typically common in big data applications.

The following Section 3.4.6 outlines how object identity is tracked in scala/pickling. It also

explains how the management of object identities enables a sharing optimization. This sharing

optimization is especially important for persistent data structures, which are commonly used

in Scala. Section 3.4.6 explains how compile-time analysis is used to reduce the amount of

runtime checking in cases where object graphs are statically known to be acyclic.

Object Tracking

During pickling, a pickler keeps track of all objects that are part of the (top-level) object to-

be-pickled in a table. Whenever an object that’s part of the object graph is pickled, a hash

code based on the identity of the object is computed. The pickler then looks up whether that

object has already been pickled, in which case the table contains a unique integer ID as the

entry’s value. If the table does not contain an entry for the object, a unique ID is generated and

inserted, and the object is pickled as usual. Otherwise, instead of pickling the object again,

a special Ref object containing the integer ID is written to the pickle.6 During unpickling,

the above process is reversed by maintaining a mapping7 from integer IDs to unpickled heap

objects.

5With Kryo, some of this overhead can be avoided when using custom, handwritten serializers.
6Several strategies exist to avoid preventing pickled objects from being garbage collected. Currently, for each

top-level object to-be-pickled, a new hash table is created.
7This can be made very efficient by using a map implementation which is more efficient for integer-valued keys,

such as a resizable array.

61

Chapter 3. Pickling

This approach to dealing with object identities also enables sharing, an optimization which in

some big data applications can improve system throughput by reducing pickle size. Scala’s

immutable collections hierarchy is one example of a set of data structures which are persistent,

which means they make use of sharing. That is, object subgraphs which occur in multiple

instances of a data structure can be shared which is more efficient than maintaining multiple

copies of those subgraphs.

Scala/pickling’s management of object identities benefits instances of such data structures as

follows. First, it reduces the size of the computed pickle, since instead of pickling the same

object instance many times, compact references (Ref objects) are pickled. Second, pickling

time also has the potential to be reduced, since shared objects have to be pickled only once.

Static Object Graph Analysis

When generating a pickler for a given type T, the IR is analyzed to determine whether the graph

of objects of type T may contain cycles. Both T and the types of T’s fields are examined using

a breadth-first traversal. Certain types are immediately excluded from the traversal, since

they cannot be part of a cycle. Examples are primitive types, like Double, as well as certain

immutable reference types that are final, like String. However, the static inspection of the IR

additionally allows scala/pickling to traverse sealed class hierarchies.

For example, consider this small class hierarchy:

final class Position(p: Person, title: String)

sealed class Person(name: String, age: Int)

final class Firefighter(name: String, age: Int, salary: Int)

extends Person(name, age)

final class Teacher(name: String, age: Int, subject: String)

extends Person(name, age)

In this case, upon generating the pickler for class Position, it is detected that no cycles are

possible in the object graphs of instances of type Position. While Position’s p field has

a reference type, it cannot induce cycles, since Person is a sealed class that has only final

subclasses; furthermore, Person and its subclasses have only fields of primitive type.

In addition to this analysis, our framework allows users to disable all identity tracking program-

matically (by importing an implicit value), in case it is known that the graphs of (all) pickled

objects are acyclic. While this switch can boost performance, it also disables opportunities for

sharing (see above), and may thus lead to larger “pickles”.

62

3.5. Implementation

3.5 Implementation

The presented framework has been fully implemented in Scala. The object-oriented pickler

combinators presented in Section 3.3, including their implicit selection and composition,

can be implemented using stable versions of the standard, open-source Scala distribution.

The extension of our basic model with automatic pickler generation has been implemented

using the experimental macros feature introduced in Scala 2.10.0. Macros can be thought

of as a more regularly structured, localized, and more stable alternative to compiler plugins.

To simplify tree generation, our implementation leverages a quasiquoting library for Scala’s

macros [Shabalin et al., 2013].

3.6 Experimental Evaluation

In this section we present first results of an experimental evaluation of our pickling framework.

Our goals are

1. to evaluate the performance of automatically-generated picklers, analyzing the memory

usage compared to other serialization frameworks, and

2. to provide a survey of the properties of data types that are commonly used in distributed

computing frameworks and applications.

In the process, we are going to evaluate the performance of our framework alongside two popu-

lar and industrially-prominent serialization frameworks for the JVM, Java’s native serialization,

and Kryo.8

3.6.1 Experimental Setup

The following benchmarks were run on a MacBook Pro with a 2.6 GHz Intel Core i7 proces-

sor with 16 GB of memory running Mac OS X version 10.8.4 and Oracle’s Java HotSpot(TM)

64-Bit Server VM version 1.6.0_51. In all cases we used the following configuration flags:

-XX:MaxPermSize=512m -XX:+CMSClassUnloadingEnabled -XX:ReservedCodeCacheSize=192m

-XX:+UseConcMarkSweepGC -Xms512m -Xmx2g. Each benchmark was run on a warmed-up

JVM. The result shown is the median of 9 such “warm” runs.

3.6.2 Microbenchmark: Collections

In the first microbenchmark, we evaluate the performance of our framework when pickling

standard collection types. We compare against three other serialization frameworks: Java’s

8We select Kryo and Java because, like scala/pickling, they both are “automatic”. That is, they require no schema
or extra compilation phases, as is the case for other frameworks such as Apache Avro and Google’s Protocol Buffers.

63

Chapter 3. Pickling

100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
0

50

100

150

200

250

300

350

400

450

500

Number of Elements

Ti
m

e
[m

s]

Java
Kryo v1
Kryo v2
Scala Pickling
Pickler Combinators
Unsafe Pickler Combinators

200000 400000 600000 800000 1e+06
1.25

1.3

1.35

1.4

1.45

1.5

1.55 x 109

Fr
ee

 M
em

or
y

[B
yt

es
]

Number of Elements

200000 400000 600000 800000 1e+06
0

2

4

6

8

10

12 x 106

Si
ze

 [B
yt

es
]

Number of Elements
(a)

(b)

(c)

Figure 3.4 – Results for pickling and unpickling an immutable Vector[Int] using different
frameworks. Figure 3.4(a) shows the roundtrip pickle/unpickle time as the size of the Vector
varies. Figure 3.4(b) shows the amount of free memory available during pickling/unpickling
as the size of the Vector varies. Figure 3.4(c) shows the pickled size of Vector.

native serialization, Kryo, and a combinator library of naive handwritten pickler combinators.

All benchmarks are compiled and run using a current milestone of Scala version 2.10.3.

The benchmark logic is very simple: an immutable collection of type Vector[Int] is created

which is first pickled (or serialized) to a byte array, and then unpickled. While List is the

prototypical collection type used in Scala, we ultimately chose Vector as Scala’s standard List

type could not be serialized out-of-the-box using Kryo,9 because it is a recursive type in Scala.

In order to use Scala’s standard List type with Kryo, one must write a custom serializer, which

would sidestep the objective of this benchmark, which is to compare the speed of generated

picklers.

The results are shown in Figure 3.4 (a). As can be seen, Java is slower than the other frameworks.

This is likely due to the expensive runtime cost of the JVM’s calculation of the runtime transitive

closure of the objects to be serialized. For 1,000,000 elements, Java finishes in 495ms while

scala/pickling finishes in 74ms, or a factor 6.6 faster. As can be seen, the performance of our

prototype is clearly faster than Kryo for small to moderate-sized collections; even though it

remains faster throughout this benchmark, the gap between Kryo and scala/pickling shrinks

for larger collections. For a Vector[Int] with 100,000 elements, Kryo v2 finishes in 36ms

while scala/pickling finishes in 10ms–a factor of 3.6 in favor of scala/pickling. Conversely, for

a Vector of 1,000,000 elements, Kryo finishes in 84ms whereas scala/pickling finishes in 74ms.

This result clearly demonstrates the benefit of our hybrid compile-time/runtime approach:

9We register each class with Kryo, an optional step that improves performance.

64

3.6. Experimental Evaluation

6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

Number of Wikipedia Nodes

Ti
m

e
[m

s]
Wikipedia Cyclic Object Graph, Pickle Only

6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

Number of Wikipedia Nodes

Ti
m

e
[m

s]

Wikipedia Cyclic Object Graph, Pickle & Unpickle

Java
Scala Pickling

Java
Kryo v2
Scala Pickling

(a) (b)

Figure 3.5 – Results for pickling/unpickling a partition of Wikipedia, represented as a graph
with many cycles. Figure 3.5(a) shows a “pickling” benchmark across scala/pickling, Kryo,
and Java. In Figure 3.5(b), results for a roundtrip pickling/unpickling is shown. Here, Kryo is
removed because it crashes during unpickling.

while scala/pickling has to incur the overhead of tracking object identity in the case of general

object graphs, in this case, the compile-time pickler generation is able to detect that object

identity does not have to be tracked for the pickled data types. Moreover, it is possible to

provide a size hint to the pickle builder, enabling the use of a fixed-size array as the target for

the pickled data. We have found that those two optimizations, which require the kind of static

checking that scala/pickling is able to do, can lead to significant performance improvements.

The performance of manually written pickler combinators, however, is still considerably better.

This is likely due to the fact that pickler combinators require no runtime checks whatsoever–

pickler combinators are defined per type, and manually composed, requiring no such check.

In principle, it should be possible to generate code that is as fast as these pickler combinators

in the case where static picklers can be generated.
Figure 3.4 (b) shows the corresponding memory usage; on the y-axis the value of System.freeMemory

is shown. This plot reveals evidence of a key property of Kryo, namely (a) that its memory

usage is quite high compared to other frameworks, and (b) that its serialization is stateful

because of internal buffering. In fact, when preparing these benchmarks we had to manually

adjust Kryo buffer sizes several times to avoid buffer overflows. It turns out the main reason

for this is that Kryo reuses buffers whenever possible when serializing one object after the

other. In many cases, the newly pickled object is simply appended at the current position in

the existing buffer which results in unexpected buffer growth. Our framework does not do any

buffering which makes its behavior very predictable, but does not necessarily maximize its

performance.

Finally, Figure 3.4 (c) shows the relative sizes of the serialized data. For a Vector[Int] of

1,000,000 elements, Java required 10,322,966 bytes. As can be seen, all other frameworks

perform on par with another, requiring about 40% of the size of Java’s binary format. Or, in

65

Chapter 3. Pickling

2000 4000 6000 8000 10000
0

200

400

600

800

1000

Number of Events

Ti
m

e
[m

s]

Pickling/Unpickling Evactor Datatypes (Java OOME)

Java
Kryo v2
Scala Pickling

20,000 25,000 30,000 35,000 40,000
60

80

100

120

140

160

180

Number of Events

Ti
m

e
[m

s]

Pickling/Unpickling Evactor Datatypes

Kryo v2
Scala Pickling

(a) (b)

Figure 3.6 – Results for pickling/unpickling evactor datatypes (numerous tiny messages repre-
sented as case classes containing primitive fields.) Figure 3.6(a) shows a benchmark which
pickles/unpickles up to 10,000 evactor messages. Java runs out of memory at this point.
Figure 3.6(b) removes Java and scales up the benchmark to more evactor events.

20,000 25,000 30,000 35,000 40,000
0

10

20

30

40

50

60

70

80

90

Number of Elements

Ti
m

e
[m

s]

Pickling/Unpickling Spark Datatypes, Linear Regression

Java
Kryo v2
Scala Pickling

Figure 3.7 – Results for pickling/unpickling data points from an implementation of linear
regression using Spark.

order of largest to smallest; Kryo v1 - 4,201,152 bytes; Kryo v2 - 4,088,570 bytes; scala/pickling

4,000,031 bytes; and Pickler Combinators 4,000,004 bytes.

3.6.3 Wikipedia: Cyclic Object Graphs

In the second benchmark, we evaluate the performance of our framework when pickling

object graphs with cycles. Using real data from the Wikipedia project, the benchmark builds a

graph where nodes are Wikipedia articles and edges are references between articles. In this

benchmark we compare against Java’s native serialization and Kryo. Our objective was to

measure the full round-trip time (pickling and unpickling) for all frameworks. However, Kryo

consistently crashed in the unpickling phase despite several work-around attempts. Thus, we

66

3.6. Experimental Evaluation

include the results of two experiments: (1) “pickle only”, and (2) “pickle and unpickle”. The

results show that Java’s native serialization performs particularly well in this benchmark. In the

“pickle only” benchmark of Figure 3.5 between 12000 and 14000 nodes, Java takes only between

7ms and 10ms, whereas scala/pickling takes around 15ms. Kryo performs significantly worse,

with a time between 22ms and 24ms. In the “pickle and unpickle” benchmark of Figure 3.5,

the gap between Java and scala/pickling is similar to the “pickle only” case: Java takes between

15ms and 18ms, whereas scala/pickling takes between 25ms and 28ms.

3.6.4 Microbenchmark: Evactor

The Evactor benchmark evaluates the performance of pickling a large number of small objects

(in this case, events exchanged by actors). The benchmark creates a large number of events

using the datatypes of the Evactor complex event processor; all created events are inserted

into a collection and then pickled, and finally unpickled. As the results in Figure 3.6 show,

Java serialization struggles with extreme memory consumption and crashes with an out-of-

memory error when a collection with more than 10000 events is pickled. Both Kryo and

scala/pickling handle this very high number of events without issue. To compare Kryo and

scala/pickling more closely we did another experiment with an even higher number of events,

this time leaving out Java. The results are shown on the right-hand side of Figure 3.6. At 40000

events, Kryo finishes after about 180ms, whereas scala/pickling finishes after about 144ms–a

performance gain of about 25%.

3.6.5 Microbenchmark: Spark

Spark is a popular distributed in-memory collections abstraction for interactively manipulat-

ing big data. The Spark benchmark compares performance of scala/pickling, Java, and Kryo

when pickling data types from Spark’s implementation of linear regression.

Over the course of the benchmark, frameworks pickle and unpickle an ArrayBuffer of data

points that each consist of a double and an accompanying spark.util.Vector, which is a

specialized wrapper over an array of 10 Doubles. Here we use a mutable buffer as a container

for data elements instead of more typical lists and vectors from Scala’s standard library, because

that’s the data structure of choice for Spark to internally partition and represent its data.

The results are shown in Figure 3.7, with Java and Kryo running in comparable time and

scala/pickling consistently outperforming both of them. For example, for a dataset of 40000

points, it takes Java 68ms and Kryo 86ms to perform a pickling/unpickling roundtrip, whereas

scala/pickling completes in 28ms, a speedup of about 2.4x compared to Java and about 3.0x

compared to Kryo.

67

Chapter 3. Pickling

10,000,000 20,000,000 30,000,000 40,000,000 50,000,000
0

200

400

600

800

1000

Ti
m

e
[m

s]

Number of Elements

Pickling/Unpickling Geotrellis Datatypes

Java
Kryo v2
Scala Pickling

Figure 3.8 – Results for pickling/unpickling geotrellis datatypes (case classes and large primi-
tive arrays).

)UDPHZRUN 7\SH�VDIHW\ 2EMHFW�RULHQWHG %RLOHUSODWH�IUHH 7\SH H[WHQVLELOLW\)RUPDW ([WHQVLELOLW\
-DYD 6HULDOL]DWLRQ -DYD�RQO\ \HV \HV QR QR
.U\R -DYD�RQO\ \HV \HV \HV QR
3LFNOHU FRPELQDWRUV \HV QR QR \HV �\HV�
6FDOD SLFNOHUV \HV \HV \HV \HV \HV

)LJXUH �� &RPSDULQJ VHULDOL]DWLRQ IUDPHZRUNV

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV DG�KRF
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! 1�$ " " 1�$
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! 1�$ #" #" #"

7DEOH �� 7DEOH FDSWLRQ WH[W

>��@ -� 0DDVVHQ� 5� YDQ 1LHXZSRRUW� 5� 9HOGHPD� +� (� %DO� DQG
$� 3ODDW� $Q HIILFLHQW LPSOHPHQWDWLRQ RI -DYD¶V UHPRWH PHWKRG
LQYRFDWLRQ� ,Q 33233� SDJHV ���±���� $XJ� �����

>��@ 1DWKDQ 6ZHHW� .U\R� �����śŵŵ����Ŝ������Ŝ���ŵ�ŵ�����
>��@ .� 1J� 0� :DUUHQ� 3� *ROGH� DQG $� +HMOVEHUJ� 7KH URVO\Q

SURMHFW� ([SRVLQJ WKH F� DQG YE FRPSLOHU¶V FRGH DQDO\VLV�
����śŵŵ����Ŝ���������Ŝ���ŵ��Ş��ŵ��ɬɥɥɮɭɰ� 6HSW� �����

>��@ 0� 2GHUVN\� 6FDOD ODQJXDJH VSHFLILFDWLRQ� ����śŵŵ���Ŝ�����Ş
����Ŝ���ŵ����ŵ�����ŵ��������������Ŝ���� �����

>��@ 0� 2GHUVN\ DQG 0� =HQJHU� 6FDODEOH FRPSRQHQW DEVWUDFWLRQV�
$&0 6,*3/$1 1RWLFHV� ���������±��� 2FW� �����

>��@ 2UDFOH� ,QF� -DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ�
����śŵŵ����Ŝ������Ŝ���ŵ������ŵɮŵ����ŵ��������ŵ
�������������ŵ����ŵ���������Ŝ����� �����

>��@ 0� 3KLOLSSVHQ� %� +DXPDFKHU� DQG &� 1HVWHU� 0RUH HIILFLHQW
VHULDOL]DWLRQ DQG 50, IRU MDYD� &RQFXUUHQF\ � 3UDFWLFH DQG
([SHULHQFH� ���������±���� �����

>��@ '� 6KDEDOLQ� (� %XUPDNR� DQG 0� 2GHUVN\� 4XDVLTXRWHV IRU
VFDOD� 7HFKQLFDO 5HSRUW (3)/�5(3257�������� (3)/� /DX�
VDQQH� 6ZLW]HUODQG� �����

>��@ .� 6NDOVNL� 6\QWD[�H[WHQGLQJ DQG W\SH�UHÀHFWLQJ PDFURV LQ
DQ REMHFW�RULHQWHG ODQJXDJH� 0DVWHU¶V WKHVLV� 8QLYHUVLW\ RI
:DUVDZ� 3RODQG� �����

>��@ 7\SHVDIH� $NND� ����śŵŵ����Ŝ��� �����
>��@ 0� :HOVK DQG '� (� &XOOHU� -DJXDU� HQDEOLQJ HIILFLHQW FRPPX�

QLFDWLRQ DQG ,�2 LQ MDYD� &RQFXUUHQF\ � 3UDFWLFH DQG ([SHUL�
HQFH� ������ �����

>��@ 0� =DKDULD� 0� &KRZGKXU\� 7� 'DV� $� 'DYH� 0� 0F&DXOH\�
0�)UDQNOLQ� 6� 6KHQNHU� DQG ,� 6WRLFD� 5HVLOLHQW GLVWULEXWHG
GDWDVHWV� $ IDXOW�WROHUDQW DEVWUDFWLRQ IRU LQ�PHPRU\ FOXVWHU
FRPSXWLQJ� ,Q 16',� 86(1,;� �����

�� ���������

)LJXUH �� 6FDOD W\SHV XVHG LQ LQGXVWULDO GLVWULEXWHG IUDPHZRUNV DQG DSSOLFDWLRQV�

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV VXEW\SLQJ
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! 1�$ " " 1�$
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! 1�$ #" #" #"

LQ DUUD\V RI SULPLWLYHV� 0HVVDJHV LQ (YDFWRU UHSUHVHQW LQGL�
YLGXDO HYHQWV ZKLFK W\SLFDOO\ FRQWDLQ RQO\ D IHZ YDOXHV RI
SULPLWLYH W\SHV� %RWK DSSOLFDWLRQV PDNH XVH RI 6FDOD¶V FDVH
FODVVHV ZKLFK DUH PRVW FRPPRQO\ XVHG DV PHVVDJH W\SHV LQ
DFWRU�EDVHG DSSOLFDWLRQV�

7KH VHFRQG JURXS LQ WKH ERWWRP KDOI RI)LJXUH � FRQ�
VLVWV RI GLVWULEXWHG FRPSXWLQJ IUDPHZRUNV� :KDW WKLV WDEOH
VXJJHVWV LV WKDW WKH PDMRULW\ RI GLVWULEXWHG FRPSXWLQJ IUDPH�
ZRUNV DQG DSSOLFDWLRQV UHTXLUHV SLFNOLQJ FROOHFWLRQV RI YDUL�
RXV W\SHV� ,QWHUHVWLQJO\� DSSOLFDWLRQ�OHYHO GDWD W\SHV WHQG WR
XVH DUUD\V ZLWK SULPLWLYH HOHPHQW W\SH� D VLJQ WKDW WKHUH LV
D JUHDW QHHG WR SURYLGH HDVLHU ZD\V WR SURFHVV ³ELJ GDWD´
HIILFLHQWO\�)URP WKH WDEOH LW LV DOVR FOHDU WKDW FDVH FODVVHV
WHQG WR EH SULPDULO\ RI LQWHUHVW WR DSSOLFDWLRQ FRGH ZKHUHDV
IUDPHZRUNV OLNH 6SDUN WHQG WR SUHIHU WKH XVH RI VLPSOH FRO�
OHFWLRQV RI SULPLWLYH W\SH LQWHUQDOO\� :KDW¶V PRUH� WKH GH�
PDQG IRU SLFNOLQJ JHQHULFV VHHPV WR EH ORZHU WKDQ WKH QHHG
WR VXSSRUW VXEW\SLQJ SRO\PRUSKLVP �RXU IUDPHZRUN VXSSRUWV
ERWK� WKRXJK�� $W OHDVW LQ RQH FDVH �7ZLWWHU¶V &KLOO >��@� D
IUDPHZRUN H[SOLFLWO\ VHULDOL]HV 0DQLIHVWV� W\SH GHVFULSWRUV
IRU 6FDOD W\SHV� ZKLFK DUH VXSHUFHGHG E\ 7\SH7DJV �VHH 6HF�
WLRQ ���� 7KH VKDGHG DUHD �ZKLFK LV ´KHDYLO\�XVHG´� VKRZV
WKDW FROOHFWLRQV DUH RIWHQ XVHG LQ GLVWULEXWHG FRGH� LQ SDUWLF�
XODU ZLWK SULPLWLYH HOHPHQW W\SHV� 7KLV PRWLYDWHV WKH FKRLFH
RI RXU FROOHFWLRQV PLFUR EHQFKPDUN�

�� 2WKHU 5HODWHG :RUN
3LFNOLQJ LQ SURJUDPPLQJ ODQJXDJHV KDV D ORQJ KLVWRU\ GDW�
LQJ EDFN WR &/8 >��@ DQG 0RGXOD�� >�@� 7KH PRVW FORVHO\�
UHODWHG FRQWHPSRUDU\ ZRUN LV LQ WZR DUHDV�)LUVW� SLFNOLQJ
LQ REMHFW�RULHQWHG ODQJXDJHV� IRU H[DPSOH� LQ -DYD �VHH WKH

-DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ >��@�� LQ �1(7� DQG
LQ 3\WKRQ >��@� VHFRQG� ZRUN RQ SLFNOHU FRPELQDWRUV LQ IXQF�
WLRQDO ODQJXDJHV ZKLFK ZH KDYH DOUHDG\ GLVFXVVHG LQ WKH LQ�
WURGXFWLRQ� 7KH PDLQ GLIIHUHQFH RI RXU IUDPHZRUN FRPSDUHG
WR SLFNOLQJ� RU VHULDOL]DWLRQ� LQ ZLGH�VSUHDG 22 ODQJXDJHV LV
WKDW RXU DSSURDFK GRHV QRW UHTXLUH VSHFLDO VXSSRUW E\ WKH XQ�
GHUO\LQJ UXQWLPH� ,Q IDFW� WKH FRUH FRQFHSWV RI REMHFW�RULHQWHG
SLFNOHUV DV SUHVHQWHG LQ WKLV SDSHU FDQ EH UHDOL]HG LQ PRVW 22
ODQJXDJHV ZLWK JHQHULFV�

3LFNOLQJ KDV EHHQ XVHG QRW RQO\ IRU GLVWULEXWLRQ DQG SHU�
VLVWHQFH RI JURXQG YDOXHV� EXW DOVR RI FRGH WR LPSOHPHQW
PRGXOH V\VWHPV >��� ��@� 7KHUH LV D ERG\ RI ZRUN RQ PD[L�
PL]LQJ VKDULQJ RI UXQWLPH GDWD VWUXFWXUHV >�� ��� ��@ ZKLFK
ZH EHOLHYH FRXOG EH DSSOLHG WR WKH SLFNOHU FRPELQDWRUV SUH�
VHQWHG LQ 6HFWLRQ �� KRZHYHU� D FRPSOHWH VROXWLRQ LV EH\RQG
WKH VFRSH RI WKH SUHVHQW SDSHU�

�� &RQFOXVLRQ DQG)XWXUH :RUN
:H KDYH LQWURGXFHG D PRGHO RI SLFNOHU FRPELQDWRUV ZKLFK
VXSSRUWV FRUH FRQFHSWV RI REMHFW�RULHQWHG SURJUDPPLQJ LQ�
FOXGLQJ VXEW\SLQJ SRO\PRUSKLVP ZLWK RSHQ FODVV KLHUDU�
FKLHV�)XUWKHUPRUH� ZH KDYH VKRZQ KRZ WKLV PRGHO FDQ EH
DXJPHQWHG E\ D FRPSRVDEOH PHFKDQLVP IRU VWDWLF SLFNOHU
JHQHUDWLRQ ZKLFK LV HIIHFWLYH LQ UHGXFLQJ ERLOHUSODWH DQG
LQ HQVXULQJ HIILFLHQW SLFNOLQJ� 7KDQNV WR D GHVLJQ DNLQ WR
DQ REMHFW�RULHQWHG YDULDWLRQ RI W\SH FODVVHV NQRZQ IURP
IXQFWLRQDO SURJUDPPLQJ� WKH SUHVHQWHG IUDPHZRUN HQDEOHV
UHWURILWWLQJ H[LVWLQJ W\SHV DQG WKLUG�SDUW\ OLEUDULHV ZLWK SLFN�
OLQJ VXSSRUW� ([SHULPHQWV VXJJHVW WKDW VWDWLF JHQHUDWLRQ RI
SLFNOHU FRPELQDWRUV FDQ RXWSHUIRUP VWDWH�RI�WKH�DUW VHULDO�
L]DWLRQ IUDPHZRUNV DQG VLJQLILFDQWO\ UHGXFH PHPRU\ XVDJH�

�� ���������

)LJXUH �� 6FDOD W\SHV XVHG LQ LQGXVWULDO GLVWULEXWHG IUDPHZRUNV DQG DSSOLFDWLRQV�

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV VXEW\SLQJ
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! #" " " "
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! #" #" #" #"

/HJHQG� !� +HDY\ 8VH #"� /LJKW 8VH "� 1R 8VH

LQ DUUD\V RI SULPLWLYHV� 0HVVDJHV LQ (YDFWRU UHSUHVHQW LQGL�
YLGXDO HYHQWV ZKLFK W\SLFDOO\ FRQWDLQ RQO\ D IHZ YDOXHV RI
SULPLWLYH W\SHV� %RWK DSSOLFDWLRQV PDNH XVH RI 6FDOD¶V FDVH
FODVVHV ZKLFK DUH PRVW FRPPRQO\ XVHG DV PHVVDJH W\SHV LQ
DFWRU�EDVHG DSSOLFDWLRQV�

7KH VHFRQG JURXS LQ WKH ERWWRP KDOI RI)LJXUH � FRQ�
VLVWV RI GLVWULEXWHG FRPSXWLQJ IUDPHZRUNV� :KDW WKLV WDEOH
VXJJHVWV LV WKDW WKH PDMRULW\ RI GLVWULEXWHG FRPSXWLQJ IUDPH�
ZRUNV DQG DSSOLFDWLRQV UHTXLUHV SLFNOLQJ FROOHFWLRQV RI YDUL�
RXV W\SHV� ,QWHUHVWLQJO\� DSSOLFDWLRQ�OHYHO GDWD W\SHV WHQG WR
XVH DUUD\V ZLWK SULPLWLYH HOHPHQW W\SH� D VLJQ WKDW WKHUH LV
D JUHDW QHHG WR SURYLGH HDVLHU ZD\V WR SURFHVV ³ELJ GDWD´
HIILFLHQWO\�)URP WKH WDEOH LW LV DOVR FOHDU WKDW FDVH FODVVHV
WHQG WR EH SULPDULO\ RI LQWHUHVW WR DSSOLFDWLRQ FRGH ZKHUHDV
IUDPHZRUNV OLNH 6SDUN WHQG WR SUHIHU WKH XVH RI VLPSOH FRO�
OHFWLRQV RI SULPLWLYH W\SH LQWHUQDOO\� :KDW¶V PRUH� WKH GH�
PDQG IRU SLFNOLQJ JHQHULFV VHHPV WR EH ORZHU WKDQ WKH QHHG
WR VXSSRUW VXEW\SLQJ SRO\PRUSKLVP �RXU IUDPHZRUN VXSSRUWV
ERWK� WKRXJK�� $W OHDVW LQ RQH FDVH �7ZLWWHU¶V &KLOO >��@� D
IUDPHZRUN H[SOLFLWO\ VHULDOL]HV 0DQLIHVWV� W\SH GHVFULSWRUV
IRU 6FDOD W\SHV� ZKLFK DUH VXSHUFHGHG E\ 7\SH7DJV �VHH 6HF�
WLRQ ���� 7KH VKDGHG DUHD �ZKLFK LV ´KHDYLO\�XVHG´� VKRZV
WKDW FROOHFWLRQV DUH RIWHQ XVHG LQ GLVWULEXWHG FRGH� LQ SDUWLF�
XODU ZLWK SULPLWLYH HOHPHQW W\SHV� 7KLV PRWLYDWHV WKH FKRLFH
RI RXU FROOHFWLRQV PLFUR EHQFKPDUN�

�� 2WKHU 5HODWHG :RUN
3LFNOLQJ LQ SURJUDPPLQJ ODQJXDJHV KDV D ORQJ KLVWRU\ GDW�
LQJ EDFN WR &/8 >��@ DQG 0RGXOD�� >�@� 7KH PRVW FORVHO\�

UHODWHG FRQWHPSRUDU\ ZRUN LV LQ WZR DUHDV�)LUVW� SLFNOLQJ
LQ REMHFW�RULHQWHG ODQJXDJHV� IRU H[DPSOH� LQ -DYD �VHH WKH
-DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ >��@�� LQ �1(7� DQG
LQ 3\WKRQ >��@� VHFRQG� ZRUN RQ SLFNOHU FRPELQDWRUV LQ IXQF�
WLRQDO ODQJXDJHV ZKLFK ZH KDYH DOUHDG\ GLVFXVVHG LQ WKH LQ�
WURGXFWLRQ� 7KH PDLQ GLIIHUHQFH RI RXU IUDPHZRUN FRPSDUHG
WR SLFNOLQJ� RU VHULDOL]DWLRQ� LQ ZLGH�VSUHDG 22 ODQJXDJHV LV
WKDW RXU DSSURDFK GRHV QRW UHTXLUH VSHFLDO VXSSRUW E\ WKH XQ�
GHUO\LQJ UXQWLPH� ,Q IDFW� WKH FRUH FRQFHSWV RI REMHFW�RULHQWHG
SLFNOHUV DV SUHVHQWHG LQ WKLV SDSHU FDQ EH UHDOL]HG LQ PRVW 22
ODQJXDJHV ZLWK JHQHULFV�

3LFNOLQJ KDV EHHQ XVHG QRW RQO\ IRU GLVWULEXWLRQ DQG SHU�
VLVWHQFH RI JURXQG YDOXHV� EXW DOVR RI FRGH WR LPSOHPHQW
PRGXOH V\VWHPV >��� ��@� 7KHUH LV D ERG\ RI ZRUN RQ PD[L�
PL]LQJ VKDULQJ RI UXQWLPH GDWD VWUXFWXUHV >�� ��� ��@ ZKLFK
ZH EHOLHYH FRXOG EH DSSOLHG WR WKH SLFNOHU FRPELQDWRUV SUH�
VHQWHG LQ 6HFWLRQ �� KRZHYHU� D FRPSOHWH VROXWLRQ LV EH\RQG
WKH VFRSH RI WKH SUHVHQW SDSHU�

�� &RQFOXVLRQ DQG)XWXUH :RUN
:H KDYH LQWURGXFHG D PRGHO RI SLFNOHU FRPELQDWRUV ZKLFK
VXSSRUWV FRUH FRQFHSWV RI REMHFW�RULHQWHG SURJUDPPLQJ LQ�
FOXGLQJ VXEW\SLQJ SRO\PRUSKLVP ZLWK RSHQ FODVV KLHUDU�
FKLHV�)XUWKHUPRUH� ZH KDYH VKRZQ KRZ WKLV PRGHO FDQ EH
DXJPHQWHG E\ D FRPSRVDEOH PHFKDQLVP IRU VWDWLF SLFNOHU
JHQHUDWLRQ ZKLFK LV HIIHFWLYH LQ UHGXFLQJ ERLOHUSODWH DQG
LQ HQVXULQJ HIILFLHQW SLFNOLQJ� 7KDQNV WR D GHVLJQ DNLQ WR
DQ REMHFW�RULHQWHG YDULDWLRQ RI W\SH FODVVHV NQRZQ IURP
IXQFWLRQDO SURJUDPPLQJ� WKH SUHVHQWHG IUDPHZRUN HQDEOHV

�� ���������

Figure 3.9 – Scala types used in industrial distributed frameworks and applications.

3.6.6 Microbenchmark: GeoTrellis

GeoTrellis [Azavea, 2010] is a geographic data processing engine for high performance appli-

cations used by the US federal government among others.

In this benchmark one of the main message classes used in GeoTrellis is pickled. The class is

a simple case class containing a primitive array of integers (expected to be large). Figure 3.8

shows the time it takes to pickle and unpickle an instance of this case class varying the size of

the contained array.

The plot shows that Java serialization performs, compared to Kryo, surprisingly well in this

benchmark, e.g., a roundtrip for 50000000 elements takes Java 406ms, whereas Kryo is more

than two times slower at 836ms. It is likely that modern JVMs support arrays of primitive types

well, which is the dominating factor in this case. Scala/pickling is still significantly faster with

124ms, since the static type of the array is final, so that efficient array-pickling code can be

68

3.7. Related Work

generated at compile time.

3.6.7 Data Types in Distributed Frameworks and Applications

Figure 3.9 shows a summary of the most important data types used in popular distributed

computing frameworks like Spark [Zaharia et al., 2012] and Storm [Nathan Marz and James Xu

and Jason Jackson et al., 2012]. The fully shaded circles in the table representing “heavy use”

means either (a) a feature is used frequently in application-level data types or (b) a feature

is used frequently in data types that the framework registers with its underlying serialization

system. Half-shaded circles in the table representing “light use” mean a feature is used only

infrequently in the data types used in applications or registered by frameworks. We categorize

the data types shown in this table into two groups.

In the first group at the top are distributed applications using data types suitable for dis-

tributed event processing and message passing. We consider two representative open-source

applications: GeoTrellis and Evactor. Both applications use Akka [Typesafe, 2009], an event-

driven middleware for distributed message passing. However, the properties of the exchanged

messages are markedly different. Messages in GeoTrellis typically contain large amounts of

geographic raster data, stored in arrays of primitives. Messages in Evactor represent individual

events which typically contain only a few values of primitive types. Both applications make

use of Scala’s case classes which are most commonly used as message types in actor-based

applications.

The second group in the bottom half of Figure 3.9 consists of distributed computing frame-

works. What this table suggests is that the majority of distributed computing frameworks and

applications requires pickling collections of various types. Interestingly, application-level data

types tend to use arrays with primitive element type; a sign that there is a great need to provide

easier ways to process “big data” efficiently. From the table it is also clear that case classes

tend to be primarily of interest to application code whereas frameworks like Spark tend to

prefer the use of simple collections of primitive type internally. What’s more, the demand

for pickling generics seems to be lower than the need to support subtyping polymorphism

(our framework supports both, though). At least in one case (Twitter’s Chill [Oscar Boykin

and Mike Gagnon and Sam Ritchie, 2012]) a framework explicitly serializes manifests, type

descriptors for Scala types, which are superceded by type tags. The shaded area (which groups

“heavily-used” features across applications/frameworks) shows that collections are often used

in distributed code, in particular with primitive element types. This motivates the choice of

our collections micro benchmark.

3.7 Related Work

Some OO languages like Java and runtime environments like the JVM or .NET provide seri-

alization for arbitrary types, provided entirely by the underlying virtual machine. While this

69

Chapter 3. Pickling

approach is very convenient for the programmer, there are also several issues: (a) the pickling

format cannot be exchanged (Java), (b) serialization relies on runtime reflection which hits

performance, and (c) existing classes that do not extend a special marker interface are not

serializable, which often causes oversights resulting in software engineering costs. In func-

tional languages, pickler combinators [Elsman, 2005, Kennedy, 2004] can reduce the effort

of manually writing pickling and unpickling functions to a large extent. However, existing

approaches do not support object-oriented concepts such as subtyping polymorphism. More-

over, it is not clear whether local type inference as required in OO languages would yield a

comparable degree of conciseness, acceptable to programmers used to Java-style serialization.

Nonetheless, our approach builds on pickler combinators, capitalizing on their powerful

composability.

Our approach of retrofitting existing types with pickling support builds on implicits in Scala [Oliveira

et al., 2010] and is reminiscent of other type-class-like mechanisms, such as JavaGI [Wehr and

Thiemann, 2011] or C++ Concepts [Reis and Stroustrup, 2006].

Additionally, in an effort to further reduce the boilerplate required to define or compose pick-

lers using existing picklers, we present a framework for automatically generating picklers for

compound types based on picklers for their component types. Given the close relationship of

our implicit picklers to type classes, this generation mechanism is related to Haskell’s deriving

mechanism [Magalhães et al., 2010]. One of the main differences is that our mechanism is

faithful to subtyping. So far, as presented in this chapter, our mechanism is specialized for

pickling; an extension to a generic mechanism for composing type class instances is described

in Chapter 4.

Pickling in programming languages has a long history dating back to CLU [Herlihy and Liskov,

1982] and Modula-3 [Cardelli et al., 1989]. The most closely-related contemporary work is

in two areas. First, pickling in object-oriented languages, for example, in Java (see the Java

Object Serialization Specification [Oracle, Inc., 2011]), in .NET, and in Python [van Rossum,

2007]; second, work on pickler combinators in functional languages which we have already

discussed in the introduction. The main difference of our framework compared to pickling,

or serialization, in widespread OO languages is that our approach does not require special

support by the underlying runtime. In fact, the core concepts of object-oriented picklers as

presented in this chapter can be realized in most OO languages with generics.

While work on pickling is typically focused on finding optimally compact representations

for data [Vytiniotis and Kennedy, 2010], not all work has focused only on distribution and

persistence of ground values. Pickling has also been used to distribute and persist code to

implement module systems [Rossberg, 2007, Roy, 1999]. Similar to our approach, but in a

non-OO context, AliceML’s HOT pickles [Rossberg et al., 2007] are universal in the sense that

any value can be pickled. While HOT pickles are deeply integrated into language and runtime,

scala/pickling exists as a macro-based library, enabling further extensibility, e.g., user-defined

pickle formats can be interchanged.

70

3.8. Conclusion

There is a body of work on maximizing sharing of runtime data structures [Appel and Gonçalves,

1993, Elsman, 2005, Tack et al., 2006] which we believe could be applied to the pickler com-

binators presented in Section 3.3; however, a complete solution is beyond the scope of the

present work.

3.8 Conclusion

We have introduced a model of pickler combinators which supports core concepts of object-

oriented programming including subtyping polymorphism with open class hierarchies. Fur-

thermore, we have shown how this model can be augmented by a composable mechanism for

static pickler generation which is effective in reducing boilerplate and in ensuring efficient

pickling. Thanks to a design akin to an object-oriented variation of type classes known from

functional programming, the presented framework enables retrofitting existing types and

third-party libraries with pickling support. Experiments suggest that static generation of pick-

ler combinators can outperform state-of-the-art serialization frameworks and significantly

reduce memory usage.

71

4 Static and Extensible Datatype
Generic Programming

In the previous chapter, we covered object oriented picklers, and we had a glimpse of an

associated mechanism for the automatic generation of these type class-based picklers. In this

chapter, we generalize our generation technique from picklers to arbitrary type class instances.

4.1 Introduction

Defining functionality that should apply to a large set of types is a common problem faced by

both language designers and normal users. One common approach is to provide specialized

functionality across arbitrary types at the level of the compiler or runtime. For example, in

Java, every object is synthetically provided with a few methods; toString, equals, clone, and

hashCode. Serialization, on the other hand, is also an ubiquitously needed functionality, but

unlike the above, Java does not ensure that serialization functionality exists for every type.

Instead, serialization in Java is opt-in; if a class implements a Serializable interface then

instances of that class are automatically serializable by the JVM. While compiler/runtime-

integrated approaches such as Java’s serialization are typically easy to use (no boilerplate

required), they are inflexible and are often impossible to customize. For example, it is not

possible to adapt Java serialization to work with other formats (such as JSON or XML).

Library-based approaches to generic programming which require type classes [Wadler and

Blott, 1989] as a language feature are a lot more flexible. Type classes provide a mechanism

where a certain functionality can be captured in an interface. When programmers need certain

types of values to support a given functionality, they can implement an instance of a type class.

Type classes support retroactive extensibility [Lämmel and Ostermann, 2006]; functionality can

be implemented after the type or class has been defined. This is in contrast with conventional

OO programming, where all methods (such as toString or equals) are implemented together

with the definition of the class. Retroactive extensibility enables flexibility and the possibility

to customize behavior. As a result, several authors have argued for the software engineering

benefits of using type classes [Lämmel and Ostermann, 2006, Oliveira et al., 2010], and Scala

has embraced them [Miller et al., 2013, Odersky and Moors, 2009, Oliveira et al., 2010].

73

Chapter 4. Static and Extensible Datatype Generic Programming

When comparing type classes to baked-in functionalities (e.g., Java serialization), it’s clear that

an approach for adding functionality based on type classes is more general, since most any

functionality (including serialization) can be modeled as a type class. However, an approach

based on type classes is not without challenges. To provide functionality across a large number

of types, users are required to implement many type class instances manually, one by one. To

reduce this vast amount of boilerplate, there have been a number of proposals for datatype-

generic programming (DGP) [Hinze et al., 2007, Rodriguez et al., 2008].

DGP is an advanced form of generic programming [Musser and Stepanov, 1989], where generic

functions can be defined by inspecting the structure of types. DGP approaches are typically

library-based, and as such they typically introduce many run-time representations, thus typi-

cally incurring significant performance penalties [Adams and DuBuisson, 2012]. Furthermore,

the vast majority of DGP approaches has been developed for Haskell, and are thus funda-

mentally limited when ported to mainstream OO languages, due to their lack of support for

subtyping or object identity. A DGP approach appropriate for use in Scala must account for

such features.

Baked-in compiler-based approaches to adding functionality is at odds with library-based

approaches using type classes. On the one hand, language-integrated approaches can be

more powerful in the sense that they can do a great deal of static analysis, and because they

are so specialized, typically require no boilerplate to programmers. However this is done at the

cost of customizability and extensibility – users typically can’t override or customize statically-

added behavior. On the other hand, with type class-based approaches, one must contend with

an enormous amount of boilerplate or pay a non-negligible performance penalty1. In all cases,

however, type class-based approaches offer no way to statically restrict runtime behavior.

Perhaps the most important limitation of DGP approaches in the context of mainstream lan-

guages is the lack of support for pervasively used object-oriented features such as subtyping

and object identity, which so far have not been addressed, except for specialized functional-

ity [Miller et al., 2013].

4.1.1 Design Constraints

This chapter details an approach that strikes a sweet spot in the design space. The approach is

guided by the following principles:

• Extensibility and customizability. Like for type class-based approaches, retroactive

extensibility and type-based customization should be supported.

• Little boilerplate. Like language-integrated approaches, usage of generic code should

feel built-in. Users shouldn’t have to define type class instances or provide a lot of

scaffolding.

1Some approaches trade type-safety for performance [Adams and DuBuisson, 2012].

74

4.1. Introduction

• Performance. Generic functions written by library authors or library users should have

the same or better performance than approaches with compiler/runtime support.

• Generality. In addition to generic functions, lightweight static analysis capabilities

should be supported.

The pickling framework, scala/pickling [Miller et al., 2013], presesnted in the previous chapter,

sought to achieve many of these goals for one particular application: serialization. scala/pickling

is based on type classes which are generated and composed at compile time, according to

their type signatures. Due to its compile-time properties, serialization code is fast and inlined,

without requiring any boilerplate. Due to the fact that it is completely based upon type classes,

flexibility and extensibility come for free. However, the approach is specialized on providing

type class instances for only the Pickling type class. Other type classes or generic functions

are not supported.

4.1.2 Contributions

This chapter presents Self Assembly, a general technique or pattern for:

• Defining generic operations or properties that operate over a large class of types with

little boilerplate and good performance (these operations are statically generated).

Importantly, the technique supports many features of mainstream OO languages such

as subtyping, object identity, and separate compilation.

• Defining additional lightweight static type checking via generic properties. Such lightweight

static checks can guarantee that a certain property (checked by tying together other

static anaysis frameworks with the help of type classes), e.g., deep immutability, holds.

In this case, if a class is immutable, the immutability checker generates a type class

instance for that class, which certifies that property.

The DGP-related contributions of this thesis include:

• Self-Assembly, a general technique for defining generic operations or properties that

operate over a large class of types that requires little boilerplate; shares the extensibility

and customizability properties of type classes; and, due to compile-time code gener-

ation, provides high performance. It allows defining generic functions in a statically

type-safe way.

• A full-featured DGP approach for OOP. self-assembly enables the definition of

datatype-generic functions that support features present in production OO languages,

including subtyping, object identity, and generics.

• Support for generic properties. self-assembly enables the definition of custom

lightweight static type checks to guarantee that certain static properties hold at runtime,

e.g., immutability.

75

Chapter 4. Static and Extensible Datatype Generic Programming

• The self-assembly library, a complete and full-featured implementation of our tech-

nique in and for Scala. The library includes several auxiliary definitions, such as generic

queries and transformations, that help define new lightweight static checks of generic

properties. Importantly, self-assembly doesn’t require any extension to the language

or compiler.

• A case study on basing scala/pickling on self-assembly. We evaluate the expressivity

and performance of self-assembly by porting a full-featured serialization framework,

keeping the same published performance numbers while reducing the code size for

type class instance generation by 56%.

4.2 Type Classes and a Boilerplate Problem

This section provides an introduction to type classes [Wadler and Blott, 1989] and reviews how

to encode them in Scala using implicits and conventional OO features [Oliveira et al., 2010].

This section also observes that type class instances for various types tend to require code

that follows a common pattern. The pattern can be viewed as a source of code boilerplate,

since similar code needs to be repeated throughout several definitions. The remainder of the

chapter aims at showing how to capture the pattern as reusable code and generate type class

instances automatically from that code.

4.2.1 Implicits

Implicit Parameters. In Scala, it is possible to select values automatically based on type.

These capabilities are enabled when using the implicit keyword. For example, a method

log with multiple parameter lists may annotate their last parameter list using the implicit

keyword.

def log(msg: String)(implicit o: PrintStream) =

o.println(msg)

This means that in an invocation of log, the implicit argument list may be omitted if, for each

parameter of that list, there is exactly one value of the right type in the implicit scope. The

implicit scope is an adaptation of the regular variable scope. Imported implicits, or implicits

declared in an enclosing scope are contained in the implicit scope of a method invocation.

implicit val out = System.out

log("Does not compute!")

In the above example, the implicit val out is in the implicit scope of the invocation of log.

Since out has the right type, it is automatically selected as an implicit argument.

76

4.2. Type Classes and a Boilerplate Problem

Implicit Conversions. Implicit conversions can be thought of as methods which, like implicit

parameters, can be implicitly selected (i.e., invoked) based upon their type, and whether or

not they are present in implicit scope. As with implicit parameters, implicit conversions also

carry the implicit keyword before their declaration.

implicit def intWrapper(x: Int): Message =

new Message {

def message: String = "secret message!"

}

In the example above, assuming there exists an abstract class Message with abstract method

message, the implicit conversion intWrapper will be triggered when a method called message

is called on an Int. That is, simply calling 39.message will result in “secret message!” being

returned. Since the implicit conversion has the effect of adding a “new” method to type Int,

message is typically called an extension method. In our framework we use implicit conversions,

for example, for adding a pickle method to arbitrary objects.

4.2.2 Type Classes

Type classes are a language mechanism that provide a disciplined alternative to ad-hoc poly-

morphism. They have been popularized by Haskell. Type classes allow functions to be defined

over a set of types. If values of a type T should provide a certain functionality then that

functionality can be specified as an instance of a type class.

trait Show[T] {def show(visitee : T) : String}

implicit object IntInstance extends Show[Int] {
def show(o : Int) = o.toString()

}

Figure 4.1 – |Show| type class and corresponding instance for integers.

In Scala type classes can be implemented using a combination of standard OO features (traits,

classes and objects) and implicits [Oliveira et al., 2010]. The Scala encoding of type classes is

essentially a design pattern [Gamma et al., 1995]: instead of having built-in language concepts

for type classes, Scala uses general language features to model type classes. A type class is

simply an interface that provides operations over one (or more) generic types. Such interfaces

can be modeled as traits in Scala. An example of a type class is shown in Figure 4.1. The trait

Show[T] models a type class that provides pretty printing functionality for some type T via a

method show.

The main conceptual difference between standard OO methods and type-class methods is

that the later are provided externally to objects. Suppose that we wanted to add pretty printing

77

Chapter 4. Static and Extensible Datatype Generic Programming

functionality to integers. To do this we create an instance of the type class Show where the

generic type parameter T is instantiated to Int. The object IntInstance in Figure 4.1 models

such instance in Scala using regular objects. In that object, the showmethod takes an argument

o of type Int an invokes the toString() method on o.

Type-Directed Resolution of Instances An interesting aspect of type classes is that instances

can be automatically determined using a type-directed resolution mechanism. This type-

directed resolution mechanism allows type classes to be used from client code through a

mechanism similar to overloading. This is achieved in Scala using an implicit parameter:

def ishow[T](v : T)(implicit showT : Show[T]) =

showT.show(v)

In ishow the idea is that the method takes two parameters, with the last of these (showT)

being implicit. As we have seen in Section 4.2.1 this means that the second parameter can be

automatically determined by the compiler. For example if we wanted to use show on integers

we could simply write a program such as:

def test1 = ishow(5)

Provided that an implicit value of type Show[Int] is in the implicit scope (for example

IntInstance from Figure 4.1), the second parameter is automatically inferred by the compiler.

Context Bounds Type classes are pervasively used in Scala. Because of this Scala offers an

alternative convinient syntax sugar called context bounds. Context bounds allows code using

type classes to be written more compactly and arguably more intuitively. With context bounds,

instead of writting ishow we could write:

def show[T : Show](v : T) =

implicitly[Show[T]].show(v)

The idea of context bounds comes from the fact that type classes can also be seen as a generic

programming mechanism [Musser and Stepanov, 1989], which allows generic parameters

to be constrained. In this case the type of show can be read as a generic method where the

generic type argument must be an instance of Show. A small problem with context bounds

there is no parameter name to be used in the definition of show. However, it is possible to

query the implicit scope for a value of a certain type using a simple auxiliary method called

implicitly:

78

4.2. Type Classes and a Boilerplate Problem

sealed trait Tree
case class Fork(left : Tree, right : Tree)
extends Tree

case class Leaf(elem : Int) extends Tree

implicit object TreeInst extends Show[Tree] {
def show(visitee : Tree) : String = visitee match {

case Fork(l,r) =>
"Fork(" + show(l) + ", " + show(r) + ")"
case Leaf(x) => "Leaf(" + x.toString() + ")"

}}

Figure 4.2 – Trees of integers and corresponding Show instance.

def implicitly[T](implicit x : T) : T = x

This precludes the need for having to have the name of the implicit argument in hand in order

to use it. From the client perspective, using show is similar to using ishow.

4.2.3 Pretty Printing Complex Structures

Of course it is also possible to apply type classes to more complex structures. For example

consider a simple type of binary trees with integers at the leafs. Figure 4.2 shows how to

model such trees in Scala using case classes [Emir et al., 2007] and sealed traits. The keyword

sealed in Scala means that the trait can only be implemented by definitions in the existing

compilation unit. Together with case classes this allows modeling algebraic datatypes, which

are a well-known concept from functional programming. The Tree trait is the type of trees.

The case class Fork models the binary nodes of the tree, wheres the case class Leaf models

the leaves containing an integer value.

To define pretty printing for Tree using the Show type class we create an object TreeInst.

This object provides a definition for the show method that pattern matches on the two tree

constructors (cases) of Tree. The implementation of the two cases is unremarkable: both

cases print the constructors names and the arguments.

A simple test program illustrating the use of TreeInst is shown next. The value tree defines a

simple tree and the definition test3 pretty prints that tree.

val tree : Tree = Fork(Fork(Leaf(3),Leaf(4)),Leaf(5))

def test3 = show(tree)

79

Chapter 4. Static and Extensible Datatype Generic Programming

sealed trait PTree[A]
case class Branch[A](x: A, l: PTree[A], r: PTree[A])

extends PTree[A]
case class Empty[A] extends PTree[A]

implicit def PTreeInst[A : Show] : Show[PTree[A]] =
new Show[PTree[A]] {
def show(visitee : PTree[A]) = visitee match {
case Branch(x,l,r) =>

"Branch(" + implicitly[Show[A]].show(x) +
", " + show(l) + ", " + show(r) + ")"

case Empty() => "Empty()"
}}

Figure 4.3 – Parametrized trees and corresponding Show instance.

Recursive Resolution and Compositionality of Instances Another interesting aspect of

type classes is that they provide a highly compositional way to define instances. Lets consider

a variant of trees, shown in Figure 4.3, which is parametrized by some element type A. The

type these trees is PTree[A] and there are two types of nodes: Branch nodes with an element

of type A and two branches; and Empty nodes with no content.

Like other types it is possible to define an instance (PTreeInst) for the type PTree[A]. However

in order to pretty print such trees it is necessary to know how to print the elements of type A as

well. To accomplish this we require that the generic type parameter A has a Show instance using

a context bound. To print the elements in the Branch case, the instance can be retrieved from

the implicit scope using implicitly and then used to print the element. With this instance it

is possible to print trees with integer elements, such as:

val ptree : PTree[Int] = Branch(5,Empty,Empty)

def test4 = show(ptree)

However, more interestingly, it is also possible to print trees where for any element type that

has a Show instance. For example:

val ptree2 : PTree[PTree[Tree]] =

Branch(Branch(tree,Empty,Empty),Empty,Empty)

def test5 = show(ptree2)

Here ptree2 has elements of type PTree[Tree]. To print ptree2 the instance for PTree is

used twice: once for values of type PTree[PTree[Tree]]; and another time for values of type

PTree[Tree]. In fact it is possible to use arbitrarely many instances of the various types

80

4.3. Type-Safe Meta-Programming in Scala

(possible multiple times) during type-directed resolution, which makes the process very

compositional. This is possible because the type-directed resolution mechanism is recursive.

4.2.4 A Boilerplate Problem

Although type classes are nice, they often require similar code for different instances. For

example consider the two instances in Figures 4.2 and 4.3. The code that is needed in both

instances is quite similar and it follows a common pattern: for each case the constructor name

and parameters are printed. Therefore code tends to be quite similar across instances. This

code can be viewed as a form of boilerplate since we could hope that it could be mechanically

generated.

4.3 Type-Safe Meta-Programming in Scala

Scala macros [Burmako, 2013, Burmako and Odersky, 2012] enable a form of type-safe meta-

programming. Macros are methods that are invoked at compile time. Instead of runtime

values, macros operate on and return typed expression trees. In the following we provide an

overview of macros, type checking, and properties.

4.3.1 Definition

Macro defs are methods that are transparently loaded by the compiler and executed (or

expanded) during compilation. A macro is defined like any normal method, but it is linked

using the macro keyword to an additional method that provides its implementation, which

operates on expression trees.

def assert(x: Boolean, msg: String): Unit =

macro assert_impl

def assert_impl(c: Context)

(x: c.Expr[Boolean], msg: c.Expr[String]):

c.Expr[Unit] = ...

In the above example, the parameters of assert_impl are typed expression trees, which

the body of assert_impl operates on, itself returning an expression of type Expr[Unit].

assert_impl is evaluated at compile time, and its result is inlined at the call site of assert.

Note that expression trees are typed, i.e., assert’s parameter of type Boolean corresponds to

a typed expression tree of type Expr[Boolean].

In the type-safe subset of macros that we consider in this chapter, expression trees are built

using reify/splice:

81

Chapter 4. Static and Extensible Datatype Generic Programming

val expr: c.Expr[Boolean] = reify {

if (x.splice > 10) x.splice

else true

}

Here, the body of reify consists of regular Scala code. Expressions in the enclosing scope

are spliced into the result expression using the splice method. Importantly, the code within

reify is type-checked at its definition site. This means, for the above code, Scala’s type

checker reports type errors not in terms of the generated code, but in terms of the high-level

user-written code.

Due to limitations in the reify API, we use quasiquotes (typechecked during macro expansion)

to circumvent the above type-checking in a small trusted core of self-assembly, shielded

from users. However, we never lose soundness, since, unlike MetaML [Taha and Sheard, 2000],

all splicing is done at compile time, and generated expressions are always re-type-checked

after expansion.

4.3.2 Properties

Constant Type Signatures In this work, we focus on one of two macro def varieties: “black-

box” macros. In this case, the type signature of the macro provides all information necessary

for type-checking all of its invocations. That is, the macro does not have to be expanded

prior to type-checking. This has important software engineering benefits, namely that ab-

stract, type-based reasoning about programs is maintained independently of the macro’s

corresponding implementation. This is particularly useful when reasoning about the result

type of a macro. For blackbox macros, the implementation (and expansion) is not required to

determine the result type.

Local Expansion Since macros are simply methods that are invoked at compile time, they

are expanded and inlined at invocation site. For this reason, we consider macro defs to be

“local compiler extensions.” They cannot change the compiler’s global symbol table. Thus,

they cannot introduce new top-level type definitions.

4.4 Basic Self-Assembly

Section 4.2 showed how to write type classes like Show[T] manually, pointing out a source of

significant boilerplate code. In section 4.4.1, we outline the basic usage of the self-assembly li-

brary, which allows defining type classes desired in a way where the required boilerplate for

defining such type classes is automatically generated. Section 4.4.2 explains the mechanics of

the automatic type class generation implemented in the self-assembly library. Section 4.4.3

outlines how one can customize the generation of type classes for specific types.

82

4.4. Basic Self-Assembly

object Show extends Query[String] {
def mkTrees[C <: SContext](c: C) = new Trees(c)

class Trees[C <: SContext](override val c: C)
extends super.Trees(c) {

import c.universe._
type SExpr = c.Expr[String]

def combine(left: SExpr, right: SExpr) =
reify { left.splice + right.splice }

def delimit(tpe: c.Type) = {
val start = constant(tpe.toString + "(")
(start, reify(", "), reify(")"))

} }

implicit def generate[T]: Show[T] =
macro genQuery[T, this.type]

}

Figure 4.4 – Implementing the Show type class using self-assembly.

4.4.1 Basic Usage

The self-assembly library allows implementing type classes instances automatically on

demand at compile time. This main idea is introduced using the simple Show type class in

Figure 4.1. Section 4.6 shows how our approach extends to different forms of type classes,

commonly referred to as queries and transformations [Lämmel and Peyton Jones, 2003].

Generating Instances for Show Suppose a user wants to provide instances of Show[T] for as

many types as possible. Using self-assembly we can create a singleton object that extends

a library-provided trait, and that implements two factory methods, generate and mkTrees.

Figure 4.4 shows the Show companion object,2 which extends the Query trait. The mkTrees

factory method, abstract in Query, creates a new Trees instance; Trees[C] provides a number

of methods that are invoked by the self-assembly library at compile time to obtain AST

fragments that are inlined in the generated code. The Show type class converts objects to

strings; thus, the query has to define how to assemble result strings, based on an associative

combination operator (combine), begin/end delimiters (first/last), and a separator. As

mentioned in Section 4.3, the syntax reify { ... } creates a typed expression based on

Scala code. left.splice splices the expression left into the result expression. The compiler

type-checks reify blocks at their definition site.

2A companion object is a singleton object with the same name as a trait.

83

Chapter 4. Static and Extensible Datatype Generic Programming

Apart from implementing a subclass of Trees[C], the Show singleton object also needs to de-

fine a generic implicit method (here, generate) that invokes the generation macro genQuery.

The genQuery macro is provided by our library.3

Result With the Show singleton object defined as in Figure 4.4 it is no longer necessary for

the user to define a type class instance for every single type manually. Instead, whenever

an instance of type, say, Show[MyClass], is required (typically, using an implicit parameter),

Scala’s type checker automatically inserts a call to the implicit def generate[MyClass]; this

implicit def generates a suitable implementation of the searched type class instance on-the-fly.

As a result, type class instances do not have to be defined manually.

4.4.2 Generation Mechanism

We illustrate the general idea of our generation technique through a simple example based

solely on closed ADT-style datatypes in Scala. Such datatypes consist of either sealed traits or

case classes extending such traits. In subsequent sections, we generalize this view to richer

types.

Our treatment is centered on an example, in which, our goal is to automatically “derive” type

class instances that “show” information about a given type. Think of it as a toString method

that traverses the structure of a type, and nicely prints information about all of the fields of

that type.

We structure our treatment into three distinct steps: (1) in Section 4.4.2, we show how our

generation is triggered; (2) in Section 4.4.2, we explain our macro-based generation technique;

(3) in Section 4.4.2, we show some example type class instances that result from our generation

technique, and relate them to the type class pattern introduced in Section 4.2.2.

Triggering Generation

To be able to generate suitable instances for all possible types for which Show[T] can be

defined, we put an implicit macro into the companion object of Show[T]. The fact that the

implicit macro is inside the companion object means that whenever an instance Show[S] is

requested, Scala’s implicit lookup mechanism searches the members of the companion object

Show where it finds the implicit macro:

object Show extends Query[String] {

...

implicit def generate[T]: Show[T] =

macro genQuery[T, this.type]

}

3The type argument this.type is the type of the enclosing singleton object; it is passed to genQuery to identify
the type class and the mkTrees method that should be used by the library to generate instances.

84

4.4. Basic Self-Assembly

trait Query[R] ... {
def mkTrees[C <: Context with Singleton](c: C)

: Trees[C]

abstract class Trees[C <: Context with Singleton]
(override val c: C) extends super.Trees(c) { }

def genQuery[T:c.WeakTypeTag, S:c.WeakTypeTag]
(c: Context): c.Tree = {
import c.universe._
val tpe = weakTypeOf[T]
val stpe = weakTypeOf[S]
val tpeOfTypeClass =

stpe.typeSymbol.asClass.companion.asType
.asClass.toTypeConstructor

val qresTpe =
tpeOfTypeClass.decls.head.asMethod.returnType

val trees = mkTrees[c.type](c)
...

Figure 4.5 – Macro-based generation: set-up

Thus, the implicit lookup mechanism inserts an invocation of the macro method genQuery.

Macro-Based Generation

Being a macro, genQuery returns an abstract syntax tree instead of a (runtime) value. It is

declared as follows:

def genQuery[T:c.WeakTypeTag, S:c.WeakTypeTag]

(c: Context): c.Tree = ...

Note that in this declaration, the type parameters T and S are annotated with context bounds

c.WeakTypeTag. First, the macro collects information about the types and the type class

for which an instance should be generated. Second, the macro creates an instance of the

user-provided Trees class by invoking the mkTrees factory method. These steps are shown in

Figure 4.5.

The body of the type class is generated using:

85

Chapter 4. Static and Extensible Datatype Generic Programming

val tpe = weakTypeOf[T] // see Fig. 5

...

val (first, separator, last) =

trees.delimit(tpe)

val body = trees.combine(

fieldsExpr(first, separator), last)

To create the result expression, the macro utilizes the trees instance (of type Trees) that

we initialize in the set-up phase (see Figure 4.5). Calling delimit returns three expressions

(“delimiters”) of type Expr[R] based on the reified type tpe. Recall that tpe corresponds to

type parameter T, which is the type for which the macro generates a type class instance. The

fieldsExpr method creates an Expr[R] by folding the Expr[R]s obtained for each field (see

below) using the user-overridden combine method:

if (paramFields.size < 2)

...

else

paramFields.tail.foldLeft(first) { (acc, sym) =>

val withSep = trees.combine(acc, separator)

trees.combine(withSep, fieldValue(sym))

}

For example, Figure 4.4 shows that the definition of combine for Show is just string concatena-

tion. As a result, this code concatenates the string values of all fields separated with separator.

The expression tree fieldValue(sym) is obtained as follows. For each field declared in type

tpe, the following subexpression is generated:

val symTp = sym.typeSignatureIn(tpe)

val fieldName = sym.name.toString.trim

trees.fieldValueExpr(visitee, fieldName,

symTp, tpeOfTypeClass)

The invocation of fieldValueExpr expands to (a) a nested look-up of a type class instance for

the field, and (b) an invocation of the type class method:

def fieldValueExpr(visitee: c.Expr[T], name: String,

tpe: c.Type, tpeOfTypeClass: c.Type): c.Expr[R] =

c.Expr[R](

q"""

implicitly[${appliedType(tpeOfTypeClass, tpe)}]

.apply($visitee.${TermName(name)})

""")

86

4.4. Basic Self-Assembly

implicit	 object	 CShowInstance	 extends	 Show[C]	 {	
	 	 def	 show(visitee:	 C):	 String	 =	 {
	 	 	 	 var	 result	 =	 "C("

	 	 	 	 val	 inst_1	 =	 implicitly[Show[D1]]	
	 	 	 	 result	 +=	 inst_1.show(visitee.p_1)	
	 	 	 	 ...
	 	 	 	 val	 inst_n	 =	 implicitly[Show[DN]]	
	 	 	 	 result	 +=	 inst_n.show(visitee.p_n)
	 	 	 	 result	 +=	 ")"
	 	 }
}

1
2

3
45

Figure 4.6 – Basic generation of type classes.

The syntax q"""...""" indicates the use of a quasiquote to create an untyped tree that is cast

to an Expr[R], effectively forming part of a small trusted core of self-assembly. The main

reason for creating an untyped tree at this point is that the value of field “name” is obtained

using only the field’s name–the selection $visitee.${TermName(name)} must fundamentally

be untyped. It is clear, though, that the result will be of type R, since that’s the result type of all

type class instances of type tpeOfTypeClass.

Generated Type Class Instances

The generation technique explained in the previous section produces implicit (singleton) ob-

jects which correspond to the type class instances portion of the type class pattern introduced

in Section 4.2.2.

Let’s say the datatype that we’d like to call show on is the Tree type in Figure 4.2. In order to

create a type class instance of type Show[Tree], we also create type class instances for Tree’s

two subclasses, Fork and Leaf. Fork and Leaf are case classes with the general shape:

case class C(p_1: D_1, ..., p_n: D_n)

extends E_1 with ... with E_m { ... }

An arbitrary type class instance (implicit singleton object) can be generated using the tech-

nique described in the previous section. Figure 4.6 shows the general structure that is gen-

erated for an arbitrary shape C. The implicit object (1) is exactly the same as in the manual

type class pattern described in Section 4.2.2. (2) is the implementation of the single abstract

method of the type class (the show method of the Show trait). (3) is the result of expanding

the implicitly invocation within the method fieldValueExpr above. (4) corresponds to the

accumulation logic which itself results from the fold of paramFields above (to simplify the

presentation we use the result accumulator variable instead of a deeply nested tree). Finally,

(5) corresponds to first and last in the body of the macro-generated implementation of

Show’s single abstract method, show.

87

Chapter 4. Static and Extensible Datatype Generic Programming

4.4.3 Customization

Generation as provided by self-assembly is convenient, but in some cases it is desirable to

have full control over the type class instances for specific types (one strength of the type class

pattern as introduced in Section 4.2.2). When using the self-assembly library, customization

is still possible. It is sufficient to define custom instances for selected types manually; these

custom instances are then transparently picked up and chosen in place of automatically-

generated ones. It is even possible to use Scala’s scoping and implicit precedence rules to

prioritize certain instances over others.

4.5 Self-Assembly for Object Orientation

A cornerstone of the design of self-assembly is its support for features of mainstream

OO languages. The following Section 4.5.1 explains how our approach supports subtyping

polymorphism in the context of open class hierarchies (Section 4.5.1) and separate compilation

(Section 4.5.1). In Section 4.5.2 we discuss how self-assembly handles cyclic object graphs,

which are easily created using mutable objects with identity.

4.5.1 Subtyping

Object-oriented languages like Java or Scala enable the definition of a subtyping relation

based on class hierarchies. Given the pervasive use of subtyping in typical object-oriented

programs, our approach is designed to account for subtyping polymorphism. In addition,

we provide mechanisms that enable the object-oriented features even in a setting where

modules/packages are separately compiled.

Open Hierarchies

Classes defined in languages like Java are by default “open,” which means that they can have

an unbounded number of subclasses spread across several compilation units. By contrast,

final classes cannot have subclasses at all. In addition, sealed classes in Scala can only have

subclasses defined within the same compilation unit.
Our approach enables the generation of type class instances even for open classes. For

example, consider the class hierarchy shown in Figure 4.7. The self-assembly library can

automatically generate an instance for type Person:

val em = Employee("Dave", 35, 80000)

val ff = Firefighter("Jim", 40, 2004)

val inst = implicitly[Show[Person]]

println(inst.show(em))

// prints: Employee(Dave, 35, 80000)

println(inst.show(ff))

// prints: Firefighter(Jim, 40, 2004)

88

4.5. Self-Assembly for Object Orientation

// File PersonA.scala:
abstract class Person {
def name: String
def age: Int

}
case class Employee(n: String, a: Int, s: Int)

extends Person {
def name = n
def age = a

}

// File PersonB.scala:
case class Firefighter(n: String, a: Int, s: Int)
extends Person {
def name = n
def age = a
def since = s

}

Figure 4.7 – Open class hierarchy

Note that we are using the same Show instance to convert both objects to strings.

Generation Concrete instances of a classtype, such as Person in Figure 4.7, in general have

subtypes (dynamically). One approach to account for subtypes is by building the logic for all

possible subtypes into the type class instance for the supertype, like is shown in Figure 4.2 in

Section 4.2.3. However, such an approach does not support open class hierarchies, where new

subclasses can be added in additional compilation units.

To support open class hierarchies, the generation of type class instances for open classes adds

a dispatch step. For a class like Person in Figure 4.7, a dynamic dispatch is generated to select

a specific type class instance based on the runtime classtype of the object that the type class is

applied to (visitee):4

implicit object PersonInst extends Show[Person] {

def show(visitee: Person): String =

visitee match {

case v1: Employee =>

implicitly[Show[Employee]].show(v1)

case v2: Firefighter =>

implicitly[Show[Firefighter]].show(v2)

4Simplified; handling of null values is omitted for simplicity.

89

Chapter 4. Static and Extensible Datatype Generic Programming

}

}

Separate Compilation

To support subtyping polymorphism not only across different compilation units, but also

across separately-compiled modules,5 self-assembly provides dynamic instance registries.

In the case of separately-compiled modules, subclasses for which we would like to generate

instances are in general only discovered at link time. To be able to discover such subclasses,

self-assembly allows registering generated instances with an instance registry at runtime. A

reference to such an instance registry can then be shared across separately-compiled modules.

For example, module A could create a registry and populate it with a number of instances:

implicit val reg = new SimpleRegistry[Show]

reg.register(classOf[Employee],

implicitly[Show[Employee]])

reg.register(classOf[Firefighter],

implicitly[Show[Firefighter]])

...

Note that the registry reg is defined as an implicit value; as we explain in the following, this

is required to enable registry look-ups when dispatching to type class instances based on

runtime types.

With the instance registry set up in this way, another separately-compiled module B is then

able to dispatch to instances registered by module A:

implicit val localReg = getRegistryFrom(moduleA)

localReg.register(classOf[Judge],

implicitly[Show[Judge]])

...

Importantly, when module B invokes the showmethod of an instance instP of type Show[Person],

passing an object with dynamic type Employee, the generated instance instP dispatches to the

correct type class instance of type Show[Employee] through a look-up in registry localReg.

Generation To enable registry look-ups, we augment the dispatch logic with a default

case:6

5The Scala ecosystem distributes modules in separate “JAR files” typically.
6Minimally simplified; the actual code also keeps track of object identities as discussed further below.

90

4.5. Self-Assembly for Object Orientation

case _ => {

val reg$1 = implicitly[Registry[Show]]

val lookup$2: Option[Show[_]] = reg$1.get(clazz)

lookup$2.get.asInstanceOf[Show[Person]]

.show(visitee)

}

4.5.2 Object Identity

In object-oriented languages like Scala, it is important to take object identity into account.

Simple datatypes such as case classes already permit cycles in object graphs via re-assignable

fields (using the var modifier). It is therefore important to keep track of objects that have

already been visited to avoid infinite recursion.

To enable the detection of cycles in object graphs, we keep track of all “visited” objects during

the object graph traversal performed by a type class instance. However, it is not sufficient to

maintain a single, global set of visited objects, since implementations of one type class might

depend on other type classes; different type class instances could therefore interfere with each

other when accessing the same global set (yielding nonsensical results). Thus, it is preferable

to pass this set of visited objects on the call stack. With the mechanics introduced so far, this is

not possible.

To enable passing an additional context (the set of visited objects) on the call stack, we require

type classes to extend

Queryable[T, R]:

trait Queryable[T, R] {

def apply(visitee: T, visited: Set[Any]): R

}

The Queryable[T, R] trait declares an apply method with an additional visited parameter

(compared to the trait of the type class), which is passed the set of visited objects. This extra

method allows us to distinguish between top-level invocations of type class methods and inner

invocations (of apply). The only downside is that custom type class instances are slightly more

verbose to define, although the implementation of apply can typically be a trivial forwarder.

For example, consider the Show[T] type class, now extending Queryable[T, String]:

trait Show[T] extends Queryable[T, String] {

def show(visitee: T): String

}

A type class instance for integers can be implemented as follows:

91

Chapter 4. Static and Extensible Datatype Generic Programming

implicit val intHasShow = new Show[Int] {

def show(visitee: Int): String = "" + x

def apply(visitee: Int, visited: Set[Any]) =

show(visitee)

}

Note that the implementation of apply is trivial.

Generation To enable the detection of cycles in object graphs it is necessary to adapt the

implementation of the implicit object as follows.

implicit object CShowInstance extends Show[C] {

def show(visitee: C): String =

apply(visitee, Set[Any]())

def apply(visitee: C, visited: Set[Any]) =

...

}

Note that an invocation of show is treated as a top-level invocation forwarding to apply passing

an empty set of visited objects. Crucially, when applying the type class instances for the class

parameters of C, instead of invoking show directly, we invoke apply passing the visited set

extended with the current object (visitee).

var result: String = ""

if (!visited(visitee.p_1)) {

val inst_1 = implicitly[Show[D_1]]

result = result +

inst_1.apply(visitee.p_1, visited + visitee)

}

...

if (!visited(visitee.p_n)) {

val inst_n = implicitly[Show[D_n]]

result = result +

inst_n.apply(visitee.p_n, visited + visitee)

}

4.6 Transformations

The library provides a set of traits for expressing generic functions that are either (a) queries or

(b) transformations. Basically, a query generates type class instances that traverse an object

92

4.6. Transformations

graph and return a single result of a possibly different type. In contrast, a transformation

generates type class instances that perform a deep copy of an object graph, applying transfor-

mations to objects of selected types. While Sections 4.4-4.5 were focused on generic queries,

this section provides an overview of generic transformations.

Example Suppose we would like to express a generic transformation, which clones object

graphs, except for subobjects of a certain type, which are transformed. An example for such

a transformation is a generic “scale” function that scales all integers in an object graph by

a given factor. The self-assembly library lets us write the “scale” function in two steps:

first, the definition of a suitable type class; second, the implementation of a subclass of the

library-provided Transform class. A suitable type class is easily defined:

trait Scale[T] extends Queryable[T, T] {

def scale(visitee: T): T

}

Note that the input and output types of Queryable are the same in this case, since scale

transforms any input object into an object of the same type. The actual transformation is

defined as follows:

object Scale extends Transform {

def mkTrees[C <: SContext](c: C) = new Trees(c)

class Trees[C <: SContext](override val c: C)

extends super.Trees(c)

implicit def generate[T]: Scale[T] =

macro genTransform[T, this.type]

}

This transformation is not very interesting yet: it simply creates a deep clone of the input

object. To specify how, in our case, integers are scaled, it is necessary to define a custom type

class instance:

def intScale(factor: Int) = new Scale[Int] {

def scale(x: Int) = x * factor

def apply(x: Int, visited: Set[Any]) = scale(x)

}

implicit val intInst = intScale(myFactor)

For convenience, we can introduce a generic gscale function:

93

Chapter 4. Static and Extensible Datatype Generic Programming

def gscale[T](obj: T)(implicit inst: Scale[T]): T =

inst.scale(obj)

gscale is then invoked as follows:

implicit val inst = intScale(10)

val scaled = gscale(obj)

Transformations in self-assembly The genTransformmacro is based on traversals similar

to those of generic queries. However, the crucial difference is that the macro generates code

to clone visited objects (based on techniques used in scala/pickling [Miller et al., 2013]).

Interestingly, the implementations of queries and transformations share a substantial number

of generic building blocks.

4.7 Generic Properties: Custom Lightweight Static Checks

In this section we show how our approach supports the definition of custom lightweight static

checking, similar to pluggable type system extensions, that go beyond object-oriented DGP as

discussed in the previous sections. In particular, the self-assembly library allows defining

generic type-based properties that can be checked by the existing Scala type checker.

The key to support both object-oriented DGP and type properties is the fact that our approach

is based on generic programming at compile time. In addition to having access to query and

transformation facilities provided by the library, users also have (a) access to full static type

information and (b) Scala’s meta-programming API, enabling one to generatively define such

generic type properties.

The enabled static checks are lightweight in the sense that they cannot extend the existing

syntax or change Scala’s existing type-checking. Instead, they can be thought of as pluggable

type system extensions [Bracha, 2004] in that without changing the existing typechecker,

additional properties can be checked. As a result, our approach supports added checking such

as (transitive) type-based immutability checking, which goes beyond standard DGP.

In the following Section 4.7.1, we first provide a more precise definition of the supported

generic properties. Section 4.7.2 presents a complete example of a non-trivial generic property,

immutable types. Finally, in Section 4.7.3, we discuss key aspects of our implementation in

the self-assembly library.

4.7.1 Generic Properties: Definition

The generic properties supported in self-assembly are unary type relations. Oliveira et

al. [Oliveira et al., 2010] show how to define custom type relations in Scala using implicits

94

4.7. Generic Properties: Custom Lightweight Static Checks

(see Section 4.2.1). However, unary type relations defined using implicits are incapable of

expressing properties that depend on structural type information that’s inaccessible through

simple type bounds. Our approach builds on Oliveira et al.’s foundation, and extends it to

deep structural type information using type-safe meta-programming.

In the following, we summarize the definition of type relations using implicits and present a

high-level overview of our added lightweight static checks. We then show how self-assembly is

augmented with meta-programming facilities in order to enable the definition of deeper struc-

tural properties.

Defining Unary Type Relations via Type Classes Using implicits a unary type relation can

be defined in Scala using an arbitrary generic type constructor, say, TC. A type T can be declared

to be an element of this relation, by defining an implicit of type TC[T]:

implicit val tct = new TC[T] {}

This way, an arbitrary bounded unary type relation can be defined. The membership of a type

U in the relation TC can be checked by requiring evidence for it using an implicit parameter:

def m[U](implicit ev: TC[U]): ...

(Classes, and thereby constructors, can also have such implicit parameters.) Only if there

exists an implicit value of type TC[U] can an invocation of method m[U] be type-checked.

Polymorphic implicit methods allow defining a certain class of unbounded type relations by

returning values of type TC[V] for an arbitrary type V that satisfies given type bounds. For

example, the following implicit method declares all types that are equal to or subtypes of type

Person to be elements of relation TC:

implicit def belowPerson[S <: Person]: TC[S] =

new TC[S] {}

However, without meta-programming the domain of the relation can only be restricted using

type bounds; this is not enough for rich properties such as immutability since it requires deep

checking to determine whether fields are re-assignable or not.

More Powerful Type Relations via Type-Safe Meta-Programming We extend the above-

described type class-based approach so as to be able to define relations that take deep struc-

tural type information into account. Our approach provides the following benefits for library

authors defining new type relations (such as the immutable property):

95

Chapter 4. Static and Extensible Datatype Generic Programming

1. Library authors are provided with a safe, read-only view of the static type info corre-

sponding to types we test for membership in the relation. The provided type information

is not restricted to subtyping tests, rather, all functionality for analyzing type information

is provided by Scala’s meta-programming API.

2. Boilerplate for library authors is minimized using the generation approach that we out-

lined in Section 4.4.2. Analogous to queries and transformations, the self-assembly li-

brary provides a set of reusable abstractions, in turn making the generation mechanism

easily accessible to library authors.

Safety Static meta-programming has a reputation for being ad-hoc, untyped, and “anything-

goes.” However, in our approach the use of macros is fairly restricted. First, we restrict

ourselves to a type-safe subset of Scala’s macro system (except for a small trusted core), and

macro implementations are guaranteed to conform to their type signatures. As a result, these

macros are easy to reason about and are well-behaved citizens in the tooling ecosystem.

Second, and perhaps most importantly, the self-assembly library encapsulates all code

generation capabilities internally; library authors defining new generic properties are provided

with only a very restricted API. The API is limited to a read-only view of static type information

and the possibility to define a predicate on this information controlling type class instance

generation.

4.7.2 Example: Immutable Types

This section presents a complete example of a generic property as defined by a library author

using self-assembly: a type property for deep immutability. The implementation of this

property is shown in Figure 4.8.

The goal of the defined generic property is to traverse the full structure of a given type, and

to ensure (a) that there are no re-assignable fields and (b) that all field types satisfy this

property recursively. Therefore, the property is guaranteed transitively (all reachable objects

are immutable). To guard against subclasses with re-assignable fields, the implementation

assumes references of non-final class type potentially refer to mutable objects.

Elements like trait Property and the genQuery macro are provided by the library. The idea is

that when the genQuery macro derives an instance of Immutable[T] it (a) creates an instance

of class Trees at compile time, and (b) uses this to check that type T (accessible at compile

time as tpe) does not contain re-assignable fields (vars) and it is possible to derive Immutable

instances for all its fields (in turn guaranteeing that they are all deeply immutable).

The example also shows that it is possible to add custom type class instances manually

(in the example, for types Int and String). In general, this means that the checks of the

generic property can be overridden for specific types. While providing an escape hatch (e.g., in

situations where lightweight static checking is not powerful enough to prove a desired property

96

4.7. Generic Properties: Custom Lightweight Static Checks

trait Immutable[T] {}

object Immutable extends Property[Unit] {
def mkTrees[C <: Context with Singleton](c: C) =

new Trees(c)

class Trees[C <: Context with Singleton]
(override val c: C) extends super.Trees(c) {
def check(tpe: c.Type): Unit = {
import c.universe._

if (tpe.typeSymbol.isClass &&
!tpe.typeSymbol.asClass.isFinal &&
!tpe.typeSymbol.asClass.isCaseClass) {

c.abort(c.enclosingPosition, """instances
of non-final or non-case class not
guaranteed to be immutable""")

} else {
// if tpe has var, abort
val allAccessors =
tpe.decls collect {
case sym: MethodSymbol
if sym.isAccessor ||
sym.isParamAccessor => sym }

val varGetters =
allAccessors collect {
case sym if sym.isGetter &&

sym.accessed != NoSymbol &&
sym.accessed.asTerm.isVar => sym }

if (varGetters.nonEmpty)
c.abort(c.enclosingPosition,

"not immutable")
}

}
}

implicit def generate[T]: Immutable[T] =
macro genQuery[T, this.type]

implicit val intIsImm: Immutable[Int] =
new Immutable[Int] {}

implicit val stringIsImm: Immutable[String] =
new Immutable[String] {}

}

Figure 4.8 – Deep immutability checking using self-assembly

97

Chapter 4. Static and Extensible Datatype Generic Programming

for some type), this capability can also be used to subvert the checking of the generic property,

of course. However, existing type checking of the Scala compiler remains unaffected in all

cases.

4.7.3 Generic Properties as Implemented in self-assembly

The self-assembly library implements generic properties as extensions of generic queries.

Note that library authors defining new type properties are not exposed to the implementation

discussed in the following.

Let us consider a sketch of self-assembly’s implementation of the simple generic Property

trait used in the previous example:

trait Property[R] extends AcyclicQuery[R] {

abstract class Trees[C <: SContext]

(override val c: C) extends super.Trees(c) {

def check(tpe: c.Type): Unit

override def delimit(tpe: c.Type) = {

check(tpe)

(reify({}), reify({}), reify({}))

}

...

} }

The trait introduces a new abstract check method that must be implemented by the library

author who wishes to define concrete properties such as Immutable[T] above. Moreover, the

delimit method that the generic query invokes for all types encountered in a traversal is

overridden to invoke the user-defined check method. Otherwise, delimit only returns trivial

expression trees, since they are (essentially) unused.

4.8 Implementation and Case Study

We have implemented our approach in the self-assembly Scala library.7 The library has

been developed and tested using the current stable release of Scala version 2.11. No extension

of the Scala language or compiler is required by the library. The library is comprised of ≈ 1,150

LOC.

Case Study: Scala Pickling To evaluate both expressivity and performance, we have ported

the pickling framework presented in the previous chapter, scala/pickling [Miller et al., 2013],

to self-assembly8.

7See https://github.com/phaller/selfassembly.
8https://github.com/phaller/selfassembly/tree/master/src/main/scala/selfassembly/examples/pickling

98

https://github.com/phaller/selfassembly
https://github.com/phaller/selfassembly/tree/master/src/main/scala/selfassembly/examples/pickling

4.9. Related Work

scala/pickling is a popular open-source project; on the social code hosting platform GitHub,

the project has more than 630 “stars”. To achieve its high performance, scala/pickling leverages

macros for compile-time code generation. Our port of scala/pickling to self-assembly sup-

ports already about 90% of the features of the original; notably, subtyping, object identity,

separate compilation, and pluggable pickle formats. Currently, the port lacks picklers based

on run-time reflection.

Framework Performance Change LOC reduction

scala/pickling < 1% 56%

Table 4.1 – Results of porting scala/pickling to self-assembly

In terms of efficiency, self-assembly compares favorably to the original library: execution

time of the “Evactor” benchmark [Miller et al., 2013] remains within 1% of scala/pickling.

At the same time, the self-assembly-based code is significantly simpler, shorter, and more

maintainable. The use of self-assembly reduced the code size for macro-based type class

instance generation by about 56%.

4.9 Related Work

DGP in Functional Languages The idea of DGP originated in the Functional Programming

community. There are several approaches for writing datatype-generic programs. Early

approaches were based on programming languages with built-in support for DGP. These

approaches include PolyP [Jansson and Jeuring, 1997], and Generic Haskell [Clarke and Löh,

2003]. Later approaches were based on small language extensions for general purpose lan-

guages like Haskell. Examples include Scrap Your Boilerplate [Lämmel and Peyton Jones,

2003], Template Haskell [Sheard and Peyton Jones, 2002] and Generic Clean [Alimarine and

Plasmeijer, 2002].

More recently, researchers have realized that by using advanced type system features DGP

could be implemented directly as libraries. Extensive surveys of various approaches to DGP

in Haskell (mostly focused on libraries) document various approaches [Hinze et al., 2007,

Rodriguez et al., 2008]. A large majority of these library based approaches use run-time

type representations, as well as, isomorphisms that convert between specific datatypes and

generic type representations. Without further optimizations this has a significant impact on

performance. To improve performance several approaches use techniques such as partial-

evaluation [Alimarine and Smetsers, 2004] or inlining [Magalhães et al., 2010]. Approaches

based on partial-evaluation require language support, which makes them more difficult to

adopt. Inlining is simpler to adopt since it is readily available in many compilers. Good results

optimizing some generic functions have been reported in the GHC compiler. However inlining

is not very predictable and some generic functions do not optimize well.

Approaches that use meta-programming techniques like Template Haskell (TH) [Adams and

99

Chapter 4. Static and Extensible Datatype Generic Programming

DuBuisson, 2012] to do DGP are closest to our work. The use of TH is very often motivated by

performance considerations, to avoid the costs of run-time type representations. However,

published proposals using TH are based on its untyped macro system. (TH itself has recently

been upgraded to allow type-safe macros.) Although type errors are still detected at compile

time even using the untyped system, they are given in terms of the generated code instead

of the macro code. In self-assembly we do not need to make such a trade-off, because we

only use the type-safe subset of Scala’s macros (apart from a small, internal trusted core, as is

common in DGP approaches).

In contrast to self-assembly none of the functional DGP approaches deal with OO features

like subtyping or object identity.

DGP in OO Languages Adaptive Object-Oriented Programming (AOOP) [Lieberherr, 1996]

can be considered a DGP approach. In AOOP there is a domain-specific language for selecting

parts of a structure that should be visited. This is useful to do traversals on complex structures

and focus only on the interesting parts of the structure relevant for computing the final output.

DJ is an implementation of AOOP for Java using reflection [Orleans and Lieberherr, 2001].

More recently, inspired by AOOP, DemeterF [Chadwick and Lieberherr, 2010] improved on pre-

vious approaches by providing support for safe traversals, generics and data-generic function

generation. Compared to self-assembly most AOOP approaches are not type-safe. Only

in DemeterF a custom type system was designed to ensure type-safety of generic functions.

However DemeterF requires a new language and it is unclear wether issues like object identity

are considered, since they take a more functional approach than other AOOP approaches.

DemeterF is a language approach to DGP (much like Generic Haskell, for example); whereas

we view self-assembly as a library based approach.

There has also been some work porting existing functional DGP approaches to Scala. Moors

et al. [Moors et al., 2006] did a port of “origami”-based DGP [Gibbons, 2006]. Oliveira and

Gibbons [Oliveira and Gibbons, 2010] picked up on this line of work and have shown how

several other DGP approaches can be ported and improved in Scala. In particular they have

shown some approaches that for doing DGP with type classes, which has a similar flavour to

self-assembly. However none of these ports attempt to deal with OO features like subtyping

or object identity. Moreover all approaches are based on run-time type representations, which

is in contrast to our compile-time approach.

Pluggable Type Systems and Language Extensions There are several approaches for provid-

ing pluggable type system extensions for statically-typed OO languages [Chin et al., 2005, Dietl

et al., 2011, Papi et al., 2008], but unlike self-assembly, they do not provide DGP capabilities.

Furthermore, self-assembly provides lightweight added type checks, which can cannot

extend program syntax (like, e.g., SugarJ [Erdweg et al., 2011]) or change Scala’s built-in type

checking.

100

4.10. Conclusion

Our approach is in some sense complementary to staging for embedded DSLs (e.g., , LMS [Rompf

and Odersky, 2012]): however, rather than providing staged expressions that are type-checked

by the host language, we piggy-back on a macro system for the definition of new type relations.

Implicit macros generate type class instances, which, in turn, refine type-checking of unstaged

programs in the host language. Furthermore, self-assembly doesn’t require any extensions

to the host language.

4.10 Conclusion

This chapter detailed a general mechanism, called self-assembly, for defining generic op-

erations or properties that operate over a large class of types with little boilerplate and good

performance, and for defining additional lightweight static typechecking via generic prop-

erties This mechanism has the extensibility and customization advantages of type classes;

and it has the automatic implementation advantages of mechanisms like Java’s serialization

mechanism. The key idea is to provide automatic implementations of type classes using

type-safe macros. This allows programmers to define their own generic functionality, such as

serialization, pretty printing, or equality; and it also allows the definition of generic properties

such as immutability checking. To demonstrate the usefulness of self-assembly in practice,

we implemented an industry-ready serialization framework for Scala.

101

5 Spores

In Chapter 3, we covered object oriented picklers and scala/pickling, a framework for auto-

matically generating them. Throughout the presentation of scala/pickling, it was noted that

serializing function closures, a first-class language construct in Scala, was beyond its capa-

bilities. In this chapter, we see why serializing function closures is nontrivial, and introduce

spores, an abstraction which enables closures to be statically analyzed and serialized.

5.1 Introduction

With the rise of big data analytics, and our ongoing migration to mobile applications and “the

cloud”, distributed programming has entered the mainstream. Popular paradigms in software

engineering such as software as a service (SaaS), RESTful services, or the rise of a multitude of

systems for big data processing and interactive analytics evidence this trend.

At the same time, functional programming has also been gaining traction, as is evidenced by

the ongoing trend of traditionally object-oriented or imperative languages being extended with

functional features, such as lambdas in Java 8 [Goetz, 2013], C++11 [International Standard

ISO/IEC 14882:2011, 2011], and Visual Basic 9 [Meijer, 2007], the perceived importance of

functional programming in general empirical studies on software developers [Meyerovich and

Rabkin, 2013], and the popularity of functional programming massively online open courses

(MOOCs) [Miller et al., 2014b].

One reason for the rise in popularity of functional programming languages and features within

object-oriented communities is the basic philosophy of transforming immutable data by ap-

plying first-class functions, and the observation that this functional style simplifies reasoning

about data in parallel, concurrent, and distributed code. A popular and well-understood ex-

ample of this style of programming for which many popular frameworks have come to fruition

is functional data-parallel programming (FDP). Examples of FDP across functional and object-

oriented paradigms include Java 8’s monadic-style optionally parallel collections [Goetz, 2013],

Scala’s parallel [Prokopec et al., 2011] and concurrent dataflow [Prokopec et al., 2012a] collec-

103

Chapter 5. Spores

tions, Data Parallel Haskell [Chakravarty et al., 2007], CnC [Budimlić et al., 2010], Nova [Collins

et al., 2013], and Haskell’s Par monad [Marlow et al., 2011] to name a few.

In the context of distributed programming, data-parallel frameworks like MapReduce [Dean

and Ghemawat, 2008] and Spark [Zaharia et al., 2012] are designed around functional patterns

where closures are transmitted across cluster nodes to large-scale persistent datasets. As a

result of the “big data” revolution, these frameworks have become very popular, in turn further

highlighting the need to be able to reliably and safely serialize and transmit closures over the

network.

However, there’s trouble in paradise. For both object-oriented and functional languages,

there still exist numerous hurdles at the language-level for even these most basic functional

building blocks, closures, to overcome in order to be reliable and easy to reason about in a

concurrent or distributed setting.

In order to distribute closures, one must be able to serialize them – a goal that remains tricky

to reliably achieve not only in object-oriented languages but also in pure functional languages

like Haskell:

sendFunc :: SendPort (Int -> Int) -> Int -> ProcessM ()

sendFunc p x = sendChan p (\y -> x + y + 1)

In this example, in function sendFunc we are sending the lambda (\y -> x + y + 1) on

channel p. The lambda captures variable x, a parameter of sendFunc. Serializing the lambda

requires serializing also its captured variables. However, when looking up a serializer for the

lambda, only the type of the lambda is taken into account; however, it doesn’t tell us anything

about the types of its captured variables, which makes it impossible in Haskell to look up

serializers for them.

In object-oriented languages like Java or C#, serialization is solved differently – the runtime

environment is designed to be able to serialize any object, reflectively. While this “universal”

serialization might seem to solve the problem of languages like Haskell that cannot rely on such

a mechanism, serializing closures nonetheless remains surprisingly error-prone. For example,

attempting to serialize a closure with transitive references to objects that are not marked as

serializable will crash at runtime, typically with no compile-time checks whatsoever. The

kicker is that it is remarkably easy to accidentally and unknowingly create such a problematic

transitive reference, especially in an object-oriented language.

For example, consider the following use of a distributed collection in Scala with higher-order

functions map and reduce (using Spark):

104

5.1. Introduction

class MyCoolRddApp {

val log = new Log(...)

def shift(p: Int): Int = ...

...

def work(rdd: RDD[Int]) {

rdd.map(x => x + shift(x)).reduce(...)

}

}

In this example, the closure (x => x + shift(x)) is passed to the map method of the

distributed collection rdd which requires serializing the closure (as, in Spark, parts of the data

structure reside on different machines). However, calling shift inside the closure invokes

a method on the enclosing object this. Thus, the closure is capturing, and must therefore

serialize, this. If Log, a field of this, is not serializable, this will fail at runtime.

In fact, closures suffer not only from the problems shown in these two examples; there are

numerous more hazards that manifest across programming paradigms. To provide a glimpse,

closure-related hazards related to concurrency and distribution include:

• accidental capture of non-serializable variables (including this);

• language-specific compilation schemes, creating implicit references to objects that are

not serializable;

• transitive references that inadvertently hold on to excessively large object graphs, creat-

ing memory leaks;

• capturing references to mutable objects, leading to race conditions in a concurrent

setting;

• unknowingly accessing object members that are not constant such as methods, which

in a distributed setting can have logically different meanings on different machines.

Given all of these issues, exposing functions in public APIs is a source of headaches for authors

of concurrent or distributed frameworks. Framework users who stumble across any of these

issues are put in a position where it’s unclear whether or not the encountered issue is a problem

on the side of the user or the framework, thus often adversely hitting the perceived reliability

of these frameworks and libraries.

We argue that solving these problems in a principled way could lead to more confidence on

behalf of library authors in exposing functions in APIs, thus leading to a potentially wide array

of new frameworks.

This chapter takes a step towards more principled function-passing style by introducing a type-

based foundation for closures, called spores. Spores are a closure-like abstraction and type

105

Chapter 5. Spores

system which is designed to avoid typical hazards of closures. By including type information

of captured variables in the type of a spore, we enable the expression of type-based constraints

for captured variables, making spores safer to use in a concurrent or distributed setting. We

show that this approach can be made practical by automatically synthesizing refinement types

using macros, and by leveraging local type inference. Using type-based constraints, spores

allow expressing a variety of “safe” closures.

To express safe closures with transitive properties such as guaranteed serializability, or closures

capturing only deeply immutable types, spores support type constraints based on type classes

which enforce transitive properties. In addition, implicit macros in Scala enable integration

with type systems that enforce transitive properties using generics or annotated types. Spores

also support user-defined type constraints. Finally, we argue that by principle of a type-based

approach, spores can potentially benefit from optimization, further safety via type system

extensions, and verification opportunities.

5.1.1 Design Constraints

The design of spores is guided by the following principles:

• Type-safety. Spores should be able to express type-based properties of captured vari-

ables in a statically safe way. Including type information of captured variables in the

type of a spore creates a number of previously impossible opportunities; it facilitates the

verification of closure-heavy code; it opens up the possibility for IDEs to assist in safe

closure creation, advanced refactoring, and debugging support; it enables compilers

to implement safe transformations that can further simplify the use of safe closures,

and it makes it possible for spores to integrate with type class-based frameworks like

scala/pickling [Miller et al., 2013].

• Extensibility. Given types which include information about what a closure captures,

libraries and frameworks should be able to restrict the types that are captured by spores.

Enforcing these type constraints should not be limited to serializability, thread-safety, or

other pre-defined properties, however; spores should enable customizing the semantics

of variable capture based on user-defined types. It should be possible to use existing

type-based mechanisms to express a variety of user-defined properties of captured

types.

• Ease of Use. Spores should be lightweight to use, and be able to integrate seamlessly

with existing practice. It should be possible to capitalize on the benefits of precise types

while at the same time ensuring that working with spores is never too verbose, thanks to

the help of automatic type synthesis and inference. At the same time, frameworks like

Spark, for which the need for controlled capture is central, should be able to use spores,

meanwhile requiring only minimal changes in application code.

106

5.2. Spores

• Practicality. Spores should be practical to use in general, as well as be practical for

inclusion in the full-featured Scala language. They should be practical in a variety of

real-world scenarios (for use with Spark, Akka, parallel collections, and other closure-

heavy code). At the same time, to enable a robust integration with the host language,

existing type system features should be reused instead of extended.

• Reliability for API Designers. Spores should enable library authors to confidently re-

lease libraries that expose functions in user-facing APIs without concern of runtime

exceptions or other dubious errors falling on their users.

5.1.2 Contributions

This chapter outlines the following contributions:

• We introduce a closure-like abstraction and type system, called “spores,” which avoids

typical hazards when using closures in a concurrent or distributed setting through

controlled variable capture and customizable user-defined constraints for captured

types.

• We introduce an approach for type-based constraints that can be combined with existing

type systems to express a variety of properties from the literature, including, but not

limited to, serializability and thread-safety/immutability. Transitive properties can be

lifted to spore types in a variety of ways, e.g., using type classes.

• We present a formalization of spores with type constraints and prove soundness of the

type system.

• We present an implementation of spores in and for the full Scala language.1

• We (a) demonstrate the practicality of spores through a small empirical study using

a collection of real-world Scala programs, and (b) show the power of the guarantees

spores provide through case studies using parallel and distributed frameworks.

5.2 Spores

Spores are a closure-like abstraction and type system which aims to give users a principled way

of controlling the environment which a closure can capture. This is achieved by (a) enforcing

a specific syntactic shape which dictates how the environment of a spore is declared, and (b)

providing additional type-checking to ensure that types being captured have certain properties.

A crucial insight of spores is that, by including type information of captured variables in the

type of a spore, type-based constraints for captured variables can be composed and checked,

1https://github.com/scala/spores

107

https://github.com/scala/spores

Chapter 5. Spores

² :H�SUHVHQW�DQ�LPSOHPHQWDWLRQ�RI�VSRUHV�LQ�DQG�IRU�WKH�IXOO�6FDOD�ODQJXDJH��
² :H�GHPRQVWUDWH�WKH�SUDFWLFDOLW\�RI�VSRUHV��D��WKURXJK�DQ�VPDOO�HPSLULFDO�VWXG\�XVLQJ

D�FROOHFWLRQ�RI�6FDOD�SURJUDPV��DQG��E��VKRZ�WKH�SRZHU�RI�WKH�JXDUDQWHHV�VSRUHV
SURYLGH�WKURXJK�D�FDVH�VWXG\�RI�QHZ�GLVWULEXWHG�DQG�FRQFXUUHQW�IUDPHZRUNV�WKDW
WKLV�VDIH�IRXQGDWLRQ�IRU�PLJUDWDEOH�FORVXUHV�FDQ�HQDEOH�

� 6SRUHV

6SRUHV�DUH�D�FORVXUH�OLNH�DEVWUDFWLRQ�ZKLFK�DLP�WR�JLYH�XVHUV�D�SULQFLSOHG�ZD\�RI�FRQ�
WUROOLQJ�WKH�HQYLURQPHQW�ZKLFK�D�FORVXUH�FDQ�FDSWXUH��7KLV�LV�DFKLHYHG�E\��D��HQIRUFLQJ�D
VSHFLÀF�V\QWDFWLF�VKDSH�ZKLFK�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH�LV�GHFODUHG��DQG
�E��SURYLGLQJ�DGGLWLRQDO�W\SH�FKHFNLQJ�WR�HQVXUH�WKDW�W\SHV�EHLQJ�FDSWXUHG�KDYH�FHUWDLQ
SURSHUWLHV�

:H�GHVFULEH�EHORZ�WKH�V\QWDFWLF�VKDSH�RI�VSRUHV��DQG�LQ�6HFWLRQ "" ZH�LQIRUPDOO\
GHVFULEH�WKH�W\SH�V\VWHP��,Q�D�ODWHU�VHFWLRQ ""��ZH·OO�GHVFULEH�KRZ�WR�XVH�VSRUHV�ZLWK�WKH
W\SH�V\VWHP�H[WHQVLRQ�SURSRVHG�LQ�WKLV�SDSHU�

��� 6SRUH�6\QWD[

$ VSRUH�LV�D�FORVXUH�ZLWK�D�VSHFLÀF�VKDSH�WKDW�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH
LV�GHFODUHG��,Q�JHQHUDO��D�VSRUH�KDV�WKH�IROORZLQJ�VKDSH�
ɨ ����� Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ
ɬ ſ�ś �ƀ ʰʴ Ƈ
ɭ � � � � �
ɮ ƈ
ɯ ƈ

$ VSRUH�FRQVLVWV�RI�WZR�SDUWV��WKH�KHDGHU�DQG�WKH�ERG\��7KH�OLVW�RI�YDOXH�GHÀQLWLRQV
DW�WKH�EHJLQQLQJ�LV�FDOOHG�WKH�VSRUH�KHDGHU��7KH�KHDGHU�LV�IROORZHG�E\�D�UHJXODU�FORVXUH�
WKH�VSRUH·V�ERG\��7KH�FKDUDFWHULVWLF�SURSHUW\�RI�D�VSRUH�LV�WKDW�WKH�ERG\�RI�LWV�FORVXUH
LV�RQO\�DOORZHG�WR�DFFHVV�LWV�SDUDPHWHU��YDOXHV�LQ�WKH�VSRUH�KHDGHU��DV�ZHOO�DV�WRS�OHYHO
VLQJOHWRQ�REMHFWV��SXEOLF��JOREDO�VWDWH���,Q�SDUWLFXODU��WKH�VSRUH�FORVXUH�LV�QRW�DOORZHG
WR�FDSWXUH�YDULDEOHV�LQ�WKH�HQYLURQPHQW��2QO\�DQ�H[SUHVVLRQ�RQ�WKH�ULJKW�KDQG�VLGH�RI�D
YDOXH�GHÀQLWLRQ�LQ�WKH�VSRUH�KHDGHU�LV�DOORZHG�WR�FDSWXUH�YDULDEOHV�

%\�HQIRUFLQJ�WKLV�VKDSH��WKH�HQYLURQPHQW�RI�D�VSRUH�LV�DOZD\V�GHFODUHG�H[SOLFLWO\�LQ
WKH�VSRUH�KHDGHU�ZKLFK�DYRLGV�DFFLGHQWDOO\�FDSWXULQJ�SUREOHPDWLF�UHIHUHQFHV��0RUHRYHU�
DQG�WKDW·V�LPSRUWDQW�IRU�22 ODQJXDJHV��LW·V�QR�ORQJHU�SRVVLEOH�WR�DFFLGHQWDOO\�FDSWXUH
WKH ���� UHIHUHQFH�

1RWH�WKDW�WKH�HYDOXDWLRQ�VHPDQWLFV�RI�D�VSRUH�LV�HTXLYDOHQW�WR�D�FORVXUH�REWDLQHG�E\
OHDYLQJ�RXW�WKH ����� PDUNHU�
ɨ Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ

� 85/ ZLWKKHOG�IRU�WKH�VDNH�RI�DQRQ\PLW\�RI�UHYLHZ�

spore header

closure/spore body

}
}

Figure 5.1 – The syntactic shape of a spore.

making spores safer to use in a concurrent, distributed, or in an arbitrary settings where

closures must be controlled.

Below, we describe the syntactic shape of spores, and in Section 5.2.2 we describe the Spore

type. In Section 5.2.4 we informally describe the type system, and how to add user-defined

constraints to customize what types a spore can capture.

5.2.1 Spore Syntax

A spore is a closure with a specific shape that dictates how the environment of a spore is

declared. The shape of a spore is shown in Figure 5.1. A spore consists of two parts:

• the spore header, composed of a list of value definitions.

• the spore body (sometimes referred to as the “spore closure”), a regular closure.

The characteristic property of a spore is that the spore body is only allowed to access its

parameter, the values in the spore header, as well as top-level singleton objects (public, global

state). In particular, the spore closure is not allowed to capture variables in the environment.

Only an expression on the right-hand side of a value definition in the spore header is allowed

to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in the spore

header, which avoids accidentally capturing problematic references. Moreover, importantly for

object-oriented languages, it’s no longer possible to accidentally capture the this reference.

Evaluation Semantics

The evaluation semantics of a spore is equivalent to a closure obtained by leaving out the

spore marker, as shown in Figure 5.2. In Scala, the block shown in Figure 5.2a first initializes

all value definitions in order and then evaluates to a closure that captures the introduced

local variables y1, ..., yn. The corresponding spore, shown in Figure 5.2b has the exact

same evaluation semantics. Interestingly, this closure shape is already used in production

systems such as Spark in an effort to avoid problems with accidentally captured references,

108

5.2. Spores

{
val y1: S1 = <expr1>
...
val yn: Sn = <exprn>
(x: T) => {
// ...

}
}

(a) A closure block.

spore {
val y1: S1 = <expr1>
...
val yn: Sn = <exprn>
(x: T) => {
// ...

}
}

(b) A spore.

Figure 5.2 – The evaluation semantics of a spore is equivalent to that of a closure, obtained by
simply leaving out the spore marker.

trait Function1[-A, +B] {
def apply(x: A): B

}

(a) Scala’s arity-1 function type.

trait Spore[-A, +B]
extends Function1[A, B] {
type Captured
type Excluded

}

(b) The arity-1 Spore type.

Figure 5.3 – The Spore type.

such as this. However, in systems like Spark, the above shape is merely a convention that is

not enforced.

5.2.2 The Spore Type

Figure 5.3 shows Scala’s arity-1 function type and the arity-1 spore type. Functions are

contravariant in their argument type A (indicated using -) and covariant in their result type B

(indicated using +). The apply method of Function1 is abstract; a concrete implementation

applies the body of the function that is being defined to the parameter x.

Individual spores have refinement types of the base Spore type, which, to be compatible with

normal Scala functions, is itself a subtype of Function1. Like functions, spores are contravari-

ant in their argument type A, and covariant in their result type B. Unlike a normal function,

however, the Spore type additionally contains information about captured and excluded types.

This information is represented as (potentially abstract) Captured and Excluded type mem-

bers. In a concrete spore, the Captured type is defined to be a tuple with the types of all

captured variables. Section 5.2.4 introduces the Excluded type member.

109

Chapter 5. Spores

val s = spore {
val y1: String = expr1;
val y2: Int = expr2;
(x: Int) => y1 + y2 + x

}

(a) A spore s which captures a String and an Int
in its spore header.

Spore[Int, String] {
type Captured = (String, Int)

}

(b) s’s corresponding type.

Figure 5.4 – An example of the Captured type member.
Note: we omit the Excluded type member for simplicity; we detail it later in Section 5.2.4.

5.2.3 Basic Usage

Definition

A spore can be defined as shown in Figure 5.4a, with its corresponding type shown in Fig-

ure 5.4b. As can be seen, the types of the environment listed in the spore header are repre-

sented by the Captured type member in the spore’s type.

Using Spores in APIs

Consider the following method definition:

def sendOverWire(s: Spore[Int, Int]): Unit = ...

In this example, the Captured (and Excluded) type member is not specified, meaning it is left

abstract. In this case, so long as the spore’s parameter and result types match, a spore type is

always compatible, regardless of which types are captured.

Using spores in this way enables libraries to enforce the use of spores instead of plain closures,

thereby reducing the risk for common programming errors (see Section 5.6 for detailed case

studies), even in this very simple form. Later sections show more advanced ways in which

library authors can control the capturing semantics of spores.

Composition

Like normal functions, spores can be composed. By representing the environment of spores

using refinement types, it is possible to preserve the captured type information (and later,

constraints) of spores when they are composed.

For example, assume we are given two spores s1 and s2 with types:

s1: Spore[Int, String] { type Captured = (String, Int) }

s2: Spore[String, Int] { type Captured = Nothing }

110

5.2. Spores

The fact that the Captured type in s2 is defined to be Nothing means that the spore does not

capture anything (Nothing is Scala’s bottom type). The composition of s1 and s2, written

s1 compose s2, would therefore have the following refinement type:

Spore[String, String] { type Captured = (String, Int) }

Note that the Captured type member of the result spore is equal to the Captured type of

s1, since it is guaranteed that the result spore does not capture more than what s1 already

captures. Thus, not only are spores composable, but so are their (refinement) types.

Implicitly Converting Functions to Spores

The design of spores was guided in part by a desire to make them easy to use, and easy to

integrate in already closure-heavy code. Spores, as so far proposed, introduce considerable

verbosity in pursuit of the requirement to explicitly define the spore’s environment.

Therefore, it is also possible to use function literals as spores if they satisfy the spore shape

constraints. To support this, an implicit conversion2 macro3 is provided which converts regular

functions to spores, but only if the converted function is a literal: only then is it possible to

enforce the spore shape.

For-Comprehensions

Converting functions to spores opens up the use of spores in a number of other situations;

most prominently, for-comprehensions (Scala’s version of Haskell’s do-notation) in Scala are

desugared to invocations of the higher-order map, flatMap, and filter methods, each of

which take normal functions as arguments.4

In situations where for-comprehension closures capture variables, preventing them from

being converted implicitly to spores, we introduce an alternative syntax for capturing variables

in spores: an object that is referred to using a so-called “stable identifier” id can additionally

be captured using the syntax capture(id).5

This enables the use of spores in for-comprehensions, since it’s possible to write:

2In Scala, implicit conversions can be thought of as methods which can be implicitly invoked based upon their
type, and whether or not they are present in implicit scope.

3In Scala, macros are methods that are transparently loaded by the compiler and executed (or expanded) during
compilation. A macro is defined like a normal method, but it is linked using the macro keyword to an additional
method that operates on abstract syntax trees.

4For-comprehensions are desugared before implicit conversions are inserted; thus, no change to the Scala
compiler is necessary.

5In Scala, a stable identifier is basically a selection p.x where p is a path and x is an identifier (see Scala Language
Specification [Odersky, 2013], Section 3.1).

111

Chapter 5. Spores

for (a <- gen1; b <- capture(gen2)) yield capture(a) + b

Note that superfluous capture expressions are not harmful. Thus, it is legal to write:

for (a <- capture(gen1); b <- capture(gen2)) yield capture(a) + capture(b)

This allows the use of capture in a way that does not require users to know how for-comprehensions

are desugared. In Section 5.6 we show how capture and the implicit conversion of functions to

spores enables the use of for-comprehensions in the context of distributed programming with

spores.

5.2.4 Advanced Usage and Type Constraints

In this section, we describe two different kinds of “type constraints” which enable more fine-

grained control over closure capture semantics; excluded types which prevent certain types

from being captured, and context bounds for captured types which enforce certain type-based

properties for all captured variables of a spore. Importantly, all of these different kinds of

constraints compose, as we will see in later subsections.

Throughout this chapter, we use as a motivating example hazards that arise in concurrent or

distributed settings. However, note that the system of type constraints described henceforth is

general, and can be applied to very different applications and sets of types.

Excluded Types

Libraries and frameworks for concurrent and distributed programming, such as Akka [Type-

safe, 2009] and Spark, typically have requirements to avoid capturing certain types in closures

that are used together with library-provided objects and methods. For example, when us-

ing Akka, one should not capture variables of type Actor; in Spark, one should not capture

variables of type SparkContext.

Such restrictions can be expressed in our system by excluding types from being captured

by spores, using refinements of the Spore type presented in Section 5.2.2. For example, the

following refinement type forbids capturing variables of type Actor:

type SporeNoActor[-A, +B] = Spore[A, B] {

type Excluded <: No[Actor]

}

Note the use of the auxiliary type constructor No (defined as trait No[-T]): it enables the

exclusion of multiple types while supporting desired sub-typing relationships.

112

5.2. Spores

For example, exclusion of multiple types can be expressed as follows:

type SafeSpore = Spore[Int, String] {

type Excluded = No[Actor] with No[Util]

}

Given Scala’s sub-typing rules for refinement types, a spore refinement excluding a superset of

types excluded by an “otherwise type-compatible” spore is a subtype. For example, SafeSpore

is a subtype of SporeNoActor[Int, String].

Subtyping Using some frameworks typically user-defined subclasses are created that extend

framework-provided types. However, the extended types are sometimes not safe to be captured.

For example, in Akka, user-created closures should not capture variables of type Actor and any

subtypes thereof. To express such a constraint in our system we define the No type constructor

to be contravariant in its type parameter; this is the meaning of the - annotation in the type

declaration trait No[-T].

As a result, the following refinement type is a supertype of type

SporeNoActor[Int, Int] defined above (we assume MyActor is a subclass of Actor):

type MySpore = Spore[Int, Int] {

type Excluded <: No[MyActor]

}

It is important that MySpore is a supertype and not a subtype of

SporeNoActor[Int, Int], since an instance of MySpore could capture some other subclass

of Actor which is not itself a subclass of MyActor. Thus, it would not be safe to use an instance

of MySpore where an instance of SporeNoActor[Int, Int] is required. On the other hand, an

instance of SporeNoActor[Int, Int] is safe to use in place of an instance of MySpore, since

it is guaranteed not to capture Actor or any of its subclasses.

Reducing Excluded Boilerplate Given that the design of spores was guided in part by a

desire to make them easy to use, and easy to integrate in already closure-heavy code with

minimal changes, one might observe that the Spore type with Excluded types introduces

considerable verbosity. This is easily solved in practice by the addition of a macro without[T]

which takes a type parameter T and rewrites the spore type to take into consideration the

excluded type T. Thus, in the case of the SafeSpore example, the same spore refinement type

can easily be synthesized inline in the definition of a spore value:

113

Chapter 5. Spores

val safeSpore = spore {

val a = ...

val b = ...

(x: T) => { ... }

}.without[Actor].without[Util]

Context Bounds for Captured Types

The fact that for spores a certain shape is enforced is very useful. However, in some situa-

tions this is not enough. For example, a common source of race conditions in data-parallel

frameworks manifests itself when users capture mutable objects. Thus, a user might want to

enforce that closures only capture immutable objects. However, such constraints cannot be

enforced using the spore shape alone (captured objects are stored in constant values in the

spore header, but such constants might still refer to mutable objects).

In this section, we introduce a form of type-based constraints called “context bounds” which

enforce certain type-based properties for all captured variables of that spore.6

Taking another example, it might be necessary for a spore to require the availability of instances

of a certain type class for the types of all of its captured variables. A typical example for such a

type class is Pickler: types with an instance of the Pickler type class can be pickled using a

new type-based pickling framework for Scala [Miller et al., 2013]. To be able to pickle a spore,

it’s necessary that all its captured types have an instance of Pickler.7

Spores allow expressing such a requirement using a notion of implicit properties. The idea

is that if there is an implicit value8 of type Property[Pickler] in scope at the point where a

spore is created, then it is enforced that all captured types in the spore header have an instance

of the Pickler type class:

import spores.withPickler

spore {

val name: String = <expr1>

val age: Int = <expr2>

(x: String) => { ...}

}

While an imported property does not have an impact on how a spore is constructed (besides

6The name “context bound” is used in Scala to refer to a particular kind of implicit parameter that is added
automatically if a type parameter has declared such a context bound. Our proposal essentially adds context
bounds to type members.

7A spore can be pickled by pickling its environment and the fully-qualified class name of its corresponding
function class.

8An implicit value is a value in implicit scope that is statically selected based on its type.

114

5.2. Spores

the property import), it has an impact on the result type of the spore macro. In the above

example, the result type would be a refinement of the Spore type:9

Spore[String, Int] {

type Captured = (String, Int)

implicit val ev$0 = implicitly[Pickler[Captured]]

}

For each property that is imported, the resulting spore refinement type contains an implicit

value with the corresponding type class instance for type Captured.

Expressing context bounds in APIs Using the above types and implicits, it’s also possible for

a method to require argument spores to have certain context bounds. For example, requiring

argument spores to have picklers defined for their captured types can be achieved as follows:

def m[A, B](s: Spore[A, B])(implicit p: Pickler[s.Captured]) = ...

Defining Custom Properties

Properties can be introduced using the

Property trait (provided by the spores library): trait Property[C[_]]

As a running example, we will be defining a custom property for immutable types. A custom

property can be introduced using a generic trait, and an implicit “property” object that mixes

in the above Property trait:

object safe {

trait Immutable[T]

implicit object immutableProp extends Property[Immutable]

...

}

The next step is to mark selected types as immutable by defining an implicit object extending

the desired list of types, each type wrapped in the Immutable type constructor:

9In the code example, implicitly[T] returns the uniquely-defined implicit value of T which is in scope at the
invocation site.

115

Chapter 5. Spores

object safe {

...

import scala.collection.immutable.{Map, Set, Seq}

implicit object collections extends Immutable[Map[_, _]] with

Immutable[Set[_]] with Immutable[Seq[_]] with ...

}

The above definitions allow us to create spores that are guaranteed to capture only types T for

which an implicit of type Immutable[T] exists.

It’s also possible to define compound properties by mixing in multiple traits into an implicit

property object:

implicit object myProps extends Property[Pickler] with Property[Immutable]

By making this compound property available in a scope within which spores are created

(for example, using an import), it is enforced that those spores have both the context bound

Pickler and the context bound Immutable.

Composition

Now that we’ve introduced type constraints in the form of excluded types and context bounds,

we present generalized composition rules for the types of spores with such constraints.

To precisely describe the composition rules, we introduce the following notation: the function

Excluded returns, for a given refinement type, the set of types that are excluded; the function

Captured returns, for a given refinement type, the list of types that are captured. Using these

two mathematical functions, we can precisely specify how the type members of the resulting

spore refinement type are computed. (We use the syntax .type to refer to the singleton types of

the argument spores and the result, respectively.)

1. Captured(res.type) = Captured(s1.type), Captured(s2.type)

2. Excluded(res.type) = { T ∈ Excluded(s1.type) ∪ Excluded(s2.type) | T ∉ Captured(s1.type),

Captured(s2.type) }

The first rule expresses the fact that the sequence of captured types of the resulting refinement

type is simply the concatenation of the captured types of the argument spores. The second

rule expresses the fact that the set of excluded types of the result refinement type is defined as

the set of all types that are excluded by one of the argument spores, but that are not captured

by any of the argument spores.

For example, assume two spores s1 and s2 with types:

116

5.2. Spores

Spore[Int, String] {
type Captured = (Int, Util)
type Excluded = No[Actor]

}

(a) Type of spore s1.

Spore[String, Int] {
type Captured = (String, Int)
type Excluded = No[Actor] with No[Util]

}

(b) Type of spore s2.

The result of composing the two spores, s1 compose s2, thus has the following type:

Spore[String, String] {

type Captured = (Int, Util, String, Int)

type Excluded = No[Actor]

}

Loosening constraints Given that type constraints compose, it’s evident that as spores

compose, type constraints can monotonically increase in number. Thus, it’s important to note

that it’s also possible to soundly loosen constraints using regular type widening.

Let’s say we have a spore with the following (too elaborate) refinement type:

val s2: Spore[String, Int] {

type Captured = (String, Int)

type Excluded = No[Actor] with No[Util]

}

Then we can soundly drop constraints by using a supertype such as MySafeSpore:

type MySafeSpore = Spore[String, Int] {

type Captured

type Excluded <: No[Actor]

}

5.2.5 Transitive Properties

Transitive properties like picklability or immutability are not enforced through the spores type

system. Rather, spores were designed for extensibility; we ensure that deep checking can be

applied to spores as follows.

An initial motivation was to be able to require type class instances for captured types, e.g., pick-

lability; spores integrate seamlessly with scala/pickling [Miller et al., 2013].

117

Chapter 5. Spores

Transitive properties expressed using known techniques, e.g., generics (Zibin etal’s OIGJ

system [Zibin et al., 2010] for transitive immutability) or annotated types, can be enforced

for captured types using custom spore properties. Instead of merely tagging types, implicit

macros can generate type class instances for all types satisfying a predicate. For example,

using OIGJ we can define an implicit macro:

implicit def isImmutable[T: TypeTag]: Immutable[T]

which returns a type class instance for all types of the shape C[O, Immut] that is deeply im-

mutable (analyzing the TypeTag). Custom spore properties requiring type classes constructed

in such a way enable transitive checking for a variety of such (pluggable) extensions, including

compositions thereof (e.g., picklability/immutability).

5.3 Formalization

t ::= x variable
| (x : T) ⇒ t abstraction
| t t application
| let x = t in t let binding

| {l = t } record construction
| t .l selection
| spore { x : T = t ; pn; (x : T) ⇒ t } spore
| import pn in t property import
| t compose t spore composition

v ::= (x : T) ⇒ t abstraction

| {l = v} record value
| spore { x : T = v ; pn; (x : T) ⇒ t } spore value

T ::= T ⇒ T function type

| {l : T } record type
| S

S ::= T ⇒ T { type C = T ; pn } spore type
| T ⇒ T { type C ; pn } abstract spore type

P ∈ pn →T property map
T ∈P (T) type family

Γ ::= x : T type environment
∆ ::= pn property environment

Figure 5.6 – Core language syntax

We formalize spores in the context of a standard, typed lambda calculus with records. Apart

from novel language and type-systematic features, our formal development follows a well-

118

5.3. Formalization

known methodology [Pierce, 2002]. Figure A.2 shows the syntax of our core language. Terms

are standard except for the spore, import, and compose terms. A spore term creates a new

spore. It contains a list of variable definitions (the spore header), a list of property names, and

the spore’s closure. A property name refers to a type family (a set of types) that all captured

types must belong to.

An illustrative example of a property and its associated type family is a type class: a spore

satisfies such a property if there is a type class instance for all its captured types.

An import term imports a property name into the property environment within a lexical scope

(a term); the property environment contains properties that are registered as requirements

whenever a spore is created. This is explained in more detail in Section 5.3.2. A compose term

is used to compose two spores. The core language provides spore composition as a built-in

feature, because type checking spore composition is markedly different from type checking

regular function composition (see Section 5.3.2).

The grammar of values is standard except for spore values; in a spore value each term on the

right-hand side of a definition in the spore header is a value.

The grammar of types is standard except for spore types. Spore types are refinements of

function types. They additionally contain a (possibly-empty) sequence of captured types,

which can be left abstract, and a sequence of property names.

5.3.1 Subtyping

Figure 5.7 shows the subtyping rules; rules S-REC and S-FUN are standard [Pierce, 2002].

The subtyping rule for spores (S-SPORE) is analogous to the subtyping rule for functions with

respect to the argument and result types. Additionally, for two spore types to be in a subtyping

relationship either their captured types have to be the same (M1 = M2) or the supertype must

be an abstract spore type (M2 = typeC). The subtype must guarantee at least the properties of

its supertype, or a superset thereof. Taken together, this rule expresses the fact that a spore type

whose type member C is not abstract is compatible with an abstract spore type as long as it has

a superset of the supertype’s properties. This is important for spores used as first-class values:

functions operating on spores with arbitrary environments can simply demand an abstract

spore type. The way both the captured types and the properties are modeled corresponds to

(but simplifies) the subtyping rule for refinement types in Scala (see Section 5.2.4).

Rule S-SPOREFUN expresses the fact that spore types are refinements of their corresponding

function types, giving rise to a subtyping relationship.

119

Chapter 5. Spores

S-REC

l ′ ⊆ l li = l ′i → Ti <: T ′
i ∧T ′

i <: Ti

{l : T } <: {l ′ : T ′}

S-FUN

T2 <: T1 R1 <: R2

T1 ⇒ R1 <: T2 ⇒ R2

S-SPORE

T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = type C

T1 ⇒ R1 { M1 ; pn } <: T2 ⇒ R2 { M2 ; pn′ }

S-SPOREFUN

T1 ⇒ R1 { M ; pn } <: T1 ⇒ R1

Figure 5.7 – Subtyping

T-VAR

x : T ∈ Γ
Γ;∆` x : T

T-SUB

Γ;∆` t : T ′ T ′ <: T

Γ;∆` t : T

T-ABS

Γ, x : T1;∆` t : T2

Γ;∆` (x : T1) ⇒ t : T1 ⇒ T2

T-APP

Γ;∆` t1 : T1 ⇒ T2 Γ;∆` t2 : T1

Γ;∆` (t1 t2) : T2

T-LET

Γ;∆` t1 : T1 Γ, x : T1;∆` t2 : T2

Γ;∆` let x = t1 in t2 : T2

T-REC

Γ;∆` t : T

Γ;∆` {l = t } : {l : T }

T-SEL

Γ;∆` t : {l : T }

Γ;∆` t .li : Ti

T-IMP

Γ;∆, pn ` t : T

Γ;∆` import pn in t : T

T-SPORE

∀si ∈ s. Γ;∆` si : Si y : S, x : T1;∆` t2 : T2 ∀pn ∈∆,∆′. S ⊆ P (pn)

Γ;∆` spore { y : S = s ;∆′; (x : T1) ⇒ t2 } : T1 ⇒ T2 { type C = S ; ∆,∆′ }

T-COMP

Γ;∆` t1 : T1 ⇒ T2 { type C = S ; ∆1 }
Γ;∆` t2 : U1 ⇒ T1 { type C = R ; ∆2 } ∆′ = {pn ∈∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)}

Γ;∆` t1 compose t2 : U1 ⇒ T2 { type C = S,R ; ∆′ }

Figure 5.8 – Typing rules

5.3.2 Typing rules

Typing derivations use a judgement of the form Γ;∆ ` t : T . Besides the standard variable

environment Γwe use a property environment ∆which is a sequence of property names that

have been imported using import expressions in enclosing scopes of term t . The property

environment is reminiscent of the implicit parameter context used in the original work on

implicit parameters [Lewis et al., 2000]; it is an environment for names whose definition sites

“just happen to be far removed from their usages.”

120

5.3. Formalization

In the typing rules we assume the existence of a global property mapping P from property

names pn to type families T . This technique is reminiscent of the way some object-oriented

core languages provide a global class table for type-checking. The main difference is that our

core language does not include constructs to extend the global property map; such constructs

are left out of the core language for simplicity, since the creation of properties is not essential

to our model. We require P to follow behavioral subtyping:

Definition 5.3.1. (Behavioral subtyping of property mapping) If T <: T ′ and T ′ ∈ P (pn), then

T ∈ P (pn)

The typing rules are standard except for rules T-IMP, T-SPORE, and T-COMP, which are new.

Only these three type rules inspect or modify the property environment ∆. Note that there

is no rule for spore application, since there is a subtyping relationship between spores and

functions (see Section 5.3.1). Using the subsumption rule T-SUB spore application is expressed

using the standard rule for function application (T-APP).

Rule T-IMP imports a property pn into the property environment within the scope defined by

term t .

Rule T-SPORE derives a type for a spore term. In the spore, all terms on right-hand sides of

variable definitions in the spore header must be well-typed in the same environment Γ;∆

according to their declared type. The body of the spore’s closure, t2, must be well-typed in an

environment containing only the variables in the spore header and the closure’s parameter,

one of the central properties of spores. The last premise requires all captured types to satisfy

both the properties in the current property environment, ∆, as well as the properties listes in

the spore term, ∆′. Finally, the resulting spore type contains the argument and result types

of the spore’s closure, the sequence of captured types according to the spore header, and the

concatenation of properties ∆ and ∆′. The intuition here is that properties in the environment

have been explicitly imported by the user, thus indicating that all spores in the scope of the

corresponding import should satisfy them.

Rule T-COMP derives a result type for the composition of two spores. It inspects the captured

types of both spores (S and R) to ensure that the properties of the resulting spore, ∆, are

satisfied by the captured variables of both spores. Otherwise, the argument and result types

are analogous to regular function composition. Note that it is possible to weaken the properties

of a spore through spore subtyping and subsumption (T-SUB).

5.3.3 Operational semantics

Figure 5.9 shows the evaluation rules of a small-step operational semantics for our core

language. The only non-standard rules are E-APPSPORE, E-SPORE, E-IMP, and E-COMP3.

10For the sake of brevity, here we omit the standard evaluation rules. The complete set of evaluation rules can be
found in Appendix B

121

Chapter 5. Spores

E-APPSPORE

∀pn ∈ pn. T ⊆ P (pn)

spore { x : T = v ; pn; (x ′ : T) ⇒ t }v ′ → [x 7→ v][x ′ 7→ v ′]t

E-SPORE

tk → t ′k
spore { x : T = v , xk : Tk = tk , x ′ : T ′ = t ′ ; (x : T) ⇒ t } →
spore { x : T = v , xk : Tk = t ′k , x ′ : T ′ = t ′ ; (x : T) ⇒ t }

E-IMP

import pn in t → i nser t (pn, t)

E-COMP1
t1 → t ′1

t1 compose t2 → t ′1 compose t2

E-COMP2
t2 → t ′2

v1 compose t2 → v1 compose t ′2

E-COMP3
∆= {p | p ∈ pn, qn. T ⊆ P (p)∧S ⊆ P (p)}

spore { x : T = v ; pn; (x ′ : T ′) ⇒ t } compose spore { y : S = w ; qn; (y ′ : S′) ⇒ t ′ } →
spore { x : T = v , y : S = w ;∆; (y ′ : S′) ⇒ let z ′ = t ′ in [x ′ 7→ z ′]t }

Figure 5.9 – Operational Semantics10

H-INSSPORE1
∀ti ∈ t . insert(pn, ti) = t ′i insert(pn, t) = t ′

insert(pn,spore { x : T = t ; pn; (x ′ : T) ⇒ t }) = spore { x : T = t ′; pn, pn; (x ′ : T) ⇒ t ′ }

H-INSSPORE2
insert(pn, t) = t ′

insert(pn,spore { x : T = v ; pn; (x ′ : T) ⇒ t }) = spore { x : T = v ; pn, pn; (x ′ : T) ⇒ t ′ }

H-INSAPP

insert(pn, t1 t2) = insert(pn, t1) insert(pn, t2)
H-INSSEL

insert(pn, t .l) = insert(pn, t).l

Figure 5.10 – Helper function insert

Rule E-APPSPORE applies a spore literal to an argument. The differences to regular function

application (E-APPABS) are (a) that the types in the spore header must satisfy the properties of

the spore dynamically, and (b) that the variables in the spore header must be replaced by their

values in the body of the spore’s closure. Rule E-SPORE is a congruence rule. Rule E-IMP is a

computation rule that is always enabled. It adds property name pn to all spore terms within

the body t . The i nser t helper function is defined in Figure 5.10 (we omit rules for compose

and let; they are analogous to rules H-INSAPP and H-INSSEL).

122

5.3. Formalization

Rule E-COMP3 is the computation rule for spore composition. Besides computing the compo-

sition in a way analogous to regular function composition, it defines the spore header of the

result spore, as well as its properties. The properties of the result spore are restricted to those

that are satisfied by the captured variables of both argument spores.

5.3.4 Soundness

This section presents a soundness proof of the spore type system. The proof is based on a

pair of progress and preservation theorems [Wright and Felleisen, 1994]. A complete proof of

soundness appears in Appendix B. In addition to standard lemmas, we also prove a lemma

specific to our type system, Lemma 5.3.1, which ensures types are preserved under property

import. Soundness of the type system follows from Theorem 5.3.1 and Theorem 5.3.2.

Theorem 5.3.1. (Progress) Suppose t is a closed, well-typed term (that is, ` t : T for some T).

Then either t is a value or else there is some t ′ with t → t ′.

Proof. By induction on a derivation of ` t : T . The only three interesting cases are the ones for

spore creation, application, and spore composition.

Lemma 5.3.1. (Preservation of types under import) IfΓ;∆, pn ` t : T thenΓ;∆` i nser t (pn, t) :

T

Proof. By induction on a derivation of Γ;∆, pn ` t : T .

Lemma 5.3.2. (Preservation of types under substitution) If Γ, x : S;∆ ` t : T and Γ;∆ ` s : S,

then Γ;∆` [x 7→ s]t : T

Proof. By induction on a derivation of Γ, x : S;∆` t : T .

Lemma 5.3.3. (Weakening) If Γ;∆` t : T and x ∉ dom(Γ), then Γ, x : S;∆` t : T .

Proof. By induction on a derivation of Γ;∆` t : T .

Theorem 5.3.2. (Preservation) If Γ;∆` t : T and t → t ′, then Γ;∆` t ′ : T .

Proof. By induction on a derivation of Γ;∆` t : T .

5.3.5 Relation to spores in Scala

The type soundness proof (see Section 5.3.4) guarantees several important properties for

well-typed programs which closely correspond to the pragmatic model in Scala:

123

Chapter 5. Spores

1. Application of spores: for each property name pn, it is ensured that the dynamic types

of all captured variables are contained in the type family pn maps to (P (pn)).

2. Dynamically, a spore only accesses its parameter(s) and the variables in its header.

3. The properties computed for a composition of two spores is a safe approximation of the

properties that are dynamically required.

t ::= ... terms
| spore { x : T = t ;T ; pn; (x : T) ⇒ t } spore

v ::= ... values
| spore { x : T = v ;T ; pn; (x : T) ⇒ t } spore value

S ::= T ⇒ T { type C = T ; type E = T ; pn } spore type
| T ⇒ T { type C ; type E = T ; pn } abstract spore type

Figure 5.11 – Core language syntax extensions

5.3.6 Excluded types

This section shows how the formal model can be extended with excluded types as described

above (see Section 5.2.4). Figure 5.11 shows the syntax extensions: first, spore terms and values

are augmented with a sequence of excluded types; second, spore types and abstract spore

types get another member type E = T specifying the excluded types.

Figure 5.12 shows how the subtyping rules for spores have to be extended. Rule S-ESPORE

requires that for each excluded type T ′ in the supertype, there must be an excluded type T in

the subtype such that T ′ <: T . This means that by excluding type T , subtypes like T ′ are also

prevented from being captured.

Figure 5.13 shows the extensions to the operational semantics. Rule E-EAPPSPORE additionally

requires that none of the captured types T are contained in the excluded types U . Rule E-

ECOMP3 computes the set of excluded types of the result spore in the same way as in the

corresponding type rule (T-ECOMP).

Figure 5.14 shows the extensions to the typing rules. Rule T-ESPORE additionally requires

that none of the captured types S is a subtype of one of the types contained in the excluded

types U . The excluded types are recorded in the type of the spore. Rule T-ECOMP computes a

new set of excluded types V based on both the excluded types and the captured types of t1

and t2. Given that it is possible that one of the spores captures a type that is excluded in the

other spore, the type of the result spore excludes only those types that are guaranteed not be

captured.

124

5.4. Implementation

S-ESPORE

T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = type C ∀T ′ ∈U ′. ∃T ∈U . T ′ <: T

T1 ⇒ R1 { M1 ; type E =U ; pn } <: T2 ⇒ R2 { M2 ; type E =U ′ ; pn′ }

S-ESPOREFUN

T1 ⇒ R1 { M ; E ; pn } <: T1 ⇒ R1

Figure 5.12 – Subtyping extensions

E-EAPPSPORE

∀pn ∈ pn. T ⊆ P (pn) ∀Ti ∈ T . Ti ∉U

spore { x : T = v ; U ; pn ; (x ′ : T) ⇒ t } v ′ → [x 7→ v][x ′ 7→ v ′]t

E-ECOMP3
∆= {p | p ∈ pn, qn. T ⊆ P (p)∧S ⊆ P (p)} V = (U \ S)∪ (U ′ \ T)

spore { x : T = v ; U ; pn ; (x ′ : T ′) ⇒ t } compose

spore { y : S = w ; U ′ ; qn ; (y ′ : S′) ⇒ t ′ } → spore { x : T = v , y : S = w ; V ; ∆ ;
(y ′ : S′) ⇒ let z ′ = t ′ in [x ′ 7→ z ′]t }

Figure 5.13 – Operational semantics extensions

T-ESPORE

∀si ∈ s. Γ;∆` si : Si y : S, x : T1;∆` t2 : T2

∀pn ∈∆,∆′. S ⊆ P (pn) ∀Si ∈ S. ∀U j ∈U . ¬(Si <: U j)

Γ;∆` spore { y : S = s ;U ;∆′; (x : T1) ⇒ t2 } : T1 ⇒ T2 { type C = S ; type E =U ; ∆,∆′ }

T-ECOMP

Γ;∆` t1 : T1 ⇒ T2 { type C = S ; type E =U ; ∆1 }

Γ;∆` t2 : U1 ⇒ T1 { type C = R ; type E =U ′ ; ∆2 }

∆′ = {pn ∈∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)} V = (U \ R)∪ (U ′ \ S)

Γ;∆` t1 compose t2 : U1 ⇒ T2 { type C = S,R ; type E =V ; ∆′ }

Figure 5.14 – Typing extensions

5.4 Implementation

We have implemented spores as a macro library for Scala 2.10 and 2.11. Macros are an

experimental feature introduced in Scala 2.10 that enable “macro defs,” methods that take

expression trees as arguments and that return an expression tree that is inlined at each

invocation site. Macros are expanded during type checking in a way which enables macros to

synthesize their result type specialized for each expansion site.

125

Chapter 5. Spores

The implementation for Scala 2.10 requires in addition a compiler plug-in that provides a

backport of the support for Java 8 SAM types (“functional interfaces”) of Scala 2.11. SAM type

support extends type inference for user-defined subclasses of Scala’s standard function types

which enables infering the types of spore parameters.

An expression spore { val y: S = s; (x: T) => /* body */ } invokes the spore

macro which is passed the block { val y... } as an expression tree. A spore without type

constraints simply checks that within the body of the spore’s closure, only the parameter x as

well as the variables in the spore header are accessed according to the spore type-checking

rules. The expression tree returned by the macro creates an instance of a refinement type of

the abstract Spore class that implements its apply method (inherited from the corresponding

standard Scala function trait) by applying the spore’s closure. The Captured type member (see

Section 5.2.2) is defined by the generated refinement type to be a tuple type with the types of

all captured variables. If there are no type constraints the Excluded type member is defined to

be No[Nothing].

Type constraints are implemented as follows. First, invoking the generic without macro

passing a type argument T, say, augments the generated Spore refinement type by effectivly

adding the clause with No[T] to the definition of its Excluded type member. Second, the

existence of additional bounds on the captured types is detected by attempting to infer an

implicit value of type Property[_]. If such an implicit value can be inferred, a sequence of

types specifying type bounds is obtained as follows. The type of the implicit value is matched

against the pattern Property[t1] with ... with Property[tn]. For each type ti an

implicit member of the following shape is added to the Spore type refinement:

implicit val evi: ti[Captured] = implicitly[ti[Captured]]

The implicit conversion (Section 5.2.3) from standard Scala functions to spores is implemented

as a macro whose expansion fails if the argument function is not a literal, since in this case it is

impossible for the macro to check the spore shape/capturing constraints.

5.5 Evaluation

In this section we evaluate the practicality and the benefits of using spores as an alternative

to normal closures in Scala. The evaluation has two parts. In the first part we measure the

impact of introducing spores in existing programs. In the second part we evaluate the utility

and the syntactic overhead of spores in a large code base of applications based on the Apache

Spark framework for big data analytics.

126

5.5. Evaluation

MOOC

Parallel Collections

Spark

}
}
}

E\ HIIHFWLYO\ DGGLQJ WKH FODXVH ���� ��ƃ�Ƅ WR WKH GHILQLWLRQ RI LWV �������� W\SH PHP�
EHU� 6HFRQG� WKH H[LVWHQFH RI DGGLWLRQDO ERXQGV RQ WKH FDSWXUHG W\SHV LV GHWHFWHG E\
DWWHPSWLQJ WR LQIHU DQ LPSOLFLW YDOXH RI W\SH ��������ƃɏƄ� ,I VXFK DQ LPSOLFLW YDOXH FDQ
EH LQIHUUHG� D VHTXHQFH RI W\SHV VSHFLI\LQJ W\SH ERXQGV LV REWDLQHG DV IROORZV� %DVL�
FDOO\� WKH W\SH RI WKH LPSOLFLW YDOXH LV PDWFKHG DJDLQVW WKH SDWWHUQ
��������ƃ�ɨƄ ���� ŜŜŜ ���� ��������ƃ��Ƅ ZKHUH WKH �� DUH W\SH YDULDEOHV�)RU HDFK
W\SH �� DQ LPSOLFLW YDOXH PHPEHU

�������� ��� ���ś ��ƃ��������Ƅ ʰ ����������ƃ��ƃ��������ƄƄ

LV JHQHUDWHG DQG DGGHG WR WKH ����� UHILQHPHQW W\SH�
:H DOVR SURYLGH DQ LPSOLFLW FRQYHUVLRQ IURP VWDQGDUG 6FDOD IXQFWLRQV WR VSRUHV�

7KLV FRQYHUVLRQ LV LPSOHPHQWHG DV D PDFUR ZKRVH H[SDQVLRQ IDLOV LI WKH DUJXPHQW IXQF�
WLRQ LV QRW D OLWHUDO� VLQFH LQ WKLV FDVH LW LV LPSRVVLEOH IRU WKH PDFUR WR FKHFN WKH VSRUH
VKDSH�FDSWXULQJ FRQVWUDLQWV�

� (YDOXDWLRQ

3URJUDP /2& �FORVXUHV �FRQYHUWHG /2& FKDQJHG �FDSWXUHG YDUV

IXQVHWV �� � � � �
IRUFRPS ��� � � � �
PDQGHOEURW ��� � � � �
EDUQHVKXW ��� � � � �
VSDUN SDJHUDQN �� � � � �
VSDUN NPHDQV �� � � � �
7RWDO ���� �� �� �� ��

)LJ� ��� &RPSDULVRQ WR UHODWHG DSSURDFKHV

,Q WKLV VHFWLRQ ZH HYDOXDWH WKH SUDFWLFDOLW\ RI XVLQJ VSRUHV DV DQ DOWHUQDWLYH WR QRUPDO
FORVXUHV LQ 6FDOD E\ PHDVXULQJ WKH QXPEHU RI FKDQJHV UHTXLUHG WR FRQYHUW H[LVWLQJ SUR�
JUDPV WKDW FUXFLDOO\ UHO\ RQ FORVXUHV WR XVH VSRUHV� :H DQDO\]H D QXPEHU RI UHDO 6FDOD
SURJUDPV� WDNHQ IURP WKUHH FDWHJRULHV�

�� *HQHUDO� FORVXUH�KHDY\ FRGH� WDNHQ IURP WKH H[HUFLVHV RI WKH SRSXODU 022& RQ
)XQFWLRQDO 3URJUDPPLQJ 3ULQFLSOHV LQ 6FDOD� WKH JRDO RI DQDO\]LQJ WKLV FRGH LV WR JHW
DQ DSSUR[LPDWLRQ RI WKH ZRUVW�FDVH HIIRUW UHTXLUHG ZKHQ FRQVLVWHQWO\ XVLQJ VSRUHV
LQVWHDG RI FORVXUHV� LQ D PRVWO\�IXQFWLRQDO FRGH EDVH�

�� 3DUDOOHO DSSOLFDWLRQV EDVHG RQ 6FDOD¶V SDUDOOHO FROOHFWLRQV� 7KHVH H[DPSOHV HYDOX�
DWH WKH SUDFWLFDOLW\ RI LQWURGXFLQJ VSRUHV LQWR D SDUDOOHO FRGH EDVH WR LQFUHDVH LWV
UREXVWQHVV�

�� 'LVWULEXWHG DSSOLFDWLRQV EDVHG RQ WKH $SDFKH 6SDUN FOXVWHU FRPSXWLQJ IUDPHZRUN�
,Q WKLV FDVH� ZH HYDOXDWH WKH SUDFWLFDOLW\ RI XVLQJ VSRUHV LQ 6SDUN DSSOLFDWLRQV WR
PDNH VXUH FORVXUHV DUH JXDUDQWHHG WR EH VHULDOL]DEOH�

0HWKRGRORJ\)RU HDFK SURJUDP� ZH REWDLQHG �D� WKH QXPEHU RI FORVXUHV LQ WKH SURJUDP
WKDW DUH FDQGLGDWHV IRU FRQYHUVLRQ� �E� WKH QXPEHU RI FORVXUHV WKDW FRXOG EH FRQYHUWHG WR
VSRUHV� �F� WKH FKDQJHG�DGGHG QXPEHU RI /2&� DQG �G� WKH QXPEHU RI FDSWXUHG YDULDEOHV�
,W LV LPSRUWDQW WR QRWH WKDW GXULQJ WKH FRQYHUVLRQ LW ZDV QRW SRVVLEOH WR UHO\ RQ DQ LPSOLFLW

Figure 5.15 – Evaluating the practicality of using spores in place of normal closures

5.5.1 Using Spores Instead of Closures

In this section we measure the number of changes required to convert existing programs that

crucially rely on closures to use spores. We analyze a number of real Scala programs, taken

from three categories:

1. General, closure-heavy code, taken from the exercises of the popular MOOC on Func-

tional Programming Principles in Scala; the goal of analyzing this code is to get an

approximation of the worst-case effort required when consistently using spores instead

of closures, in a mostly-functional code base.

2. Parallel applications based on Scala’s parallel collections. These examples evaluate the

practicality of using spores in a parallel code base to increase its robustness.

3. Distributed applications based on the Apache Spark cluster computing framework. In

this case, we evaluate the practicality of using spores in Spark applications to make sure

closures are guaranteed to be serializable.

Methodology For each program, we obtained (a) the number of closures in the program

that are candidates for conversion, (b) the number of closures that could be converted to

spores, (c) the changed/added number of LOC, and (d) the number of captured variables.

It is important to note that during the conversion it was not possible to rely on an implicit

conversion of functions to spores, since the expected types of all library methods that were

invoked by the evaluated applications remained normal function types. Thus, the reported

numbers are worse than they would be for APIs using spores.

Results The results are shown in Figure 5.15. Out of 32 closures 29 could be converted to

spores with little effort. One closure failed to infer its parameter type when expressed as a

spore. Two other closures could not be converted due to implementation restrictions of our

prototype. On average, per converted closure 1.4 LOC had to be changed. This number is

dominated by two factors: the inability to use the implicit conversion from functions to spores,

and one particularly complex closure in “mandelbrot” that required changing 9 LOC. In our

127

Chapter 5. Spores

average LOC average # of % closures that
Project per closure captured vars don’t capture

sameeragarwal/blinkdb
268 33 LOC 22,022

1.39 1 93.5%

freeman-lab/thunder
89 2 LOC 2,813

1.03 1.30 23.3%

bigdatagenomics/adam
86 16 LOC 19,055

1.90 1.44 80.2%

ooyala/spark-jobserver
79 6 LOC 5,578

1.60 1 80.0%

Sotera/correlation-approximation
12 2 LOC 775

4.55 1.25 63.6%

aecc/stream-tree-learning
1 2 LOC 1,199

5.73 2 54.5%

lagerspetz/TimeSeriesSpark
5 1 LOC 14,882

2.85 1.77 75.0%

Total LOC 66,324 2.25 1.39 67.2%

Figure 5.16 – Evaluating the impact and overhead of spores on real distributed applications.
Each project listed is an active and noteworthy open-source project hosted on GitHub that is
based on Apache Spark. represents the number of “stars” (or interest) a repository has on
GitHub, and represents the number of contributors to the project.

programs, the number of captured variables is on average 0.56. These results suggest that

programs using closures in non-trivial ways can typically be converted to using spores with

little effort, even if the used APIs do not use spore types.

5.5.2 Spores and Apache Spark

To evaluate both benefit and overhead of using spores in larger, distributed applications, we

studied the codebases of 7 noteworthy open-source applications using Apache Spark.

Methodology We evaluated the applications along two dimensions. In the first dimension

we were interested how widespread patterns are that spores could statically enforce. In the

context of open-source applications built on top of the Spark framework, we counted the

number of closures passed to the higher-order map method of the RDD type (Spark’s distributed

collection abstraction); all of these closures must be serializable to avoid runtime exceptions.

(The RDD type has several more higher-order functions that require serializable closures such

as flatMap; map is the most commonly used higher-order function, though, and is thus

representative of the use of closures in Spark.) In the second dimension, we analyzed the

percentage of spores that could be converted automatically to spores assuming the Spark

API would use spore types instead of regular function types, thus not incurring any syntactic

overhead. In cases where automatic conversion would be impossible, we analyzed the average

128

https://github.com/sameeragarwal/blinkdb
https://github.com/freeman-lab/thunder
https://github.com/bigdatagenomics/adam
https://github.com/ooyala/spark-jobserver
https://github.com/Sotera/correlation-approximation
https://github.com/aecc/stream-tree-learning
https://github.com/lagerspetz/TimeSeriesSpark

5.5. Evaluation

number of captured variables, indicating the syntactic overhead of using explicit spores.

Results Figure 5.16 summarizes our results. Of all closures passed to RDD’s map method,

about 67.2% do not capture any variable; these closures could be automatically converted

to spores using the implicit macro of Section 5.2.3. The remaining 32.8% of closures that do

capture variables, capture on average 1.39 variables. This indicates that unchecked patterns

for serializable closures are widespread in real applications, and that benefiting from static

guarantees provided by spores would require only little syntactic overhead.

5.5.3 Spores and Akka

We have also verified that excluding specific types from closures is important.

The Akka event-driven middleware provides an actor abstraction for concurrency. When using

futures together with actors, it is common to provide the result of a future-based computation

to the sender of a message sent to an actor.

However, naive implementations of patterns such as this can problematic. To access the

sender of a message, Akka’s Actor trait provides a method sender that returns a reference to

the actor that is the sender of the message currently being processed. There is a potential for a

data race where the actor starts processing a message from a different actor than the original

sender, but a concurrent future-based computation invokes the sender method (on this),

thus obtaining a reference to the wrong actor.

Given the importance of combining actors and futures, Akka provides a library method pipeTo

to enable programming patterns using futures that avoid capturing variables of type Actor in

closures. However, the correct use of pipeTo is unchecked. Spores provide a new statically-

checked approach to address this problem by demanding closures passed to future construc-

tors to be spores with the constraint that type Actor is excluded.

Methodology To find out how often spores with type constraints could turn an unchecked

pattern into a statically-checked guarantee, we analyzed 7 open-source projects using Akka

(GitHub projects with 23 stars on average; more than 100 commits; 2.7 contributors on average).

For each project we searched for occurrences of “pipeTo” directly following closures passed to

future constructors.

Results The 7 projects contain 19 occurrences of the presented unchecked pattern to avoid

capturing Actor instances within closures used concurrently. Spores with a constraint to

exclude Actor statically enforce the safety of all those closures.

129

Chapter 5. Spores

5.6 Case Study

Frameworks like MapReduce [Dean and Ghemawat, 2008] and Apache Spark [Zaharia et al.,

2012] are designed for processing large datasets in a cluster, using well-known map/reduce

computation patterns.

In Spark, these patterns are expressed using higher-order functions, like map, applied to the

“resilient distributed dataset” (RDD) abstraction. However, to avoid unexpected runtime

exceptions due to unserializable closures when passing closures to RDDs, programmers must

adopt conventions that are subtle and unchecked by the Scala compiler.

The pattern shown in Figure 5.17 is a common pattern that was extracted from a code base

used in production.

class GenericOp(sc: SparkContext, mapping: Map[String, String]) {
private var cachedSessions: spark.RDD[Session] = ...

def doOp(keyList: List[...], ...): Result = {
val localMapping = mapping

val mapFun: Session => (List[String], GenericOpAggregator) = { s =>
(keyList, new GenericOpAggregator(s, localMapping))

}

val reduceFun: (GenericOpAggregator, GenericOpAggregator) =>
GenericOpAggregator = { (a, b) => a.merge(b) }

cachedSessions.map(mapFun).reduceByKey(reduceFun).collectAsMap
}

}

Figure 5.17 – Conventions used in production to avoid serialization errors.

Here, the doOp method performs operations on the RDD cachedSessions. GenericOp has a

parameter of type SparkContext, the main entry point for functionality provided by Spark, and

a parameter of type Map[String, String]. The main computation is a chain of invocations

of map, reduceByKey, and collectAsMap. To ensure that the argument closures of map and

reduceByKey are serializable, the code follows two conventions: first, instead of defining

mapFun and reduceFun as methods, they are defined using lambdas stored in local variables.

Second, instead of using the mapping parameter directly, it is first copied into a local variable

localMapping. The reason for the first convention is that in Scala converting a method to a

function implicitly captures a reference to the enclosing object. However, GenericOp is not

serializable, since it refers to a SparkContext. The reason for the second convention is that

using mapping directly would result in mapFun capturing this.

130

5.7. Related Work

Applying Spores

The above conventions can be enforced by the compiler, avoiding unexpected runtime excep-

tions, by turning mapFun and reduceFun into spores:

val mapFun: Spore[Session, (List[String], GenericOpAggregator)] =

spore { val localMapping = mapping

(s: Session) => (keyList, new GenericOpAggregator(s, localMapping)) }

val reduceFun: Spore[(GenericOpAggregator, GenericOpAggregator),

GenericOpAggregator] =

spore { (a, b) => a.merge(b) }

The spore shape enforces the use of localMapping (moved into mapFun). Furthermore, there

is no more possibility of accidentally capturing a reference to the enclosing object.

5.7 Related Work

Cloud Haskell [Epstein et al., 2011] provides statically guaranteed-serializable closures by

either rejecting environments outright, or by allowing manual capturing, requiring the user to

explicitly specify and pre-serialize the environment in combination with top-level functions

(enforced using a new Static type constructor). That is, in Cloud Haskell, to create a serializ-

able closure, one must explicitly pass the serialized environment as a parameter to the function

– this requires users to have to refactor closures they wish to be made serializable. In contrast,

spores do not require users to manually factor out, manage, and serialize their environment;

spores require only that what is captured is specified, not how. Furthermore, spores are more

general than Cloud Haskell’s serializable closures; user-defined type constraints enable spores

to express more properties than just serializability, like thread-safety, immutability, or any

other user-defined property. In addition, spores allow restricting captured types in a way that

is integrated with object-oriented concerns, such as subtyping and open class hierarchies.

C++11 [International Standard ISO/IEC 14882:2011, 2011] has introduced syntactic rules for

explicit capture specifications that indicate which variables are captured and how (by reference

or by copy). Since the capturing semantics is purely syntactic, a capture specification is only

enforced at closure creation time. Thus, when composing two closures, the capture semantics

is not preserved. Spores, on the other hand, capture such specifications at the level of types,

enabling composability. Furthermore, spores’ type constraints enable more general type-

directed control over capturing than capture-by-value or capture-by-reference alone.

A preliminary proposal for closures in the Rust language [Matsakis, 2013] allows describing

the closed-over variables in the environment using closure bounds, requiring captured types

to implement certain traits. Closure bounds are limited to a small set of built-in traits to

enforce properties like sendability. Spores on the other hand enable user-defined property

131

Chapter 5. Spores

definition, allowing for greater customizability of closure capturing semantics. Furthermore,

unlike spores, the environment of a closure in Rust must always be allocated on the stack

(although not necessarily the top-most stack frame).

Java 8 [Goetz, 2013] introduces a limited type of closure which is only permitted to capture

variables that are effectively-final. Like with Scala’s standard closures, variable capture is

implicit, which can lead to accidental captures that spores are designed to avoid. Although

serializability can be requested at the level of the type system using newly-introduced intersec-

tion types in Java 8, there is no guarantee about the absence of runtime exceptions, as there is

for spores. Finally, spores additionally allow specifying type-based constraints for captured

variables that are more general than serializability alone.

Parallel closures [Matsakis, 2012] are a variation of closures that make data in the environment

available using read-only references using a type system for reference immutability. This

enables parallel execution without the possibility of data races. Spores are not limited to

immutable environments, and do not require a type system extension. River Trail [Herhut

et al., 2013] provides a concurrency model for JavaScript, similar to parallel closures; however,

capturing variables in closures is currently not supported.

ML5 [Murphy VII et al., 2007] provides mobile closures verified not to use resources not

present on machines where they are applied. This property is enforced transitively (for all

values reachable from captured values), which is stronger than what plain spores provide.

However, type constraints allow spores to require properties not limited to mobility. Transitive

properties are supported either using type constraints based on type classes which enforce

a transitive property or by integrating with type systems that enforce transitive properties.

Unlike ML5, spores do not require a type system extension.

A well-known type-based representation of closures uses existential types where the exis-

tentially quantified variable represents the closure’s environment, enabling type-preserving

compilation of functional languages [Morrisett et al., 1999]. A spore type may have an abstract

Captured type, effectively encoding an existantial quantification; however, captured types are

typically concrete, and the spore type system supports constraints on them.

HdpH [Maier and Trinder, 2011] generalizes Cloud Haskell’s closures in several aspects: first,

closures can be transformed without eliminating them. Second, unnecessary serialization is

avoided, e.g., when applying a closure immediately after creation. Otherwise, the discussion

of Cloud Haskell in above also applies to HdpH. Delimited continuations [Rompf et al., 2009]

represent a way to serialize behavior in Scala, but don’t resolve any of the problems of normal

Scala closures when it comes to accidental capture, as spores do.

Termite Scheme [Germain, 2006] is a Scheme dialect for distributed programming where

closures and continuations are always serializable; references to non-serializable objects

(like open files) are automatically wrapped in processes that are serialized as their process

ID. In contrast, with spores there is no such automatic wrapping. Unlike closures in Termite

132

5.8. Conclusion

Scheme, spores are statically-typed, supporting type-based constraints. Serializable closures

in a dynamically-typed setting are also the basis for [Schwendner, 2009]. Python’s standard

serialization module, pickle, does not support serializing closures. Dill [McKerns et al., 2012]

extends Python’s pickle module, adding support for functions and closures, but without

constraints.

5.8 Conclusion

This chapter presented a type-based foundation for closures, called spores, designed to avoid

various hazards that arise particularly in concurrent or distributed settings. We have presented

a flexible type system for spores which enables composability of differently-constrained spores

as well as custom user-defined type constraints. We formalize and present a full soundness

proof, as well as an implementation of our approach in Scala.

A key takeaway of our approach is that including type information of captured variables in the

type of the spore enables a number of previously impossible opportunities, including but not

limited to controlled capture in concurrent, distributed, and other arbitrary scenarios where

closures must be controlled.

Finally, we demonstrate the practicality of our approach through an empirical study, and show

that converting non-trivial programs to use spores requires relatively little effort.

133

6 Function-Passing

In Chapter 3 and 5 we covered pickling and spores, a serialization framework and an abstraction

for statically checked and serializable function closures. In this chapter, we bring these two

frameworks together in the form of a new programming model that provides a principled

substrate for well-typed functional distributed programming called function-passing.

6.1 Introduction

It is difficult to deny that data-centric programming is growing in importance. At the same

time, it is no secret that the most successful systems for programming with “big data” have all

adopted ideas from functional programming; i.e., programming with first-class functions and

higher-order functions. These functional ideas are often touted to be the key to the success

of these frameworks. It is not hard to imagine why–a functional, declarative interface to data

distributed over tens, or hundreds, or even thousands of nodes provides a more natural way

for end-users and data scientists to reason about data.

While leveraging functional programming concepts, popular implementations of the MapRe-

duce [Dean and Ghemawat, 2008] model, such as Hadoop MapReduce [Apache, 2015] for Java,

have been developed without making use of functional language features such as closures. In

contrast, a new generation of programming systems for large-scale data processing, such as

Apache Spark [Zaharia et al., 2012], Twitter’s Scalding [Twitter, 2015], and Scoobi [NICTA, 2015]

build on functional language features in Scala in order to provide high-level, declarative APIs.

Due to the limited support for distribution in the languages that are used to implement

these systems, even well-developed and widely used systems still encounter issues that can

complicate their use or optimization. Some of these include:

• Usage Errors These systems’ APIs cannot statically prevent common usage errors result-

ing from some language features not being designed with distribution in mind, often

confronting users with hard-to-debug runtime errors. A common example is unsafe

135

Chapter 6. Function-Passing

closure serialization [Miller et al., 2014a].

• Lost Optimization Opportunities The absence of certain kinds of static type informa-

tion precludes systems-centric optimizations. Importantly, type-based static meta-

programming enables fast serialization [Miller et al., 2013], but this is only possible if

also lower layers (namely those dealing with object serialization) are statically typed.

Several studies [Oracle, Inc., 2011, Philippsen et al., 2000, Pitt and McNiff, 2001, Welsh

and Culler, 2000] report on the high overhead of serialization in widely-used runtime

environments such as the JVM. Researchers have even found that for some jobs, as

much as half of the CPU time is spent deserializing and decompressing data on a Spark

cluster [Ousterhout et al., 2015]. This overhead is so important in practice that popu-

lar systems, like Spark [Zaharia et al., 2012] and Akka [Typesafe, 2009], often leverage

alternative serialization frameworks such as Protocol Buffers [Google, 2008], Apache

Avro [Apache, 2013], or Kryo [Nathan Sweet, 2013] to meet their performance require-

ments.

• Lack of Formal Semantics As it stands, popular system designs don’t allow formal

reasoning about important systems-oriented concerns such as fault recorvery due a

lack of formal operational models. As a result, formal reasoning is not available for the

development of these systems; i.e., such systems tend not to be built upon foundations

with a formal semantics.

We present a new programming model we call function passing (F-P) designed to overcome

most of these issues by providing a more principled substrate on which to build typed, func-

tional data-centric distributed systems. It builds upon two previous veins of work–an ap-

proach for generating type-safe and performant pickler combinators [Miller et al., 2013], and

spores [Miller et al., 2014a], closures that are guaranteed to be serializable. Our model at-

tempts to fit the paradigm of data-centric programming more naturally by extending monadic

programming to the network. Our model can be thought of as somewhat of a dual to the actor

model;1 rather than keeping functionality stationary and sending data, in our model, we keep

data stationary and send functionality to the data. This results in well-typed communication

by design, a common pain point for builders of distributed systems in Scala. Our model is in

no small part inspired by Spark, and can be thought of as a generalization of its programming

model.

Our model brings together immutable, persistent data structures, monadic higher-order func-

tions, strong static typing, and lazy evaluation–pillars of functional programming–to provide

a more type-safe, and easy to reason about foundation for data-centric distributed systems.

Interestingly, we found that laziness was an enabler in our model, without complicating the

1There are many variations and interpretations of the actor model; in saying our model is somewhat of a dual,
we simply mean to highlight that programmers need not focus on programming with typically stationary message
handlers. Instead, our model focuses on a monadic interface for programming with data (and sending functions
instead).

136

6.1. Introduction

ability to reason about programs. Without optimizations based on laziness, we found this

model would be impractically inefficient in memory and time.

One important contribution of our model is a precise specification of the semantics of func-

tional fault recovery. The fault-recovery mechanisms of widespread systems such as Apache

Spark, MapReduce [Dean and Ghemawat, 2008] and Dryad [Isard et al., 2007] are based on

the concept of a lineage [Bose and Frew, 2005, Cheney et al., 2009]. Essentially, the lineage

of a data set combines (a) an initial data set available on stable storage and (b) a sequence

of transformations applied to initial and subsequent data sets. Maintaining such lineages

enables fault recovery through recomputation.

6.1.1 Contributions

The F-P-related contributions of this thesis include:

• A new data-centric programming model for functional processing of distributed data

which makes important concerns like fault tolerance simple by design. The main compu-

tational principle is based on the idea of sending safe, guaranteed serializable functions

to stationary data. Using standard monadic operations our model enables creating

immutable DAGs of computations, supporting decentralized distributed computations.

Lazy evaluation enables important optimizations while keeping programs simple to

reason about.

• A formalization of our programming model based on a small-step operational seman-

tics. To our knowledge it is the first formal account of fault recovery based on lineage

in a purely functional setting. Inspired by widespread systems like Spark [Zaharia

et al., 2012], our formalization is a first step towards a formal, operational account of

real-world fault recovery mechanisms. The presented semantics is clearly stratified

into a deterministic layer and a concurrent/distributed layer. Importantly, reasoning

techniques for sequential programs are not invalidated by the distributed layer.

• An implementation of the programming model in and for Scala. We present exper-

iments that show some of the benefits of the proposed design, and we report on a

validation of spores in the context of distributed programming.

This chapter proceeds first with a description of the F-P model from a high-level, elaborating

upon key benefits and trade-offs, then zooming in to make each component part of the F-P

model more precise. We describe the basic model this way in Section 6.2. We go on to show in

Section 6.3 how essential higher-order operations on distributed frameworks like Spark can be

implemented in terms of the primitives presented in Section 6.2. We present a formalization

of our programming model in Section 6.4, and an overview of its prototypical implementation

in Section 6.5. Finally, we discuss related work in Section 6.6, and conclude in Section 6.7.

137

Chapter 6. Function-Passing

6.2 Overview of Model

The best way to quickly visualize the F-P model is to think in terms of a persistent functional

data structure with structural sharing. A persistent data structure is a data structure that always

preserves the previous version of itself when it is modified–such data structures are effectively

immutable, as their operations do not (visibly) update the structure in-place, but instead

always yield a new updated structure. Then, rather than containing pure data, imagine instead

that the data structure represents a directed acyclic graph (DAG) of transformations on data

that is distributed.

Importantly, since this DAG of computations is a persistent data structure itself, it is safe

to exchange (copies of) subgraphs of a DAG between remote nodes. This enables a robust

and easy-to-reason-about model of fault tolerance. We call subgraphs of a DAG lineages;

lineages enable restoring the data of failed nodes through re-applying the transformations

represented by their DAG. This sequence of applications must begin with data available from

stable storage.

Central to our model is the careful use of laziness. Computations on distributed data are

typically not executed eagerly; instead, applying a function to distributed data just creates an

immutable lineage. To obtain the result of a computation, it is necessary to first “kick off” com-

putation, or to “force” its lineage. Within our programming model, this force operation makes

network communication (and thus possibilities for latency) explicit, which is considered to

be a strength when designing distributed systems [Waldo et al., 1996]. Deferred evaluation

also enables optimizing distributed computations through operation fusion, which avoids

the creation of unnecessary intermediate data structures–which is more efficient in time as

well as space. This kind of optimization is particularly important and effective in distributed

systems [Chambers et al., 2010b].

For these reasons, we believe that laziness should be viewed as an enabler in the

design of distributed systems.

The F-P model consists of three main components:

• Silos: stationary typed data containers.

• SiloRefs: references to local or remote Silos.

• Spores: safe, serializable functions.

138

6.2. Overview of Model

Silos A silo is a typed data container. It is stationary in the sense that it does not move

between machines – it remains on the machine where it was created. Data stored in a silo is

typically loaded from stable storage, such as a distributed file system. A program operating on

data stored in a silo can only do so using a reference to the silo, a SiloRef.

SiloRefs Similar to a proxy object, a SiloRef represents, and allows interacting with, both

local and remote silos. SiloRefs are immutable, storing identifiers to locate possibly remote

silos. SiloRefs are also typed (SiloRef[T]) corresponding to the type of their silo’s data,

leading to well-typed network communication. That is, by parameterizing SiloRefs, it becomes

impossible by design to apply transformations (e.g., to apply a function) to that data unless

the type of the function agrees with the type of the data stored in the corresponding Silo. This

avoids a common pitfall of actor-based programming in Scala; since communication between

actors is untyped2 (an actor’s message handler’s type in Scala is Any => Unit) developers

commonly run into hung and timed-out systems during system development due to the

Any => Unit message handler in an actor receiving a message of a type that is not explicitly

handled by the programmer. In F-P, this situation is avoided by design in that these sorts of

errors are caught at compile-time rather than requiring a programmer to debug a hung system

at runtime.

The SiloRef provides three primitive operations/combinators (some are lazy, some are not):

map, flatMap, and send. map lazily applies a user-defined function to data pointed to by the

SiloRef, creating in a new silo containing the result of this application. Like map, flatMap

lazily applies a user-defined function to data pointed to by the SiloRef. Unlike map, the user-

defined function passed to flatMap returns a SiloRef whose contents is transferred to the

new silo returned by flatMap. Essentially, flatMap enables accessing the contents of (local or

remote) silos from within remote computations. We illustrate these primitives in more detail

in Section 6.2.2.

Spores As introduced in Chapter 5, spores [Miller et al., 2014a] are safe closures that are

guaranteed to be serializable and thus distributable. The following is a review of the important

characteristics of spores as they pertain to the F-P model.

Spores are a closure-like abstraction and type system which gives authors of distributed frame-

works a principled way of controlling the environment which a closure (provided by client

code) can capture. This is achieved by (a) enforcing a specific syntactic shape which dictates

how the environment of a spore is declared, and (b) providing additional type-checking to

ensure that types being captured have certain properties.

A spore consists of two parts:

2There are several ongoing efforts aimed at typed communication between actors [He et al., 2014, Kuhn, 2015].

139

Chapter 6. Function-Passing

• the spore header, composed of a list of value definitions.

• the spore body (sometimes referred to as the “spore closure”), a regular closure.

This shape is illustrated below.

² :H�SUHVHQW�DQ�LPSOHPHQWDWLRQ�RI�VSRUHV�LQ�DQG�IRU�WKH�IXOO�6FDOD�ODQJXDJH��
² :H�GHPRQVWUDWH�WKH�SUDFWLFDOLW\�RI�VSRUHV��D��WKURXJK�DQ�VPDOO�HPSLULFDO�VWXG\�XVLQJ

D�FROOHFWLRQ�RI�6FDOD�SURJUDPV��DQG��E��VKRZ�WKH�SRZHU�RI�WKH�JXDUDQWHHV�VSRUHV
SURYLGH�WKURXJK�D�FDVH�VWXG\�RI�QHZ�GLVWULEXWHG�DQG�FRQFXUUHQW�IUDPHZRUNV�WKDW
WKLV�VDIH�IRXQGDWLRQ�IRU�PLJUDWDEOH�FORVXUHV�FDQ�HQDEOH�

� 6SRUHV

6SRUHV�DUH�D�FORVXUH�OLNH�DEVWUDFWLRQ�ZKLFK�DLP�WR�JLYH�XVHUV�D�SULQFLSOHG�ZD\�RI�FRQ�
WUROOLQJ�WKH�HQYLURQPHQW�ZKLFK�D�FORVXUH�FDQ�FDSWXUH��7KLV�LV�DFKLHYHG�E\��D��HQIRUFLQJ�D
VSHFLÀF�V\QWDFWLF�VKDSH�ZKLFK�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH�LV�GHFODUHG��DQG
�E��SURYLGLQJ�DGGLWLRQDO�W\SH�FKHFNLQJ�WR�HQVXUH�WKDW�W\SHV�EHLQJ�FDSWXUHG�KDYH�FHUWDLQ
SURSHUWLHV�

:H�GHVFULEH�EHORZ�WKH�V\QWDFWLF�VKDSH�RI�VSRUHV��DQG�LQ�6HFWLRQ "" ZH�LQIRUPDOO\
GHVFULEH�WKH�W\SH�V\VWHP��,Q�D�ODWHU�VHFWLRQ ""��ZH·OO�GHVFULEH�KRZ�WR�XVH�VSRUHV�ZLWK�WKH
W\SH�V\VWHP�H[WHQVLRQ�SURSRVHG�LQ�WKLV�SDSHU�

��� 6SRUH�6\QWD[

$ VSRUH�LV�D�FORVXUH�ZLWK�D�VSHFLÀF�VKDSH�WKDW�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH
LV�GHFODUHG��,Q�JHQHUDO��D�VSRUH�KDV�WKH�IROORZLQJ�VKDSH�
ɨ ����� Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ
ɬ ſ�ś �ƀ ʰʴ Ƈ
ɭ � � � � �
ɮ ƈ
ɯ ƈ

$ VSRUH�FRQVLVWV�RI�WZR�SDUWV��WKH�KHDGHU�DQG�WKH�ERG\��7KH�OLVW�RI�YDOXH�GHÀQLWLRQV
DW�WKH�EHJLQQLQJ�LV�FDOOHG�WKH�VSRUH�KHDGHU��7KH�KHDGHU�LV�IROORZHG�E\�D�UHJXODU�FORVXUH�
WKH�VSRUH·V�ERG\��7KH�FKDUDFWHULVWLF�SURSHUW\�RI�D�VSRUH�LV�WKDW�WKH�ERG\�RI�LWV�FORVXUH
LV�RQO\�DOORZHG�WR�DFFHVV�LWV�SDUDPHWHU��YDOXHV�LQ�WKH�VSRUH�KHDGHU��DV�ZHOO�DV�WRS�OHYHO
VLQJOHWRQ�REMHFWV��SXEOLF��JOREDO�VWDWH���,Q�SDUWLFXODU��WKH�VSRUH�FORVXUH�LV�QRW�DOORZHG
WR�FDSWXUH�YDULDEOHV�LQ�WKH�HQYLURQPHQW��2QO\�DQ�H[SUHVVLRQ�RQ�WKH�ULJKW�KDQG�VLGH�RI�D
YDOXH�GHÀQLWLRQ�LQ�WKH�VSRUH�KHDGHU�LV�DOORZHG�WR�FDSWXUH�YDULDEOHV�

%\�HQIRUFLQJ�WKLV�VKDSH��WKH�HQYLURQPHQW�RI�D�VSRUH�LV�DOZD\V�GHFODUHG�H[SOLFLWO\�LQ
WKH�VSRUH�KHDGHU�ZKLFK�DYRLGV�DFFLGHQWDOO\�FDSWXULQJ�SUREOHPDWLF�UHIHUHQFHV��0RUHRYHU�
DQG�WKDW·V�LPSRUWDQW�IRU�22 ODQJXDJHV��LW·V�QR�ORQJHU�SRVVLEOH�WR�DFFLGHQWDOO\�FDSWXUH
WKH ���� UHIHUHQFH�

1RWH�WKDW�WKH�HYDOXDWLRQ�VHPDQWLFV�RI�D�VSRUH�LV�HTXLYDOHQW�WR�D�FORVXUH�REWDLQHG�E\
OHDYLQJ�RXW�WKH ����� PDUNHU�
ɨ Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ

� 85/ ZLWKKHOG�IRU�WKH�VDNH�RI�DQRQ\PLW\�RI�UHYLHZ�

spore header

closure/spore body

}
}

The characteristic property of a spore is that the spore body is only allowed to access its

parameter, the values in the spore header, as well as top-level singleton objects (Scala’s form

of modules). The spore closure is not allowed to capture variables other than those declared

in the spore header (i.e., the spore closure may not capture variables in the environment

enclosing the spore). By enforcing this shape, the environment of a spore is always declared

explicitly in the spore header, which avoids accidentally capturing problematic references.

Moreover, importantly for object-oriented languages like Scala, it’s no longer possible to

accidentally capture the this reference.

Spores also come with additional type-checking. Type information corresponding to captured

variables are included in the type of a spore. This enables authors of distributed frameworks to

customize type-checking of spores to, for example, exclude a certain type from being captured

by user-provided spores. Authors of distributed frameworks may kick on this type-checking by

simply including information about excluded types (or other type-based properties) in the

signature of a method. A concrete example would be to ensure that the map method on RDDs

in Spark (a distributed collection) accepts only spores which do not capture SparkContext (a

non-serializable internal framework class).

For a deeper understanding of spores, see Chapter 5.

6.2.1 Basic Usage

We begin with a simple visual example to provide a feeling for the basics of the F-P model.

The only way to interact with distributed data stored in silos is through the use of SiloRefs.

A SiloRef can be thought of as an immutable handle to the remote data contained within a

corresponding silo. Users interact with this distributed data by applying functions to SiloRefs,

which are transmitted over the wire and later applied to the data within the corresponding

silo. As is the case for persistent data structures, when a function is applied to a piece of

distributed data via a SiloRef, a SiloRef representing a new silo containing the transformed

data is returned.

140

6.2. Overview of Model

MACHINE 1 MACHINE 2

SiloRef[T]
Silo[T]

SiloRef[T]

SiloRef[S]

Silo[T]

SiloRef[T]

SiloRef[S]

Silo[T]

Silo[S]

λ

T⇒S

t

Reference to a remote object Reference to a local object

1

2

3

Figure 6.1 – Basic F-P model.

The simplest illustration of the model is shown in Figure 6.1 (time flows vertically from top to

bottom). Here, we start with a SiloRef[T] which points to a piece of remote data contained

within a Silo[T]. When the function shown as λ of type T ⇒ S is applied to SiloRef[T] and

“forced” (sent over the wire), a new SiloRef of type SiloRef[S] is immediately returned. Note

that SiloRef[S] contains a reference to its parent SiloRef, SiloRef[T]. (This is how lineages

are constructed.) Meanwhile, the function is asynchronously sent over the wire and is applied

to Silo[T], eventually producing a new Silo[S] containing the data transformed by function

λ. This new SiloRef[S] can be used even before its corresponding silo is materialized (i.e., be-

fore the data in Silo[S] is computed) – the F-P framework queues up operations applied to

SiloRef[S] and applies them when Silo[S] is fully materialized.

Different sorts of complex DAGs can be asynchronously built up in this way. Though first, to

see how this is possible, we need to develop a clearer idea of the primitive operations available

on SiloRefs and their semantics. We describe these in the following section.

6.2.2 Primitives

There are four basic primitive operations on SiloRefs that together can be used to build

the higher-order operations common to popular data-centric distributed systems (how to

build some of these higher-order operations is described in Section 6.3). In this section we’ll

141

Chapter 6. Function-Passing

SiloRef
Silo

adults

persons
persons

on remote node
points to silo

adults

persons
persons

owners

vehicles

on remote node
points to silo

adults

persons
persons

owners

vehicles

sorted

labels
λ

List[Person]⇒List[String]

on remote node
points to silo

adults

persons
persons

owners

vehicles

sorted

on remote node
points to silo

labels

on remote node
points to silo

labels

MACHINE 1 MACHINE 2
1

2

Reference to a remote object
Reference to a local object

3

4

Figure 6.2 – A simple DAG in the F-P model.

142

6.2. Overview of Model

introduce these primitives in the context of a running example. These primitives include:

• map

• flatMap

• send

• cache

map def map[S](s: Spore[T, S]): SiloRef[S]

The map method takes a spore that is to be applied to the data in the silo associated with the

given SiloRef. Rather than immediately sending the spore across the network, and waiting for

the operation to finish, the mapmethod is lazy. Without involving any network communication,

it immediately returns a SiloRef referring to a new, lazily-created silo. This new SiloRef only

contains lineage information, namely, a reference to the original SiloRef, a reference to the

argument spore, and the information that it is the result of a map invocation. As we explain

below, another method, send or cache, must be called explicitly to force the materialization of

the result silo.

To better understand how DAGs are created and how remote silos are materialized, we will

develop a running example throughout this section. Given a silo containing a list of Person

records, the following application of map defines a (not-yet-materialized) silo containing only

the records of adults (graphically shown in Figure 6.2, part 1):

val persons: SiloRef[List[Person]] = ...

val adults =

persons.map(spore { ps => ps.filter(p => p.age >= 18) })

flatMap def flatMap[S](s: Spore[T, SiloRef[S]]): SiloRef[S]

Like map, the flatMap method takes a spore that is to be applied to the data in the silo of the

given SiloRef. However, the crucial difference is in the type of the spore argument whose

result type is a SiloRef in this case. Semantically, the new silo created by flatMap is defined to

contain the data of the silo that the user-defined spore returns. The flatMap combinator adds

expressiveness to our model that is essential to express more interesting computation DAGs.

For example, consider the problem of combining the information contained in two different

silos (potentially located on different hosts). Suppose the information of a silo containing

Vehicle records should be enriched with other details only found in the adults silo. In the

following, flatMap is used to create a silo of (Person, Vehicle) pairs where the names of

person and vehicle owner match (graphically shown in Figure 6.2, part 2):

Note that the spore passed to flatMap declares the capturing of the vehicles SiloRef in its

so-called “spore header.” The spore header spans all variable definitions between the spore

marker and the parameter list of the spore’s closure. The spore header defines the variables

that the spore’s closure is allowed to access. Essentially, spores limit the free variables of their

143

Chapter 6. Function-Passing

val vehicles: SiloRef[List[Vehicle]] = ...
// adults that own a vehicle
val owners = adults.flatMap(spore {

val localVehicles = vehicles // spore header
ps =>
localVehicles.map(spore {
val localps = ps // spore header
vs =>
localps.flatMap(p =>

// list of (p, v) for a single person p
vs.flatMap {
v => if (v.owner.name == p.name) List((p, v)) else Nil

}
)

})
})

closure’s body to the closure’s parameters and the variables declared in the spore’s header.

Within the spore’s closure, it is necessary to read the data of the vehicles silo in addition

to the ps list of Person records. This requires calling map on localVehicles. However, map

returns a SiloRef; thus, invoking map on adults instead of flatMap would be impossible, since

there would be no way to get the data out of the silo returned by localVehicles.map(..).

With the use of flatMap, however, the call to localVehicles.map(..) creates the final result

silo, whose data is then also contained in the silo returned by flatMap.

Although the expressiveness of the flatMap combinator subsumes that of the map combinator

(see Section 6.2.2), keeping map as a (lightweight) primitive enables more opportunities for

optimizing computation DAGs (e.g., operation fusion [Chambers et al., 2010b]).

send def send(): Future[T]

As mentioned earlier, the execution of computations built using SiloRefs is deferred. The

send operation forces the lazy computation defined by the given SiloRef. Forcing is explicit

in our model, because it requires sending the lineage to the remote node on which the result

silo should be created. Given that network communication has a latency several orders

of magnitude greater than accessing a word in main memory, providing an explicit send

operation is a judicious choice [Waldo et al., 1996].

To enable materialization of remote silos to proceed concurrently, the send operation imme-

diately returns a future [Haller et al., 2012]. This future is then asynchronously completed

with the data of the given silo. Since calling send will materialize a silo and send its data to the

current node, send should only be called on silos with reasonably small data (for example, in

the implementation of an aggregate operation such as reduce on a distributed collection).

144

6.2. Overview of Model

cache def cache(): Future[Unit]

The performance of typical data analytics jobs can be increased dramatically by caching

large data sets in memory [Zaharia et al., 2012]. To do this, the silo containing the computed

data set needs to be materialized. So far, the only way to materialize a silo that we have

shown is using the send primitive. However, send additionally transfers the contents of a

silo to the requesting node–too much if a large remote data set should merely be cached in

memory remotely. Therefore, an additional primitive called cache is provided, which forces

the materialization of the given SiloRef, returning Future[Unit].

Given the running example so far, we can add another subgraph branching off of adults,

which sorts each Person by age, produces a String gretting, and then “kicks-off” remote

computation by calling cache and caching the result in remote memory (graphically shown in

Figure 6.2, part 3 and 4):

val sorted =

adults.map(spore { ps => ps.sortWith(p => p.age) })

val labels =

sorted.map(spore { ps => ps.map(p => "Welcome, " + p.name) })

labels.cache()

Assuming we would also cache the owners SiloRef from the previous example, the resulting

lineage graph would look as illustrated in Figure 6.2. Note that vehicles is not a regular parent

in the lineage of owners; it is an indirect input used to compute owners by virtue of being

captured by the spore used to compute owners.

Creating Silos

Besides a type definition for SiloRef, our framework also provides a companion singleton

object (Scala’s form of modules). The singleton object provides factory methods for obtaining

SiloRefs referring to silos populated with some initial data:3

object SiloRef {

def fromTextFile(host: Host)(file: File): SiloRef[List[String]]

def fromFun[T](host: Host)(s: Spore[Unit, T]): SiloRef[T]

def fromLineage[T](host: Host)(s: SiloRef[T]): SiloRef[T]

}

Each of the factory methods has a host parameter that specifies the target host (address/port)

on which to create the silo. Note that the fromFunmethod takes a spore closure as an argument

to make sure it can be serialized and sent to host. In each case, the returned SiloRef contains

3For clarity, only method signatures are shown.

145

Chapter 6. Function-Passing

its host as well as a host-unique identifier. The fromLineagemethod is particularly interesting

as it creates a copy of a previously existing silo based on the lineage of a SiloRef s. Note that

only the SiloRef is necessary for this operation to successfully complete; the silo originally

hosting s might already have failed.

Expressiveness

Expressing map Leveraging the above-mentioned methods for creating silos, it is possible to

express map in terms of flatMap:

def map[S](s: Spore[T, S]): SiloRef[S] =

this.flatMap(spore {

val localSpore = s

(x: T) =>

val res = localSpore(x)

SiloRef.fromFun(currentHost)(spore {

val localRes = res

() => localRes

})

})

This should come as no surprise, given that flatMap is the monadic bind operation on SiloRefs,

and SiloRef.fromFun is the monadic return operation. The reason why map is provided as one

of the main operations of SiloRefs is that direct uses of map enable an important optimization

based on operation fusion.

Expressing cache The cache operation can be expressed using flatMap and send:

def cache(): Future[Unit] = this.flatMap(spore {

val localDoneSiloRef = DoneSiloRef

res => localDoneSiloRef

}).send()

Here, we first use flatMap to create a new silo that will be completed with the trivial value of

the DoneSiloRef singleton object (e.g., Unit). Essentially, invoking send on this trivial SiloRef

causes the resulting future to be completed as soon as this SiloRef has been materialized in

memory.

146

6.2. Overview of Model

val persons: SiloRef[List[Person]] = ...
val vehicles: SiloRef[List[Vehicle]] = ...
// copy of `vehicles` on different host `h`
val vehicles2 = SiloRef.fromFun(h)(spore {
val localVehicles = vehicles
() => localVehicles

})

val adults =
persons.map(spore { ps => ps.filter(p => p.age >= 18) })

// adults that own a vehicle
def computeOwners(v: SiloRef[List[Vehicle]]) =
spore {
val localVehicles = v
(ps: List[Person]) => localVehicles.map(...)

}

val owners: SiloRef[List[(Person, Vehicle)]] =
adults.flatMap(computeOwners(vehicles),

computeOwners(vehicles2))

6.2.3 Fault Handling

F-P includes overloaded variants of the primitives discussed so far which enable the definition

of flexible fault handling semantics. The main idea is to specify fault handlers for subgraphs

of computation DAGs. Our guiding principle is to make the definition of the failure-free path

through a computation DAG as simple as possible, while still enabling the handling of faults at

the fine-granular level of individual SiloRefs.

Defining fault handlers Fault handlers may be specified whenever the lineage of a SiloRef

is extended. For this purpose, the introduced map and flatMap primitives are overloaded. For

example, consider our previous example, but extended with a fault handler:

Importantly, in the flatMap call on the last line, in addition to computeOwners(vehicles), the

regular spore argument of flatMap, computeOwners(vehicles2) is passed as an additional ar-

gument. The second argument registers a failure handler for the subgraph of the computation

DAG starting at adults. This means that if during the execution of computeOwners(vehicles)

it is detected that the vehicles SiloRef has failed, it is checked whether the SiloRef that the

higher-order combinator was invoked on (in this case, adults) has a failure handler regis-

tered. In that case, the failure handler is used as an alternative spore to compute the result

of adults.flatMap(..). In this example, we specified computeOwners(vehicles2) as the

failure handler; thus, in case vehicles has failed, the computation is retried using vehicles2

147

Chapter 6. Function-Passing

instead.

6.3 Higher-Order Operations

The introduced primitives enable expressing surprisingly intricate computational patterns.

Higher-order operations such as variants of map, reduce, and join, operating on collections of

data partitions, distributed across a set of hosts, are required when implementing abstractions

like Spark’s distributed collections [Zaharia et al., 2012]. Section 6.3.1 demonstrates the

implementation of some such operations in terms of silos.

In addition, even more patterns are possible thanks to the decentralized nature of our pro-

gramming model, which removes the limitations of master/worker host configurations. Sec-

tion 6.3.2 shows examples of peer-to-peer patterns that are still fault-tolerant.

6.3.1 Higher-Order Operations

join Suppose we are given two silos with the following types:

val silo1: SiloRef[List[A]]

val silo2: SiloRef[List[B]]

as well as two hash functions computing hashes (of type K) for elements of type A and type B,

respectively:

val hashA: A => K = ...

val hashB: B => K = ...

The goal is to compute the hash-join of silo1 and silo2 using a higher-order operation

hashJoin:

def hashJoin[A, B, K](s1: SiloRef[List[A]],

s2: SiloRef[List[B]],

f: A => K,

g: B => K)

: SiloRef[List[(K, (A, B))]] = ???

To implement hashJoin in terms of silos, the types of the two silos first have to be made equal,

through initial map invocations:

148

6.3. Higher-Order Operations

val combined = s12.flatMap(spore {
val localS22 = s22
(triples1: List[(K, Option[A], Option[B])]) =>

s22.map(spore {
val localTriples1 = triples1
(triples2: List[(K, Option[A], Option[B])]) =>
localTriples1 ++ triples2

})
})

val s12: SiloRef[List[(K, Option[A], Option[B])]] =

s1.map(spore { l1 => l1.map(x => (f(x), Some(x), None)) })

val s22: SiloRef[List[(K, Option[A], Option[B])]] =

s2.map(spore { l2 => l2.map(x => (g(x), None, Some(x))) })

Then, we can use flatMap to create a new silo which contains the elements of both silo s12

and silo s22:

The combined silo contains triples of type (K, Option[A], Option[B]). Using an addi-

tional map, the collection can be sorted by key, and adjacent triples be combined, yielding a

SiloRef[List[(K, (A, B))]] as required.

Partitioning and groupByKey A groupByKey operation on a group of silos containing col-

lections needs to create multiple result silos, on each node, with ranges of keys supposed to

be shipped to destination hosts. These destination hosts are determined using a partitioning

function. Our goal, concretely:

val groupedSilos = groupByKey(silos)

Furthermore, we assume that silos.size = N where N is the number of hosts, with hosts h1,

h2, etc. We assume each silo contains an unordered collection of key-value pairs (a multi-map).

Then, groupByKey can be implemented as follows:

• Each host hi applies a partitioning function (example: hash(key) mod N) to the key-

value pairs in its silo, yielding N (local) silos.

• Using flatMap, each pair of silos containing keys of the same range can be combined

and materialized on the right destination host.

Using just the primitives introduced earlier, applying the partitioning function in this way

would require N map invocations per silo. Thus, the performance of groupByKey could be

149

Chapter 6. Function-Passing

object Utils {
def aggregate(vs: SiloRef[List[Vehicle]],

ps: SiloRef[List[Person]]): SiloRef[String] = ...
def write(result: String, fileName: String): Unit = ...

}
val vehicles: SiloRef[List[Vehicle]] = ...
val persons: SiloRef[List[Person]] = ...
val info: SiloRef[Info] = ...
val fileName: String = "hdfs://..."
val done = info.flatMap(spore {
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore {
val in = localInfo
res => combine(res, in)

})
}).map(spore {

val captured = fileName
combined => Utils.write(combined, captured)

})
done.cache() // force computation

Figure 6.3 – Example of peer-to-peer style processing in F-P.

increased significantly using a specialized combinator, say, “mapPartition” that would apply a

given partitioning function to each key-value pair, simultaneously populating N silos (where

N is the number of “buckets” of the partitioning function).

6.3.2 Peer-to-Peer Patterns

To illustrate the decentralized nature of our model, consider the following example: the local

host aggregates some data as soon as two silos vehicles and persons have been materialized.

The aggregation result is then combined with a silo info on local host. The final result is

written to a distributed file system, shown in Figure 6.3.

This program does not tolerate failures of the local host: if it fails before the computation

is complete, the result is never written to the file. Using fault handlers, though, it is easy to

introduce a backup host that takes over in case the local host fails at any point, as shown in

Figure 6.4

First, the local variables doCombine and doWrite refer to the verbatim spores passed to

flatMap and map above. Second, backup is a dummy silo on a backup host hostb. It is

used to send a spore to the backup host in a way that allows it to detect whether the original

150

6.4. Formalization

val doCombine = spore {
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore {
val in = localInfo
res => combine(res, in)

})
}
val doWrite = spore {
val captured = fileName
combined => Utils.write(combined, captured)

}
val done = info.flatMap(doCombine).map(doWrite)
val backup = SiloRef.fromFun(hostb)(spore { () => true })
val recovered = backup.flatMap(
spore {

val localDone = done
x => localDone

},
spore { // fault handler
val localInfo = info
val localDoCombine = doCombine
val localDoWrite = doWrite
val localHostb = hostb
x =>
val restoredInfo = SiloRef.fromLineage(localHostb)(localInfo)
restoredInfo.flatMap(localDoCombine).map(localDoWrite)

}
)
done.cache() // force computation on local host
recovered.cache() // force computation on backup host

Figure 6.4 – Using fault handlers to introduce a backup host in F-P.

host has failed. The fault handling is done by calling flatMap on backup, passing (a) a spore

for the non-failure case (b) a spore for the failure case. The spore for the non-failure case

simply returns the done SiloRef. The spore for the failure case is applied whenever the value of

the done SiloRef could not be obtained. In this case, the lineage of the captured info SiloRef is

used to restore its original contents in a new silo created on the backup host hostb. Its SiloRef

is then used to retry the original computation. In case the original host failed only after the

materialization of vehicles and persons completed, their cached data is reused.

151

Chapter 6. Function-Passing

t ::= x variable
| (x : T) ⇒ t abstraction
| t t application
| let x = t in t let binding

| {l = t } record construction
| t .l selection
| spore { x : T = t ; (x : T) ⇒ t } spore
| map(r, t [, t]) map
| flatMap(r, t [, t]) flatMap
| send(r) send
| await(ι) await future
| r SiloRef
| ι future

v ::= (x : T) ⇒ t abstraction

| {l = v} record value
| p spore value
| r SiloRef
| ι future

p ::= spore { x : T = v ; (x : T) ⇒ t } spore value

T ::= T ⇒ T function type

| {l : T } record type
| S

S ::= T ⇒ T { type C = T } spore type
| T ⇒ T { type C } abstract spore type

Figure 6.5 – Core language syntax.

6.4 Formalization

We formalize our programming model in the context of a standard, typed lambda calculus

with records. Figure 6.5 shows the syntax of our core language. Terms are standard except for

the spore, map, flatMap, send, and await terms. A spore term creates a new spore. It contains

a list of variable definitions (the spore header) and the spore’s closure. A term await(ι) blocks

execution until the future ι has been completed asynchronously. The map, flatMap, and send

primitives have been discussed earlier.

6.4.1 Operational semantics

In the following we give a small-step operational semantics of the primitives of our language.

The semantics is clearly stratified into a deterministic layer and a non-deterministic (con-

current) layer. Importantly, this means our programming model can benefit from existing

152

6.4. Formalization

h ∈ Host s
i ∈N

ι ::= (h, i) location

r ::= Mat(ι) materialized
| Mapped(ι,h,r, p,opt f) lineage with map
| FMapped(ι,h,r, p,opt f) lineage with flatMap

E ::= ε message queue
| Res(ι, v)::E response
| Req(h,r, ι)::E request
| ReqF(h,r, ι)::E request (fault)

Figure 6.6 – Elements of the operational model.

R-MAP

host (r) = h′ i fresh r ′ = Mapped((h, i),h′,r, p,None)

(R[map(r, p)],E ,S)h −→ (R[r ′],E ,S)h

R-FMAP

host (r) = h′ i fresh r ′ = FMapped((h, i),h′,r, p,None)

(R[flatMap(r, p)],E ,S)h −→ (R[r ′],E ,S)h

R-AWAIT

S(ι) = Some(v)

(R[await(ι)],E ,S)h −→ (R[v],E ,S)h

R-RES

E = Res(ι, v)::E ′ S′ = S + (ι 7→ v)

(R[await(ι f)],E ,S)h −→ (R[await(ι f)],E ′,S′)h

R-REQLOCAL

E = Req(h′,r, ι′′)::E ′ r = Mapped(ι,h,r ′, p,None) r ′ 6= Mat(ιs) S(ι) = None
loc(r ′) = ι′ S(ι′) = None E ′′ = Req(h,r ′, ι′)::E

(R[await(ι f)],E ,S)h → (R[await(ι f)],E ′′,S)h

Figure 6.7 – Deterministic reduction.

reasoning techniques for sequential programs. Program transformations that are correct

for sequential programs are also correct for distributed programs. Our programming model

shares this property with some existing approaches such as [Peyton Jones et al., 1996].

Notation and conventions. We write S′ = S + (ι 7→ v) to express the fact that S′ maps ι to v

and otherwise agrees with S. We write S(ι) = Some(v) to express the fact that S maps ι to v .

We write S(ι) = None if S does not have a mapping for ι. Reduction is defined using reduction

contexts [Pierce, 2002]. We omit the definition of reduction contexts, since they are completely

standard.

153

Chapter 6. Function-Passing

Configurations. The reduction rules of the deterministic layer define transitions of host

configurations (t ,E ,S)h of host h where t is a term, E is a message queue, and S is a silo

store. The reduction rules of the non-deterministic layer define transitions of sets H of host

configurations. The reduced host configurations are chosen non-deterministically in order to

express concurrency between hosts.

Fault handling. In the interest of clarity we present the reduction rules in two steps. In

the first step we explain simplified rules without fault handling semantics (Sections 6.4.1

and 6.4.1). In the second step we explain how these simplified rules have to be refined in order

to support the fault handling principles of our model (Section 6.4.2).

Decentralized identification

A important property of our programming model is the fact that silos are uniquely identi-

fied using decentralized identifiers. A decentralized identifier ι has two components: (a) the

identifier of the host h that created ι, and (b) a name i created fresh on h (e.g., an integer

value): ι= (h, i). Decentralized identifiers are important, since they reconcile two conflicting

properties central to our model. The first property is building computation DAGs locally,

without remote communication. This is possible using decentralized identifiers, since each

host can generate new identifiers independently of other remote hosts. The second prop-

erty is allowing SiloRefs to be freely copied between remote hosts. This is possible, since

decentralized identifiers uniquely identify silos without the need for subsequent updates of

their information; decentralized identifiers are immutable. This latter property is essential

to enable computation DAGs that are immutable upon construction. In our programming

model, computation DAGs are created using the standard monadic operations of SiloRefs. In

particular, the flatMap operation (monadic bind) in general requires that its argument spore

captures SiloRefs that are subsequently copied to a remote host. Hence it is essential that

SiloRefs and the decentralized identifiers they contain be freely copyable between remote

hosts.

Deterministic layer

We first consider the reduction rules of the deterministic layer shown in Figure 6.7. The

reduction rules for map (R-MAP) and flatMap (R-FMAP) do not involve communication with

other hosts. In each case, a new SiloRef r ′ is created that is derived from SiloRef r . The

execution of the actual operation (map or flatMap, respectively) is deferred, and an object

representing this derivation is returned. In both cases, the new SiloRef r ′ refers to a silo created

on host h′ by applying the spore value p to the value of silo r . The first component of the

Mapped and FMapped objects, (h, i), is a fresh location created by host h to uniquely identify

the result silo.

154

6.4. Formalization

Most reduction rules are enabled when the current redex is an await term. The reduction of a

term await(ι) only continues when store S maps location ι to value v . In all other cases, the

current host removes the next message from its message queue E . As shown in Figure 6.6 there

are two types of messages: requests (Req) and responses (Res). A response Res(ι, v) tells its

receiver that the silo at location ι has value v . A request Req(h,r, ι) is sent on behalf of host h

to request the value of silo r at location ι. The reception of a response Res(ι, v) is handled by

adding a mapping (ι 7→ v) to the store (rule R-RES). The reception of a request Req(h′,r, ι′′) is

handled locally if materialization of the requested silo r is deferred and the parent silo r ′ in r ’s

lineage has not been materialized either. In this case, the host sends a request to materialize

r ′ to itself.

R-SEND

host (r) = h′ h′ 6= h i fresh ι= (h, i) m = Req(h,r, ι)

{(R[send(r)],E ,S)h , (t ,E ′,S′)h′
}∪H → {(R[ι],E ,S)h , (t ,E ′ ·m,S′)h′

}∪H

R-REQ1
E = Req(h′,r, ι′)::E ′ r = Mat(ι) S(ι) = Some(v) m = Res(ι′, v)

{(R[await(ι f)],E ,S)h , (t ,E ′′,S′)h′
}∪H → {(R[await(ι f)],E ′,S)h , (t ,E ′′ ·m,S′)h′

}∪H

R-REQ2
E = Req(h′,r, ι′)::E ′ r = Mapped(ι,h,r ′, p,None) r ′ = Mat(ιs) S(ι) = None

S(ιs) = Some(v) p(v) = v ′ S′ = S + (ι 7→ v ′) m = Res(ι′, v ′)

{(R[await(ι f)],E ,S)h , (t ,E ′′,S′′)h′
}∪H → {(R[await(ι f)],E ′,S′)h , (t ,E ′′ ·m,S′′)h′

}∪H

R-REQ3
E = Req(h′′,r, ι′′)::E ′′ r = FMapped(ι,h,Mat(ιs), p,None) S(ι) = None S(ιs) = Some(v)

p(v) = r ′ loc(r ′) = ι′ S(ι′) = None host (r ′) = h′ m = Req(h,r ′, ι′) E ′′′ = Req(h′′,r ′, ι′′)::E ′′

{(R[await(ι f)],E ,S)h , (t ,E ′,S′)h′
}∪H → {(R[await(ι f)],E ′′′,S)h , (t ,E ′ ·m,S′)h′

}∪H

R-REQ4
E = Req(h′′,r, ι′′)::E ′′ r = FMapped(ι,h,Mat(ιs), p,None) S(ι) = None S(ιs) = Some(v)

p(v) = r ′ l oc(r ′) = ι′ S(ι′) = Some(v ′) S′′ = S + (ι 7→ v ′) m = Res(ι′′, v ′)

{(R[await(ι f)],E ,S)h , (t ,E ′,S′)h′′
}∪H → {(R[await(ι f)],E ′′,S′′)h , (t ,E ′ ·m,S′)h′′

}∪H

Figure 6.8 – Nondeterministic reduction.

Nondeterministic layer

All reduction rules in the nondeterministic layer, shown in Figure 6.8, involve communication

between two hosts.

Reducing a term send(r) appends a request Req(h,r, ι) to the message queue of host h′ of the

requested silo r . In this case, host h creates a unique location ι = (h, i) to identify the silo

subsequently. Rules R-REQ1, R-REQ2, and R-REQ3 define the handling of request messages

155

Chapter 6. Function-Passing

that cannot be handled locally. If the request can be serviced immediately (R-REQ1), a

response with the value v of the requested silo r is appended to the message queue of the

requesting host h′. Rules R-REQ2 and R-REG3 handle cases where the requested silo is not

already available in materialized form.

6.4.2 Fault handling

The key principles of the fault handling mechanism are:

• Whenever a message is sent to a non-local host h, it is checked whether h is alive; if it is

not, any silos located on h are declared to have failed.

• Whenever the value of a silo r cannot be obtained due to another failed silo, r is declared

to have failed.

• Whenever the failure of a silo r is detected, the nearest predecessor r ′ in r ’s lineage that

is not located on the same host is determined. If r ′ has a fault handler f registered, the

execution of f is requested. Otherwise, r ′ is declared to have failed.

These principles are embodied in the reduction as follows. First, we use the predicate failed(h)

as a way to check whether it is possible to communicate with host h (e.g., an implementation

could check whether it is possible to establish a socket connection). Second, failures of hosts

are handled whenever communication is attempted: whenever a host h intends to send

a message to a host h′ where h′ 6= h, it is checked whether failed(h′). If it is the case that

failed(h′), either the corresponding location (silo or future) is declared as failed (and fault

handling deferred), or a suitable fault handler is located and a recovery step is attempted. In

the following we explain the extended reduction rules shown in Figure 6.9.

In rule RF-SEND, the host of the requested silo r is detected to have failed. However, the

parent silos of r are all located on the same (failed) host. Thus, in this case silo r is simply

declared as failed, and fault handling is delegated to other parts of the computation DAG that

require the value of r (if any). Since send is essentially a “sink” of a DAG, no suitable fault

handler can be located at this point.

This is different in rule RF-REQ4. Here, host h processes a message requesting silo r which is

the result of a flatMap call. Materializing r requires obtaining the value of silo r ′, the result of

applying spore p to the value v of the materialized parent r ′′. Importantly, if the host of r ′ is

failed, it means the computation of the DAG defined by spore p did not result in a silo on an

available host. Consequently, if the flatMap call deriving r specified a fault handler p f , p f is

applied to v in order to recover from the failure. If the host of the resulting silo r f is not failed,

the original request for r is “modified” to request r f instead. This is done by removing message

Req(h′′,r, ι′′) from the message queue and prepending message Req(h′′,r f , ι′′). Moreover, host

h sends a message to itself, requesting the value of silo r f .

156

6.5. Implementation

RF-SEND

host (r) = h′ h′ 6= h failed(h′) i fresh ι= (h, i) S′′ = S + (ι 7→⊥)

{(R[send(r)],E ,S)h}∪H → {(R[ι],E ,S′′)h}∪H

RF-REQ4
E = Req(h′′,r, ι′′)::E ′′ r = FMapped(ι,h,r ′′, p,Some(p f)) S(ι) = None

l oc(r ′′) = ιs S(ιs) = Some(v) p(v) = r ′ failed(host (r ′)) p f (v) = r f host (r f) = h f ¬failed(h f)
l oc(r f) = ι f S(ι f) = None m = Req(h,r f , ι f) E ′′′ = Req(h′′,r f , ι′′)::E ′′

{(R[await(ι f)],E ,S)h , (t ,E ′,S′)h f }∪H → {(R[await(ι f)],E ′′′,S)h , (t ,E ′ ·m,S′)h f }∪H

RF-REQ5
E = Req(h′′,r, ι′′)::E ′ r = FMapped(ι,h,r ′′, p,None) S(ι) = None loc(r ′′) = ιs S(ιs) = Some(v)

p(v) = r ′ failed(host (r ′)) ip , ia fresh ιp = (h, ip), ιa = (h, ia) mp = ReqF(h,r ′′, ιp)
ra = FMapped(ιa ,h,Mat(ιp), p,None) E ′′ = mp::Req(h′′,ra , ι′′)::E ′

(R[await(ι f)],E ,S)h −→ (R[await(ι f)],E ′′,S)h

RF-REQF
E = ReqF(h,r, ι′)::E ′ r = Mapped(ι,h,r ′′, p,Some(p f))

loc(r ′′) = ιs S(ιs) = Some(v) E ′′ = Res(ι′, p f (v))::E ′

(R[await(ι f)],E ,S)h −→ (R[await(ι f)],E ′′,S)h

Figure 6.9 – Fault handling.

Rule RF-REQ5 shows fault recovery in the case where the lineage of a requested silo does

not specify a fault handler itself. In this case, host h creates two fresh locations ιp , ιa . ιp is

supposed to be eventually mapped to the result value of executing the fault handler of parent

silo r ′′. Host h requests this value from itself using a special message ReqF(h,r ′′, ιp). Finally,

the original request for silo r in message queue E is replaced with a request for silo ra . The silo

ra is created analogous to r , but using silo Mat(ιp) as parent (eventually, location ιp is mapped

to the result of applying the parent’s fault handler). As demonstrated by rule RF-REQF, ReqF

messages used to request the application of the fault handler are handled in a way that is

completely analogous to the way regular Req messages are handled, except that fault handlers

p f are applied as opposed to regular spores p.

6.5 Implementation

The presented programming model has been fully implemented in Scala, a functional pro-

gramming language that runs on both JVMs and JavaScript runtimes. F-P is compiled and run

using Scala 2.11.5, and considers only the JVM backend for now. Our implementation, which

has been published as an open-source project,4 builds on two main Scala extensions:

4https://github.com/heathermiller/f-p

157

https://github.com/heathermiller/f-p

Chapter 6. Function-Passing

• First, scala/pickling,5 a type-safe and performant serialization library with an accompa-

nying, optional macro extension that is focused on distributed programming. It is used

for all serialization tasks. Our F-P implementation benefits from the maturity of Pickling,

which supports pickling/unpickling a wide range of Scala type constructors. Pickling

has evolved from a research prototype to a production-ready serialization framework

that is now in widespread commercial use.

• Second, the programming model makes extensive use of spores, closure-like objects

with explicit, typed environments. While previous work has reported on an empirical

evaluation of spores, our presented programming model and implementation turned

out to be an extensive validation of spores in the context of distributed programming.

In addition, our implementation required a thorough refinement of the way spores are

pickled.

So far, we have used our implementation to build a small Spark-like distributed collections

abstraction, and example data analytics applications, such as word count and group-by-join

pipelines. Our prototype has also served as an experimentation platform for type-based

optimizations, which we present in more detail below.

6.5.1 Serialization in the presence of existential quantification

Initially, to serialize most message types exchanged by the network communication layer,

runtime-based unpicklers had to be used (meaning unpickling code discovering the structure

of a type through introspection at runtime). A major disadvantage of runtime-based unpickling

is its significant impact on performance. The reason for its initial necessity was that message

types are typically generic, but the generic type arguments are existentially-quantified type

variables on the receiver’s side. For example, the lineage of a SiloRef may contain instances of

a type Mapped. This generic type has four type parameters. The receiver of a freshly unpickled

Mapped instance typically uses a pattern match:

case mapped: Mapped[u, t, v, s] =>

The type arguments u, t, v, and s are type variables. While unknown, the static type of mapped

is still useful for type-safety:

val newSilo = new LocalSilo[v, s](mapped.fun(value))

However, it is impossible to generate type-specific code to unpickle a type like Mapped[u, t, v, s].

As a solution to this problem we propose what we call “self-describing” pickles. Basically, the

5https://github.com/scala/pickling

158

https://github.com/scala/pickling

6.5. Implementation

idea is to augment the serialized representation with additional information about how to

unpickle. The key is to capture the type-specific pickler and unpickler when the fully-concrete

type of a Mapped instance is known:

def doPickle[T](msg: T)

(implicit pickler: Pickler[T],

unpickler: Unpickler[T]): Array[Byte] = ...

Essentially, this means when doPickle is called with a concrete type T, say:6

doPickle[Mapped[Int, List[Int], String, List[String]]](mapped)

not only a type-specific implicit pickler (a type class instance) is looked up, but also a type-

specific implicit unpickler. The doPickle method can then build a self-describing pickle as

follows. First, the actual message is pickled using the pickler, yielding a byte array. Then, an

instance of the following simple record-like class is created:

case class SelfDescribing(blob: Array[Byte],

unpicklerClassName: String)

Besides the just produced byte array, it contains the class name of the type- specific unpickler.

This enables, using this fully type-specific unpickler, even when the message type to be

unpickled is only partially known. All that is required is an unpickler for type SelfDescribing.

First, it reads the byte array and class name from the pickle. Second, it instantiates the type-

specific unpickler reflectively using the class name. (Note that this is possible on both the

JVM as well as on JavaScript runtimes using Scala’s current JavaScript backend.) Finally, the

unpickler is used to unpickle the byte array. In conclusion, this approach ensures (a) that

a type that is pickleable using a type-specific pickler is guaranteed to be unpickleable by

the receiver of the pickled SelfDescribing instance, and (b) that unpickling is as efficient as

pickling, thanks to using type-specific unpicklers.

6.5.2 Type-based optimization of serialization

We have used our implementation to measure the impact of type-specific, compile-time-

generated serializers (see above) on end-to-end application performance. In our benchmark

application, a group of 4 silos is distributed across 4 different nodes/JVMs. Each silo is

populated with a collection of “person” records. The application first transforms each silo

using map, and then using groupBy and join. For the benchmark we measure the running

time for a varying number of records.

6Note that the type arguments are inferred by the Scala compiler; they are only shown for clarity.

159

Chapter 6. Function-Passing

20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
0

10

20

30

40

50

Number of Elements

Ti
m

e
[s

]
Impact of Static Types on Performance, EndïtoïEnd Application (groupBy + join)

Static Serialization Enabled
Runtime Serialization

Figure 6.10 – Impact of Static Types on Performance, End-to-End Application (groupBy +
join).

We ran our experiments on a 2.3 GHz Intel Core i7 with 16 GB RAM under Mac OS X 10.9.5

using Java HotSpot Server 1.8.0-b132. For each input size we report the median of 7 runs.

Figure 6.10 shows the results. Interestingly, for an input size of 100,000 records, the use of

type-specific serializers resulted in an overall speedup of about 48% with respect to the same

system using runtime-based serializers.

6.6 Related Work

Alice ML [Rossberg et al., 2004] is an extension of Standard ML which adds a number of

important features for distributed programming such as futures and proxies. The design

leading up to F-P has incorporated many similar ideas, such as type-safe, generic and platform-

independent pickling. In Alice, functions intend to be mobile. Only those functions which

capture (either directly or indirectly) local resources remain stationary. In the case of functions

that must remain stationary, it is possible to send proxies, mobile wrappers for functions.

Sending a proxy will not transfer the wrapped function; instead, when a proxy function is

applied, the call is forwarded by the system to the original site as a remote invocation (pickling

arguments and result appropriately). In F-P, however, functions are not wrapped in proxies

but sent directly. Thus, calling a received function will not lead to remote invocations.

Cloud Haskell [Epstein et al., 2011] leverages guaranteed-serializable, static closures for a

message-passing communication model inspired by Erlang. In contrast, in our model spores

160

6.6. Related Work

are sent between passive, persistent silos. Moreover, the coordination of concurrent activity

is based on futures, instead of message passing. Closures and continuations in Termite

Scheme [Germain, 2006] are always serializable; references to non- serializable objects (like

open files) are automatically wrapped in processes that are serialized as their process ID.

Similar to Cloud Haskell, Termite is inspired by Erlang. In contrast to Termite, F-P is statically

typed, enabling advanced type-based optimizations. In non-process-oriented models, parallel

closures [Matsakis, 2012] and RiverTrail [Herhut et al., 2013] address important safety issues

of closures in a concurrent setting. However, RiverTrail currently does not support capturing

variables in closures, which is critical for the flatMap combinator in F-P. In contrast to parallel

closures, spores do not require a type system extension in Scala.

Acute ML [Sewell et al., 2005] is a dialect of ML which proposes numerous primitives for

distributed programming, such as type-safe serialization, dynamic linking and rebinding, and

versioning. F-P, in contrast, is based on spores, which ship with their serialized environment or

they fail to compile, obviating the need for dynamic rebinding. HashCaml [Billings et al., 2006]

is a practical evolution of Acute ML’s ideas in the form of an extension to the OCaml bytecode

compiler, which focuses on type-safe serialization and providing globally meaningful type

names. In contrast, F-P merely a programming model, which does not require extensions to

the Scala compiler.

ML5 [Murphy VII et al., 2007] provides mobile closures verified not to use resources not

present on machines where they are applied. This property is enforced transitively (for all

values reachable from captured values), which is stronger than what plain spores provide.

However, type constraints allow spores to require properties not limited to mobility. Transitive

properties are supported either using type constraints based on type classes which enforce

a transitive property or by integrating with type systems that enforce transitive properties.

Unlike ML5, spores do not require a type system extension. Further, the F-P model sits on top

of these primitives to provide a full programming model for distribution, which also integrates

spores and type-safe pickling.

Systems like Spark [Zaharia et al., 2012], MapReduce [Dean and Ghemawat, 2008], and

Dryad [Isard et al., 2007] are distributed systems. Rather than being a system itself, F-P

is meant to act as more of a substrate upon which to build systems like Spark, MapReduce, or

Dryad. F-P aims to facilitate the design and implementation of such systems, and as a result

provides much finer-grained control over details such as fault handling and network topology

(i.e., peer-to-peer vs master/worker).

The Clojure programming language proposes agents [Hickey, 2008]–stationary mutable data

containers that users apply functions to in order to update an agent’s state. F-P, in contrast,

proposes that data in stationary containers be immutable, and that transformations by func-

tion application form a persistent data structure. Further, Clojure’s agents are designed to

manage state in a shared memory scenario, whereas F-P is designed with remote references

for a distributed scenario.

161

Chapter 6. Function-Passing

The F-P model is also related to the actor model of concurrency [Agha, 1985], which features

multiple implementations in Scala [Haller and Odersky, 2009, He et al., 2014, Typesafe, 2009].

Actors can serve as in-memory data containers in a distributed system, like our silos. Unlike

silos, actors encapsulate behavior in addition to immutable or mutable values. While only

some actor implementations support mobile actors (none in Scala), mobile behavior in the

form of serializable closures is central to the F-P model.

6.7 Conclusion

We have presented F-P, a new programming model and principled substrate for building

data-centric distributed systems. Built atop a foundation consisting of performant and type-

safe serialization, and safe, serializable closures, we believe that it’s possible to build elegant

fault-tolerant functional systems. One insight of our model is that lineage-based fault recovery

mechanisms, used in widespread frameworks for distribution, can be modeled elegantly in a

functional way using persistent data structures. Our operational semantics shows that this

approach makes it even amenable to formal treatment. We have also shown that F-P is able to

express rich patterns of computation while maintaining fault-tolerance–such computation

patterns include decentralized peer-to-peer patterns of communication. Finally, we have

implemented our approach in and for Scala, and have discovered new ways to reconcile

type-specific serializers with patterns of static typing common in distributed systems.

162

Conclusion
This thesis presented a number of extensions and libraries in and for Scala aimed at providing

a more reliable foundation upon which to build distributed systems. Throughout, we have

been concerned with two essential aspects of distribution: communication and concurrency.

First, we presented a new approach to communicate both objects and functions between

distributed nodes safely and efficiently.

We began with objects; we saw scala/pickling, an approach for functionally composing serial-

ization logic. Generation and composition of functionally-inspired object oriented picklers

could be effectively generated and composed at compile time. This had the benefit of shifting

the burden of serialization to compile time, allowing users to statically catch serialization

errors while gaining performance through the static generation of performant serialization

code. Scala/pickling has since become a popular open source library, and the go-to library for

serialization in Scala; it has more than 630 stars and about 70 watchers on GitHub7, and has

been taken up by flagship Scala projects such as sbt, Scala’s universal build tool.

We then moved on to functions; functions were made able to be communicated over the net-

work through the introduction of spores, an abstraction that when combined with scala/pickling

can provide extra static checking in order to ensure that closure is able to be reliably serialized.

We also saw ways in which the accompanying spore type system was able to control specific

hazards from being captured.

Second, we saw a novel lock-free concurrency abstraction suitable for building large-scale

distributed systems. We covered FlowPools, an abstraction and backing data structure for

non-blocking, fully asynchronous programming. We saw that FlowPools were provably deter-

ministic, lock-free, and linearizable, in addition to having concrete performance benefits over

comparable concurrent collections in Java’s standard library.

Finally, we brought together our two approaches to communicate both objects and functions

between distributed nodes safely and efficiently, pickling and spores, in the context of a new

distributed programming model. Designed from the ground up using our new primitives

for distribution, the model generalizes existing widely-used programming systems for data-

intensive computing.

7Project repositories may be starred or watched. Starred indicates interest (akin to “liking” on a social network
like Facebook) and users who “watch” subscribe to notifications of all project updates

163

A FlowPools, Proofs

A.1 Introduction

Implementing correct and deterministic parallel programs is challenging. Even though concur-

rency constructs exist in popular programming languages to facilitate the task of deterministic

parallel programming, they are often too low level, or do not compose well due to underlying

blocking mechanisms. In this appendix, we present the detailed proofs of the lock-freedom,

and determinism properties of FlowPools, a deterministic concurrent dataflow abstraction

presented in [Prokopec et al., 2012a]. The detailed proofs for linearizability and determinism

can be found in the companion tech report [Prokopec et al., 2012b].

We first provide a summary of the lemmas and theorems introduced in the associated paper,

FlowPools: A Lock-Free Deterministic Concurrent Dataflow Abstraction [Prokopec et al., 2012a].

We then cover definitions and invariants before moving on to our proof of lock-freedom.

We define the notion of an abstract poolA= (el ems,cal l backs, seal) of elements in the pool,

callbacks and the seal size. Given an abstract pool, abstract pool operations produce a new

abstract pool. The key to showing correctness is to show that an abstract pool operation

corresponds to a FlowPool operation– that is, it produces a new abstract pool corresponding

to the state of the FlowPool after the FlowPool operation has been completed.

Lemma A.1.1 Given a FlowPool consistent with some abstract pool, CAS instructions in lines

156, 198 and 201 do not change the corresponding abstract pool.

Lemma A.1.2 Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a suc-

cessful CAS in line 157 changes it to the state consistent with an abstract pool ({el em}∪
el ems,cbs, seal). There exists a time t1 ≥ t0 at which every callback f ∈ cbs has been called

on el em.

Lemma A.1.3 Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a success-

ful CAS in line 259 changes it to the state consistent with an abstract pool (el ems, (f ,;)∪

165

Appendix A. FlowPools, Proofs

def create()136
new FlowPool {137

start = createBlock(0)138
current = start139

}140
141

def createBlock(bidx: Int)142
new Block {143

array = new Array(BLOCKSIZE)144
index = 0145
blockindex = bidx146
next = null147

}148
149

def append(elem: Elem)150
b = READ(current)151
idx = READ(b.index)152
nexto = READ(b.array(idx + 1))153
curo = READ(b.array(idx))154
if check(b, idx, curo) {155

if CAS(b.array(idx + 1), nexto, curo) {156
if CAS(b.array(idx), curo, elem) {157
WRITE(b.index, idx + 1)158
invokeCallbacks(elem, curo)159

} else append(elem)160
} else append(elem)161

} else {162
advance()163
append(elem)164

}165
166

def check(b: Block, idx: Int, curo: Object)167
if idx > LASTELEMPOS return false168
else curo match {169

elem: Elem =>170
return false171

term: Terminal =>172
if term.sealed = NOSEAL return true173
else {174

if totalElems(b, idx) < term.sealed175
return true176

else error("sealed")177
}178

null =>179
error("unreachable")180

}181
182

def advance()183
b = READ(current)184
idx = READ(b.index)185
if idx > LASTELEMPOS186

expand(b, b.array(idx))187
else {188

obj = READ(b.array(idx))189
if obj is Elem WRITE(b.index, idx + 1)190

}191
192

def expand(b: Block, t: Terminal)193
nb = READ(b.next)194
if nb is null {195

nb = createBlock(b.blockindex + 1)196
nb.array(0) = t197
if CAS(b.next, null, nb)198

expand(b, t)199
} else {200

CAS(current, b, nb)201
}202

def totalElems(b: Block, idx: Int)203
return b.blockindex * (BLOCKSIZE - 1) + idx204

205
def invokeCallbacks(e: Elem, term: Terminal)206

for (f <- term.callbacks) future {207
f(e)208

}209
210

def seal(size: Int)211
b = READ(current)212
idx = READ(b.index)213
if idx <= LASTELEMPOS {214

curo = READ(b.array(idx))215
curo match {216

term: Terminal =>217
if ¬tryWriteSeal(term, b, idx, size)218

seal(size)219
elem: Elem =>220

WRITE(b.index, idx + 1)221
seal(size)222

null =>223
error("unreachable")224

}225
} else {226

expand(b, b.array(idx))227
seal(size)228

}229
230

def tryWriteSeal(term: Terminal, b: Block,231
idx: Int, size: Int)232
val total = totalElems(b, idx)233
if total > size error("too many elements")234
if term.sealed = NOSEAL {235

nterm = new Terminal {236
sealed = size237
callbacks = term.callbacks238

}239
return CAS(b.array(idx), term, nterm)240

} else if term.sealed 6= size {241
error("already sealed with different size")242

} else return true243
244

def foreach(f: Elem => Unit)245
future {246

asyncFor(f, start, 0)247
}248

249
def asyncFor(f: Elem => Unit, b: Block, idx: Int)250

if idx <= LASTELEMPOS {251
obj = READ(b.array(idx))252
obj match {253

term: Terminal =>254
nterm = new Terminal {255

sealed = term.sealed256
callbacks = f ∪ term.callbacks257

}258
if ¬CAS(b.array(idx), term, nterm)259

asyncFor(f, b, idx)260
elem: Elem =>261

f(elem)262
asyncFor(f, b, idx + 1)263

null =>264
error("unreachable")265

}266
} else {267

expand(b, b.array(idx))268
asyncFor(f, b.next, 0)269

}270

Figure A.1 – FlowPool operations pseudocode

166

A.2. Proof of Correctness

t ::= terms
create p pool creation
p << v append
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(v s,σ,cbs) | v s ⊆ El em,σ ∈ {−1}∪N,
cbs ⊂ El em ⇒Uni t }
v ∈ Elem
f ∈ El em ⇒Uni t
n ∈N

Figure A.2 – Syntax

cbs, seal) There exists a time t1 ≥ t0 at which f has been called for every element in el ems.

Lemma A.1.4 Given a FlowPool consistent with an abstract pool (el ems,cbs, seal), a suc-

cessful CAS in line 240 changes it to the state consistent with an abstract pool (el ems,cbs, s),

where either seal =−1∧ s ∈N0 or seal ∈N0 ∧ s = seal .

Theorem A.1.5 [Safety] FlowPool operations append, foreach and seal are consistent with

the abstract pool semantics.

Theorem A.1.6 [Linearizable operations] FlowPool operations append and seal are lineariz-

able.

Lemma A.1.7 After invoking a FlowPool operation append, seal or foreach, if a non-consistency

changing CAS instruction in lines 156, 198, or 201 fails, they must have already been completed

by another thread since the FlowPool operation began.

Lemma A.1.8 After invoking a FlowPool operation append, seal or foreach, if a consistency-

changing CAS instruction in lines 157, 240, or 259 fails, then some thread has successfully

completed a consistency changing CAS after some finite number of steps.

Lemma A.1.9 After invoking a FlowPool operation append, seal or foreach, a consistency

changing instruction will be completed after a finite number of steps.

Theorem A.1.10 [Lock-freedom] FlowPool operations append, foreach and seal are lock-

free.

A.2 Proof of Correctness

Definition A.2.1 [Data types] A Block b is an object which contains an array b.ar r ay , which

itself can contain elements, e ∈ Elem, where Elem represents the type of e and can be any

167

Appendix A. FlowPools, Proofs

countable set. A given block b additionally contains an index b.i ndex which represents an

index location in b.ar r ay , a unique index identifying the array b.bl ockIndex, and b.next , a

reference to a successor block c where c.bl ockIndex = b.bl ockIndex +1. A Terminal ter m

is a sentinel object, which contains an integer ter m.seal ed ∈ {−1}∪N0, and ter m.cal l backs,

a set of functions f ∈ El em ⇒Uni t .

We define the following functions:

f ol lowi ng (b : Bl ock) =
; if b.next = null,

b.next ∪ f ol l owi ng (b.next) otherwise

r eachabl e(b : Bl ock) = {b}∪ f ol l owi ng (b)

l ast (b : Bl ock) = b′ : b′ ∈ r eachabl e(b)∧b′.next = null

si ze(b : Bl ock) = |{x : x ∈ b.ar r ay ∧x ∈ El em}|

Based on them we define the following relation:

r eachabl e(b,c) ⇔ c ∈ r eachabl e(b)

Definition A.2.2 [FlowPool] A FlowPool pool is an object that has a reference pool .st ar t ,

to the first block b0 (with b0.blockIndex = 0), as well as a reference pool .cur r ent . We

sometimes refer to these just as st ar t and cur r ent , respectively.

A scheduled callback invocation is a pair (f ,e) of a function f ∈ El em => Uni t and an

element e ∈ El em. The programming construct that adds such a pair to the set of f utur es is

future { f(e) }.

The FlowPool state is defined as a pair of the directed graph of objects transitively reachable

from the reference st ar t and the set of scheduled callback invocations called f utur es.

A state changing or destructive instruction is any atomic write or CAS instruction that changes

the FlowPool state.

We say that the FlowPool has an element e at some time t0 if and only if the relation hasElem(st ar t ,e)

holds.

hasElem(st ar t ,e) ⇔∃b ∈ r eachabl e(st ar t),e ∈ b.ar r ay

We say that the FlowPool has a callback f at some time t0 if and only if the relation hasC al l back(st ar t , f)

holds.

168

A.2. Proof of Correctness

hasC al l back(st ar t , f) ⇔ ∀b = l ast (st ar t),b.ar r ay = xP · t · y N , x ∈ El em,

t = Ter mi nal (seal ,cal l backs), f ∈ cal l backs

We say that a callback f in a FlowPool will be called for the element e at some time t0 if and

only if the relation wi l l BeC al led(st ar t ,e, f) holds.

wi l l BeC al led(st ar t ,e, f) ⇔∃t1,∀t > t1, (f ,e) ∈ f utur es

We say that the FlowPool is sealed at the size s at some t0 if and only if the relation seal ed At (st ar t , s)

holds.

seal ed At (st ar t , s) ⇔ s 6= −1∧∀b = l ast (st ar t),b.ar r ay = xP · t · y N ,

x ∈ Elem, t = Ter mi nal (s,cal l backs)

FlowPool operations are append, foreach and seal, and are defined by pseudocodes in

Figure A.1.

Definition A.2.3 [Invariants] We define the following invariants for the FlowPool:

INV1 st ar t = b : Bl ock,b 6= null ,cur r ent ∈ r eachabl e(st ar t)

INV2 ∀b ∈ r eachabl e(st ar t),b 6∈ f ol lowi ng (b)

INV3 ∀b ∈ r eachabl e(st ar t),b 6= l ast (st ar t) ⇒ si ze(b) = L AST ELE MPOS∧b.ar r ay(BLOC K SI Z E−
1) ∈ Ter mi nal

INV4 ∀b = l ast (st ar t),b.ar r ay = p · c ·n, where:

p = X P ,c = c1 · c2,n = null N

x ∈ Elem,c1 ∈ Ter mi nal ,c2 ∈ {null }∪Ter mi nal

P +N +2 = BLOC K SI Z E

INV5 ∀b ∈ r eachabl e(st ar t),b.i ndex > 0 ⇒ b.ar r ay(b.i ndex −1) ∈ El em

Definition A.2.4 [Validity] A FlowPool state S is valid if and only if the invariants [INV1-5]

hold for that state.

Definition A.2.5 [Abstract pool] An abstract pool P is a function from time t to a tuple

(el ems,cal l backs, seal) such that:

169

Appendix A. FlowPools, Proofs

seal ∈ {−1}∪N0

cal l backs ⊂ {(f : El em =>Uni t ,cal l ed)}

cal l ed ⊆ el ems ⊆ El em

We say that an abstract pool P is in state A= (el ems,cal l backs, seal) at time t if and only if

P(t) = (el ems,cal l backs, seal).

Definition A.2.6 [Abstract pool operations] We say that an abstract pool operation op that

is applied to some abstract pool P in abstract state A0 = (el ems0,cal l backs0, seal0) at some

time t changes the abstract state of the abstract pool to A = (el ems,cal l backs, seal) if

∃t0,∀τ, t0 < τ< t ,P(τ) =A0 and P(t) =A. We denote this asA= op(A0).

Abstract pool operation f or each(f) changes the abstract state at t0 from (el ems,cal l backs, seal)

to (el ems, (f ,;)∪ cal l backs, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (el ems2,cal l backs2, seal2)

∧∀(f ,cal l ed2) ∈ cal l backs2,el ems ⊆ cal l ed2 ⊆ el ems2

Abstract pool operation append(e) changes the abstract state at t0 from (el ems,cal l backs, seal)

to ({e}∪el ems,cal l backs, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (el ems2,cal l backs2, seal2)

∧∀(f ,cal l ed2) ∈ cal l backs2, (f ,cal l ed) ∈ cal l backs ⇒ e ∈ cal l ed2

Abstract pool operation seal (s) changes the abstract state of the FlowPool at t0 from (el ems,cal l backs, seal)

to (el ems,cal l backs, s), assuming that seal ∈ {−1}∪ {s} and s ∈N0, and |el ems| ≤ s.

Definition A.2.7 [Consistency] A FlowPool state S is consistent with an abstract pool P =
(el ems,cal l backs, seal) at t0 if and only if S is a valid state and:

∀e ∈ El em,hasElem(st ar t ,e) ⇔ e ∈ el ems

∀ f ∈ Elem =>Uni t ,hasC al l back(st ar t , f) ⇔ f ∈ cal l backs

∀ f ∈ El em => Uni t ,∀e ∈ El em, wi l l BeC al led(st ar t ,e, f) ⇔ ∃t1 ≥ t0,∀t2 > t1,P(t2) =
(el ems2, (f ,cal l ed2)∪ cal l backs2, seal2),el ems ⊆ cal l ed2

∀s ∈N0, seal ed At (st ar t , s) ⇔ s = seal

A FlowPool operation op is consistent with the corresponding abstract state operation op ′ if

and only if S′ = op(S) is consistent with an abstract stateA′ = op ′(A).

170

A.2. Proof of Correctness

A consistency change is a change from state S to state S′ such that S is consistent with an

abstract stateA and S′ is consistent with an abstract setA′, whereA 6=A′.

Proposition A.2.8 Every valid state is consistent with some abstract pool.

Definition A.2.9 [Lock-freedom] In a scenario where some finite number of threads are ex-

ecuting a concurrent operation, that concurrent operation is lock-free if and only if that

concurrent operation is completed after a finite number of steps by some thread.

Theorem A.2.10 [Lock-freedom] FlowPool operations append, seal, and foreach are lock-

free.

We begin by first proving that there are a finite number of execution steps before a consistency

change occurs.

By Lemma A.2.15, after invoking append, a consistency change occurs after a finite number of

steps. Likewise, by Lemma A.2.18, after invoking seal, a consistency change occurs after a

finite number of steps. And finally, by Lemma A.2.19, after invoking foreach, a consistency

change likewise occurs after a finite number of steps.

By Lemma A.2.20, this means a concurrent operation append, seal, or foreach will success-

fully complete. Therefore, by Definition A.2.9, these operations are lock-free.

Note. For the sake of clarity in this section of the correctness proof, we assign the following

aliases to the following CAS and WRITE instructions:

• C ASappend−out corresponds to the outer CAS in append, on line 156.

• C ASappend−i nn corresponds to the inner CAS in append, on line 157.

• C ASexpand−nxt corresponds to the CAS on next in expand, line 198.

• C ASexpand−cur r corresponds to the CAS on cur r ent in expand, line 201.

• C ASseal corresponds to the CAS on the Ter mi nal in tryWriteSeal, line 240.

• C AS f or each corresponds to the CAS on the Ter mi nal in asyncFor, line 259.

• W RI T Eapp corresponds to the WRITE on the new i ndex in append, line 158.

• W RI T Ead v corresponds to the WRITE on the new i ndex in advance, line 190.

• W RI T Eseal corresponds to the WRITE on the new i ndex in seal, line 221.

171

Appendix A. FlowPools, Proofs

Lemma A.2.11 After invoking an operation op, if non-consistency changing CAS operations

C ASappend−out , C ASexpand−nxt , or C ASexpand−cur r , in the pseudocode fail, they must have

already been successfully completed by another thread since op began.

Proof: Trivial inspection of the pseudocode reveals that since C ASappend−out makes up a

check that precedes C ASappend−i nn , and since C ASappend−i nn is the only operation besides

C ASappend−out which can change the expected value of C ASappend−out , in the case of a failure

of C ASappend−out , C ASappend−i nn (and thus C ASappend−out) must have already successfully

completed or C ASappend−out must have already successfully completed by a different thread

since op began executing.

Likewise, by trivial inspection C ASexpand−nxt is the only CAS which can update the b.next

reference, therefore in the case of a failure, some other thread must have already successfully

completed C ASexpand−nxt since the beginning of op.

Like above, C ASexpand−cur r is the only CAS which can change the cur r ent reference, there-

fore in the case of a failure, some other thread must have already successfully completed

C ASexpand−cur r since op began.

Lemma A.2.12 [Expand] Invoking the expand operation will execute a non- consistency

changing instruction after a finite number of steps. Moreover, it is guaranteed that the cur r ent

reference is updated to point to a subsequent block after a finite number of steps. Finally,

expand will return after a finite number of steps

Proof:

From inspection of the pseudocode, it is clear that the only point at which expand(b) can

be invoked is under the condition that for some block b, b.i ndex > L AST ELE MPOS, where

L AST ELE MPOS is the maximum size set aside for elements of type El em in any block. Given

this, we will proceed by showing that a new block will be created with all related references

b.next and cur r ent correctly set.

There are two conditions under which a non-consistency changing CAS instruction will be

carried out.

• Case 1: if b.next = null , a new block nb will be created and C ASexpand−nxt will be exe-

cuted. From Lemma A.2.11, we know that C ASexpand−nxt must complete successfully

on some thread. Afterwards recursively calling expand on the original block b.

• Case 2: if b.next 6= null , C ASexpand−cur r will be executed. Lemma A.2.11 guarantees

that C ASexpand−cur r will update cur r ent to refer to b.next , which we will show can

only be a new block. Likewise, Lemma A.2.11 has shown that C ASexpand−nxt is the only

state changing instruction that can initiate a state change at location b.next , therefore,

172

A.2. Proof of Correctness

since C ASexpand−nxt takes place within Case 1, Case 2 can only be reachable after Case 1

has been executed successfully. Given that Case 1 always creates a new block, therefore,

b.next in this case, must always refer to a new block.

Therefore, since from Lemma A.2.11 we know that both C ASexpand−nxt and C ASexpand−cur r

can only fail if already completed guaranteeing their finite completion, and since C ASexpand−nxt

and C ASexpand−cur r are the only state changing operations invoked through expand , the

expand operation must complete in a finite number of steps.

Finally, since we saw in Case 2 that a new block is always created and related references are

always correctly set, that is both b.next and cur r ent are correctly updated to refer to the new

block, it follows that numBl ocks strictly increases after some finite number of steps.

Lemma A.2.13 [C ASappend−i nn] After invoking append(elem), if C ASappend−i nn fails, then

some thread has successfully completed C ASappend−i nn or C ASseal (or likewise, C AS f or each)

after some finite number of steps.

Proof: First, we show that a thread attempting to complete C ASappend−i nn can’t fail due to

a different thread completing C ASappend−out so long as seal has not been invoked after

completing the read of cur r ob j . We address this exception later on.

Since after check, the only condition under which C ASappend−out , and by extension, C ASappend−i nn

can be executed is the situation where the current object cur r ob j with index location i d x

is the Ter mi nal object, it follows that C ASappend−out can only ever serve to duplicate this

Ter mi nal object at location i d x + 1, leaving at most two Ter mi nals in block refered to

by cur r ent momentarily until C ASappend−i nn can be executed. By Lemma A.2.11, since

C ASappend−out is a non-consistency changing instruction, it follows that any thread hold-

ing any element el em′ can execute this instruction without changing the expected value

of cur r ob j in C ASappend−i nn , as no new object is ever created and placed in location i d x.

Therefore, C ASappend−i nn cannot fail due to C ASappend−out , so long as seal has not been

invoked by some other thread after the read of cur r ob j .

This leaves only two scenarios in which consistency changing C ASappend−i nn can fail:

• Case 1: Another thread has already completed C ASappend−i nn with a different element

el em′.

• Case 2: Another thread completes an invocation to the seal operation after the current

thread completes the read of cur r ob j . In this case, C ASappend−i nn can fail because

C ASseal (or, likewise C AS f or each) might have completed before, in which case, it in-

serts a new Ter mi nal object ter m into location i d x (in the case of a seal invocation,

ter m.seal ed ∈N0, or in the case of a foreach invocation, ter m.cal l backs ∈ {Elem ⇒
Uni t }).

173

Appendix A. FlowPools, Proofs

We omit the proof and detailed discussion of C AS f or each because it can be proven using the

same steps as were taken for C ASseal .

Lemma A.2.14 [Finite Steps Before State Change] All operations with the exception of append,

seal, and foreach execute only a finite number of steps between each state changing instruc-

tion.

Proof: The advance, check, totalElems, invokeCallbacks, and tryWriteSeal operations

have a finite number of execution steps, as they contain no recursive calls, loops, or other

possibility to restart.

While the expand operation contains a recursive call following a CAS instruction, it was shown

in Lemma A.2.12 that an invocation of expand is guaranteed to execute a state changing

instruction after a finite number of steps.

Lemma A.2.15 [Append] After invoking append(elem), a consistency changing instruction

will be completed after a finite number of steps.

Proof: The append operation can be restarted in three cases. We show that in each case,

it’s guaranteed to either complete in a finite number of steps, or leads to a state changing

instruction:

• Case 1: The call to check, a finite operation by Lemma A.2.14, returns f al se, causing a

call to advance, also a finite operation by Lemma A.2.14, followed by a recursive call to

append with the same element el em which in turn once again calls check.

We show that after a finite number of steps, the check will evaluate to tr ue, or some

other thread will have completed a consistency changing operation since the initial

invocation of append. In the case where check evaluates to tr ue, Lemma A.2.13 applies,

as it guarantees that a consistency changing CAS is completed after a finite number of

steps.

When the call to the finite operation check returns f al se, if the subsequent advance

finds that a Ter mi nal object is at the current block index i d x, then the next invocation

of appendwill evaluate check to tr ue. Otherwise, it must be the case that another thread

has moved the Terminal to a subsequent index since the initial invocation of append,

which is only possible using a consistency changing instruction.

Finally, if advancefinds that the element at i d x is an El em, b.i ndex will be incremented

after a finite number of steps. By I NV 1, this can only happen a finite number of times

until a Ter mi nal is found. In the case that expand is meanwhile invoked through

174

A.2. Proof of Correctness

advance, by Lemma A.2.12 it’s guaranteed to complete state changing instructions

C ASexpand−nxt or C ASexpand−cur r in a finite number of steps. Otherwise, some other

thread has moved the Ter mi nal to a subsequent index. However, this latter case is only

possible by successfully completing C ASappend−i nn , a consistency changing instruction,

after the initial invocation of append.

• Case 2: C ASappend−out fails, which we know from Lemma A.2.11means that it must’ve

already been completed by another thread, guaranteeing that C ASappend−i nn will be

attempted. If C ASappend−i nn fails, after a finite number of steps, a consistency changing

instruction will be completed. If C ASappend−i nn succeeds, as a consistency changing

instruction, consistency will have clearly been changed.

• Case 3: C ASappend−i nn fails, which, by Lemma A.2.13, indicates that either some other

thread has already completed C ASappend−i nn with another element, or another consis-

tency changing instruction, C ASseal or C AS f or each has successfully completed.

Therefore, append itself as well as all other operations reachable via an invocation of append

are guaranteed to have a finite number of steps between consistency changing instructions.

Lemma A.2.16 [C ASseal] After invoking seal(size), if C ASseal fails, then some thread has

successfully completed C ASseal or C ASappend−i nn after some finite number of steps.

Proof: Since by Lemma A.2.13, we know that C ASappend−out only duplicates an existing

Ter mi nal , it can not be the cause for a failing C ASseal . This leaves only two cases in which

C ASseal can fail:

• Case 1: Another thread has already completed C ASseal .

• Case 2: Another thread completes an invocation to the append(el em) operation after

the current thread completes the read of cur r ob j . In this case, C ASseal can fail because

C ASappend−i nn might have completed before, in which case, it inserts a new El em

object el em into location i d x.

Lemma A.2.17 [W RI T Ead v and W RI T Eseal] After updating b.i ndex using W RI T Ead v or

W RI T Eseal , b.i ndex is guaranteed to be incremented after a finite number of steps.

Proof: For some index, i d x, both calls to W RI T Ead v and W RI T Eseal attempt to write i d x +1

to b.i ndex. In both cases, it’s possible that another thread could complete either W RI T Ead v

or W RI T Eseal , once again writing i d x to b.i ndex after the current thread has completed, in

effect overwriting the current thread’s write with i d x+1. By inspection of the pseudocode, both

W RI T Ead v and W RI T Eseal will be repeated if b.i ndex has not been incremented. However,

175

Appendix A. FlowPools, Proofs

since the number of threads operating on the FlowPool is finite, p, we are guaranteed that

in the worst case, this scenario can repeat at most p times, before a write correctly updates

b.i ndex with i d x +1.

Lemma A.2.18 [Finite Steps Before Consistency Change] After invoking seal(size), a con-

sistency changing instruction will be completed after a finite number of steps, or the initial

invocation of seal(size) completes.

Proof: The seal operation can be restarted in two scenarios.

• Case 1: The check i d x ≤ L AST ELE MPOS succeeds, indicating that we are at a valid

location in the current block b, but the object at the current index location i d x is of type

El em, not Ter mi nal , causing a recursive call to seal with the same size si ze.

In this case, we begin by showing that the atomic write of i d x +1 to b.i ndex, required

to iterate through the block b for the recursive call to seal, will be correctly incremented

after a finite number of steps.

Therefore, by both the guarantee that, in a finite number of steps, b.i ndex will eventually

be correctly incremented as we saw in Lemma A.2.17, as well as by I NV 1 we know that

the original invocation of sealwill correctly iterate through b until a Ter mi nal is found.

Thus, we know that the call to tryWriteSeal will be invoked, and by both Lemma A.2.14

and Lemma A.2.15, we know that either tryWriteSeal, will successfully complete in a

finite number of steps, in turn successfully completing seal(size), or C ASappend−i nn ,

another consistency changing operation will successfully complete.

• Case 2: The check i d x ≤ L AST ELE MPOS fails, indicating that we must move on to the

next block, causing first a call to expand followed by a recursive call to seal with the

same size si ze.

We proceed by showing that after a finite number of steps, we must end up in Case

1, which we have just showed itself completes in a finite number of steps, or that a

consistency change must’ve already occurred.

By Lemma A.2.12, we know that an invocation of expand returns after a finite number of

steps, and pool .cur r ent is updated to point to a subsequent block.

If we are in the recursive call to seal, and the i d x ≤ L AST ELE MPOS condition is

f al se, trivally, a consistency changing operation must have occurred, as, the only way

for the condition to evaluate to tr ue is through a consistency changing operation, in

the case that a block has been created during an invocation to append, for example.

Otherwise, if we are in the recursive call to seal, and the i d x ≤ L AST ELE MPOS condi-

tion evaluates to tr ue, we enter Case 1, which we just showed will successfully complete

in a finite number of steps.

176

A.2. Proof of Correctness

Lemma A.2.19 [Foreach] After invoking foreach(fun), a consistency changing instruction

will be completed after a finite number of steps.

We omit the proof for foreach since it proceeds in the exactly the same way as does the proof

for seal in Lemma A.2.18.

Lemma A.2.20 Assume some concurrent operation is started. If some thread completes a

consistency changing CAS instruction, then some concurrent operation is guaranteed to be

completed.

Proof:

By trival inspection of the pseudocode, if C ASappend−i nn successfully completes on some

thread, then that thread is guaranteed to complete the corresponding invocation of append in

a finite number of steps.

Likewise by trivial inspection, if C ASseal successfully completes on some thread, then by

Lemma A.2.14, tryWriteSeal is guaranteed to complete in a finite number of steps, and

therefore, that thread is guaranteed to complete the corresponding invocation of seal in a

finite number of steps.

The case for C AS f or each is omitted since it follows the same steps as for the case of C ASseal

177

B Spores, Formally

B.1 Overview

Spores are designed to avoid problems of closures. This is done using two mechanisms: the

spore shape and context bounds for the spore’s environment.

A spore is a closure with a specific shape that dictates how the environment of a spore is

declared. In general, a spore has the following shape:

spore {

val y1: S1 = <expr1>

...

val yn: Sn = <exprn>

(x: T) => {

// ...

}

}

A spore consists of two parts: the header and the body. The list of value definitions at the

beginning is called the spore header. The header is followed by a regular closure, the spore’s

body. The characteristic property of a spore is that the body of its closure is only allowed

to access its parameter, values in the spore header, as well as top-level singleton objects

(public, global state). In particular, the spore closure is not allowed to capture variables in

the environment. Only an expression on the right-hand side of a value definition in the spore

header is allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in the spore

header which avoids accidentally capturing problematic references. Moreover, and that’s

important for OO languages, it’s no longer possible to accidentally capture the “this” reference.

Note that the evaluation semantics of a spore is equivalent to a closure obtained by leaving

179

Appendix B. Spores, Formally

out the “spore” marker:

{

val y1: S1 = <expr1>

...

val yn: Sn = <exprn>

(x: T) => {

// ...

}

}

In Scala, the above block first initializes all value definitions in order and then evaluates to a

closure that captures the introduced local variables y1, ..., yn. The corresponding spore has

the exact same evaluation semantics. What’s interesting is that this closure shape is already

used in production systems such as Spark to avoid problems with accidentally captured “this”

references. However, in these systems the above shape is not enforced, whereas with spores it

is.

The result type of the “spore” constructor is not a regular function type, but a subtype of one

of Scala’s function types. This is possible, because in Scala functions are instances of classes

that mix in one of the function traits. For example, the trait for functions of arity one looks like

this:1

trait Function1[-A, +B] {

def apply(x: A): B

}

The apply method is abstract; a concrete implementation applies the body of the function

that’s being defined to the argument x. Functions are contravariant in their argument type

A, indicated using the “-” symbol, and covariant in their result type B, indicated using the “+”

symbol.

The type of a spore of arity one is a subtype of Function1:

trait Spore[-A, +B] extends Function1[A, B]

Using the Spore trait methods can require argument closures to be spores:

def sendOverWire(s: Spore[Int, Int]): Unit = ...

1For simplicity we omit definitions of the ‘andThen‘ and ‘compose‘ methods in the definition of ‘Function1‘.

180

B.1. Overview

This way, libraries and frameworks can enforce the use of spores instead of plain closures,

thereby reducing the risk for common programming errors.

B.1.1 Context bounds

The fact that for spores a certain shape is enforced is very useful. However, in some situations

this is not enough. For example, using closures in a concurrent setting is very error-prone,

because of the fact that it’s possible to capture mutable objects which leads to race conditions.

Thus, closures should only capture immutable objects to avoid interference. However, such

constraints cannot be enforced using the spore shape alone (captured objects are stored in

constant values in the spore header, but such a constant might still refer to a mutable object).

In this section we introduce a form of type-based constraints called “context bounds” that can

be attached to a spore which enforce certain type-based properties for all captured variables

of a spore.

Taking another example, it might be necessary for a spore to require the availability of instances

of a certain type class for the types of all its captured variables. A typical example for such a

type class is Pickler: types with an instance of the Pickler type class can be pickled using a new

pickling framework for Scala. To be able to pickle a spore, it’s necessary that all its captured

types have an instance of Pickler.2

Spores allow expressing such a requirement using implicit properties. The idea is that if there

is an implicit of type Property[Pickler] in scope at the point where a spore is created, then

it is enforced that all captured types in the spore header have an instance of the Pickler type

class:

import spores.withPickler

spore {

val name: String = <expr1>

val age: Int = <expr2>

(x: String) => {

// ...

}

}

While an imported property does not have an impact on how a spore is constructed (besides

the property import), it has an impact on the result type of the spore macro. In the above

example, the result type would be a refinement of the Spore type:

2A spore can be pickled by pickling its environment and the fully-qualified class name of its corresponding
function class.

181

Appendix B. Spores, Formally

Spore[String, Int] {

type Captured = (String, Int)

val captured: Captured

implicit val p$1 = implicitly[Pickler[(String, Int)]]

(x: String) => {

// ...

}

}

The refinement type contains a type member Captured which is defined to be a tuple of all the

captured types. The values of the actual captured variables are accessible using the captured

value member. What’s more, the refinement type contains for each type class that’s required

an implicit value with a type class instance for type Captured.

Such implicit values allow retrieving a type class instance for the captured types of a given

spore using Scala’s implicitly function as follows:

val s = spore { ... }

implicitly[Pickler[s.Captured]]

Note that s.Captured is defined to be the type of the environment of spore s: a tuple with all

types of captured variables.

182

B.2. Formalization

B.2 Formalization

t ::= x variable
| (x : T) ⇒ t abstraction
| t t application
| let x = t in t let binding

| {l = t } record construction
| t .l selection
| spore { x : T = t ; pn; (x : T) ⇒ t } spore
| import pn in t property import
| t compose t spore composition

v ::= (x : T) ⇒ t abstraction

| {l = v} record value
| spore { x : T = v ; pn; (x : T) ⇒ t } spore value

T ::= T ⇒ T function type

| {l : T } record type
| S

S ::= T ⇒ T { type C = T ; pn } spore type
| T ⇒ T { type C ; pn } abstract spore type

P ∈ pn →T property map
T ∈P (T) type family

Γ ::= x : T type environment
∆ ::= pn property environment

Figure B.1 – Core language syntax

We formalize spores in the context of a standard, typed lambda calculus with records. Apart

from novel language and type-systematic features, our formal development follows a well-

known methodology [Pierce, 2002]. Figure B.1 shows the syntax of our core language. Terms

are standard except for the spore, import, and compose terms. A spore term creates a new

spore. It contains a list of variable definitions (the spore header), a list of property names, and

the spore’s closure. A property name refers to a type family (a set of types) that all captured

types must belong to.

An illustrative example of a property name and its associated type family, but in the context of

Scala, is a type class: a spore satisfies such a property if there is a type class instance for all its

captured types.

An import term imports a property name into the property environment within a lexical scope

(a term); the property environment contains properties that are registered as requirements

whenever a spore is created. This is explained in more detail in Section B.2.2. A compose term

is used to compose two spores. The core language provides spore composition as a built-in

feature, because type checking spore composition is markedly different from type checking

183

Appendix B. Spores, Formally

regular function composition (see Section B.2.2).

The grammar of values is standard except for spore values; in a spore value each term on the

right-hand side of a definition in the spore header is a value.

The grammar of types is standard except for spore types. Spore types are refinements of

function types. They additionally contain a (possibly-empty) sequence of captured types,

which can be left abstract, and a sequence of property names.

B.2.1 Subtyping

Figure B.2 shows the subtyping rules. Record (S-REC) and function (S-FUN) subtyping are

standard.

The subtyping rule for spores (S-SPORE) is analogous to the subtyping rule for functions with

respect to the argument and result types. Additionally, for two spore types to be in a subtyping

relationship either their captured types have to be the same (M1 = M2) or the supertype must

be an abstract spore type (M2 = typeC). The subtype must guarantee at least the properties of

its supertype, or a superset thereof. Taken together, this rule expresses the fact that a spore type

whose type member C is not abstract is compatible with an abstract spore type as long as it has

a superset of the supertype’s properties. This is important for spores used as first-class values:

functions operating on spores with arbitrary environments can simply demand an abstract

spore type. The way both the captured types and the properties are modeled corresponds to

(but simplifies) the subtyping rule for refinement types in Scala (see Section 5.2.4).

Rule S-SPOREFUN expresses the fact that spore types are refinements of their corresponding

function types, giving rise to a subtyping relationship.

S-REC

l ′ ⊆ l li = l ′i → Ti <: T ′
i ∧T ′

i <: Ti

{l : T } <: {l ′ : T ′}

S-FUN

T2 <: T1 R1 <: R2

T1 ⇒ R1 <: T2 ⇒ R2

S-SPORE

T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = type C

T1 ⇒ R1 { M1 ; pn } <: T2 ⇒ R2 { M2 ; pn′ }

S-SPOREFUN

T1 ⇒ R1 { M ; pn } <: T1 ⇒ R1

Figure B.2 – Subtyping

184

B.2. Formalization

T-VAR

x : T ∈ Γ
Γ;∆` x : T

T-SUB

Γ;∆` t : T ′ T ′ <: T

Γ;∆` t : T

T-ABS

Γ, x : T1;∆` t : T2

Γ;∆` (x : T1) ⇒ t : T1 ⇒ T2

T-APP

Γ;∆` t1 : T1 ⇒ T2 Γ;∆` t2 : T1

Γ;∆` (t1 t2) : T2

T-LET

Γ;∆` t1 : T1 Γ, x : T1;∆` t2 : T2

Γ;∆` let x = t1 in t2 : T2

T-REC

Γ;∆` t : T

Γ;∆` {l = t } : {l : T }

T-SEL

Γ;∆` t : {l : T }

Γ;∆` t .li : Ti

T-IMP

Γ;∆, pn ` t : T

Γ;∆` import pn in t : T

T-SPORE

∀si ∈ s. Γ;∆` si : Si y : S, x : T1;∆` t2 : T2 ∀pn ∈∆,∆′. S ⊆ P (pn)

Γ;∆` spore { y : S = s ;∆′; (x : T1) ⇒ t2 } : T1 ⇒ T2 { type C = S ; ∆,∆′ }

T-COMP

Γ;∆` t1 : T1 ⇒ T2 { type C = S ; ∆1 }
Γ;∆` t2 : U1 ⇒ T1 { type C = R ; ∆2 } ∆′ = {pn ∈∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)}

Γ;∆` t1 compose t2 : U1 ⇒ T2 { type C = S,R ; ∆′ }

Figure B.3 – Typing rules

B.2.2 Typing rules

Typing derivations use a judgement of the form Γ;∆ ` t : T . Besides the standard variable

environment Γwe use a property environment ∆which is a sequence of property names that

are “active” while deriving the type T of term t . The property environment is reminiscent of

the implicit parameter context used in the original work on implicit parameters [Lewis et al.,

2000]; it is an environment for names whose definition sites “just happen to be far removed

from their usages.”

In the typing rules we assume the existence of a global property mapping P from property

names pn to type families T . This technique is reminiscent of the way some object-oriented

core languages provide a global class table for type-checking. The main difference is that our

core language does not include constructs to extend the global property map; such constructs

are left out of the core language for simplicity, since the creation of properties is not essential

to our model.

The typing rules are standard except for rules T-IMP, T-SPORE, and T-COMP, which are new.

Only these three type rules inspect or modify the property environment ∆. Note that there

is no rule for spore application, since there is a subtyping relationship between spores and

functions (see Section B.2). Using the subsumption rule T-SUB spore application is expressed

using the standard rule for function application (T-APP).

185

Appendix B. Spores, Formally

Rule T-IMP imports a property pn into the property environment within the scope defined by

term t .

Rule T-SPORE derives a type for a spore term. In the spore, all terms on right-hand sides of

variable definitions in the spore header must be well-typed in the same environment Γ;∆

according to their declared type. The body of the spore’s closure, t2, must be well-typed in an

environment containing only the variables in the spore header and the closure’s parameter,

one of the central properties of spores. The last premise requires all captured types to satisfy

both the properties in the current property environment, ∆, as well as the properties listes in

the spore term, ∆′. Finally, the resulting spore type contains the argument and result types

of the spore’s closure, the sequence of captured types according to the spore header, and the

concatenation of properties ∆ and ∆′. The intuition here is that properties in the environment

have been explicitly imported by the user, thus indicating that all spores in the scope of the

corresponding import should satisfy them.

Rule T-COMP derives a result type for the composition of two spores. It inspects the captured

types of both spores (S and R) to ensure that the properties of the resulting spore, ∆, are

satisfied by the captured variables of both spores. Otherwise, the argument and result types

are analogous to regular function composition. Note that it’s always possible to weaken the

properties of a spore through spore subtyping and subsumption (T-SUB).

B.2.3 Operational semantics

Figure B.4 shows the evaluation rules of a small-step operational semantics for our core

language. The only non-standard rules are E-APPSPORE, E-SPORE, E-IMP, and E-COMP3. Rule

E-APPSPORE applies a spore literal to an argument value. The differences to regular function

application (E-APPABS) are (a) that the types in the spore header must satisfy the properties

of the spore dynamically, and (b) that the variables in the spore header must be replaced by

their values in the body of the spore’s closure. Rule E-SPORE is a simple congruence rule. Rule

E-IMP is a computation rule that is always enabled. It adds property name pn to all spore

terms within the body t . The i nser t helper function is defined in Figure B.5 (we omit rules for

compose and let, since they are analogous to rules H-INSAPP and H-INSSEL).

Rule E-COMP3 is the computation rule for spore composition. Besides computing the compo-

sition in a way analogous to regular function composition, it defines the spore header of the

result spore, as well as its properties. The properties of the result spore are restricted to those

that are satisfied by the captured variables of both argument spores.

B.2.4 Soundness

This section presents a soundness proof of the spore type system. The proof is based on

a pair of progress and preservation theorems [Wright and Felleisen, 1994]. In addition to

standard lemmas, such as Lemma B.2.3 and Lemma B.2.4, we also prove a lemma specific

186

B.2. Formalization

E-LET1
t1 → t ′1

let x = t1 in t2 → let x = t ′1 in t2

E-LET2

let x = v1 in t2 → [x 7→ v1]t2

E-REC

tk → t ′k
{l = v , lk = tk , l ′ = t ′} → {l = v , lk = t ′k , l ′ = t ′}

E-SEL1
t → t ′

t .l → t ′.l

E-SEL2

{l = v}.li → vi

E-APP1
t1 → t ′1

t1t2 → t ′1t2

E-APP2
t2 → t ′2

v1t2 → v1t ′2

E-APPABS

((x : T) ⇒ t)v → [x 7→ v]t

E-APPSPORE

∀pn ∈ pn. T ⊆ P (pn)

spore { x : T = v ; pn; (x ′ : T) ⇒ t }v ′ → [x 7→ v][x ′ 7→ v ′]t

E-SPORE

tk → t ′k
spore { x : T = v , xk : Tk = tk , x ′ : T ′ = t ′ ; (x : T) ⇒ t } →
spore { x : T = v , xk : Tk = t ′k , x ′ : T ′ = t ′ ; (x : T) ⇒ t }

E-IMP

import pn in t → i nser t (pn, t)

E-COMP1
t1 → t ′1

t1 compose t2 → t ′1 compose t2

E-COMP2
t2 → t ′2

v1 compose t2 → v1 compose t ′2

E-COMP3
∆= {p | p ∈ pn, qn. T ⊆ P (p)∧S ⊆ P (p)}

spore { x : T = v ; pn; (x ′ : T ′) ⇒ t } compose spore { y : S = w ; qn; (y ′ : S′) ⇒ t ′ } →
spore { x : T = v , y : S = w ;∆; (y ′ : S′) ⇒ let z ′ = t ′ in [x ′ 7→ z ′]t }

Figure B.4 – Operational Semantics3

H-INSSPORE1
∀ti ∈ t . i nser t (pn, ti) = t ′i i nser t (pn, t) = t ′

i nser t (pn,spore { x : T = t ; pn; (x ′ : T) ⇒ t }) = spore { x : T = t ′; pn, pn; (x ′ : T) ⇒ t ′ }

H-INSSPORE2

i nser t (pn,spore { x : T = v ; pn; (x ′ : T) ⇒ t }) = spore { x : T = v ; pn, pn; (x ′ : T) ⇒ t }

H-INSAPP

i nser t (pn, t1 t2) = i nser t (pn, t1) i nser t (pn, t2)
H-INSSEL

i nser t (pn, t .l) = i nser t (pn, t).l

Figure B.5 – Helper function insert

187

Appendix B. Spores, Formally

to our type system, namely Lemma B.2.2, which ensures types are preserved under property

import. Soundness of the type system follows from Theorem B.2.1 and Theorem B.2.2.

Lemma B.2.1. (Canonical forms)

1. If v is a value of type {l : T }, then v is {l = v} where v is a sequence of values.

2. If v is a value of type T ⇒ R, then v is either (x : T1) ⇒ t or

spore { y : S = v ; pn; (x : T1) ⇒ t } where T <: T1 and v is a sequence of values.

3. If v is a value of type T ⇒ R { type C = S ; pn }, then v is

spore { y : S = v ; pn; (x : T1) ⇒ t } where T <: T1 and v is a sequence of values.

Proof. According to the grammar in Figure B.1, values in the core language can have three

forms: (x : T) ⇒ t , {l = v}, and spore { x : T = v ; pn; (x : T) ⇒ t } where v is a sequence of

values.

For the first part, according to (T-REC) and the subtyping rules, v is {l = v} where v is a

sequence of values of types T .

For the second part, according to the subtyping rules v can have either type T1 ⇒ R1, T1 ⇒
R1 { type C = S ; pn }, or T1 ⇒ R1 { type C ; pn } where T <: T1 and R1 <: R. If v has type

T1 ⇒ R1, then according to the grammar and (T-ABS) v must be (x : T) ⇒ t . If v has either type

T1 ⇒ R1 { type C = S ; pn } or type T1 ⇒ R1 { type C ; pn }, then according to the grammar

and (T-SPORE) v must be spore { x : T = v ; pn; (x : T1) ⇒ t } where v is a sequence of values.

Part three is similar.

Theorem B.2.1. (Progress) Suppose t is a closed, well-typed term (that is, ` t : T for some T).

Then either t is a value or else there is some t ′ with t → t ′.

Proof. By induction on a derivation of t : T . The only three interesting cases are the ones

for spore creation, application (where we might apply a spore to some argument), and spore

composition.

Case T-SPORE: t = spore { x : S = t ;∆′; (x : T1) ⇒ t2 }, ∀ti ∈ t . ` ti : Si , and x : S, x : T1 ` t2 : T2.

By the induction hypothesis, either all t are values, in which case t is a value; or there is a term

ti such that ti → t ′i (since ` ti : Si). Thus, by (E-SPORE), t → t ′ for some term t ′.

Case T-APP: t = t1 t2 and ` t1 : T1 ⇒ T2 and ` t2 : T1. By the induction hypothesis, either t1 is a

value v1, or t1 → t ′1. In the latter case it follows from (E-APP1) that t → t ′ for some t ′. In the

former case, by the induction hypothesis t2 is either a value v2 or t2 → t ′2. In the former case

by the canonical forms lemma we have that v2 is either (x : T1) ⇒ t or spore { x : T = v ; pn; (x :

T1) ⇒ t } where T <: T1 and v is a sequence of values; thus, either (E-APPABS) or (E-APPSPORE)

apply. In the latter case, the result follows from (E-APP2).

188

B.2. Formalization

Case T-COMP: t = t1 compose t2 and ` t1 : T1 ⇒ T2 { type C = S ; ∆1 } and ` t2 : U1 ⇒
T1 { type C = R ; ∆2 }. If either t1 or t2 is not a value, the result follows from the induction hy-

pothesis and (E-COMP1) or (E-COMP2). If t1 is a value v1 and t2 is a value v2, then by the canon-

ical forms lemma, v1 = spore { y : S = v ;∆1; (x : T1) ⇒ s1 } and v2 = spore { z : R = w ;∆2; (u :

U1) ⇒ s2 }. Thus, by (E-COMP3), t → t ′ for some t ′.

Lemma B.2.2. (Preservation of types under import) IfΓ;∆, pn ` t : T thenΓ;∆` i nser t (pn, t) :

T

Proof. By induction on a derivation of t : T . The only three interesting cases are the ones

for spore creation, application (where we might apply a spore to some argument), and spore

composition.

Case T-SPORE: t = spore { x : S = t ;∆′; (x : T1) ⇒ t2 }, ∀ti ∈ t . ` ti : Si , and x : S, x : T1 ` t2 : T2.

By the induction hypothesis, either all t are values, in which case t is a value; or there is a term

ti such that ti → t ′i (since ` ti : Si). Thus, by (E-SPORE), t → t ′ for some term t ′.

Case T-APP: t = t1 t2 and ` t1 : T1 ⇒ T2 and ` t2 : T1. By the induction hypothesis, either t1 is a

value v1, or t1 → t ′1. In the latter case it follows from (E-APP1) that t → t ′ for some t ′. In the

former case, by the induction hypothesis t2 is either a value v2 or t2 → t ′2. In the former case

by the canonical forms lemma we have that v2 is either (x : T1) ⇒ t or spore { x : T = v ; pn; (x :

T1) ⇒ t } where T <: T1 and v is a sequence of values; thus, either (E-APPABS) or (E-APPSPORE)

apply. In the latter case, the result follows from (E-APP2).

Case T-COMP: t = t1 compose t2 and ` t1 : T1 ⇒ T2 { type C = S ; ∆1 } and ` t2 : U1 ⇒
T1 { type C = R ; ∆2 }. If either t1 or t2 is not a value, the result follows from the induction hy-

pothesis and (E-COMP1) or (E-COMP2). If t1 is a value v1 and t2 is a value v2, then by the canon-

ical forms lemma, v1 = spore { y : S = v ;∆1; (x : T1) ⇒ s1 } and v2 = spore { z : R = w ;∆2; (u :

U1) ⇒ s2 }. Thus, by (E-COMP3), t → t ′ for some t ′.

Lemma B.2.3. (Preservation of types under substitution) If Γ, x : S;∆` t : T and Γ;∆` s : S,

then Γ;∆` [x 7→ s]t : T

Proof. By induction on a derivation of Γ, x : S;∆` t : T .

Lemma B.2.4. (Weakening) If Γ;∆` t : T and x ∉ dom(Γ), then Γ, x : S;∆` t : T .

Proof. By induction on a derivation of Γ;∆` t : T .

Theorem B.2.2. (Preservation) If Γ;∆` t : T and t → t ′, then Γ;∆` t ′ : T .

189

Appendix B. Spores, Formally

Proof. By induction on a derivation of t : T .

• Case T-SEL: t = s.li and Γ;∆` s : {l : S}. Since t → t ′ we have either by (E-SEL1) s → s′

and t ′ = s′.li , or we have by (E-SEL2) s = {l = v} and t ′ = vi . In the former case, by the

induction hypothesis, Γ;∆` s′ : {l : S} and thus by (T-SEL), Γ;∆` s′.li : Si . In the latter

case, by (T-REC), Γ;∆` vi : Si .

• Case T-IMP: t = import pn in s and Γ;∆, pn ` s : T . Since t → t ′, we have by (E-IMP)

t ′ = i nser t (pn, s). By Lemma B.2.2, Γ;∆` i nser t (pn, s) : T .

• Case T-APP: t = s1 s2 and T = S2. By (T-APP), Γ;∆` s1 : S1 ⇒ S2 and Γ;∆` s2 : S1. Since

t → t ′, either (E-APP1), (E-APP2), (E-APPABS), or (E-APPSPORE) applies. If (E-APP1)

applies, then s1 → s′1 and t ′ = s′1 s2. By the induction hypothesis, Γ;∆` s′1 : S1 ⇒ S2. By

(T-APP), Γ;∆` t ′ : S2. The case where (E-APP2) applies is similar. If (E-APPABS) applies,

then s1 = (x : S1) ⇒ t2 and s2 = v and t ′ = [x 7→ v]t2. By (T-ABS), Γ, x : S1;∆` t2 : S2. By

(T-APP), Γ;∆` v : S1. By Lemma B.2.3, Γ;∆` [x 7→ v]t2 : S2.

If (E-APPSPORE) applies, then s1 = spore { x : T = v ; pn; (y : S1) ⇒ t2 } and s2 = v ′ and

∀pn ∈ pn. S ⊆ P (pn) and t ′ = [x 7→ v][y 7→ v ′]t2. By (T-SPORE), x : T , y : S1;∆ ` t2 : S2.

By (T-APP), Γ;∆ ` v ′ : S1. By Lemma B.2.4, Γ, x : T , y : S1;∆ ` t2 : S2. By Lemma B.2.4,

Γ, x : T ;∆ ` v ′ : S1. By Lemma B.2.3, Γ, x : T ;∆ ` [y 7→ v ′]t2 : S2. By (T-SPORE), we also

have ∀vi ∈ v . Γ;∆` vi : Ti . By Lemma B.2.3, Γ;∆` [x 7→ v][y 7→ v ′]t2 : S2.

• Case T-SPORE: t = spore { y : S = s ;∆′; (x : T1) ⇒ t2 } and T = T1 ⇒ T2 { type C =
S ; ∆,∆′ }. By (T-SPORE), ∀si ∈ s. Γ;∆ ` si : Si and y : S, x : T1;∆ ` t2 : T2 and ∀pn ∈
∆,∆′. S ⊆ P (pn). Since t → t ′, rule (E-SPORE) must apply, and thus si → s′i for some si .

By the induction hypothesis, Γ;∆` s′i : Si . Thus, by (T-SPORE), Γ;∆` t ′ : T .

• Case T-COMP: t = s1 compose s2 and T = T1 ⇒ T2 { type C = S,R ; ∆3 }. By (T-COMP),

Γ ` s1 : U1 ⇒ T2 { type C = S ; ∆1 } and Γ ` s2 : T1 ⇒ U1 { type C = R ; ∆2 } and

∆3 = {pn ∈∆1∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)}. Since t → t ′, either (E-COMP1), (E-COMP2),

or (E-COMP3) applies.

If (E-COMP1) applies, then s1 → s′1, and by (T-COMP), Γ;∆ ` s1 : U1 ⇒ T2 { type C =
S ; ∆1 }, and t ′ = s′1 compose s2. By the induction hypothesis,Γ;∆` s′1 : U1 ⇒ T2{ typeC =
S ; ∆1 }. By (T-COMP), we know that Γ;∆ ` s2 : T1 ⇒ U1 { type C = R ; ∆2 } and

∆3 = {pn ∈∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)}. By (T-COMP), Γ;∆` t ′ : T .

If (E-COMP2) applies, then s2 → s′2, and by (T-COMP), Γ;∆ ` s2 : T1 ⇒ U1 { type C =
R ; ∆2 }, and t ′ = v1 compose s′2. By the induction hypothesis,Γ;∆` s′2 : T1 ⇒U1 { typeC =
R ; ∆2 }. Since (E-COMP2) applies, s1 = v1, so by (T-COMP), we know that Γ;∆` v1 : U1 ⇒
T2 { type C = S ; ∆1 } and ∆3 = {pn ∈ ∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)}. By (T-COMP),

Γ;∆` t ′ : T .

If (E-COMP3) applies, then s1 = spore { x : S = v ;∆1; (y : U1) ⇒ t2 } and s2 = spore { y : R = w ;∆2; (z :

T1) ⇒ u1 } and ∆3 = {p | p ∈∆1,∆2. S ⊆ P (p)∧R ⊆ P (p)}. By (E-COMP3),

t ′ = spore { x : S = v , y : R = w ;∆3; (z : T1) ⇒ let x = u1 in [y 7→ x]t2}.

190

B.2. Formalization

First, we show that ∀vi ∈ v . Γ;∆` vi : Si and ∀wi ∈ w . Γ;∆` wi : Ri . This follows from

the fact that s1 and s2 are well-typed spores and (T-SPORE).

Second, we show that x : S, y : R, z : T1;∆` let x = u1 in [y 7→ x]t2 : T2. By (T-LET), we

need to show that x : S, y : R, z : T1;∆` u1 : U1 and x : S, y : R, z : T1, x : U1;∆` [y 7→ x]t2 :

T2. The former follows from (T-SPORE) and Lemma B.2.4. To prove the latter: given

that s1 is well-typed, by (T-SPORE) we have that x : S, y : U1 ` t2 : T2. By Lemma B.2.4,

x : S, y : U1, x : U1 ` t2 : T2. By Lemma B.2.3, x : S, x : U1 ` [y 7→ x]t2 : T2. By Lemma B.2.4,

x : S, y : R, z : T1, x : U1;∆` [y 7→ x]t2 : T2.

Third, we show that ∀pn ∈ ∆,∆3. S ⊆ P (pn)∧R ⊆ P (pn). Since s1 is well-typed, we

have ∀pn ∈ ∆,∆1. S ⊆ P (pn). Since s2 is well-typed, we have ∀pn ∈ ∆,∆2. R ⊆ P (pn).

Moreover, we have that ∆3 = {p | p ∈∆1,∆2. S ⊆ P (p)∧R ⊆ P (p)}. Thus, ∀pn ∈∆,∆3. S ⊆
P (pn)∧R ⊆ P (pn).

By (T-SPORE) it follows from the previous three subgoals that Γ;∆` t ′ : T .

B.2.5 Relation to spores in Scala

The soundness proof (see Section B.2.4) of the formal type system guarantees several important

properties for well-typed programs which closely correspond to the pragmatic model of spores

in Scala:

1. Application of spores: for each property name pn, it is ensured that the dynamic types

of all captured variables are contained in the type family pn maps to (P (pn)).

2. Dynamically, a spore only accesses its parameter and the variables in its header.

3. The properties computed for a composition of two spores is a safe approximation of the

properties that are dynamically required.

B.2.6 Excluded types

This section shows how the formal model can be extended with excluded types as described

above (see Section 5.2.4). Figure B.6 shows the syntax extensions: first, spore terms and values

are augmented with a sequence of excluded types; second, spore types and abstract spore

types get another member type E = T specifying the excluded types.

Figure B.7 shows how the subtyping rules for spores have to be extended. Rule S-ESPORE

requires that for each excluded type T ′ in the supertype, there must be an excluded type T in

the subtype such that T ′ <: T . This means that by excluding type T , subtypes like T ′ are also

prevented from being captured.

191

Appendix B. Spores, Formally

t ::= ... terms
| spore { x : T = t ;T ; pn; (x : T) ⇒ t } spore

v ::= ... values
| spore { x : T = v ;T ; pn; (x : T) ⇒ t } spore value

S ::= T ⇒ T { type C = T ; type E = T ; pn } spore type
| T ⇒ T { type C ; type E = T ; pn } abstract spore type

Figure B.6 – Core language syntax extensions

S-ESPORE

T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = type C ∀T ′ ∈U ′. ∃T ∈U . T ′ <: T

T1 ⇒ R1 { M1 ; type E =U ; pn } <: T2 ⇒ R2 { M2 ; type E =U ′ ; pn′ }

S-ESPOREFUN

T1 ⇒ R1 { M ; E ; pn } <: T1 ⇒ R1

Figure B.7 – Subtyping extensions

Figure B.8 shows the extensions to the typing rules. Rule T-ESPORE additionally requires that

none of the captured types S is a subtype of one of the types contained in the excluded types U .

The excluded types are recorded in the type of the spore. Rule T-ECOMP computes a new set of

excluded types V based on both the excluded types and the captured types of t1 and t2. Given

that it is possible that one of the spores captures a type that is excluded in the other spore, the

type of the result spore excludes only those types that are guaranteed not be captured.

T-ESPORE

∀si ∈ s. Γ;∆` si : Si y : S, x : T1;∆` t2 : T2

∀pn ∈∆,∆′. S ⊆ P (pn) ∀Si ∈ S. ∀U j ∈U . ¬(Si <: U j)

Γ;∆` spore { y : S = s ;U ;∆′; (x : T1) ⇒ t2 } : T1 ⇒ T2 { type C = S ; type E =U ; ∆,∆′ }

T-ECOMP

Γ;∆` t1 : T1 ⇒ T2 { type C = S ; type E =U ; ∆1 }

Γ;∆` t2 : U1 ⇒ T1 { type C = R ; type E =U ′ ; ∆2 }

∆′ = {pn ∈∆1 ∪∆2 | S ⊆ P (pn)∧R ⊆ P (pn)} V = (U \ R)∪ (U ′ \ S)

Γ;∆` t1 compose t2 : U1 ⇒ T2 { type C = S,R ; type E =V ; ∆′ }

Figure B.8 – Typing extensions

Figure B.9 shows the extensions to the operational semantics. Rule

E-EAPPSPORE additionally requires that none of the captured types T are contained in the

excluded types U . Rule E-ECOMP3 computes the set of excluded types of the result spore in

192

B.2. Formalization

the same way as in the corresponding type rule (T-ECOMP).

E-EAPPSPORE

∀pn ∈ pn. T ⊆ P (pn) ∀Ti ∈ T . Ti ∉U

spore { x : T = v ; U ; pn ; (x ′ : T) ⇒ t } v ′ → [x 7→ v][x ′ 7→ v ′]t

E-ECOMP3
∆= {p | p ∈ pn, qn. T ⊆ P (p)∧S ⊆ P (p)} V = (U \ S)∪ (U ′ \ T)

spore { x : T = v ; U ; pn ; (x ′ : T ′) ⇒ t } compose

spore { y : S = w ; U ′ ; qn ; (y ′ : S′) ⇒ t ′ } → spore { x : T = v , y : S = w ; V ; ∆ ;
(y ′ : S′) ⇒ let z ′ = t ′ in [x ′ 7→ z ′]t }

Figure B.9 – Operational semantics extensions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,

consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant

morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras

viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu

tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci

eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit

amet orci dignissim rutrum.

193

Bibliography

M. D. Adams and T. M. DuBuisson. Template your boilerplate: Using Template Haskell for

efficient generic programming. In Haskell’12, 2012.

Gul A Agha. Actors: A model of concurrent computation in distributed systems. Technical

report, DTIC Document, 1985.

A. Alimarine and M. J. Plasmeijer. A generic programming extension for clean. In IFL ’02, 2002.

A. Alimarine and S. Smetsers. Efficient generic functional programming. Technical report

NIII-R0425, Nijmegen Institute for Computing and Information Sciences, University of

Nijmegen, 2004.

Apache. Avro®. http://avro.apache.org, 2013. Accessed: 2013-08-11.

Apache. Hadoop. http://hadoop.apache.org/, 2015.

Andrew W. Appel and Marcelo J. R. Gonçalves. Hash-consing garbage collection. Technical

Report CS-TR-412-93, Princeton University, Computer Science Department, 1993.

Michael Armbrust, Armando Fox, David A. Patterson, Nick Lanham, Beth Trushkowsky, Jesse

Trutna, and Haruki Oh. SCADS: Scale-independent storage for social computing applica-

tions. In CIDR, 2009.

Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, September 2010. ISSN 0001-0782.

Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing.

ACM Trans. Prog. Lang. and Sys., 11(4):598–632, October 1989.

Azavea. GeoTrellis. http://www.azavea.com/products/geotrellis/, 2010. Accessed: 2013-08-11.

John Billings, Peter Sewell, Mark Shinwell, and Rok Strniša. Type-safe distributed programming

for ocaml. In Proceedings of the 2006 workshop on ML, pages 20–31. ACM, 2006.

Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey. ACM

Comput. Surv., 37(1):1–28, 2005.

G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic Languages,

2004.

195

http://avro.apache.org
http://hadoop.apache.org/
http://www.azavea.com/products/geotrellis/

Bibliography

Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton,

Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, et al. Concurrent collections.

Scientific Programming, 18(3), 2010.

Zoran Budimlic, Michael G. Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton,

Jens Palsberg, David M. Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Tasirlar.

Concurrent collections. Scientific Programming, 18(3-4):203–217, 2010. doi: 10.3233/

SPR-2011-0305.

Zoran Budimlic, Vincent Cavé, Raghavan Raman, Jun Shirako, Sagnak Tasirlar, Jisheng Zhao,

and Vivek Sarkar. The design and implementation of the Habanero-Java parallel program-

ming language. In OOPSLA Companion, pages 185–186, 2011. doi: 10.1145/2048147.

2048198.

Michael G. Burke, Kathleen Knobe, Ryan Newton, and Vivek Sarkar. Concurrent collections

programming model. In Encyclopedia of Parallel Computing, pages 364–371. 2011. doi:

10.1007/978-0-387-09766-4_238.

E. Burmako. Scala macros: Let our powers combine!: On how rich syntax and static types work

with metaprogramming. In Scala’13, 2013.

E. Burmako and M. Odersky. Scala macros, a technical report. In Third International Valentin

Turchin Workshop on Metacomputation, 2012.

Luca Cardelli, James E. Donahue, Mick J. Jordan, Bill Kalsow, and Greg Nelson. The modula-

3 Type system. In POPL, pages 202–212, 1989.

Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for mar-

shalling data in a Java interface to MPI. In Java Grande, pages 66–71, 1999.

B. Chadwick and K. Lieberherr. Weaving generic programming and traversal performance. In

AOSD’10, 2010.

Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller, and

Simon Marlow. Data Parallel Haskell: A status report. In Proc. DAMP Workshop, pages 10–18.

ACM, 2007.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert

Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient data-parallel pipelines.

ACM SIGPLAN Notices, 45(6):363–375, June 2010a.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert

Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In

PLDI, pages 363–375, 2010b.

James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in databases: Why, how,

and where. Foundations and Trends in Databases, 1(4):379–474, 2009.

196

Bibliography

Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In PLDI’05, pages

85–95, 2005.

D. Clarke and A. Löh. Generic haskell, specifically. In J. Gibbons and J. Jeuring, editors, Generic

Programming, IFIP, pages 21–47. Kluwer Academic Publishers, 2003.

Alex Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea. NOVA: A functional

language for data parallelism. Technical Report NVR-2013-002, NVIDIA Corporation, July

2013.

Evan Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis, Harvard University,

2012.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, 2008.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu, and Todd W. Schiller. Building

and using pluggable type-checkers. In ICSE’11, pages 681–690, 2011.

Gilles Dubochet. Embedded Domain-Specific Languages using Libraries and Dynamic Metapro-

gramming. PhD thesis, EPFL, Switzerland, 2011.

Martin Elsman. Type-specialized serialization with sharing. In Trends in Functional Program-

ming, pages 47–62, 2005.

B. Emir, M. Odersky, and J. Williams. Matching objects with patterns. In ECOOP’07, 2007.

Jeff Epstein, Andrew P. Black, and Simon L. Peyton Jones. Towards haskell in the cloud. In

Haskell Symposium, pages 118–129, 2011.

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. SugarJ: Library-

based syntactic language extensibility. In OOSPLA’11, 2011.

Marius Eriksen. Your server as a function. In Proceedings of the Seventh Workshop on

Programming Languages and Operating Systems, PLOS ’13, pages 5:1–5:7, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2460-1. doi: 10.1145/2525528.2525538. URL

http://doi.acm.org/10.1145/2525528.2525538.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling

with continuations. In PLDI, pages 237–247. ACM, 1993.

Daniel Friedman and David Wise. The impact of applicative programming on multiprocessing.

In International Conference on Parallel Processing, 1976.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

David Gelernter. Generative communication in Linda. ACM Transactions on Programming

Languages and Systems, 7(1):80–112, January 1985.

197

http://doi.acm.org/10.1145/2525528.2525538

Bibliography

Guillaume Germain. Concurrency oriented programming in Termite Scheme. In Erlang

Workshop, page 20. ACM, 2006.

J. Gibbons. Design patterns as higher-order datatype-generic programs. In WGP ’06, 2006.

Joseph Gil and Itay Maman. Whiteoak: introducing structural typing into Java. In Gail E.

Harris, editor, OOPSLA, pages 73–90, 2008.

Brian Goetz. JSR 335: Lambda expressions for the Java programming language, 2013.

Google. Protocol Buffers. https://code.google.com/p/protobuf/, 2008. Accessed: 2013-08-11.

Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based

programming. Theoretical Computer Science, 410(2):202–220, 2009.

Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In Theo

D’Hondt, editor, ECOOP, pages 354–378, 2010.

Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn, and Vojin

Jovanovic. Futures and promises. http://docs.scala-lang.org/overviews/core/futures.html,

2012.

Jr. R. H. Halstead. MultiLISP: A language for concurrent symbolic computation. ACM Trans.

Prog. Lang. and Sys., 7(4):501–538, October 1985.

Jiansen He, Philip Wadler, and Philip Trinder. Typecasting actors: from akka to TAkka. In Scala,

SCALA ’14, pages 23–33, 2014. ISBN 978-1-4503-2868-5.

Jr. Henry C. Baker and Carl Hewitt. The incremental garbage collection of processes. In Proc.

Symp. on Art. Int. and Prog. Lang., 1977.

Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth Sreeram. River trail: a

path to parallelism in JavaScript. In OOPSLA, pages 729–744, 2013.

Maurice Herlihy. A methodology for implementing highly concurrent data structures. In

PPoPP, pages 197–206, 1990.

Maurice Herlihy and Barbara Liskov. A value transmission method for abstract data types.

ACM Trans. Program. Lang. Syst, 4(4):527–551, 1982.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. April 2008. ISBN

0123705916.

Rich Hickey. The clojure programming language. In DLS, page 1. ACM, 2008.

R. Hinze, J. Jeuring, and A. Loeh. Comparing approaches to generic programming in Haskell.

In Datatype-Generic Programming, volume 4719. Springer Berlin/Heidelberg, 2007.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core

calculus for Java and GJ. ACM Trans. Program. Lang. Syst, 23(3):396–450, May 2001.

198

https://code.google.com/p/protobuf/
http://docs.scala-lang.org/overviews/core/futures.html

Bibliography

William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. Com-

mun. ACM, 52(5):100–111, 2009. doi: 10.1145/1506409.1506431.

International Standard ISO/IEC 14882:2011. Programming Languages ‚Äì C++. International

Organization for Standards, 2011.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed

data-parallel programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

P. Jansson and J. Jeuring. Polyp - a polytypic programming language extension. In POPL ’97,

1997.

Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh

Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A type

and effect system for deterministic parallel Java. In OOPSLA, pages 97–116, 2009. doi:

10.1145/1640089.1640097.

Andrew Kennedy. Pickler combinators. J. Funct. Program., 14(6):727–739, 2004.

Roland Kuhn. Akka typed – between session types and the ac-

tor model, 7 2015. URL http://www.slideshare.net/rolandkuhn/

akka-typed-between-session-types-and-the-actor-model. Curry On, Prague, Czech

Republic.

Lindsey Kuper and Ryan R. Newton. Lvars: Lattice-based data structures for determinis-

tic parallelism. In Proceedings of the 2Nd ACM SIGPLAN Workshop on Functional High-

performance Computing, FHPC ’13, pages 71–84, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-2381-9.

Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton. Freeze after

writing: Quasi-deterministic parallel programming with lvars. In Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,

pages 257–270, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8.

R. Lämmel and K. Ostermann. Software extension and integration with type classes. In GPCE

’06, 2006.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical design pattern for generic

programming. In TLDI’03, 2003.

Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Conference on Java

Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000. ACM.

Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark Shields. Implicit parameters: Dy-

namic scoping with static types. In POPL, pages 108–118, 2000.

K. J. Lieberherr. Adaptive Object Oriented Software: The Demeter Method with Propagation

Patterns. PWS Publishing, 1996.

199

http://www.slideshare.net/rolandkuhn/akka-typed-between-session-types-and-the-actor-model
http://www.slideshare.net/rolandkuhn/akka-typed-between-session-types-and-the-actor-model

Bibliography

Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske Plaat. An

efficient implementation of Java’s remote method invocation. In PPOPP, pages 173–182,

August 1999.

J. P. Magalhães, S. Holdermans, J. Jeuring, and A. Löh. Optimizing generics is easy! In PEPM

’10, 2010.

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic deriving

mechanism for Haskell. In Jeremy Gibbons, editor, Haskell, pages 37–48, 2010.

Patrick Maier and Philip W. Trinder. Implementing a high-level distributed-memory parallel

Haskell in Haskell. In IFL, volume 7257, pages 35–50. Springer, 2011. ISBN 978-3-642-34406-

0.

Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for deterministic parallelism.

In Proc. Haskell Symposium, pages 71–82. ACM, 2011.

Nicholas D. Matsakis. Parallel closures: A new twist on an old idea. In HotPar, 2012.

Niko Matsakis. Fn types in Rust, take 3. http://smallcultfollowing.com/babysteps/blog/2013/

10/10/fn-types-in-rust, 2013.

Michael M. McKerns, Leif Strand, Tim Sullivan, Alta Fang, and Michael A. G. Aivazis. Building

a framework for predictive science. CoRR, abs/1202.1056, 2012.

Erik Meijer. Confessions of a used programming language salesman. In OOPSLA, 2007.

Christopher Meiklejohn and Peter Van Roy. Lasp: A language for distributed, coordination-

free programming. In Proceedings of the 17th International Symposium on Principles and

Practice of Declarative Programming, PPDP ’15, pages 184–195, New York, NY, USA, 2015.

ACM. ISBN 978-1-4503-3516-4.

John M. Mellor-Crummey. Concurrent queues: Practical fetch-and-Φ algorithms. 1987.

Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of programming language adoption.

In OOPSLA, 2013.

Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In PODC, pages 267–275, 1996.

Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles: Gener-

ating object-oriented pickler combinators for fast and extensible serialization. In OOPSLA,

pages 183–202, 2013.

Heather Miller, Philipp Haller, and Martin Odersky. Spores: A type-based foundation for

closures in the age of concurrency and distribution. In ECOOP, volume 8586, pages 308–333.

Springer, 2014a.

200

http://smallcultfollowing.com/babysteps/blog/2013/10/10/fn-types-in-rust
http://smallcultfollowing.com/babysteps/blog/2013/10/10/fn-types-in-rust

Bibliography

Heather Miller, Philipp Haller, Lukas Rytz, and Martin Odersky. Functional programming for

all! Scaling a MOOC for students and professionals alike. In ICSE, pages 265–263, 2014b.

Moir and Shavit. Concurrent data structures. In Mehta and Sahni, editors, Handbook of Data

Structures and Applications, Chapman & Hall/CRC. 2005.

A. Moors, F. Piessens, and W. Joosen. An object-oriented approach to datatype-generic pro-

gramming. In WGP ’06, 2006.

J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly

language. ACM Trans. Program. Lang. Syst, 21(3):527–568, 1999.

Tom Murphy VII, Karl Crary, and Robert Harper. Type-safe distributed programming with ML5.

In TGC, volume 4912, pages 108–123. Springer, 2007. doi: 10.1007/978-3-540-78663-4_9.

D. R. Musser and A. A. Stepanov. Generic programming. In ISAAC ’88, 1989.

Nathan Marz and James Xu and Jason Jackson et al. Storm. http://storm-project.net/, 2012.

Accessed: 2013-08-11.

Nathan Sweet. Kryo. https://code.google.com/p/kryo/, 2013. Accessed: 2013-08-11.

Karen Ng, Matt Warren, Peter Golde, and Anders Hejlsberg. The Roslyn project: Exposing

the C# and VB compiler‚äôs code analysis. http://msdn.microsoft.com/en-gb/hh500769,

September 2012. Accessed: 2013-08-11.

NICTA. Scoobi. https://github.com/nicta/scoobi, 2015.

Peter Norvig and Jeff Dean. Latency numbers every programmer should know. https://gist.

github.com/jboner/2841832, 2012.

M. Odersky and A. Moors. Fighting bit rot with types (experience report: Scala collections). In

IARCS’09, 2009.

Martin Odersky. The Scala language specification, 2013.

Martin Odersky and Matthias Zenger. Scalable component abstractions. In Ralph E. Johnson

and Richard P. Gabriel, editors, OOPSLA, pages 41–57, 2005.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Press, Mountain

View, CA, 2010.

B. C. d. S. Oliveira and J. Gibbons. Scala for generic programmers. Journal of Functional

Programming, 20(3,4):303–352, 2010.

B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. In

OOPSLA’10, 2010.

Oracle, Inc. Java Object Serialization Specification. http://docs.oracle.com/javase/7/docs/

platform/serialization/spec/serialTOC.html, 2011. Accessed: 2013-08-11.

201

http://storm-project.net/
https://code.google.com/p/kryo/
http://msdn.microsoft.com/en-gb/hh500769
https://github.com/nicta/scoobi
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html

Bibliography

D. Orleans and K. J. Lieberherr. DJ: Dynamic adaptive programming in Java. In REFLECTION.

Springer-Verlag, 2001.

Oscar Boykin and Mike Gagnon and Sam Ritchie. Twitter Chill. https://github.com/twitter/

chill, 2012. Accessed: 2013-08-11.

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Making

sense of performance in data analytics frameworks. In 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 15), pages 293–307, Oakland, CA, 2015.

USENIX Association. ISBN 978-1-931971-218. URL https://www.usenix.org/conference/

nsdi15/technical-sessions/presentation/ousterhout.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and Michael D. Ernst.

Practical pluggable types for Java. In ISSTA’08, 2008.

Simon Peyton Jones. Haskell language and library specification. https://wiki.haskell.org/

Language_and_library_specification, 2014.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell. In POPL, pages

295–308, 1996.

Michael Philippsen, Bernhard Haumacher, and Christian Nester. More efficient serialization

and RMI for Java. Concurrency - Practice and Experience, 12(7):495–518, 2000.

Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

Esmond Pitt and Kathy McNiff. Java.Rmi: The Remote Method Invocation Guide. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. ISBN 0201700433.

Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. A generic parallel

collection framework. In Euro-Par, volume 6853, pages 136–147. Springer, 2011.

Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller, and Martin Odersky.

Flowpools: A lock-free deterministic concurrent dataflow abstraction. In LCPC, pages

158–173. Springer, 2012a.

Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller, and Martin Odersky.

Flowpools: A lock-free deterministic concurrent dataflow abstraction– proofs. Technical

Report EPFL-REPORT-181098, EPFL, Lausanne, June 2012b.

Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ concepts. In J. Gregory Morrisett and

Simon L. Peyton Jones, editors, POPL, pages 295–308, 2006.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira. Comparing

libraries for generic programming in Haskell. In Haskell’08, 2008.

Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach to

runtime code generation and compiled DSLs. Commun. ACM, 55(6), 2012.

202

https://github.com/twitter/chill
https://github.com/twitter/chill
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://wiki.haskell.org/Language_and_library_specification
https://wiki.haskell.org/Language_and_library_specification

Bibliography

Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delimited

continuations by a type-directed selective CPS-transform. In ICFP, pages 317–328. ACM,

2009.

Andreas Rossberg. Typed open programming: a higher-order, typed approach to dynamic

modularity and distribution. PhD thesis, Saarland University, 2007.

Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert Smolka. Alice

through the looking glass. Trends in Functional Programming, 5:79–96, 2004.

Andreas Rossberg, Guido Tack, and Leif Kornstaedt. Status report: HOT pickles, and how to

serve them. In ML, pages 25–36, 2007.

Peter Van Roy. Announcing the mozart programming system. SIGPLAN Notices, 34(4):33–34,

1999.

Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.

MIT Press, 2004. ISBN 0-262-22069-5.

Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: concurrent programming for

modern architectures. In PPOPP, page 271, 2007. doi: 10.1145/1229428.1229483.

Alex Schwendner. Distributed functional programming in Scheme. Master’s thesis, Mas-

sachusetts Institute of Technology, 2009.

Peter Sewell, James J Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams,

Pierre Habouzit, and Viktor Vafeiadis. Acute: high-level programming language design for

distributed computation. In ACM SIGPLAN Notices, volume 40, pages 15–26. ACM, 2005.

D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala. Technical Report EPFL-

REPORT-185242, EPFL, Switzerland, 2013.

E. Shapiro. The family of concurrent logic programming languages. ACM Computing Surveys,

21(3):412, September 1989.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study

of Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria –

Centre Paris-Rocquencourt, January 2011a. URL https://hal.inria.fr/inria-00555588.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Proceedings of the 13th International Conference on Stabilization, Safety, and

Security of Distributed Systems, SSS’11, pages 386–400, Berlin, Heidelberg, 2011b. Springer-

Verlag. ISBN 978-3-642-24549-7.

T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In Haskell ’02, 2002.

Kamil Skalski. Syntax-extending and type-reflecting macros in an object-oriented language.

Master’s thesis, University of Warsaw, Poland, 2005.

203

https://hal.inria.fr/inria-00555588

Bibliography

Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. The Java module system: core design and

semantic definition. In OOPSLA, pages 499–514, 2007.

Guido Tack, Leif Kornstaedt, and Gert Smolka. Generic pickling and minimization. Electr.

Notes Theor. Comput. Sci., 148(2):79–103, 2006.

Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.

Theor. Comput. Sci, 248(1-2):211–242, 2000.

Sagnak Tasirlar and Vivek Sarkar. Data-driven tasks and their implementation. In ICPP, pages

652–661, 2011. doi: 10.1109/ICPP.2011.87.

Twitter. Scalding. https://github.com/twitter/scalding, 2015.

Typesafe. Akka. http://akka.io/, 2009. Accessed: 2013-08-11.

Guido van Rossum. Python programming language. In USENIX Annual Technical Conference.

USENIX, 2007.

Dimitrios Vytiniotis and Andrew J. Kennedy. Functional pearl: every bit counts. SIGPLAN Not.,

45(9):15–26, September 2010.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In POPL ’89, 1989.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A note on distributed comput-

ing. In MOS, pages 49–64, 1996.

Stefan Wehr and Peter Thiemann. JavaGI: The interaction of type classes with interfaces and

inheritance. ACM Trans. Program. Lang. Syst, 33(4):12, 2011.

Matt Welsh and David E. Culler. Jaguar: enabling efficient communication and I/O in java.

Concurrency - Practice and Experience, 12(7):519–538, 2000.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. Comput,

115(1):38–94, November 1994.

Matei Zaharia. Next-generation languages meet next-generation big data: Lever-

aging scala in spark, August 2014. URL http://functional.tv/post/97699944449/

scala-by-the-bay2014-matei-zaharia-next-generation-langu. Talk given at Scala By the Bay

2014, San Francisco, CA, USA.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Murphy McCauley, Michael

Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI. USENIX, 2012.

Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership and

immutability in generic java. In OOPSLA, pages 598–617. ACM, 2010.

204

https://github.com/twitter/scalding
http://akka.io/
http://functional.tv/post/97699944449/scala-by-the-bay2014-matei-zaharia-next-generation-langu
http://functional.tv/post/97699944449/scala-by-the-bay2014-matei-zaharia-next-generation-langu

1

Faculty of Computer, Communication,
and Information Science

EPFL
Station 14

1015 Lausanne
Switzerland

Phone: +41 78 625 20 23
Fax: +41 21 693 66 60
heather.miller@epfl.ch

http://heather.miller.am

heather miller
Citizenship USA

Education EPFL, Lausanne, Switzerland 2009 – 2015
Ph.D. in Computer Science
Advisor: Martin Odersky 2011 – 2015

University of Miami, Coral Gables, FL 2006 – 2009
BSEE in Electrical Engineering, Audio Engineering, with honors, May 2009

Cooper Union for the Advancement of Science and Art, New York, NY 2004 – 2006

Professional
Experience

Research Intern, Databricks, Berkeley, CA, USA 8/2014 – 11/2014
Supervisor: Matei Zaharia
Integrated Scala Pickling, our framework for fast, boilerplate-free, extensible
serialization focused on distributed programming (OOPSLA’13) into Spark.
Developed new function-passing programming model and framework, can be
thought of as a generalization of Spark/MapReduce programming model.

Teaching
Experience

Lecturer, Co-Designer, Reactive Programming & Parallelism 2015
EPFL Undergraduate course on parallel, distributed, and asynchronous
programming (~90 students)

Lecturer, Co-Designer, Parallel Programming & Data Analysis 2015
Upcoming Coursera MOOC on parallel, distributed, and asynchronous
programming.

Lead, Functional Programming Principles in Scala 2012 – 2014
Popular Coursera MOOC on functional programming in Scala,
with >200,000 participants to date & largest completion
rate for a course its size (~19%)

• Lead teaching staff organizing a team of graduate students,
managing content production, designed course exercises
with cloud-hosted grading, production of lecture videos, etc

• Created extensive course analysis with interactive
visualizations; led to a publication at ICSE’14

(Lead) Teaching Assistant, Programming Principles 2011-2014
Required EPFL undergraduate course on functional & logic programming
(~160 students)

Instructor, Scala as a Research Tool 2013
ECOOP Tutorial

205

2

Research
Interests

Concurrent, distributed, data-centric, and data-intensive (big data) programming, from
the perspective of programming languages. I work on both theoretical ideas & imple-
mentations for the Scala programming language which seek to make it easier to build
distributed systems.

Publications Distributed Programming via Safe Closure Passing PLACES 2015
Philipp Haller, Heather Miller
Programming Language Approaches to Communication
and Concurrency Centric Systems

Spores: A Type-Based Foundation for Closures in the Age of ECOOP 2014
Concurrency and Distribution
Heather Miller, Philipp Haller, Martin Odersky
European Conference on Object Oriented Programming

Functional Programming For All! Scaling a MOOC for Students ICSE 2014
And Professionals Alike
Heather Miller, Philipp Haller, Lukas Rytz, Martin Odersky
ACM SIGSOFT International Conference on Software Engineering

Instant Pickles: Generating Object-Oriented Pickler OOPSLA 2013
Combinators for Fast and Extensible Serialization
Heather Miller, Philipp Haller, Eugene Burmako, Martin Odersky
ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages and Applications

RAY: Integrating Rx and Async for Direct-Style Reactive Streams REM 2013
Philipp Haller, Heather Miller
ACM SPLASHWorkshop on Reactivity, Events and Modularity

FlowPools: A Lock-Free Deterministic Concurrent LCPC 2012
Dataflow Abstraction
Aleksandar Prokopec, Heather Miller, Tobias Schlatter,
Philipp Haller, Martin Odersky
International Workshop on Languages and Compilers for Parallel Computing
Invited to Revised Selected Papers on the 25th International Workshop on
Languages and Compilers for Parallel Computing, Lecture Notes in Computer
Science, Vol. 7760, 2013

Tools and Frameworks for Big Learning in Scala: Leveraging the BigLearn 2011
Language for High Productivity and Performance
Heather Miller, Philipp Haller, Martin Odersky
NIPS Workshop on Parallel and Large-Scale Machine Learning

Parallelizing Machine Learning – Functionally: A Framework Scala 2011
and Abstractions for Parallel Graph Processing
Philipp Haller, Heather Miller
Scala Workshop

206

3

Submitted/In
Preparation

Function Passing: A Model for Typed, Distributed Functional Programming
Heather Miller, Philipp Haller

Self-Assembly: Lightweight LanguageExtension andDatatypeGeneric Programming,
All-in-One!
Heather Miller, Philipp Haller, Bruno C. d. S. Oliveira

Improving Human-Compiler InteractionThrough Customizable Type Feedback
Hubert Plociniczak, Heather Miller, Martin Odersky

Selected
Tech Reports

Spores, Formally
Heather Miller, Philipp Haller
December 2013

FlowPools: A Lock-Free Deterministic Concurrent Dataflow Abstraction – Proofs
Aleksandar Prokopec, Heather Miller, Philipp Haller
June 2012

Open Source Scala Programming Language,member of the Scala team 2011 –
• Scala Spores (Scala Improvement Proposal SIP-21), project lead
novel type-based abstraction for using closures safely
in concurrent and distributed environments

• Scala Pickling, project lead
novel framework for fast, boilerplate-free, extensible serialization.
Adopted by sbt, the most widely-used build tool for Scala. Popular
open-source project on GitHub with >480 stars & dozens of contributors

• Scala Futures & Promises (Scala Improvement Proposal SIP-14), team member
unified non-blocking concurrency substrate for
Scala, Akka, Play, and others

• Scala Documentation, creator, writer, lead maintainer
a central website for community-driven documentation for
the Scala programming language and core libraries

• Scaladoc, co-maintainer
documentation tool for Scala’s official API documentation

Honors US National Science Foundation Graduate Research Fellowship 2011 – 2014
EPFL Outstanding Teaching Award 2012
EPFL Computer Science Fellowship 2009 – 2010
Most Outstanding Audio Engineering Student, University of Miami 2009
Most Outstanding Eta Kappa Nu Student, University of Miami 2009
Information Technology Scholarship, University of Miami 2006 – 2009
John Farina Family Scholarship, University of Miami 2006 – 2009
Eta Kappa Nu 2008
Tau Beta Pi 2008
SMART US Department of Defense Scholarship Alternate 2007
Cooper Union Full Tuition Scholarship 2004 – 2006

207

4

Selected Talks Function Passing Style: Typed, Distributed Strange Loop 2014
Functional Programming
St. Louis, MO, USA. September 19, 2014

Spores: A Type-Based Foundation for Closures in the Age of ECOOP 2014
Concurrency and Distribution
Uppsala, Sweden. August 1, 2014

Functional Programming For All! Scaling a MOOC for ICSE 2014
Students and Professionals Alike
Hyderabad, India. June 4, 2014

Academese to English: Scala’s Type System, Dependent Types NEScala 2014
andWhat It Means To You
New York, NY, USA. March 1, 2014

Instant Pickles: Generating Object-Oriented Pickler OOPSLA 2013
Combinators for Fast and Extensible Serialization
Indianapolis, IN, USA. October 30, 2013

PL Abstractions for Distributed Programming: Indiana University (invited)
Pickle Your Spores!
Bloomington, IN, USA. October 25, 2013

Spores: Distributable Functions in Scala Strange Loop 2013
St. Louis, MO, USA. September 19, 2013

Open Issues in Dataflow Programming LaME 2013 (invited)
Montpellier, France. July 1, 2013

Scala as a Research Tool ECOOP 2013 Tutorial
Montpellier, France. July 1, 2013

On Pickles & Spores: Improving Scala’s Support ScalaDays 2013
for Distributed Programming
New York, NY, USA. June 12, 2013

Futures & Promises in Scala 2.10 PhillyETE 2013 (invited)
Philadelphia, PA, USA. April 2, 2013

I am also a frequent speaker in industry, at industrial conferences, developer “meet-ups”,
and everything in between. Some such events include:
f(by) (11/2014, Minsk, Belarus), SF Scala (11/2014, SF, USA), Scalapeño (9/2014, Tel
Aviv, Israel), SoundCloud TechTalks (7/2014, Berlin, Germany), Scala Days (6/2014,
Berlin, Germany), NEScala (3/2014, NYC, USA), amongst others.

External
Activities

Scalawags Monthly Podcast, co-host 2014 –

208

5

External
Service Curry On 2015, organizer (co-chair) 7/2015

ECOOP 2015, organizing committee member (sponsorship) 7/2015
PLE 2015, program committee member 7/2015
DSLDI 2015, program committee member 7/2015
Scala Symposium 2015, organizer (co-chair) 6/2015
POPL 2015, artifact evaluation committee member 1/2015
Scala Workshop 2014, organizer (co-chair) 7/2014
Scala Workshop 2013, organizer (co-chair) 7/2013

External Reviewer for: ECOOP 2013, Scala 2013
Editor of proceedings for: Scala 2015, Scala 2014, Scala 2013

Students
Supervised1

Louis Bliss, Incremental Picklers for Scala Pickling 9/2013 – 1/2014
M.Sc. level, co-supervision with Philipp Haller

Thaddée Yann Tyl, Learning Scala Style 2/2013 – 6/2013
M.Sc. thesis

Tobias Schlatter, FlowSeqs: Barrier-Free ParSeqs 9/2012 – 1/2013
M.Sc. level, co-supervision w/ Philipp Haller & Aleksandar Prokopec

Tobias Schlatter,Multi-Lane FlowPools 2/2012 – 6/2012
M.Sc. level, co-supervision w/ Philipp Haller & Aleksandar Prokopec

Pierre Grydbeck, Parallel Machine Learning: An Expectation 2/2012 – 6/2012
Maximization Algorithm for Gaussian Mixture Models
M.Sc. level, co-supervision with Philipp Haller

Bruno Studer, Parallel Machine Learning: Collaborative Filtering 2/2012 – 6/2012
via Alternating Least Squares
B.Sc. level, co-supervision with Philipp Haller

Stanislav Peshterliev, Parallel Natural Language Processing 9/2011 – 1/2012
Algorithms in Scala
M.Sc. level, co-supervision with Philipp Haller

Olivier Blanvillain & Louis Bliss, Parallelization of a Collaborative 9/2011 – 1/2012
Filtering Algorithm with Menthor
B.Sc. level, co-supervision with Philipp Haller

Florian Gysin, Improving Parallel Graph Processing Through 9/2011 – 1/2012
the Introduction of Parallel Collections
M.Sc. level, co-supervision with Philipp Haller

Georges Discry, Extending the Menthor Framework for Parallel 2/2011 – 6/2011
Graph Processing to Distributed Computing
M.Sc. level, co-supervision with Philipp Haller

1At EPFL, research groups offer substantial projects for B.Sc./M.Sc. students to complete for credit. EPFL
PhD students design and supervise these projects, as well as M.Sc. thesis projects.

209

6

References Martin Odersky
Faculty of Computer, Communication, and Information Science
École Polytechnique Fédérale de Lausanne
T +41 21 693 68 63
Bmartin.odersky@epfl.ch

Philipp Haller
School of Computer Science and Communication
KTH Royal Institute of Technology
T +41 76 205 39 32
B phaller@kth.se

Matei Zaharia
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
T +1-510-610-0001
Bmatei@mit.edu

Marius Eriksen
Twitter
Bmarius@twitter.com

210

	Title page
	Acknowledgements
	Abstract (English/Deutsch)
	Table of Contents
	List of figures
	List of tables
	Introduction
	Contributions
	Structure
	Previously Published Material

	Asynchronous Programming
	Futures
	Basic Usage
	Callbacks
	Higher-Order Combinators
	Exceptions and Recovery
	Execution Contexts
	Blocking

	FlowPools
	Model of Computation
	Programming Interface
	Implementation
	Correctness
	Evaluation

	Related Work
	Conclusion

	Pickling
	Introduction
	Design Constraints
	Contributions

	Overview and Usage
	Basic Usage
	Advanced Usage

	Object-Oriented Picklers
	Picklers in Scala
	Formalization
	Summary

	Generating Object-Oriented Picklers
	Overview
	Model of Inheritance
	Pickler Generation Algorithm
	Runtime Picklers
	Generics and Arrays
	Object Identity and Sharing

	Implementation
	Experimental Evaluation
	Experimental Setup
	Microbenchmark: Collections
	Wikipedia: Cyclic Object Graphs
	Microbenchmark: Evactor
	Microbenchmark: Spark
	Microbenchmark: GeoTrellis
	Data Types in Distributed Frameworks and Applications

	Related Work
	Conclusion

	Static and Extensible Datatype Generic Programming
	Introduction
	Design Constraints
	Contributions

	Type Classes and a Boilerplate Problem
	Implicits
	Type Classes
	Pretty Printing Complex Structures
	A Boilerplate Problem

	Type-Safe Meta-Programming in Scala
	Definition
	Properties

	Basic Self-Assembly
	Basic Usage
	Generation Mechanism
	Customization

	Self-Assembly for Object Orientation
	Subtyping
	Object Identity

	Transformations
	Generic Properties: Custom Lightweight Static Checks
	Generic Properties: Definition
	Example: Immutable Types
	Generic Properties as Implemented in self-assembly

	Implementation and Case Study
	Related Work
	Conclusion

	Spores
	Introduction
	Design Constraints
	Contributions

	Spores
	Spore Syntax
	The Spore Type
	Basic Usage
	Advanced Usage and Type Constraints
	Transitive Properties

	Formalization
	Subtyping
	Typing rules
	Operational semantics
	Soundness
	Relation to spores in Scala
	Excluded types

	Implementation
	Evaluation
	Using Spores Instead of Closures
	Spores and Apache Spark
	Spores and Akka

	Case Study
	Related Work
	Conclusion

	Function-Passing
	Introduction
	Contributions

	Overview of Model
	Basic Usage
	Primitives
	Fault Handling

	Higher-Order Operations
	Higher-Order Operations
	Peer-to-Peer Patterns

	Formalization
	Operational semantics
	Fault handling

	Implementation
	Serialization in the presence of existential quantification
	Type-based optimization of serialization

	Related Work
	Conclusion

	Conclusion
	FlowPools, Proofs
	Introduction
	Proof of Correctness

	Spores, Formally
	Overview
	Context bounds

	Formalization
	Subtyping
	Typing rules
	Operational semantics
	Soundness
	Relation to spores in Scala
	Excluded types

	Bibliography
	Curriculum Vitae

