
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. T. Mountford, président du jury
Prof. A. Abdulle, directeur de thèse

Prof. E. Buckwar, rapporteuse
Prof. G. Lord, rapporteur

Prof. M. Picasso, rapporteur

Stabilized Numerical Methods for Stochastic Differential
Equations driven by Diffusion and Jump-Diffusion Processes

THÈSE NO 6771 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 OCTOBRE 2015

À LA FACULTÉ DES SCIENCES DE BASE
CHAIRE D'ANALYSE NUMÉRIQUE ET MATHÉMATIQUES COMPUTATIONNELLES

PROGRAMME DOCTORAL EN MATHÉMATIQUES

Suisse
2015

PAR

Adrian BLUMENTHAL

Ambition, Passion,

Commitment and Dedication.

To my beloved family.

Acknowledgements
There are many people that I would like to say thank you for making this thesis possible.

First of all, I would to thank my family. Thank you so much Mum, Dad and Tamara for

supporting me over the years and for always being there for me! I am also very grateful to all

my other relatives. You are all a great inspiration for me.

Next, I would like to express my enormous gratitude to my thesis advisor Prof. Assyr Abdulle for

his great guidance and for allowing me to pursue my research interests in stochastic calculus

and numerical analysis. I appreciated the rich discussions over the years very much and it was

a great pleasure to collaborate with you!

Then, I would like to thank all the members of the jury, who accepted to read my work and

gave me valuable comments. Thank you Prof. Thomas Mountford for presiding the jury and

thank you Prof. Eveyln Buckwar, Prof. Gabriel Lord and Prof. Marco Picasso for being part of

the jury of my PhD examination.

Further, I am grateful to many people at the EPFL. Thank you Martin for being an amazing

office mate and especially for being a good friend! Thank you Virginie, Annick, Ariane, Corinne,

Catherine and Marie for your great support and the enjoyable discussions during my years

at EPFL! Many thanks also to my colleagues Ondrej, Orane, Timothée, Yun, Andrea, Patrick,

Antti, Gilles, Kostas and all the other people from MATHICSE. It has been a great pleasure to

work with you all!

I would also like to make use of this opportunity to thank all of my friends. Thank you for

being such great friends to me! I appreciate it very much.

Finally, I would like to thank everyone that has inspired me over the last few years!

Lausanne, August 2015 Adrian Blumenthal

i

Abstract
Stochastic models that account for sudden, unforeseeable events play a crucial role in many

different fields such as finance, economics, biology, chemistry, physics and so on. That kind

of stochastic problems can be modeled by stochastic differential equations driven by jump-

diffusion processes. In addition, there are situations, where a stochastic model is based on

stochastic differential equations with multiple scales. Such stochastic problems are called

stiff and lead for classical explicit integrators such as the Euler-Maruyama method to time

stepsize restrictions due to stability issues. This opens the door for stabilized explicit numerical

methods to efficiently tackle such situations.

In this thesis we introduce first a stabilized multilevel Monte Carlo method for stiff stochastic

differential equations. Using S-ROCK methods we show that this approach is very efficient

for stochastic problems with multiple scales, but also for nonstiff problems with a significant

noise part. Further, we present an improved version of the stabilized multilevel Monte Carlo

method by considering S-ROCK methods with a higher weak order of convergence.

Then we extend the S-ROCK methods to jump-diffusion processes. We study in detail the

strong order of convergence of the newly introduced methods and we discuss the correspond-

ing mean square stability domains.

In the next part we present the multilevel Monte Carlo method for jump-diffusion processes.

We state and prove a theorem that indicates the computational cost required to achieve a

certain mean square accuracy. In the numerical section we compare the multilevel Monte

Carlo approach to two variance reduction techniques, the antithetic and the control variates.

We also show how the S-ROCK method for jump-diffusion processes, introduced in this thesis,

can be used to create a stabilized multilevel Monte Carlo method for jump-diffusions that

handles stiffness and considers the inclusion of jumps at the same time.

Finally, we propose in this thesis a variable time stepping algorithm that uses S-ROCK methods

to approximate weak solutions of stiff stochastic differential equations. A rigorous analytical

study is carried out to derive a computable leading term of the time discretization error and

an adaptive algorithm is suggested that adapts the time grid and adjusts the number of stages

of the S-ROCK method simultaneously.

Keywords: Stochastic Differential Equations, Diffusion Processes, Jump-Diffusion Processes,

Monte Carlo Method, Variance Reduction Techniques, Multilevel Monte Carlo Method, Stiffness,

Stability, S-ROCK Methods, Variable Time Stepping.

iii

Résumé
Des modèles stochastiques qui prennent en compte des événements soudains ou imprévi-

sibles gagnent en importance dans différentes branches comme, par exemple, en finance,

en économie, en biologie, en chimie ou encore en physique. Ces problèmes stochastiques

peuvent être modélisés par des équations différentielles stochastiques avec des sauts ou

par des équations différentielles stochastiques multi-échelles. Ces problèmes sont appelés

raides et leur résolution par des méthodes explicites classiques, comme le schéma d’Euler-

Maruyama, nécéssite une réduction du pas de temps à cause des problèmes liés à la stabilité.

Une solution est représentée par des méthodes explicites stabilisées.

Premièrement, dans cette thèse, une nouvelle méthode multilevel Monte Carlo stabilisée est

introduite pour des équations différentielles stochastiques raides. En utilisant des schémas

S-ROCK il est montré que cette approche est très efficace pour des problèmes raides, ainsi que

pour des problèmes ayant un bruit important mais qui ne sont pas forcément raides. Pour

conclure cette première partie, une amélioration des méthodes précédentes est proposée en

considérant des méthodes S-ROCK avec un ordre de convergence faible élevé.

Deuxièmement, les schémas S-ROCK sont élargis pour des processus stochastiques de diffu-

sion avec sauts. Une analyse complète de la convergence forte et de la stabilité en moyenne

quadratique est présentée. Des expériences numériques vérifient les résultats théoriques

obtenus précédemment.

Troisièmement, une méthode multilevel Monte Carlo pour des équations différentielles sto-

chastiques avec sauts est présentée. Un théorème donnant le coût computationnel nécessaire

pour atteindre une certaine précision est prouvé. Dans la partie numérique la méthode multi-

level Monte Carlo pour des processus de diffusion avec sauts est comparée à deux méthodes de

réduction de variance. Il est ensuite montré comment le schéma S-ROCK pour des équations

différentielles stochastiques avec sauts peut être utilisé pour établir une nouvelle méthode

multilevel Monte Carlo stabilisée pour des processus de diffusion avec sauts.

Finalement, un algorithme adaptatif, utilisant les méthodes S-ROCK pour approcher les

solutions faibles des équations différentielles stochastiques raides, est proposé. L’algorithme

ajuste le pas de temps et le nombre d’étages du schéma S-ROCK simultanément.

Mots-clefs : Équations différentielles stochastiques, processus de diffusion, processus de diffu-

sion avec sauts, méthode Monte Carlo, méthodes de réduction de variance, méthode multilevel

Monte Carlo, raideur, stabilité, méthodes S-ROCK, pas de temps adaptatif.

v

Contents
Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Main Contributions . 4

2 Stochastical and Numerical Background 7

2.1 Stochastic Differential Equations driven by Jump-Diffusion Processes 7

2.1.1 Diffusion Processes . 8

2.1.2 Jump-Diffusion Processes . 11

2.2 Numerical Schemes . 23

2.2.1 Strong and Weak Convergence . 24

2.2.2 Stability . 25

2.2.3 Euler-Maruyama Method . 27

2.2.4 S-ROCK Method . 28

2.3 Monte Carlo Techniques . 29

2.3.1 Monte Carlo Method . 30

2.3.2 Variance Reduction Techniques . 33

2.3.3 Multilevel Monte Carlo Method . 35

3 Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential Equations 41

3.1 Introduction . 41

3.2 Preliminaries . 43

3.2.1 Numerical Schemes . 44

3.2.2 Stability of Numerical Methods . 46

3.3 Multilevel Monte Carlo Method for Stiff SDEs . 48

3.3.1 Standard Multilevel Monte Carlo Method 48

3.3.2 Stabilized Multilevel Monte Carlo Method 52

3.4 Improved Stabilized Multilevel Monte Carlo Method for Stiff SDEs 55

3.5 Numerical Examples . 57

3.5.1 Linear Stochastic Differential Equation . 57

3.5.2 Nonlinear Stochastic Differential Equation 59

3.5.3 Space-discretized Stochastic Parital Differential Equation 62

vii

Contents

3.5.4 Comparison Improved Stabilized MLMC vs Stabilized MLMC vs Standard

MLMC . 64

3.6 Conclusion . 67

4 S-ROCK Methods for Jump-Diffusion Processes 69

4.1 Introduction . 69

4.2 Preliminaries . 70

4.2.1 Numerical Schemes . 71

4.3 Strong Convergence . 73

4.3.1 Strong Convergence of S-ROCK1-JD . 74

4.3.2 Strong Convergence of PIROCK-JD . 87

4.4 Mean Square Stability . 91

4.4.1 Mean Square Stability Domain of S-ROCK1-JD 92

4.4.2 Mean Square Stability Domain of PIROCK-JD 93

4.4.3 Illustration of the Stability Regions of S-ROCK1-JD 94

4.5 Numerical Experiments . 102

4.5.1 Numerical Study of the Strong Convergence 102

4.5.2 Comparison S-ROCK1-JD and Euler-Maruyama for Jump-Diffusions . . 106

4.6 Conclusion . 110

5 Multilevel Monte Carlo Method for Stochastic Differential Equations driven by Jump-

Diffusion Processes 113

5.1 Introduction . 113

5.2 Preliminaries . 115

5.2.1 Numerical Schemes . 116

5.3 Multilevel Monte Carlo Method for Jump-Diffusion Processes 118

5.3.1 Monte Carlo Method for Jump-Diffusions 118

5.3.2 Multilevel Monte Carlo Method for Jump-Diffusions 120

5.3.3 Complexity Theorem for Jump-Diffusions 125

5.4 Numerical Examples . 133

5.4.1 The Merton and the Kou model . 134

5.4.2 Two Variance Reduction Techniques . 135

5.4.3 Numerical Results . 136

5.5 Stabilized Multilevel Monte Carlo Method for Jump-Diffusion Processes 139

5.5.1 Stabilized Monte Carlo Method for Jump-Diffusions 140

5.5.2 Stabilized Multilevel Monte Carlo Method for Jump-Diffusions 141

5.6 Conclusion . 143

6 S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential Equa-

tions 145

6.1 Introduction . 145

6.2 Preliminaries . 146

6.2.1 Numerical Schemes . 146

viii

Contents

6.2.2 Mean Square Stability . 148

6.3 Variable Time Stepping S-ROCK Method Using A Posteriori Error Control 150

6.3.1 Derivation of a Computable Leading Term of the Time Error 151

6.3.2 Adaptive Algorithm . 163

6.4 Numerical Experiments . 166

6.4.1 Nonstiff Stochastic Differential Equation 166

6.4.2 Stiff Stochastic Differential Equation . 168

6.5 Conclusion . 171

7 Conclusion and Outlook 173

7.1 Conclusion . 173

7.2 Outlook . 174

Bibliography 183

Curriculum Vitae 185

ix

1 Introduction

There is a large amount of scenarios in nature, in science, in engineering, in industry, in

the daily life and so on that can be studied and analyzed using mathematical models. Many

problems can be modeled by so-called differential equations. These are equations that connect

certain functions (e.g. some physical quantity) with their derivatives, i.e. for instance their

variation over time. In biology there is for instance a population growth model, that shows

how a population can evolve over time. In physics the Kepler problem (a particular case of the

two-body problem) models the interaction of two bodies. Chemical reactions in chemistry can

also be described by differential equations. Applications modeled by differential equations are

deterministic. But what happens if there is some component of the model that cannot entirely

or partly be determined? What if there is some external source that cannot be quantified but

that affects the underlying model? What if the problem one wants to model is random? In

all that kind of situation ordinary differential equations are normally not enough. To include

randomness in the model one can add some noise component which leads to stochastic

differential equations.

Mathematical models based on stochastic differential equations can be used in many different

areas such as finance (to model for instance the price of a share), in biology (e.g. the modeling

of the population of genes), in chemistry (for instance to model the Michaelis-Menten system)

and so on. It is also common to take a deterministic model and to add a stochastic component

to make it more realistic. For some models based on stochastic differential equations it is

possible to derive an analytical solution, as this is for instance the case for the Black-Scholes

model in finance. However, there are many more sophisticated stochastic models, that do

not admit an analytical expression of the solution. This calls for numerical methods that

can be used to approximate the solution of that kind of stochastic models. There are various

numerical schemes for stochastic differential equations with different properties. Often one

is interested in the convergence (behavior when the the time endpoint is fixed and the time

stepsize tends to zero) and in the stability (long-term behavior of the numerical scheme for

a fixed time stepsize) of the numerical method. Depending on the underlying problem one

chooses a suitable numerical integrator to find an appropriate solution.

1

Chapter 1. Introduction

December 2014 January 2015 February 2015 March 2015 May 2015 June 2015

P
ric

e
of

 1
 E

ur
o

in
 C

H
F

0.95

1

1.05

1.1

1.15

1.2

1.25
Exchange rate EUR / CHF

Figure 1.1: Behavior of the exchange rate of EUR/CHF from December 1st, 2014 to June 1st,
2015 (data source: yahoo finance).

We look now at an example from finance. In Figure 1.1 the behavior of the exchange rate

EUR/CHF between start of December 2014 and the start of June 2015 is illustrated. It looks like

most of the problem can be modeled by a stochastic differential equations, which is driven by

a continuous diffusion process. However, we discover that there is one part, a singularity, that

most likely cannot be modeled by a continuous process. We give now first an explanation of

the behavior of the exchange rate observed in January 2015. In 2011 the Swiss National Bank

introduced an exchange rate peg. In fact, since the people in charge at the Swiss National

Bank considered the Swiss franc to be too strong (a strong Swiss franc is not good for the Swiss

export industry, which is an important part of the Swiss economy), the Swiss National Bank

insisted to keep the price for 1 Euro at least at 1.20 CHF. However, on January 15th the Swiss

National Bank announced, without initial warning, that they no longer peg the Euro to the

Swiss franc. As it can be seen in Figure 1.1 this led to a huge drop of the exchange rate over

one day only. In fact, on January 15th the price for 1 Euro was 1.2009 CHF. Already the next

day the price dropped to only 0.9943 CHF which corresponds to a drop of more than 17% over

a single day. To capture this big variation over a very short time period we have to add jumps

to our modeling procedure.

There are the so-called stochastic differential equations driven by jump-diffusion processes

that can account for sudden events that cannot be predicted and that have a huge impact

over a short time interval (like the one of Figure 1.1). In finance, for instance, such a behavior

can frequently be observed and is related e.g. to the announcement of important news of big

companies or governments, to environmental effects such as hurricanes and tsunamis. Also

terrorist attacks or political incidents can be the reason of a jump in the underlying problem.

Applications based on stochastic differential equations with jumps can be found in many

2

different fields and they are on the rise. As for the stochastic differential equations driven by

diffusion processes, it is often not possible to find an exact solution of a stochastic problem and

one has to consider numerical schemes. In this thesis we present different efficient numerical

techniques that can be used for problems based on jump-diffusion processes.

Another issue that we address in this thesis is the solution of problems related to stochastic

differential equations with multiple scales. Figure 1.2, which shows the numerical solution

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

6

xt

u
(t

,x
)

Figure 1.2: Numerical approximation of the heat equation with multiplicative noise using a
space discretization of ∆x = 1/40 and a time discretization of ∆t = 1/40.

of the heat equation with multiplicative noise, illustrates such a case. The heat equation is

characterized by a stochastic partial differential equation. Fixing a spatial discretization and

using the method of lines, a (possibly large) system of stochastic differential equations is ob-

tained. Due to stability issues this stochastic problem is subject to some stepsize restriction for

classical numerical integrators such as the Euler-Maruyama method. We call such problems

stiff. If the stability constraint is not met, the successful application of the numerical scheme

cannot be guaranteed. In this thesis we study explicit stochastic orthogonal Runge-Kutta

Chebyshev methods that have an extended stability domain, and thus, are very efficient if it

comes to stiffness. The approximation of the heat equation in Figure 1.2 has been produced

using a stabilized explicit numerical integrator. Depending on the stiffness of the problem,

and thus, on the time stepsize the same is difficult to realize with a classical explicit numerical

scheme.

3

Chapter 1. Introduction

Stiff stochastic problems arise in many different areas such as financial engineering, biology,

chemistry and so. It is possible to tackle stiffness by using drift-implicit integrators, however,

this is not always straightforward. For instance for the example presented above, to solve the

large system of stochastic differential equations with a implicit solvers results in solving a

large linear system at each step, which can be computationally very expensive. In addition,

the implementation of drift-implicit solvers can be quite tricky for some problems. In this

thesis we pursue another strategy. We present various efficient numerical techniques based

on explicit stabilized numerical integrators that can be used to approximate solutions of mean

square stable stochastic differential equations with multiple scales.

1.1 Main Contributions

Here, we briefly present the main contributions of this thesis. Note that in each chapter

(apart from Chapter 2 that recalls some numerical and stochastical notions) we mention what

work has been done. The main aim of this thesis is to provide efficient stabilized numerical

techniques to solve stochastic problems. This thesis addresses in particular two issues.

Stiffness. First, there is the issue of stiffness. To find the solution of the expectation of a

functional depending on some stochastical process, multilevel Monte Carlo (MLMC) methods

appear to be very efficient and lead to an improvement compared to the standard Monte Carlo

techniques (see e.g. [46]). However, in Chapter 3 of this thesis we show that for stiff stochastic

differential equations (SDE) due to stability issues the Euler-Maruyama approach cannot

use all the levels, and thus, its performance deteriorates. We present a stabilized multilevel

Monte Carlo method that is based on stabilized numerical integrators, the so-called S-ROCK

methods (see [12, 10, 15]), which enables us to use all the levels of the multilevel Monte Carlo

approach, and thus, this method prevails over the standard MLMC method. Another finding

of this thesis is that even for nonstiff problems that have a significant noise component the

newly introduced stabilized MLMC method performs better. In Chapter 3 we suggest also an

improved stabilized MLMC method, which improves the performance even further.

Furthermore, in Chapter 4 we take the existing S-ROCK methods and we extend two versions

of these schemes [12, 14] to account for jumps (hence, this is also part of the second issue). We

study rigorously the strong convergence of the new S-ROCK methods for stochastic differential

equations driven by jump-diffusion processes. The mean square stability is also analyzed in

detail and the stability domains are characterized.

Finally, by using S-ROCK methods we extend in Chapter 6 a variable time stepping algorithm

for the weak solution of SDEs [96], so that it can also deal with stiffness. We suggest an adaptive

algorithm that adjusts the time grid and the number of stages of the S-ROCK integrator (to

account for the stiffness) simultaneously.

4

1.1. Main Contributions

Jump-Diffusions. Second, there is the issue of including jumps when modeling stochastic

problems by stochastic differential equations. As we have seen above, in Chapter 4 we extend

the S-ROCK method to jump-diffusions.

Moreover, in Chapter 5 we present the multilevel Monte Carlo method that can be used for

stochastic differential equations driven by jump-diffusion processes. We propose how to deal

with the jump terms and we state and prove a complexity theorem, that indicates how much

computational cost is required to achieve a certain mean square accuracy. In the numerical

part the MLMC method for jump-diffusions is compared to two variance reduction techniques,

namely the antithetic variates and the control variates.

In Chapter 5 we show also how the results from that chapter can be combined with the findings

from Chapter 4 to create a stabilized multilevel Monte Carlo method for jump-diffusion pro-

cesses. This covers again the two main issues of this thesis, the stiffness and jump-diffusions.

Note that in each chapter various numerical experiments are carried out to corroborate the

theoretical findings. In Chapter 7 we recapitulate the main findings of this thesis and we give

an outlook how future research could look like.

5

2 Stochastical and Numerical Back-
ground

In this section we present a few topics from stochastic calculus and from numerical analy-

sis. The background delivered here represents the backbone of the following sections. First,

stochastic differential equations driven by either diffusion processes or jump-diffusion pro-

cesses are discussed. We show why adding jumps to diffusion processes can be essential for

many applications in finance, chemistry, physics, biology, and so on. Next, we introduce the

numerical approximation methods used most in this thesis, namely the Euler-Maruyama

method and the S-ROCK methods. We also present some of its properties such as the strong

and weak convergence as well as the stability. Finally, we look at the so-called Monte Carlo

techniques. The Monte Carlo method is studied and we show why it can be useful to improve

the Monte Carlo approach by using variance reduction techniques such as antithetic variates

or control variates. Another particular way to improve the performance of Monte Carlo is

using the multilevel Monte Carlo method, which we will introduce in detail.

2.1 Stochastic Differential Equations driven by Jump-Diffusion Pro-

cesses

Many phenomena in nature, in science, in economics etc. can be modeled by stochastic differ-

ential equations, the so-called SDEs. These are differential equations where one has added

a stochastic noise. The reasons to include a stochastic term in the model characterization

are various. When in a model not all involved quantities can be specified, when an external

source has an impact on the model or when there is some randomness in the model (see

for instance [81, 103, 49]); these are all situations where it is reasonable to consider a model

based on stochastic differential equations. In what follows we introduce first SDEs driven by

diffusion processes and then we look at SDEs where we have added jumps.

Remark 2.1.1. Throughout this thesis, unless stated otherwise, we work with Itô integrals.

There is another type of stochastic integral, the so-called Stratonovich integral, which follows

the standard rules of calculus. However, there are many problems in finance, chemistry, biology

etc. that are modeled in Itô form, and thus, we prefer to apply the Itô setting in this thesis. Note

7

Chapter 2. Stochastical and Numerical Background

that using a simple transformation one can change any Itô integral into a Stratonovich integral

and vice versa (see for instance [66]).

2.1.1 Diffusion Processes

Before we explain what it is meant by a stochastic differential equation, we need to describe

what one understands as random noise. A common way to include randomness in a model is

to use a Brownian motion (see e.g. [95]), which is a stochastic process with certain properties.

The Scottish botanist Robert Brown observed in 1827 that the movement of particles of pollen

grains of a plant in water is random (see [24]). The first to characterize this random behavior of

the particles in mathematical terms was at the beginning of the 20th century Louis Bachelier,

a French doctoral student of mathematics. Bachelier introduced the definition of a Brownian

motion to model the price of shares and options at the stock market (see [19]). In what follows

we consider, unless stated otherwise, a probability space (Ω,F ,P), whereΩ is a sample space,

F a sigma-algebra and P a probability measure (see [95]).

Definition 2.1.2 (Brownian motion). A Brownian motion is a stochastic process (W (t))t≥0 that

satisfies:

(i) Stationay distribution: For any 0 ≤ s < t

W (t)−W (s) ∼N
(
0,σ2 (t − s)

)
,

i.e. the increment W (t)−W (s) is normally distributed with mean E [W (t)−W (s)] = 0

and variance Var (W (t)−W (s)) =σ2 (t − s).

(ii) Independent increments: For any 0 ≤ s1 < t1 ≤ s2 < t2 the two increments W (t1)−W (s1)

and W (t2)−W (s2) are independent.

(iii) Continuity: For all ω ∈Ω except for a null set the sample path t 7→W (ω, t) is continuous.

Note that if σ2 = 1 and W (0) = 0, then one speaks of a standard Brownian motion, which is also

known in the literature as Wiener process (see e.g. [54, 94, 104]).

Figure 2.1 shows an example of a sample path of a standard Brownian motion over the time

interval [0,1].

We have now all the ingredients to introduce the notation of a stochastic differential equation.

Let (X (t))t∈[0,T] be a stochastic process. Suppose this stochastic process is characterized by

the following stochastic differential equation
dX (t) = f (X (t))dt +

m∑
r=1

g r (X (t))dW r (t), 0 < t ≤ T,

X (0) = X0,

(2.1)

8

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
(t

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Sample path of a standard Brownian motion

Figure 2.1: Simulation of a standard Brownian motion over the time interval [0,1].

where X (t) ∈ Rd , f : Rd → Rd and g r : Rd → Rd for all r = 1,2, . . . ,m. The initial value of

the stochastic process is given by X0. The processes (W r (t))t∈[0,T] (r = 1,2, . . . ,m) are m

independent standard Brownian motions. The function f describes the drift and the functions

g r the diffusion.

Remark 2.1.3. Throughout this thesis we work, unless stated otherwise, with autonomous

stochastic differential equations, i.e. the drift and the diffusion terms do not depend explicitly

on the time variable. Note that any non-autonomous SDE can be modified to an autonomous

one by a simple transformation (see e.g. [52]).

We emphasize that (2.1) is simply a notation, which in facts means that

X (t) = X (0)+
∫ t

0
f (X (s))ds +

m∑
r=1

∫ t

0
g r (X (s))dW r (s),

where
∫ t

0 f (X (s))ds is an integral in the Lebesgue sense and where
∫ t

0 g r (X (s))dW r (s) are

stochastic integrals with respect to a Brownian motion (see [95]). In what follows we assume

the standard Lipschitz and linear growth conditions on f and g r such that the existence and

uniqueness of a solution is ensured (see [66]).

A model that is used a lot in this thesis is the so-called Black-Scholes model, which was first

mentioned by Samuelson in 1955 and it became popular in the financial world due to the

9

Chapter 2. Stochastical and Numerical Background

paper of Fischer Black and Myron Scholes (see [22]), which appeared in 1973.

Definition 2.1.4 (Black-Scholes model). The Black-Scholes model is characterized by the

stochastic differential equation
dX (t) = µX (t)dt +σX (t)dW (t), 0 < t ≤ T,

X (0) = X0,

(2.2)

where X (t) ∈R, (W (t))t∈[0,T] is a standard Brownian motion and X0 a given initial condition.

One can derive an exact solution of the Black-Scholes model.

Proposition 2.1.5. The Black-Scholes model specified by (2.2) admits the exact solution

X (t) = X0 exp

{(
µ− σ2

2

)
t +σW (t)

}
.

Proof. Consider the logarithm of X (t), i.e. ln(X (t)). Applying Itô’s lemma (see [70]) yields

dln(X (t)) = µX (t) 1
X (t) dt + σ2 X (t)2

2

(
− 1

X (t)2

)
dt +σX (t) 1

X (t) dW (t)

=
(
µ− σ2

2

)
dt +σdW (t).

Integrating on both sides over the interval [0, t] results in

ln(X (t))− ln(X (0)) =
(
µ− σ2

2

)
t +σW (t).

Taking the expectation and rearranging the terms we obtain the desired result

X (t) = X0 exp

{(
µ− σ2

2

)
t +σW (t)

}
.

In Figure 2.2 we illustrate a sample path of the solution of the Black-Scholes model with time

endpoint T = 1, initial condition X0 = 1, drift parameter µ = 0.05 and diffusion parameter

σ= 0.2.

The Black-Scholes model is frequently used in finance to price financial derivatives, such

as options and futures (see for instance [49, 70, 87]). Note that the drift coefficient often

represents the risk-free interest rate of the underlying risk-free asset and the diffusion is given

by the volatility of the problem. There are many more sophisticated models in finance, but

the Black-Scholes model remains popular due to its simplicity (see [61]). As we have seen in

Proposition 2.1.5 the Black-Scholes model admits an exact solution and it is therefore also very

10

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
(t

)

0.9

1

1.1

1.2

1.3

1.4

1.5
Black-Scholes model

Figure 2.2: Simulation of the solution of the Black-Scholes model over the time interval [0,1]
with drift µ= 0.05, diffusion σ= 0.2 and initial condition X0 = 1.

useful if one has to test a numerical approach. Note that there are many more models based

on stochastic differential equations driven by diffusion processes, but they do not admit an

analytical solution. Hence numerical methods are required to find an adequate approximation.

More on this in Section 2.2.

Models based on stochastic differential equations driven by diffusion processes are useful

when one has to model continuous sample paths, such as for instance in option pricing where

one assumes a complete market. However, often the data available is only in empirical form.

Papers like (see [18]) suggest that diffusion processes are not sufficient to properly model

many problems finance. In the next section we introduce jump-diffusion processes which can

incorporate discontinuities by the means of so-called jumps.

2.1.2 Jump-Diffusion Processes

In this section we discuss stochastic differential equations driven by jump-diffusion processes.

First, we motivate why including jumps leads often to more realistic models. Then we properly

define what is meant by a jump in mathematical terms. Finally, by presenting Poisson and

compound Poisson processes we introduce jump-diffusion processes and the associated

stochastic differential equations. We conclude this section by introducing two jump-diffusion

11

Chapter 2. Stochastical and Numerical Background

models, namely the Merton model and the Kou model, which are used throughout this thesis.

In many areas such as finance (see e.g. [18, 32, 26]), economics (see e.g. [80]), chemistry

(see e.g. [48]), biology (see e.g. [103]), and so on it is necessary to take into account sudden,

unforeseeable events that can lead to important variations over a very short time period.

Environmental effects such as natural catastrophes like earthquakes (e.g. Haiti), hurricanes

(e.g. Katrina) or tsunamis (e.g. Fukushima) can have a huge impact on the stock markets. The

same is true for political incidents such as terrorist attacks (e.g. 9/11), the European dept

crisis (e.g. Greece) and for changes of the policies and the regulations for banks (e.g. the

Basel accords). Also the announcement of important news by governments or by influential

companies can lead to a sudden drop or increase of the value of financial instruments. Models

based solely on diffusion processes can often not account for this kind of events, whereas

models that include jumps can.

Another drawback of models with diffusion processes is that one can use risk-free option

pricing to perfectly hedge options and therefore there is no risk left. This is due to the fact that

diffusion processes lead to continuous sample paths (see [98]). In reality it is not possible to

hedge a financial product without taking any risk. Jumps in a model lead to discontinuous

sample paths and a risk-free hedging is no longer possible. Hence models driven by jump-

diffusion processes seem to be more realistic for these situations than the ones driven by

diffusion processes.

June 26th, 2015 June 29th, 2015

 P
ric

e
in

 U
S

D

0.8

1

1.2

1.4

1.6
Share price of the National Bank of Greece at NYSE

Figure 2.3: Behavior of the share price (in USD) of the National Bank of Greece at the New York
stock exchange on June 26th, 2015 and June 29th, 2015 (data source: yahoo finance).

In the introduction we have already seen that the decision of the Swiss National Bank to no

longer pegging the Euro to the Swiss franc has led to a jump of the exchange rate. We present

now another scenario, where one can observe a jump. Figure 2.3 shows the behavior of the

12

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

share price of the National Bank of Greece at the New York stock exchange during Friday June

26th, 2015 and Monday June 29th, 2015. During the weekend of June 27th and 28th the Greek

government has announced that they will hold a referendum about the new debt deal with

the international creditors. To avoid that panic about the financial situation spreads in the

country, the government decided that the Greek banks remain closed during the entire week of

June 29th, 2015. In addition, the cash withdrawals at the banks have been limited. In particular

the National Bank of Greece was affected, and thus, the value of the bank dropped by a huge

amount over a very short time period as one can see in Figure 2.3. To capture such events in a

mathematical approach one has to include jumps in the underlying model.

We continue now by introducing the mathematical meaning of a jump and by describing jump

processes as well as jump-diffusion processes.

Jump Processes

Here, we define first what a jump is and then we discuss Poisson and compound Poisson

processes, two pure jump processes. To define in mathematical terms a jump, we have to

introduce the notion of càdlàg functions.

Definition 2.1.6 (Càdlàg function). Let T be the time endpoint and consider the real-valued

function f : [0,T] → R. The function f is called a càdlàg function if for any t ∈ [0,T] the

left-hand side and the right-hand side limits exist, i.e.

f (t−) = lim
s
<→t

f (s) <+∞

f (t+) = lim
s
>→t

f (s) <+∞,

and if in addition f is right-continuous, i.e.

f (t+) = f (t).

Remark 2.1.7. The term càdlàg refers to the French acronym continu à droite, limite à gauche.

Some references also call càdlàg functions rcll functions, which stands for right-continuous

with left limits (see [32]).

Note that any continuous function is a càdlàg function. However, a càdlàg function can also

include discontinuities, which we call jumps.

Definition 2.1.8 (Jump). Let f : [0,T] →R be a càdlàg function. A jump at time t is a disconti-

nuity of f at t , i.e.
∣∣ f (t)− f (t−)

∣∣> 0.

Since we have now properly defined a jump, we discuss the first jump process, the Poisson

process.

13

Chapter 2. Stochastical and Numerical Background

Definition 2.1.9 (Poisson process). Let (τi)i≥1 be a sequence of independent exponential ran-

dom variables with parameter λ and let Tn =
n∑

i=1
τi for any n ∈N. Moreover, let

N (t) = ∑
n≥1

1{t≥Tn } ∀t ≥ 0.

Then the stochastic process (N (t))t≥0 is called a Poisson process with intensity λ.

The definition of the Poisson process can be interpreted in the following way. The interarrival

times of the jumps, i.e. the time between two jumps, are given by the random variables τi . The

time of jump number n is described by Tn and N (t) specifies the number of jumps occured in

the time interval [0, t]. Hence, the increment N (t)−N (s), with 0 ≤ s < t , gives the number of

jumps in the time interval]s, t].

The Poisson processes satisfy certain properties. Let (N (t))t≥0 be a Poisson process with

intensity λ. Among the most important properties are the following (for more information

about Poisson processes see e.g. [95, 32]):

(i) Distribution: For any t ≥ 0, the random variable N (t) is characterized by a Poisson

distribution with intensity λt .

(ii) Stationary and independent increments: Let 0 ≤ t1 < t2 ≤ t3 < t4. Then the distribution of

the increment N (t2)−N (t1) is stationary, i.e. it only depends on t2 − t1 and not on t1.

Furthermore the increments N (t2)−N (t1) and N (t4)−N (t3) are independent.

(iii) Càdlàg function: Every sample path of Poisson process is a càdlàg function, i.e. for

all ω ∈ Ω the sample path t 7→ N (ω, t) is continuous on the right-hand side and has

left-hand and right-hand side limits.

(iv) Continuity: For any ω ∈Ω, the sample paths of the Poisson process are almost surely

continuous, since the discontinuities (described as jumps) form a set of measure zero.

In Figure 2.4 a sample path of a Poisson distribution with intensity λ= 3 is shown over a time

interval [0,1]. One can observe the properties of the Poisson process described above. In this

illustration one counts three jumps. Note that at every jump the function value increases by

one, i.e. the jumps are all of size one. This leads also to the restriction that every Poisson

process is increasing and cannot decrease. Since not every event in the global economy, in

nature or in science has the same impact, and thus, the same jumps, we need to consider a

generalized concept of jump processes. To do so, one can take into account the next type of

jump processes, the so-called compound Poisson processes.

Definition 2.1.10 (Compound Poisson process). Consider a sequence of independent iden-

tically distributed random variables that are distributed according to a certain probability

14

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
(t

)

0

0.5

1

1.5

2

2.5

3

3.5

4
Sample path of a Poisson process

Figure 2.4: Simulation of a Poisson process with intensity λ= 3 over the time interval [0,1].

distribution q. Furthermore let (N (t))t≥0 be a Poisson process with intensity λ, that is inde-

pendent from the random variables (Yi)i≥1. Then a compound Poisson process (Q(t))t≥0 with

intensity λ and jump size distribution q is defined by

Q(t) :=
N (t)∑
i=1

Yi ∀t ≥ 0.

The interpretation of the compound Poisson process is similar to the one of a Poisson process.

The interarrival times, that indicate the times of the jumps, are exponentially distributed with

rate λ. The random variable N (t) specifies the number of jumps in the time interval [0, t].

The jump sizes are distributed according to the probability distribution q . The jump sizes

between 0 and t are added up and stored in Q(t). As for the Poisson process we list now a

few important properties of the compound Poisson process. More information to compound

Poisson processes can be found for instance in [95, 32].

Let (Q(t))t≥0 be a compound Poisson process with jump intensity λ and jump size distribution

q . Then the following properties hold:

(i) Stationary and independent increments: Let 0 ≤ t1 < t2 ≤ t3 < t4. Then the distribution

of the compound Poisson increment Q (t2)−Q (t1) is stationary, i.e. it only depends

on t2 − t1 and not t1. Moreover, the increments Q (t2)−Q (t1) and Q (t4)−Q (t3) are

independent.

(ii) Càdlàg function: Let t 7→Q (ω, t) with ω ∈Ω be a sample path of the compound Poisson

15

Chapter 2. Stochastical and Numerical Background

process. Then this path is a càdlàg function.

(iii) Continuity: Every sample path of the compound Poisson process is almost surely

continuous with the discontinuities (in the form of the jumps) representing a set of

measure zero.

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
(t

)

-0.1

0

0.1

0.2

0.3

0.4

0.5
Sample path of a compound Poisson process

Figure 2.5: Simulation of a compound Poisson process with intensity λ= 3 and with normally
distributed jump sizes with mean 0 and standard deviation 1/λ over the time interval [0,1].

Figure 2.5 shows an example of a compound Poisson process with jump intensity λ= 3 and

with jump sizes that are distributed according to a normal distribution with zero mean and

standard deviation 1/λ. One can observe that compared to the Poisson process (see Figure 2.4)

the jump size is no longer fixed and the stochastic process does not necessarily increase with

every jump. In fact, here we have four jumps in the time interval [0,1] with the first two jumps

being positive, whereas the last two are negative.

With the Brownian motion and the compound Poisson process properly defined, we have now

all the ingredients to construct a jump-diffusion process.

Jump-Diffusion Processes

Here, we combine the concepts of diffusion and jump processes to create the so-called jump-

diffusion processes. These stochastic processes mainly evolve like a diffusion process such

as the Brownian motion. Then one adds to this process a finite number of jumps through

the means of a jump process, for instance adding a Poisson or a compound Poisson process.

16

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

The resulting process incorporates the best features of both types of stochastic processes and

yields a way to realistically model many problems in nature, science and so on.

Definition 2.1.11 (Jump-Diffusion process). Let (W (t))t≥0 be a Brownian motion (see Defini-

tion 2.1.2) and let (Q(t))t≥0 be a compound Poisson process with jump intensity λ and with a

jump size distribution q (see Definition 2.1.10). Moreover let b ∈R be a real number denoting

the drift coefficient and let σ be the standard deviation of the diffusion term. Then the stochastic

process (X (t))t≥0 characterized by

X (t) = bt +σW (t)+Q(t)

is a jump-diffusion process with a diffusion component driven by a Brownian motion with drift

b and a jump component driven by a compound Poisson process.

Note that if one considers the compound Poisson process defined as in Definition 2.1.10, i.e.

Q(t) =
N (t)∑
i=1

Yi , then one can rewrite the jump-diffusion process (X (t))t≥0 as

X (t) = bt +σW (t)+
N (t)∑
i=1

Yi .

Between jumps the processes is characterized by a Brownian motion with drift b. The number

of jumps between the start time and the time endpoint t is given by a Poisson process N (t)

with intensity λ. The size of jump number i is given by Yi , which is distributed according

to the distribution q . As for the other types of stochastic processes we list now the most

important properties of jump-diffusion processes (for more detailed information about jump-

diffusion process, see e.g. [16, 32, 95]). Let X (t) be a jump-diffusion process as defined in

Definition 2.1.11. Then this process has the following features:

(i) Stationary and independent increments: Let 0 ≤ t1 < t2 ≤ t3 < t4. Then the jump-diffusion

increment X (t2) − X (t1) is stationary, i.e. it only depends on t2 − t1 and not on t1.

Furthermore, the increments X (t2)−X (t1) and X (t4)−X (t3) are independent.

(ii) Càdlàg function: Let ω ∈Ω. Then the sample path t 7→ X (ω, t) is a càdlàg function.

(iii) Continuity: All sample paths t 7→ X (ω, t) (with ω ∈Ω) are almost surely continuous. The

discontinuities (called jumps) are of measure zero.

More information to compound Poisson processes can be found for instance in [95, 32].

In Figure 2.6 a jump-diffusion process for the time interval [0,1] with a diffusion component

driven by a Brownian motion with zero drift and with diffusion volatility σ= 0.2 and a jump

component driven by a compound Poisson process with jump intensityλ= 3 and normal jump

size distribution with zero mean and standard deviation 1/λ is illustrated. In this example

17

Chapter 2. Stochastical and Numerical Background

t
0 0.2 0.4 0.6 0.8 1

X
(t

)

-0.2

0

0.2

0.4

0.6

0.8

1
Sample path of a jump-diffusion process

Figure 2.6: Simulation of a jump-diffusion process with intensity λ= 3 over the time interval
[0,1].

there are two positive jumps both of different sizes. In between the jumps the process is a

Brownian motion.

Before we construct stochastic differential equations driven by jump-diffusion processes, we

briefly mention a concept, which generalizes all the different types of stochastic processes

that we have seen here so far.

Beyond Jump-Diffusion Processes

As we have seen in the above sections, diffusion processes (such as the Brownian motion),

jump processes (e.g. Poisson and compound Poisson processes) and jump-diffusion processes

(constructed by adding a jump process to a diffusion process) all share some important

properties such as stationary and independent increments, sample paths that are càdlàg

functions and that are almost surely continuous. This is not just a coincidence. In fact all these

processes are special cases of the so-called Lévy processes.

Definition 2.1.12 (Lévy process). Let (X (t))t≥0 be a stochastic process such that

(i) Initialisation: The initial value of the stochastic process is zero, i.e. X (0) = 0.

(ii) Càdlàg function: Let ω ∈Ω. Every sample path given by t 7→ X (ω, t) is a càdlàg function.

(iii) Stationary and independent increments: Let 0 ≤ t1 < t2 ≤ t3 < t4. Then the increment

18

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

X (t2)−X (t1) is stationary, i.e. it only depends on t2 − t1 and not on t1. Furthermore the

two stochastic increments X (t2)−X (t1) and X (t4)−X (t3) are independent.

(iv) Stochastic continuity: Let 0 ≤ t1 < t2. For all ε> 0 the stochastic process satisfies

P (|X (t2)−X (t1)| ≥ ε) → 0 as t2 tends to t1.

General Lévy processes are beyond the scope of this thesis and we focus in the following on

stochastic processes described in the previous sections. We would like to give just one remark

about Lévy processes.

Remark 2.1.13. The jump processes and the jump-diffusion processes we have seen so far have

only a finite number of jumps in a finite time interval. Another special class of Lévy processes is to

use processes with infinite activity, the so-called infinite activity Lévy processes. These processes

are characterized by an infinite number of jumps in any time interval. Models based on infinite

activity Lévy processes are usually rich enough so that there is no need to add a diffusion process

such as the Brownian motion. To decide whether to model with jump-diffusion processes or with

infinite activity Lévy processes depends usually on the particular problem and on modelling

convenience (see e.g. [16, 64]).

Stochastic Differential Equations driven by Jump-Diffusions

In this section we introduce stochastic differential equations that are driven by jump-diffusion

processes. This enables us to model stochastic problems that can account for sudden, un-

foreseen events, that have a huge impact on the stochastic process over a very short time

period.

Let (X (t))t≥0 be a stochastic process that is characterized by the stochastic differential equation


dX (t) = f (X (t−))dt +

m1∑
r=1

g r
1 (X (t−))dW r (t)+

m2∑
r=1

g r
2 (X (t−))dJ r (t), 0 < t ≤ T,

X (0) = X0,

(2.3)

where X (t−) is the left-hand side limit of X (t), f :Rd →Rd the drift function, g r
1 :Rd →Rd for

r = 1,2, . . . ,m1 the diffusion functions and g r
2 :Rd →Rd for r = 1,2, . . . ,m2 the jump functions.

The processes (W r)t∈[0,T] with r = 1,2, . . . ,m1 are independent one-dimensional Brownian

motions and (J r)t∈[0,T] with r = 1,2, . . . ,m2 are independent jump processes, where J r (t) =
N r (t)∑
i=1

(Vi −1) with N r (t) resulting from a Poisson process with intensity λ. In the jump term

of (2.3) dJ r (t) represents the jump of the process (J r)t∈[0,T] at time t . The jump sizes are

described by the random variables Vi that are distributed according to a specific distribution.

The initial condition of the SDE driven by a jump-diffusion process is given by X (0) = X0. For

the same reasons as for stochastic differential equations based solely on diffusion processes

19

Chapter 2. Stochastical and Numerical Background

we focus in the following on autonomous SDEs (see Remark 2.1.3).

Two jump-diffusion models that are widely used are the Merton model and the Kou model.

Before we look at these models in particular, we study a specific class of stochastic differential

equations driven by jump-diffusion processes that generalizes the two models. Let (X (t))t∈[0,T]

be a stochastic process described by the SDE
dX (t) = µX (t−)dt +σX (t−)dW (t)+X (t−)dJ (t), 0 < t ≤ T,

X (0) = X0,

(2.4)

where (W (t))t∈[0,T] is a Brownian motion and (J (t))t∈[0,T] a jump process with J (t) =
N (t)∑

i
(Vi −1),

where N (t) is a Poisson process with intensity λ and where Vi is distributed according to a

specific distribution.

Proposition 2.1.14. The exact solution of the stochastic differential equation driven by jump-

diffusions characterized by (2.4) is given by

X (t) = X0 exp

{(
µ− σ2

2

)
t +σW (t)

}N (t)∏
i=1

Vi .

Proof. Let (X (t))t∈[0,T] be a stochastic process defined by (2.4) and let ∆X (t) := X (t)−X (t−).

Consider the natural logarithm of X (t), i.e. ln(X (t)). Applying the Itô lemma for jump-

diffusion processes (see e.g. [32]) yields

dln(X (t)) = µX (t) 1
X (t) dt + σ2 X (t)2

2

(
− 1

X (t)2

)
dt

+σX (t) 1
X (t) dW (t)+ [ln(X (t−)+∆X (t))− ln(X (t−))] .

Taking into account the properties of the logarithm, the last term on the right-hand side can

be expressed as

ln(X (t−)+∆X (t))− ln(X (t−)) = ln
(

X (t−)+∆X (t)
X (t−)

)
= ln

(
1+ ∆X (t)

X (t−)

)
= ln

(
1+ X (t−)(Vi−1)

X (t−)

)
= ln(1+ (Vi −1))

= ln(Vi) .

Hence, we obtain

dln(X (t)) =µdt − σ2

2
dt +σdW (t)+ ln(Vi) ,

20

2.1. Stochastic Differential Equations driven by Jump-Diffusion Processes

which can be rewritten as

dln(X (t)) =
(
µ− σ2

2

)
dt +σdW (t)+ ln(Vi) .

Taking the integral on both sides over the interval between zero and t results in

ln(X (t))− ln(X (0)) =
(
µ− σ2

2

)
t +σW (t)+

N (t)∑
i=1

ln(Vi) .

Rearranging the terms and applying the exponential on both yields, we obtain

X (t) = X0 exp

{(
µ− σ2

2

)
t +σW (t)

}N (t)∏
i=1

Vi ,

which is the desired result.

Remark 2.1.15. Observe that the Black-Scholes model (2.1.4) is a particular form of the stochas-

tic process defined by (2.4). In fact, it can be obtained by setting the jump terms equal to zero.

Therefore, the exact solution of the Black-Scholes model can also be obtained from (2.1.14) by

removing the jumps.

The Merton Model

Historically the first model to include jumps in the financial world was the Merton model,

which was introduced in 1976 by Robert C. Merton in [80].

Definition 2.1.16 (Merton model). The Merton model is a stochastic process (X (t))t∈[0,T] char-

acterized by the stochastic differential equation driven by jump-diffusions (2.4), where the jump

sizes are distributed according to a log-normal distribution with parameters η and ν, i.e.

log(Vi) iid∼ N
(
η,ν2) .

The Merton model admits an exact solution derived in Proposition 2.1.14. The advantages of

the Merton model over the Black-Scholes model, besides being a jump-diffusion model instead

of a diffusion one, are that the Merton model leads to heavier tails of the distribution on the left-

hand side as well as on the right-hand side [61]. Empirical data shows that the Black-Scholes

model yields tails that are not significant enough (see for instance [32]). Figure 2.7 shows the

illustration of the solution of the Merton model over the time interval [0,1]. As parameter we

have chosen for the drift µ= 0.05, for the diffusion σ= 0.2 and as initial condition X (0) = 1.

The parameters related to the jump terms are the jump intensity λ= 3, the mean of the log-

normal distribution η= 0 and the standard deviation ν= 0.03. In our example we can observe

three different jumps.

21

Chapter 2. Stochastical and Numerical Background

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
(t

)

0.9

1

1.1

1.2

1.3

1.4

1.5
Merton model

Figure 2.7: Simulation of the solution of the Merton model over the time interval [0,1] with
initial condition X0 = 1, drift µ = 0.05, diffusion σ = 0.2, jump intensity λ = 3, log-normal
distribution of the jump sizes with η= 0 and ν= 0.03.

The Kou Model

Another jump-diffusion model is given by the Kou model, which was introduced in [67] in

2002.

Definition 2.1.17 (Kou model). The Kou model is a stochastic process (X (t))t∈[0,T] defined by

the stochastic differential equation driven by jump-diffusion processes (2.4), where the jump

sizes are double exponentially distributed, i.e.

log(Vi) iid∼ K
(
η1,η2, p

)
with K an asymmetric exponential distribution whose density function is given by

fK (x) = pη1e−η1x 1{x≥0} +
(
1−p

)
η2eη2x 1{x<0}

with x ∈R, η1 > 1, η2 > 0 and p ∈ [0,1].

Remark 2.1.18. The parameters of the Kou model can be interpreted in the following way. The

probability of an upward jump is specified by the parameter p, whereas the parameters η1 and

η2 characterize the decay of the tails of the distribution of positive and negative jumps.

Like the Merton model, the Kou model also has an exact solution, which is derived in Proposi-

tion 2.1.14. The Kou model is also useful, when one wants to derive an analytical solution to

22

2.2. Numerical Schemes

many different problems in derivative pricing. A particular advantage of the Kou model over

the Merton model is that analytical solutions can also be derived for path-dependent options

(see e.g. [67]).

When we compare the Kou model to the Black-Scholes model, empirical studies show that the

Kou model leads to an improvement of the Black-Scholes model in two areas (see [67]). First,

using the Kou model, the distribution of the returns is characterized by a higher peak than

the normal distribution, heavier tails and a skew to the left. This is the so-called leptokurtic

character which arises with the Kou model. Second, the implied volatility can be better

reproduced using the Kou model than the Black-Scholes model (see [67, 61]).

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
(t

)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Kou model

Figure 2.8: Simulation of the solution of the Kou model over the time interval [0,1] with initial
condition X0 = 1, drift µ= 0.05, diffusion σ= 0.2, jump intensity λ= 3, Kou parameters p = 3,
η1 = 50 and η2 = 25.

In Figure 2.8 the simulation of the solution over the time interval [0,1] of the Kou model is

illustrated, where the parameters are µ= 0.05 (drift), σ= 0.2 (diffusion), λ= 3 (jump intensity)

and p = 3, η1 = 50, η2 = 25 (Kou parameters). The initial condition is chosen such that X (0) = 1.

The simulation suggests that for this example there are two jumps that occur between t = 0

and t = 1.

2.2 Numerical Schemes

The previous Section 2.1 shows that many phenomena in nature, in science, in economics

etc. can be modeled by stochastic differential equations driven by either diffusion or jump-

diffusion processes. We have also presented a few particular models such as the Black-Scholes

23

Chapter 2. Stochastical and Numerical Background

model, a diffusion model (see Definition 2.1.4), or the Merton and the Kou model, two jump-

diffusion models (see Definition 2.1.16 and Definition 2.1.17). These three models all admit

an exact solution as we have shown in Proposition 2.1.5 and Proposition 2.1.14. Note that this

is an exception though and there are many more sophisticated models that do not have an

analytical solution. Since one cannot derive an exact solution for many stochastic problems,

we use numerical methods to approximate the solution.

In the following we present first the numerical discretization schemes that we frequently use

in this thesis. This is followed by studying two important concepts of numerical methods, the

convergence, where we distinguish between strong and weak convergence and the stability,

where we focus on the mean square stability.

In this section we consider only diffusion models characterized by the SDE (2.1) that we recall

here 
dX (t) = f (X (t))dt +

m∑
r=1

g r (X (t))dW r (t), 0 < t ≤ T,

X (0) = X0.

Note that it is straightforward to extent what follows to jump-diffusion models. For simplicity

we do not mention them any more for the rest of this section. However, we come back to the

definition and properties of numerical schemes for jump-diffusion processes in the other

chapters where this kind of methods are required.

In the following we assume standard Lipschitz and linear growth conditions on the drift and

the diffusion so that the existence of a strong solution of the above stochastic differential

equations is guaranteed (see e.g. [66]).

To approximate numerically the solution of (2.1) we take into account the discrete map

Xn+1 =Ψ (Xn ,h,ξn) (2.5)

withΨ (·,h,ξn) :Rd →Rd for n ≥ 0, h denoting the time stepsize and ξn a random vector. We

define now two concepts, the convergence and the stability of a numerical scheme.

2.2.1 Strong and Weak Convergence

The first concept that we look at is the convergence. To do so, we fix a time endpoint T and

we let h tend to zero. Since we study the convergence of numerical methods for stochastic

differential equations, random variables are involved and we have to specify which measure

of convergence one applies. That is why we distinguish in the following between strong and

weak convergence.

The strong order of convergence indicates the rate at which the mean square of the error

between exact and approximate solution tends to zero as the time stepsize h goes to zero. The

strong convergence is important if one is interested in path-wise approximations (see [66]).

24

2.2. Numerical Schemes

Definition 2.2.1 (Strong convergence). The numerical approximation (2.5), starting from the

exact initial value X0 is said to have strong order of convergence rs if

∃C ∈R+ such that max
0≤n≤T /h

(
E
[|Xn −X (τn)|2])1/2 ≤C hrs ,

where τn = nh ∈ [0,T] with h small enough and where C is a constant independent of h.

Remark 2.2.2. It is worth stressing that the constant C is independent of h but might depend

on the time endpoint T , the stochastic process X (t) and the numerical scheme.

The other type of convergence is the weak order of convergence, which is useful if one deals

with functionals of the stochastic process (X (t))t∈[0,T]. The weak order of convergence mea-

sures in particular the rate of decay of the error of the moments of the stochastic process (see

[66]).

Definition 2.2.3 (Weak convergence). The numercial method (2.5), starting from the exact

initial value X0 is said to have weak order of convergence rw if for all functions

φ :Rd →R ∈C
2(γ+1)
P

(
Rd ,R

)
∃C ∈R+ such that

∣∣E[
φ (Xn)

]−E[
φ (X (τn))

]∣∣≤C hrw ,

for any τn = nh ∈ [0,T] fixed and h small enough.

Remark 2.2.4. The constant C does not depend on the time stepsize h, but it can depend on T ,

X (t), φ and the numerical scheme. Note also that here C
2(γ+1)
P

(
Rd ,R

)
denotes the space of γ

times continuously differentiable functions Rd →Rwith all partial derivatives with polynomial

growth.

2.2.2 Stability

Another important concept is the stability of a numerical method which analyzes the long-

term behavior of the solution (i.e. T tends to infinity) for a fixed time stepsize. There are

different ways to look at the stability of the solution of a stochastic process. Two common

concepts are the mean square stability, which measures the stability of moments, and the

asymptotic stability, which measures the stability of a sample path on the whole (see e.g.

[17, 55]). For the linear test problem that we use in the following, the mean square stability

implies the asymptotic stability (see for instance [57]). In this thesis we focus on the mean

square stability. The following is partly taken from [4].

Definition 2.2.5 (Mean square stability of a stochastic process). A stochastic process (X (t))t≥0

is said to be mean square stable if and only if

lim
t→∞E

[
X (t)2]= 0.

25

Chapter 2. Stochastical and Numerical Background

To carry out a stability analysis, the one-dimensional scalar linear SDE (in fact it is also know

as the Black-Scholes model) specified through
dX (t) =µX (t)dt +σX (t)dW (t), 0 ≤ t ,µ ∈C,σ ∈C,

X (0) = 1,

(2.6)

is widely used in the literature as test problem (see e.g. [66]). As we have seen in Proposi-

tion 2.1.5 this stochastic differential equation admits an exact solution given by

X (t) = X0 exp

{(
µ− σ2

2

)
t +σW (t)

}
and it can be shown that the exact solution is mean square stable if and only if

R
{
µ
}+ 1

2
|σ|2 < 0,

where R {·} denotes the real part of the complex number. It follows that the stability domain

of the test problem (2.6) is given by

Sexact :=
{

(µ,σ) ∈C2 | R{µ}+ 1

2
|σ|2 < 0

}
. (2.7)

To avoid stability issues, i.e. restrictions on the stepsize, the aim of numerical methods is to

cover as much as possible of this stability domain.

Definition 2.2.6 (Mean square stability of a numerical method). A numerical method (2.5) is

said to be mean square stable if and only if

lim
n→∞E

[
X 2

n

]= 0.

Some comments on the linear scalar test equation. We note that the justification of the

test equation (2.7) is delicate for multi-dimensional systems. Indeed the extension of the

stability analysis of numerical methods for SDEs already for multidimensional linear systems

dX = AX dt +∑m
r=1 B r X dW r (t), where A,B r are d ×d matrices and dW r are independent one-

dimensional Wiener processes is difficult in general as such systems cannot be simultaneously

diagonalized if A and B r , r = 1,2, . . . ,m do not commute. Attempts to study numerical stability

on linear systems have been carried out in [93, 88] but these studies do not allow for an easy

characterization of stability criterion. Another attempt to generalize the linear test equation

has been proposed in [27] using the theory of stochastic stabilization and destabilization [75].

Two sets of test equations with d = m = 2 and d = m = 3 have been considered. It turns out

that the stability behavior for the Euler-Maruyama method (or its generalization obtained

by using the θ method for the drift term) applied to these more general test equations is

essentially captured by the the linear test equation (2.6). Finally, we mention that for non

26

2.2. Numerical Schemes

normal drift (2.6) can indeed fail to characterize the stability property (at least in the pre-

asymptotic regime) of numerical methods [60, 27]. This is already the case in the deterministic

setting for the test equation y ′ =λy (see [53]).

2.2.3 Euler-Maruyama Method

Here, we present now a first method to numerically approximate the solutions of a SDE. The

simplest method to approximate solutions to (2.1) is a generalization of the Euler method for

ordinary differential equations, the Euler-Maruyama method. This numerical scheme was

introduced in 1955 by Gisiro Maruyama [78].

Definition 2.2.7 (Euler-Maruyama method). Let h be a uniform time stepsize. Then the Euler-

Maruyama method for (2.1) is defined by

Xn+1 = Xn +h f (Xn)+
m∑

r=1
g r (Xn)∆Wn,r , (2.8)

where ∆Wn,r ∼N (0,h) ,r = 1,2, . . . ,m are independent Wiener increments.

It can be shown that the Euler-Maruyama method is of strong order of convergence 1/2 and of

weak order of convergence 1 (see for instance [66]). Furthermore, for the Euler-Maruyama

scheme we have a stability domain given by

SE M := {
(p, q) ∈C2 | |1+p|2 +q2 < 1

}
, (2.9)

where (p, q) = (hµ,
p

h|σ|) (see [66]).

-6 -5 -4 -3 -2 -1 0
0.0

0.5

1.0

1.5

2.0

2.5

p

q
2

Figure 2.9: Stability region (dark gray) for the Euler-Maruyama method. The dashed line
delimits the stability region (light gray) of the test problem (2.6).

Figure 2.9 illustrates the stability region (we call it region instead of domain if we consider the

parameters to be real instead of complex) of the Euler-Maruyama method. One observes that

the Euler-Maruyama only covers a small portion of the true stability region. Therefore, for stiff

problems there might be a severe time stepsize restriction due to stability issues. One way

27

Chapter 2. Stochastical and Numerical Background

to improve the stability properties is to use S-ROCK methods that we introduce in the next

section.

2.2.4 S-ROCK Method

The so-called S-ROCK methods have first been introduced for Stratonovich stochastic differen-

tial equations in [9, 10] and they have been extended to Itô SDEs in [12]. Here, we will focus on

the latter. S-ROCK methods are numerical integrators that offer an extended stability domain

while remaining explicit. There are different types of S-ROCK methods (mainly depending

on the weak and strong order), but since they all are built up the same way (there is a deter-

ministic stabilization procedure and a stochastic finishing procedure, which guarantees that

the desired accuracy is achieved), we present in this section only S-ROCK methods of weak

order 1 and strong order 1/2. We call this type of S-ROCK methods in the following S-ROCK1.

S-ROCK2 (weak order 2, strong order 1/2) and other schemes are used in other chapters of this

thesis and they are presented in the corresponding sections.

Here we define the S-ROCK1 method with s stages and of weak order 1 and strong order 1
2 (see

[12]).

Definition 2.2.8 (S-ROCK1 method). Let h be a uniform time stepsize. The s-stage S-ROCK1

method for (2.1) is defined for all s ≥ 2 as follows:

K0 = Xn

K1 = Xn +h ω1
ω0

f (K0)

Ki = 2hω1
Ti−1(ω0)

Ti (ω0) f (Ki−1)+2ω0
Ti−1(ω0)

Ti (ω0) Ki−1 − Ti−2(ω0)
Ti (ω0) Ki−2, i = 2,3, . . . , s −1,

Ks = 2hω1
Ts−1(ω0)

Ts (ω0) f (Ks−1)+2ω0
Ts−1(ω0)

Ts (ω0) Ks−1 − Ts−2(ω0)
Ts (ω0) Ks−2 +

m∑
r=1

g r (Ks−1)∆Wn+1,r ,

where ω0 = 1+ η

s2 , ω1 = Ts (ω0)
T ′

s (ω0) and ∆Wn+1,r =W r (τn+1)−W r (τn) and we set Xn+1 = Ks .

Note that (Ti (x))i≥0 are the orthogonal Chebyshev polynomials, which are recursively given by

T0(x) = 1, T1(x) = x, Ti (x) = 2xTi−1(x)−Ti−2(x) for i ≥ 2, x ∈R.

The parameter η is known as the damping parameter and is used to enlarge the width of the

stability domain in the direction of the noise. The value of η can be chosen to optimize the

stability (in the mean square sense) of the method (see [12]). We note that in the absence

of noise, the S-ROCK method coincides with the Chebyshev method introduced in [101].

Further, we note that for s = 1 one obtains the Euler-Maruyama method (2.8) so that the

s-stage S-ROCK1 method is defined for all s ≥ 1.

28

2.3. Monte Carlo Techniques

To define the stability domain of S-ROCK methods we first consider

SSDE ,a =
{

(p, q) ∈ [−a,0]×R | |q| ≤√−2p
}

,

a portion of the true stability region. Furthermore, we define

a∗ = sup
{

a > 0 | SSDE ,a ⊂Snum
}

,

where Snum denotes the stability domain of the numerical approximation scheme (see [12]).

In [12] it is shown that S-ROCK methods have stability domains with large a∗ and that the

growth of the portion of the true stability region increases as a∗
s ≈ cSR1s2 with cSR1 ≥ 0.33,

where s is the number of stages of the S-ROCK method (see also Section 3.2.2).

Remark 2.2.9. A crucial property for the S-ROCK methods is that a∗
s grows quadratically with

the stage number s, whereas the number of function evaluations only increases linearly with s.

-60 -50 -40 -30 -20 -10 0
0

50

100

150

200

250

p

q
2

Figure 2.10: Stability regions (dark gray) for the S-ROCK1 method with stage number s = 10
and damping parameter η= 5.9. The dashed line delimits the stability region (light gray) of
the test problem (2.7).

Figure 2.10 illustrates for instance the stability region (dark gray) of the S-ROCK1 method with

s = 10 stages and damping parameter η= 5.9. The interior part (light gray) of the dashed lines

represents the stability region of the true solution. We see that the S-ROCK1 methods cover a

significantly larger region than the EM method (see Figure 2.9). By varying s, any portion of

the true stability region can be covered [12].

2.3 Monte Carlo Techniques

In many areas, be it in economics (e.g. [61]), in physics (e.g. [81]), in chemistry (e.g. [48]), in

biology (e.g. [103]) and so on, there are problems that can be modeled by using stochastic

differential equations. Many times one is not only interested in the exact solution to the

problem described by the SDE, but its properties such as its mean or its variance. More

generally speaking it is interesting to compute the expectation of a functional of a stochastic

29

Chapter 2. Stochastical and Numerical Background

process. In mathematical terms this means that one would like to compute

E
[
φ(X (T))

]
,

where T is some fixed time endpoint, (X (t))t∈[0,T] is a stochastic process with X (t) ∈Rd and

φ :Rd →Rd is some functional.

Now there are problems, where this kind of quantities can be computed analytically. Take for

instance the scenario of pricing European options. The underlying share price can e.g. be

modeled by the Black-Scholes model. To determine the price of a European option based on

this share price, one has to compute the expectation of a functional as described above. It can

be shown that there can be derived an analytical expression for the option price (see e.g. [70]).

This is one particular situation where this works very well. However, there are many different

problem settings where one cannot necessarily derive an exact solution. This is for instance

the case when more sophisticated stochastic models are used (e.g. the general Black-Scholes

model with stochastic volatility [61]) or when the functional is more complex (as this is the

case for instance for path-dependent options like Asian or barrier options [36]). Therefore one

needs a numerical approach to find an approximation to the solution. Basically there are two

different approaches to tackle this kind of situations. Either one reformulates the problem

as partial differential equations using the forward Kolmogorov equation and then solves the

resulting PDEs using, for instance, finite differences, or one uses Monte Carlo techniques. In

this thesis we focus on the latter, which has the advantage that it can easily be implemented

and that it is not affected by the dimension of the problem. However, Monte Carlo techniques

can be computationally expensive, and thus, slow, so one is usually interested in speeding

them up.

This section is structured as follows. We give first the formal description of the Monte Carlo

approach and we discuss how to measure the efficiency of simulation estimators. Then

we briefly discuss some well-known variance reduction techniques (two of them have been

implemented in this thesis) and then we present the multilevel Monte Carlo methods, which

are quite popular when it comes to speeding up simulations and which can be used for many

different kind of problems.

2.3.1 Monte Carlo Method

Here, we present how Monte Carlo is used to approximate the expectation of functionals

depending on a random variable. Let X be a random variable with probability distribution F ,

φ :Rd →Rd some functional and suppose that we are interested in approximating

E
[
φ (X)

]
. (2.10)

The estimator of (2.10) using Monte Carlo simulations can be obtained as follows:

30

2.3. Monte Carlo Techniques

1. Draw N independent realizations from F , the distribution of X to get

X1, X2, . . . , XN .

2. Apply the functional φ to every realization so that we obtain

φ (X1) ,φ (X2) , . . . ,φ (XN) .

3. Estimate the expectation of φ (X) by taking the sample average

E
[
φ (X)

]≈ 1

N

N∑
i=1

φ (Xi) .

We give now an example which shows how Monte Carlo simulations can be used to get a

numerical approximation of an integral (see for instance [45]). Let f :R→R be some function.

Furthermore, assume that there are two real numbers a and b such that b > a. Suppose that

one would like to compute numerically the integral of f over the time interval [a,b], i.e. we try

to estimate ∫ b

a
f (x)dx.

The first step is to rewrite the integral as an expectation, i.e.∫ b

a
f (x)dx = (b −a)

∫ +∞

−∞
f (x)

1

(b −a)
1[a,b]dx = (b −a)E

[
f (x)

]
with the underlying law being the uniform distribution over the interval [a,b]. The second

and final step consists in applying Monte Carlo to obtain an estimate of the expectation. In

particular, one samples independently N numbers x1, x2, . . . , xN from a uniform distribution

over [a,b]. This yields as estimator for the integral

∫ b

a
f (x)dx ≈ (b −a)

1

N

N∑
i=1

f (xi) .

There exist many other approximation techniques to numerically integrate integrals, especially

in dimension one (see e.g. [69]). However, one of the huge benefits of using Monte Carlo

simulations is that the convergence rate is independent of the dimension of the problem.

The speed of convergence does not depend on the dimension of the integral but only on its

number of simulations N (see [69]). A typical rate of convergence of Monte Carlo methods

based on N simulations is N−1/2 (see e.g. [45]). There are many books and papers that deal

with Monte Carlo techniques, we name here a few [41, 45, 89]. To be able to compare Monte

Carlo estimators to other type of estimators we have to fix some criterion that enables us to

judge which estimator is more efficient. We do this in the next section.

31

Chapter 2. Stochastical and Numerical Background

Efficiency of Simulation Estimators

In this section we present a way how one can compare the efficiency of simulation estimators.

This is helpful if one has to decide which estimator to pick. The following is mainly based

on [49]. To measure the efficiency of estimators we look at three quantities, which are the

computing time, the bias and the variance of the estimator. We pursue now by putting all

these quantities in relation to each other.

Let X be the quantity that we would like to estimate. First suppose that we deal with estimators

X̂N that are defined by

X̂N := 1

N

N∑
i=1

Xi ,

where X1, X2, . . . , XN are independent and identically distributed with mean E [Xi] = X and

variance Var(Xi) =σ2, where σ is some finite real number. Observe that these estimators are

unbiased, i.e. using the linearity of the expectation we get

E
[

X̂N
]= E[

1

N

N∑
i=1

Xi

]
= 1

N

N∑
i=1

E [Xi] = X

(see [31]). Furthermore, taking into account the independence of the simulations X1, X2, . . . , XN

we obtain for the variance

Var
(
X̂N

)= Var

(
1

N

N∑
i=1

Xi

)
= 1

N 2

N∑
i=1

Var(Xi) = σ2

N
.

Hence, the central limit theorem yields

X̂N −E[
X̂N

]√
Var

(
X̂N

) =
1
N

N∑
i=1

Xi −X

σp
N

→ Z ∼N (0,1) as N →∞. (2.11)

And thus, for N sufficiently large, we have

X̂N −X ≈N

(
0,
σ2

N

)
.

Therefore, everything but the variance being equal, estimators with a lower variance are more

efficient. Note that in the case where the variance σ2 is unknown, it is possible to to replace it

by a consistent estimator such as, for instance, σ̂2 = 1
N−1

N∑
i=1

(
Xi − X̂N

)2
(see e.g. [49]).

So far we have not considered the computing time, but we will do this now to account for the

computational effort required to produce an estimator. Let b be the computational budget

and let τ be the computing time required to generate a replication of Xi . Using only relative

values in the following and assuming that b and τ share the same unit, we do not need to

32

2.3. Monte Carlo Techniques

indicate the computing time. The total number of replications that one can generate is given

by N =
⌊

b
τ

⌋
. Observe that as the budget b tends to infinity, N

b → 1
τ , and thus, by (2.11)

p
b

(
X̂⌊

b
τ

⌋−X
)
→N

(
0,σ2τ

)
.

This can be interpreted as follows. For unbiased estimators, to find out which one of two

estimators performs better, one can try to figure out for which one the value of the product

of variance and the computing time for a single replication is lower. This approach can be

generalized if we consider that for each replication Xi there is a corresponding computing

time τi . Supposing that the couples (Xi ,τi) for i = 1,2, . . . , N are independent and identically

distributed, one has to compare the quantity σ2E [τ] of the different estimators (see e.g. [49]).

If desired this approach can even further be generalized (for more details see [51]).

The last relation that we build up now is the one between bias and variance. In the following

we suppose that there is a fixed computational budget. Until now we have considered only

unbiased estimators, which is important to make sure that the estimator converges to the

right value. In small samples bias is usually acceptable under the condition that the bias can

be reduced as much as required by increasing the computational budget (see [49]). Increasing

the computational effort of a replication reduces the bias, however, at the same time this leads

to a larger variance since the number of simulations decreases. Therefore, there is a trade-off

between bias and variance which can be measured, for instance, by the mean square error

(MSE) that is defined by

MSE
(
X̂N

)= E[(
X̂N −X

)2
]

.

By adding and subtracting the term E
[

X̂N
]

and by using the properties of the expectation, it is

straightforward to show that

MSE
(
X̂N

)= Var
(
X̂N

)+ (
bias

(
X̂N

))2
.

Note that, to compare two estimators in this thesis, we usually put into relation the mean

square error and the computational cost. The MSE measures the precision of the estimator and

the computational cost counts the number of function evaluations, and thus, is an indicator of

the computing time. By fixing a desired mean square error one can look at the corresponding

computational cost and then pick the estimator with a lower one.

Implementing small bias is often easier than small variance (see e.g. [49]). Hence, it is worth

studying methods that try to decrease the variance of the standard Monte Carlo approach. We

discuss this in the next section.

2.3.2 Variance Reduction Techniques

Monte Carlo techniques are simple and work very well even in higher dimension. One draw-

back of Monte Carlo methods though is that they are computationally expensive, and thus,

33

Chapter 2. Stochastical and Numerical Background

these methods can be very slow (see Section 2.3.1). Hence, it is useful to look for approaches

that can speed up the simulation procedure. One way to improve the performance is to

reduce the computing time of a problem by lowering the variance, which leads to the so-called

variance reduction techniques. There are many different variance reduction techniques and

they are difficult to compare, because they usually depend on the underlying problem. It is

not obvious to generally say which variance reduction techniques is the most efficient one.

One has to study the problem and then to decide which approaches might be the one suited

best. In the following we briefly state the most common variance reduction techniques and

we give their advantages and drawbacks. In this thesis we have applied two of the techniques,

namely the antithetic variates and the control variates (see Section 5.4.2). The following is

based on [49].

Antithetic variates The idea of approach is to consider pairs of replications that are in nega-

tive correlation to each other. This leads to a variance reduction, and thus, improves the

efficiency of the method. One big advantage of this method is that it is straightforward

to apply, but one has to remain cautious, because it is also possible that the antithetic

variates technique increases the variance of the estimator for certain problems.

Conditional Monte Carlo This variance reduction technique replaces the expectation by

the conditional expectation. This has the advantage that parts of the integration can

be computed analytically and only the remaining parts have to be estimated by Monte

Carlo simulations. This procedure is also known as Rao-Blackwellization.

Control variates For this technique new estimators with a reduced variance are produced by

using known quantities, the so-called control variates. As control variate one uses often

a random variable with a known mean. The more this random variable is correlated

to the one to be estimated, the better results can be expected. The control variates

approach is easy to implement and guarantees that the variance does not increase.

Importance sampling By changing the probability measure to give important outcomes

more weight, this variance reduction approach aims to increase the efficiency. If used

properly this technique can be very strong and lead to a huge improvement of the

performance. However, it is also possible that this approach increases the variance and

finding an adequate probability change can be quite challenging.

Matching underlying assets The matching underlying assets approach comprises different

methods that all intend to get specific sample means that coincide with the value they

would reach after carrying out infinitely many simulations. To this category we could,

among others, the moment matching approach realized by adjusting the path or the

weighted Monte Carlo method.

Stratified sampling The idea of this variance reduction technique is to divide the sample

space into specific subsets (the so-called strata) and then to sample from each strata.

Creating the strata it is important that the union of all the strata cover the entire sample

34

2.3. Monte Carlo Techniques

space and that the different strata are disjoint. This is an approach that can be quite

powerful, but it requires a higher effort and the additional knowledge for the correct

implementation.

Latin hypercube sampling This is an extension of the previous variance reduction tech-

nique to higher dimensional problems. This method is usually more effective, but also

more complex than the stratified sampling approach. Note that stratified sampling in

higher dimensions is often infeasible.

In the next section we present another way to speed up Monte Carlo methods, the so-called

multilevel Monte Carlo method. A nice feature of the multilevel approach is that we can

combine it with variance reduction techniques to obtain even more powerful methods. In

addition, a huge advantage of the multilevel Monte Carlo method over most variance reduction

techniques is that the multilevel Monte Carlo approach does not change the underlying

problem, whereas many variance reduction techniques do.

2.3.3 Multilevel Monte Carlo Method

In this section we present the multilevel Monte Carlo (MLMC) method, which was first intro-

duced by Michael B. Giles in [46]. The method has its origins in a paper of Ahmed Kebaier,

who published in [65] a new variance reduction technique. In fact, Kebaier introduced a new

control variates approach based on statistical Romberg extrapolation in which he applies the

Monte Carlo method twice for two different time stepsizes. Then the two approximations are

combined by taking many simulations of the coarse time grid and only a few from the fine time

grid. Fixing a mean square error of O
(
ε2

)
for some ε> 0 Kebaier’s method has a computational

cost of O
(
ε−2.5

)
, which is an improvement over the computational cost of the standard Monte

Carlo approach O
(
ε−3

)
. Inspired by this approach Giles extended this idea from two levels to

several levels. The strategy remains the same, for simulations based on a small time stepsize

take just a few, because they are computationally expensive. For simulations with a large time

stepsize, which are computationally cheap, take many. Finding the right balance between

number of simulations and time stepsize, the multilevel Monte Carlo method improves the

efficiency of Monte Carlo techniques significantly. In fact, to reach a mean square accuracy of

O
(
ε2

)
, it can be shown that the MLMC method reduces the computational cost from O

(
ε−3

)
for standard Monte Carlo to O

(
ε−2

(
logε

)2
)
.

Let (X (t))t∈[0,T] (with T a fixed time endpoint) be a stochastic process based on the following

SDE 
dX (t) = f (X (t))dt +

m∑
r=1

g r (X (t))dW r (t), 0 < t ≤ T,

X (0) = X0,

where we have used the same notation as in (2.1). Furthermore, let φ :Rd →R be a Lipschitz

35

Chapter 2. Stochastical and Numerical Background

continuous function. Suppose that one would like to estimate the expectation

E
[
φ (X (T))

]=: E .

In what follows we use the Euler-Maruyama method (2.8) as numerical integrator. In other

chapters of this thesis we have used different integrators, such as for instance the regular and

jump-adapted Euler-Maruyama methods in the jump-diffusion case (see Section 5.3) and

various S-ROCK methods (see Section 3.3). Before we show how the multilevel Monte Carlo

approach works, we present how one can approximate E by using standard Monte Carlo.

The Standard Monte Carlo Method

The Monte Carlo estimator of E is given by

E
[
φ (X (T))

]≈ 1

Ñ

Ñ∑
i=1

φ
(

X (i)
T /h

)
=: EMC

a sample average over Ñ independent simulations, where h is the uniform time stepsize of the

Euler-Maruyama method. By applying the Monte Carlo approach, two different types of errors

arise. First, there is the error due to the numerical discretization of the solution of X (t), which

leads to a bias. In fact, approximating X (T) using Euler-Maruyama with time stepsize h yields

X (T) ≈ XT /h .

Applying the functional and taking the expectation on both sides results in

E
[
φ (X (T))

]≈ E[
φ (XT /h)

]
.

When we compute the bias of the estimator EMC we obtain

bias(EMC) = E [EMC]−E[
φ (X (T))

]
= E

[
1
Ñ

Ñ∑
i=1

φ
(

X (i)
T /h

)]
−E[

φ (X (T))
]

= E
[
φ (XT /h)

]−E[
φ (X (T))

]
= O (h) ,

(2.12)

where we have used the linearity of the expectation and that the samples X (i)
T /h are identically

distributed. The last equality results from the fact that we apply a numerical integrator of weak

order of convergence 1.

Second, since the expectation is approximated by a sample average there is a statistical error.

In fact, due to the strong law of large numbers and the central limit theorem there is almost

36

2.3. Monte Carlo Techniques

surely no bias. However, this approximation introduces a certain variance, that depends on

the number of sample simulations Ñ . The variance of the Monte Carlo estimator EMC can be

expressed as follows:

Var(EMC) = Var

(
E

[
1

Ñ

Ñ∑
i=1

φ
(

X (i)
T /h

)])
= 1

Ñ 2

Ñ∑
i=1

Var
(
φ

(
X (i)

T /h

))
= Var

(
φ (XT /h)

)
Ñ

=O

(
1

Ñ

)
,

(2.13)

where we have used the fact that the samples X (i)
T /h are independent and identically distributed

and that we apply a numerical integrator with strong order of convergence 1/2.

As we have seen earlier in Section 2.3.1, a good way to measure the efficiency of an estimator

is using the mean square error. Assume now that a certain mean square accuracy

MSE(EMC) =O
(
ε2)

is desired with ε> 0. Since the mean square error can be split into variance and bias to the

square, i.e.

MSE(EMC) = Var(EMC)+ (bias(EMC))2 ,

and using the results (2.13) and (2.12) we obtain

Ñ =O
(
ε−2) and h =O (ε) .

Measuring the computational cost (or also called computational complexity) by the number

of function evaluations of a numerical discretization per sample path times the total number

of sample paths, we get for the standard Monte Carlo method

Cost(EMC) = Ñ
T

h
=O

(
ε−3) .

The Multilevel Monte Carlo Method

Here, we present now the multilevel Monte Carlo method. Let L be a positive integer repre-

senting the total number of levels. As refinement factor we fix here a particular case by taking

k = 2. A more general description of the MLMC method with refinement factor k is given in

Section 3.3.1. The MLMC method with L levels and refinement factor k = 2 uses the following

sequence of nested time stepsize:

h` =
T

2`
with `= 0,1, . . . ,L.

In fact, that means passing from level ` to level `+1 each time step from level ` is divided

by two. Note that the number of steps per level ` is given by M` := 2`. Figure 2.11 shows

the idea of the MLMC approach. The plot shows the solution to the Black-Scholes model

(see 2.2) with drift coefficient µ= 0.05, diffusion coefficient σ= 0.2 and time endpoint T = 1.

37

Chapter 2. Stochastical and Numerical Background

t
0 0.2 0.4 0.6 0.8 1

X
(t

)

0.9

1

1.1

1.2

1.3

1.4

1.5
Illustration of the multilevel Monte Carlo idea

Solution Black-Scholes model
Level 2 (4 steps)
Level 3 (8 steps)

Figure 2.11: Solution of the Black-Scholes model with drift µ= 0.05 and diffusion σ= 0.2 over
the time interval [0,1]. In addition, there are two Euler-Maruyama approximations, one with 4
steps (level 2) and one with 8 steps (level 3).

Furthermore, Figure 2.11 illustrates the levels 2 and 3 of the MLMC approach, i.e. the Euler-

Maruyama approximation with time stepsize h2 = 1/4 and time stepsize h3 = 1/8, respectively.

It is important to point out that for both levels the same Brownian path has been used.

Let φ` :=φ(
XM`

)≈φ (X (T)) be the Euler-Maruyama approximation with time stepsize h` of

φ (X (T)). Using the telescopic sum we can write

φL =
L∑
`=0

(
φ`−φ`−1

)
,

where φ−1 ≡ 0. The multilevel Monte Carlo estimator is given by

E∗ :=
L∑
`=0

E∗
` with E∗

` := 1

N`

N∑̀
i=1

(
φ(i)
`

−φ(i)
`−1

)
,

which is a sample average over N` independent realizations. It is important to stress that both

estimates, φ(i)
`

and φ(i)
`−1 are produced using the same Brownian motion path.

As for the standard Monte Carlo method, we use the mean square error as measure of the

38

2.3. Monte Carlo Techniques

accuracy of the MLMC estimator. The mean square error can be divided two components, the

variance and the bias to the square, i.e.

MSE
(
E∗)= Var

(
E∗)+ (

bias
(
E∗))2 .

Observe that the mean of the MLMC estimator is given by

E
[
E∗]= L∑

`=0
E

[
1

N`

N∑̀
i=1

(
φ(i)
`

−φ(i)
`−1

)]
=

L∑
`=0

E
[
φ`−φ`−1

]= E[
φL

]
,

where we have used the properties of the expectation and the fact that the φ(i)
`

are identically

distributed. Hence, we obtain for the bias

bias
(
E∗)= E[

E∗]−E = E[
φL

]−E .

Using the weak order of convergence 1 of the Euler-Maruyama method yields

bias
(
E∗)=O

(
2−L)

. (2.14)

Next, we derive a similar result for the variance of the MLMC estimator. Note that using the

Cauchy-Schwarz inequality we have

Var
(
φ`−φ`−1

)≤ (
Var

(
φ`−E

)1/2 +Var
(
φ`−1 −E

)1/2
)2

.

Furthermore, it holds that

Var
(
φ`−E

)≤ E[(
φ`−E

)2
]
= E

[(
φ

(
XM`

)−φ (X (T))
)2

]
≤C 2−`,

where C is some constant resulting from the Lipschitz continuity. We have also used that the

Euler-Maruyama method is of strong order of convergence 1/2. Therefore, we obtain for the

variance

Var
(
E∗)= L∑

`=0

Var
(
φ`−φ`−1

)
N`

=C
L∑
`=0

2−`

N`
. (2.15)

As for the MC approach, we assume that a mean square precision of MSE(E∗) = O
(
ε2

)
is

desired. Using the results for the bias (2.14) and for the variance (2.15) yields that ε= 2−L , i.e.

L =− logε
log2 , and the number of simulations per level ` has to be chosen such that N` = 22L2−`L.

Finally, for the computational complexity we obtain

Cost
(
E∗)= L∑

`=0
N`M` =

L∑
`=0

22L2−`L2` = 22LL(L+1) =O
(
ε−2 (

logε
)2

)
,

which is a significant reduction of the computational cost compared to the standard Monte

Carlo method for a same mean square accuracy of O
(
ε2

)
.

39

3 Stabilized Multilevel Monte Carlo
Method for Stiff Stochastic Differen-
tial Equations
In this chapter we present a multilevel Monte Carlo method for mean square stable stochastic

differential equations with multiple scales. The MLMC approach based on the classical explicit

numerical integrators deteriorates for such stiff problems. In fact, due to the time stepsize

restriction of such numerical methods, not all levels of the MLMC method can be exploited.

We introduce here multilevel Monte Carlo method that is based on an explicit stabilized

numerical method, the S-ROCK1 method. By balancing the stabilization procedure and by

considering at the same time the hierarchical sampling strategy of multilevel Monte Carlo

approach, we obtain a method whose computational cost is significantly reduced compared

to the standard MLMC method for stiff systems. We also show that for nonstiff problems our

stabilized MLMC method can outperform the MLMC method based on the classical numerical

methods. A big advantage of the stabilized approach is that the method remains fully explicit

and easy to implement. Last but not least we also show how the stabilized multilevel Monte

Carlo method can be further improved by using a higher weak order scheme on the finest time

grid (in our case we use the S-ROCK2 method). Various numerical experiments illustrate the

theoretical findings.

The following is mainly taken from the scientific papers [4] and [5].

3.1 Introduction

For computing expectations of functionals depending on a stochastic process, Monte Carlo

(MC) methods are an essential tool. In the context of stochastic differential equations (SDEs),

sample paths of the solution are computed by a numerical integrator and the MC approach

consists in approximating the expected value of a given functional of the solution by the

average of the computed samples. Bias and statistical errors are introduced in such an ap-

proximation procedure. The bias of the method is related to the weak order of convergence

of the considered numerical integrator, while the statistical error scales as the inverse of the

square root of the number of samples and involves the variance of the process. This statistical

error is a computational burden for many applications and many strategies to reduce the

41

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

computational cost of MC method have been proposed. We mention the variance reduction

techniques such as as estimators based on control variates or antithetic variates (see e.g. [49]).

A recent approach, originating with Heinrich [56] in the context of numerical quadrature,

proposed by Giles [46] for SDEs is the so-called multilevel Monte Carlo (MLMC) method that

allows to significantly speed up the classical MC method thanks to hierarchical sampling.

The main idea of MLMC methods is to apply the MC method for a nested sequence of step-

sizes while balancing the number of samples according to the stepsize. Precisely, consider

the square root of the mean square error as a measure of the accuracy, and e.g. the Euler-

Maruyama (EM) method [78] as the basic numerical integrator. Then, the computational cost

of O (ε−3) for the MC method is reduced to O (ε−2(log(ε))2) for the MLMC method to compute

the expectation of functionals with an accuracy of O (ε).

However, this computational saving is obtained assuming that the coarsest levels of the MLMC

method are accessible. But it is well known [57] that for classes of problems, e.g. stochastic

partial differential equations discretized by the method of lines, stability issues with standard

explicit methods can prevent to take coarse stepsizes. Indeed, the wide range of scales present

in the SDEs forces the numerical integrator to resolve the fastest scale leading to a possible

severe stepsize reduction. In this chapter we consider mean square stable stiff systems of

SDEs for which standard explicit integrators, e.g. the well-known Euler-Maruyama (EM)

method, face a severe stepsize restriction [57, 92]. Such problems and related computational

issues arise in the modeling of many problems in biology, chemistry, physics or economics

[30, 91, 39, 86]. We call these systems stiff. Another finding of this chapter is that even for SDEs

usually characterized as nonstiff but with significant noise, stepsize restriction prevents to

use the EM method for all levels of the MLMC. We emphasize that in the SDE context there

exists, besides mean square stable problems, various other classes of interesting problems

with multiple scales that need other numerical treatments [11, 102].

To the best of the author’s knowledge the issue of applying MLMC method for stiff SDEs has

not been addressed in the literature. We note however that related work extending the MLMC

method for problems with multiple scales in space has recently been proposed in [3] in the

context of numerical homogenization of stochastic elliptic multiscale PDEs.

One possible strategy to extend MLMC method for stiff problems is to use drift-implicit

numerical methods with favorable mean square stability. When applicable, such methods

are a good alternative to the stabilized method proposed in this chapter. We note however

that for large problems, originating for example from a spatially discretized stochastic partial

differential equations with stiff nonlinear terms (e.g. reaction terms), solving the full problem

with an implicit method is sometimes very difficult if not impossible. For such problems,

decoupling the diffusion operator (solved explicitly with a stabilized method [13, 2]) from

the reaction terms (stiff problems of small dimension at each spatial node solved implicitly)

using a splitting method [37] or a partitioned method [14] is a very efficient strategy. In

both approaches [14, 37] the use of explicit stabilized methods is essential. Furthermore, the

42

3.2. Preliminaries

computational complexity for drift-implicit numerical methods is somehow less transparent

than in the original MLMC method based on explicit integrators as the number of iterations

to solve the nonlinear systems has to be accounted for. Precisely balancing the accuracy of

the linear solver (e.g. iteration of an (inexact) Newton method) with the level of the MLMC

method is a nontrivial task. We refer to [40] for such adaptive inexact Newton methods in the

context of deterministic PDEs.

Here we explore another avenue and propose to stabilize the EM method to allow to access

the coarse stepsizes of the MLMC method. In turn, our method is as easy to implement as the

EM method and switching from such a code to a stabilized one as proposed here for a MLMC

implementation is straightforward. For the stabilization procedure, we resort to the S-ROCK

methods of weak order one, a class of explicit Chebyshev methods recently introduced for stiff

stochastic problems [10, 12] and extended for higher weak order in [15]. The stabilized MLMC

methods remain fully explicit, as easy to implement as the original MLMC methods based

on the EM method but much more efficient as shown in Section 3.3.2. The S-ROCK methods

consist in a family of numerical methods indexed by their stage number. This number can

in turn vary to accommodate the required stability requirement. If only one stage is used,

the S-ROCK method coincides with the EM method and for nonstiff problems we recover the

classical MLMC method. Moreover we would like to point out that in [62] the divergence of

the MLMC method using Euler-Maruyama for nonlinear SDEs is discussed.

This chapter is organized as follows. In Section 3.2 the numerical methods used in this chapter

to approximate stochastic differential equations are described, the order of convergence and

the stability are recalled. In Section 3.3 we discuss the issues faced by the standard MLMC

approach in presence of stiffness. We then introduce our stabilized multilevel MC method

and discuss its complexity. Using a numerical integrator with a higher weak order, we show in

Section 3.4 how the stabilized MLMC method can be further improved. Numerical experiments

on a one-dimensional linear SDE, a two-dimensional nonlinear SDE and a large system of

SDEs originating from a SPDE are studied in Section 3.5 to illustrate the performance of our

new MLMC method. In addition the improved stabilized multilevel Monte Carlo method is

compared to the stabilized MLMC method and the standard MLMC method.

3.2 Preliminaries

In the following we consider stochastic processes (X (t))t∈[0,T] on the bounded interval [0,T]

described by the stochastic differential equation
dX (t) = f (X (t))dt +

m∑
r=1

g r (X (t))dWr (t), 0 ≤ t ≤ T,

X (0) = X0 ,

(3.1)

43

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

where X (t) is a Rd -valued random variable, f : Rd → Rd is the drift term, g r : Rd → Rd with

r = 1,2, . . . ,m are the diffusion terms and Wr (t) with r = 1,2, . . . ,m are independent one-

dimensional standard Brownian motions. For simplicity autonomous drift and diffusion

functions are considered, but emphasize that a general SDE can always be transformed in

such autonomous form. We assume standard Lipschitz and linear growth conditions on the

drift and diffusion functions to ensure the existence of a strong solution of the SDE (3.1) (see

[81, 66, 17]).

3.2.1 Numerical Schemes

To approximate numerically the solution of (3.1) we consider the discrete map

Xn+1 =Ψ(Xn ,h,ξn), (3.2)

whereΨ(·,h,ξn) :Rd →Rd , Xn ∈Rd for n ≥ 0, h denotes the stepsize, and ξn denotes a random

vector. We briefly recall two concepts of accuracy and stability for the numerical integration of

SDEs, which we have presented in more details in Section 2.2. Suppose there is a numerical

approximation as defined in (3.2). Consider any τn = nh ∈ [0,T] for h sufficiently small. The

numerical approximation is said to be of strong order of convergence rs if

max
0≤n≤T /h

(
E
[|Xn −X (τn)|2])1/2 ≤C hrs

for a constant C (independent of h) (see Definition 2.2.1). It is said to be of weak order rw if for

any function φ ∈C 2(γ+1)
P (Rd ,R) (with C 2(γ+1)

P denoting the space of 2(γ+1) times continuously

differentiable functions with all partial derivatives bounded by a term of order 1+|x|2u with

u ∈N (polynomial growth)) there exists a constant C (independent of h) such that

|E[φ(Xn)]−E[φ(X (τn)]| ≤C hrw

(see Definition 2.2.3).

Euler-Maruyama Method

The simplest method to approximate solutions to (3.1) is a generalization of the Euler method

for ordinary differential equation (ODEs), the Euler-Maruyama method. Taking a uniform

stepsize h, the method is defined by

Xn+1 = Xn +h f (Xn)+
m∑

r=1
g r (Xn)∆Wn,r , (3.3)

where ∆Wn,r ∼N (0,h), r = 1,2, . . .m are independent Wiener increments. This method has

strong order 1
2 and weak order 1 in general for a system of Itô SDEs [78]. As we will see in

Section 3.2.2, the method (3.3) requires a stepsize restriction when applied to stiff stochastic

44

3.2. Preliminaries

problems.

S-ROCK1 and S-ROCK2 Methods

Stabilized explicit numerical integrators, that are efficient for stiff problems, are given by the

so-called S-ROCK methods. S-ROCK methods are explicit orthogonal Runge-Kutta Chebyshev

methods with an extended mean square stability domain (see Section 3.2.2). These methods

have first been introduced for Stratonovich stochastic differential equations in [9, 10] and they

have been extended to Itô SDEs in [12]. Here we will focus on the latter. In this chapters we

use two different S-ROCK methods.

First, we consider the s-stage Itô S-ROCK method of weak order 1 and strong order 1
2 (see

[12]), the so-called S-ROCK1 method (see Definition 2.2.8). We recall its definition here. For all

integer s ≥ 2 we define the s-stage S-ROCK1 method as follows:

K0 = Xn−1

K1 = Xn−1 +h ω1
ω0

f (K0)

Ki = 2hω1
Ti−1(ω0)

Ti (ω0) f (Ki−1)+2ω0
Ti−1(ω0)

Ti (ω0) Ki−1 − Ti−2(ω0)
Ti (ω0) Ki−2, i = 2,3, . . . , s −1,

Ks = 2hω1
Ts−1(ω0)

Ts (ω0) f (Ks−1)+2ω0
Ts−1(ω0)

Ts (ω0) Ks−1 − Ts−2(ω0)
Ts (ω0) Ks−2 +

m∑
r=1

g r (Ks−1)∆Wn,r ,

where ω0 = 1+ η

s2 , ω1 = Ts (ω0)
T ′

s (ω0) and ∆Wn,r = Wr (τn)−Wr (τn−1) and we set Xn = Ks . Recall

that the (Ti (x))i≥0 are the orthogonal Chebyshev polynomials and that we call η the damping

parameter, which can be used to adjust the stability domain. For s = 1 we take the Euler-

Maruyama method (3.3), and thus, the s-stage Itô S-ROCK method well defined for any s ≥ 1.

Second, we consider a S-ROCK method, which is as S-ROCK1 of strong order of convergence

1/2, but which is characterized by a weak order of convergence 2. We call this method in the

following S-ROCK2. This numerical integrator was first introduced in [15]. Similar to S-ROCK1

this scheme uses a stabilization procedure (in this case ROCK2 [13]) on the first s −2 stages

and then a finishing procedure on the last two stages.

45

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

Definition 3.2.1 (S-ROCK2 method). Let h be a uniform time stepsize. The s-stage S-ROCK2

method for (3.1) is defined for all s ≥ 2 as follows:

K0 = Xn

K1 = Xn +µ1αh f (K0)

Ki = µiαh f (Ki−1)−νi Ki−1 −κi Ki−2, i = 2,3, . . . , s,

K ∗
s−1 = Ks−2 +2ταh f (Ks−2)+p

h
m∑

r=1
g r (Ks)ψr ,

Xn+1 = Ks−2 +
(
2σα− 1

2

)
h f (Ks−2)+ 1

2 h f
(
K ∗

s−1

)
+1

2

m∑
r=1

(
g r

(
Ks +

m∑
q=1

g q (Ks) Jq,r

)
− g r

(
Ks −

m∑
q=1

g q (Ks) Jq,r

))

+h
2

m∑
r=1

g r

Ks−1 +
√

h

2

m∑
q=1

g q (Ks)ξq

+ g r

Ks−1 −
√

h

2

m∑
q=1

g q (Ks)ξq

 ,

where α,σα,τα,µi ,νi ,κi , Jq,r and ξq are as defined in [15].

3.2.2 Stability of Numerical Methods

The efficiency of an approximation does not only depend on the order of convergence but

also on its stability that is essential to correctly capture the long-time behavior of the exact

solution. The stability of numerical methods has been studied in detail in Section 2.2.2. Recall

that we consider the test problem dX (t) = λX (t)dt +µX (t)dW (t), 0 ≤ t ,λ ∈C,µ ∈C,

X (0) = 1,
(3.4)

and that the stability domain of the test problem is given by

Sexact =
{

(λ,µ) ∈C2 | R{λ}+ 1

2
|µ|2 < 0

}
(3.5)

(see (2.7)).

We also recall that the stability domain of the Euler-Maruyama method is characterized by

SE M = {
(p, q) ∈C2 | |1+p|2 +q2 < 1

}
, (3.6)

where (p, q) = (hλ,
p

h|µ|) (see [66]). Choosing (λ,µ) ∈ R2 such that the linear SDE (3.4) is

46

3.2. Preliminaries

mean square stable, it can be shown that the stepsize h of the EM method has to satisfy

ρE M h := |λ|2
2|λ|− |µ|2 h < 1 ⇔ h < 1

ρE M
(3.7)

to guarantee stability of the numerical scheme. In particular, for µ= 0 (deterministic case),

ρE M = |λ|
2 and ρE M →∞ for |µ|2 → 2|λ|.

While remaining explicit the two S-ROCK methods have an extended stability domain, which

can be characterized as follows. Recall that

SSDE ,a =
{

(p, q) ∈ [−a,0]×R | |q| ≤√−2p
}

represents a portion of Sexact and

a∗ = sup
{

a > 0 | SSDE ,a ⊂Snum
}

with Snum denoting the stability domain of the numerical method. It can be shown that for

S-ROCK1 and S-ROCK2 a∗
s = cSR1(s)s2 and a∗

s = cSR2(s)(s +2)2, respectively. As s increases the

constants cSR1(s) and cSR2(s) quickly reach a value independent of the stage number that can

be estimated numerically as cSR1 = 0.33 (S-ROCK1) and cSR2 = 0.42 (S-ROCK2) [9, 12, 15]. We

also recall that a crucial property of S-ROCK methods is that a∗
s grows quadratically with s,

but the computational cost, measured by the number of function evaluations, only increases

linearly with s. Similar to (3.7), for (λ,µ) ∈ R2 such that the test problem (3.4) is stable, by

choosing a∗ = |λ| and the stage number s such that

cSR1s2 := a∗h with 0.33 ≤ cSR1 ≤ 1.01 (3.8)

the S-ROCK methods are mean square stable for any stepsize h. It is worth noting that

condition (3.8) is independent of the diffusion term µ, and we will define ρSR := |λ|.

-6 -5 -4 -3 -2 -1 0
0.0

0.5

1.0

1.5

2.0

2.5

p

q
2

-60 -50 -40 -30 -20 -10 0
0

50

100

150

200

250

p

q
2

Figure 3.1: Stability regions (dark gray) for the Euler-Maruyama method (left-hand side) and
the S-ROCK1 method with stage number s = 10 and damping parameter η= 5.9 (right-hand
side). The dashed line delimits the stability region (light gray) of the test problem (3.5).

47

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

In Figure 3.1 we recall the stability domains of the Euler-Maruyama method and the S-ROCK1

method with s = 10 stages and damping parameter η= 5.9. For more details see Figure 2.9 and

Figure 2.10.

3.3 Multilevel Monte Carlo Method for Stiff SDEs

The idea of the multilevel Monte Carlo method [46] is to apply the Monte Carlo method for

several nested levels of stepsizes and to compute different numbers of paths on each level,

from a few paths when the stepsize is small to many paths when the stepsize is large. By

choosing the right balance between the stepsizes and the number of simulated trajectories

at each level it is possible to reduce the computational complexity compared to that of the

standard Monte Carlo method for a given mean square accuracy.

In the following we use the terms computational cost and computational complexity syn-

onymously to represent the work of a numerical method defined as the number of function

evaluations of a numerical discretization per sample path times the total number of sample

paths. This measure of the complexity of numerical algorithms will be used when we compare

the performance of various methods.

In this section we discuss the multilevel Monte Carlo method for stiff stochastic differential

equations. In the following we first briefly recall the standard MLMC method and show why

stability issues restrict this approach for stiff problems. We then present a stabilized multilevel

Monte Carlo method using the S-ROCK method.

3.3.1 Standard Multilevel Monte Carlo Method

Here we present briefly the standard multilevel Monte Carlo approach introduced in [46],

which we have also discussed as particular case in Section 2.3.3 to illustrate the MLMC idea.

The version of the MLMC method that we give here uses a general refinement factor, i.e. we

no longer assume that passing from a level to next one higher up the time intervals are split in

two, they are split into k parts with k some integer larger than two.

Consider the diffusion process (X (t))t∈[0,T] (with T a fixed positive number) solution of the SDE

(3.1) and a Lipschitz continuous function φ :Rd →R. Our aim is to estimate the expectation

E
[
φ(X (T))

]
, which we denote by E , from many realizations of the numerical solution of (3.1).

Let an integer k ≥ 2 be the refinement factor and let an integer L be the total number of levels.

The nested stepsizes of the multilevel Monte Carlo method are given by

hl =
T

Ml
, l = 0,1, . . . ,L, (3.9)

where Ml = k l indicates the number of time steps in the discretization over the time interval

[0,T] at level l . Let φl :=φ(XMl) ≈φ(X (T)) be an approximation of φ(X (T)) using a numerical

48

3.3. Multilevel Monte Carlo Method for Stiff SDEs

scheme with Ml discretization steps of size hl . Applying the telescopic sum yields

φL =
L∑

l=0

(
φl −φl−1

)
with φ−1 ≡ 0.

The multilevel Monte Carlo estimator is defined by

E∗ :=
L∑

l=0
E∗

l with E∗
l := 1

Nl

Nl∑
i=1

(
φ(i)

l −φ(i)
l−1

)
a sample average over Nl independent samples. We emphasize that the estimates φ(i)

l and

φ(i)
l−1 are based on the same diffusion path, i.e. the same Brownian motion path. The mean

square error, a measure of accuracy for estimators (see e.g. [49]), of E∗ can be decomposed as

MSE(E∗) = E[
(E∗−E)2] = E

[
(E∗−E [E∗])2]+ (E [E∗]−E)2

= Var(E∗)+ (bias(E∗))2 .
(3.10)

Since the estimates φ(i)
l are identically distributed, the following holds

E
[
E∗]= L∑

l=0
E

[
1

Nl

Nl∑
i=1

(
φ(i)

l −φ(i)
l−1

)]
=

L∑
l=0

E
[
φl −φl−1

]= E[
φL

]
.

Using this equality and considering a numerical integrator with weak order of convergence 1

yields

bias
(
E∗)= E[

E∗]−E = E[
φL

]−E =O
(
k−L)

. (3.11)

Moreover, we observe that by the Cauchy-Schwarz inequality

Var
(
φl −φl−1

)≤ (
Var

(
φl −E

)1/2 +Var
(
φl−1 −E

)1/2
)2

(3.12)

and since φ is Lipschitz continuous and a strong order 1
2 is assumed

Var
(
φl −E

)≤ E[(
φl −E

)2
]
= E

[(
φ

(
XMl

)−φ (X (T))
)2

]
≤C k−l . (3.13)

Therefore, using (3.12) and (3.13) we obtain

Var
(
E∗)= L∑

l=0

Var
(
φl −φl−1

)
Nl

=C
L∑

l=0

k−l

Nl
, (3.14)

where C is a positive constant. Assuming now a mean square accuracy of MSE(E∗) =O
(
ε2

)
and considering (3.10) and (3.11) yields ε= k−L .

Inspired by (3.14) the number of simulations per level l is chosen such that Nl = k2Lk−l L,

which guarantees that Var(E∗) =O
(
ε2

)
as L tends to infinity. It is straightforward to show that

49

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

the corresponding computational complexity of E∗ is given by

Cost
(
E∗)= L∑

l=0
Nl Ml (1+m) =O

(
ε−2(log(ε))2) ,

which is a significant improvement over the standard Monte Carlo method with a compu-

tational complexity of O
(
ε−3

)
. However, one has to be careful when applying the standard

MLMC approach for stiff systems as we show in the next section. Indeed, stability of the nu-

merical method used in the standard multilevel Monte Carlo approach is assumed to ensure

that all levels of the method are accessible [46]. This will not be the case for stiff problems as

will be discussed in the next section.

Multilevel Monte Carlo Method for Stiff SDEs using Euler-Maruyama

Assume a mean square stable problem for which a standard numerical method is only mean

square stable for a stepsize smaller than a certain threshold. In such a case the multilevel

Monte Carlo method cannot be applied at the levels whose stepsize is larger than this threshold.

Inspired by the mean square stable one-dimensional scalar linear SDE (3.4) the following

stability constraint is assumed:

k−lE Mρ ≤ 1, (3.15)

where lE M corresponds to the largest possible stepsize hlE M such that the Euler-Maruyama

method is stable for a given stiffness parameter denoted by ρ.

Remark 3.3.1. For example, for the test problem (3.4), ρ = ρE M = |λ|2
2|λ|−|µ|2 , and thus, lE M =

log
(

|λ|2
2|λ|−|µ|2

)
log(k) (see (3.7)). For l < lE M the EM cannot be applied as the integration is unstable. We

emphasize that large lE M can arise in situations usually characterized as nonstiff, i.e. when |λ|
is small but |µ| close to

√
2|λ| (see Figure 3.4).

Remark 3.3.2. Note that in (3.15) we assume a relatively small value of T and we willingly

ignore T . For a large value of T the following results remain valid by replacing the stiffness

parameter ρ by the product Tρ. Hence increasing T has the same effect as increasing the

stiffness.

Suppose a mean square accuracy of k−2L = ε2 is desired. We distinguish two cases.

(a) No MLMC: lE M > L

If lE M is larger than L, then all the stepsize hl (with l ∈ {0,1, . . . ,L}) are too large to account for

stability. Thus, the multilevel Monte Carlo approach cannot be applied and standard Monte

Carlo has to be used instead with MlE M time steps. Therefore, in this case a mean square

accuracy of O
(
ε2

MC

)
with εMC = k−lE M is achieved and a computational cost of O

(
ε−3

MC

)
is

50

3.3. Multilevel Monte Carlo Method for Stiff SDEs

necessary. We emphasize that εMC = k−lE M is smaller than the required accuracy ε= k−L and

in turn O
(
ε−3

MC

)
is larger than O

(
ε−3

)
.

(b) MLMC: 0 < lE M ≤ L

If lE M lies between 0 and L, only the levels lE M , lE M +1, . . . ,L satisfy the stability constraint

(3.15), and thus, the multilevel Monte Carlo estimator using the Euler-Maruyama scheme is

defined by

Ẽ :=
L∑

l=lE M

Ẽl with Ẽl := 1

Nl

Nl∑
i=1

(
φ(i)

l −φ(i)
l−1

)
a sample average over Nl independent samples, where φlE M−1 ≡ 0. As in (3.10) the mean

square error of Ẽ can be divided into bias and variance:

MSE
(
Ẽ

)= Var
(
Ẽ

)+ (
bias

(
Ẽ

))2
.

Taking into account the weak order of convergence 1 of the Euler-Maruyama scheme (see

Section 3.2), the bias of Ẽ is of order k−L , i.e. bias
(
Ẽ

)=O
(
k−L

)
. Using the independence of

the samples, φ being Lipschitz continuous and strong order of convergence 1
2 of the Euler-

Maruyama method, the variance of Ẽ satisfies

Var
(
Ẽ

)= L∑
l=lE M+1

Var
(
φl −φl−1

)
Nl

+ Var
(
φlE M

)
NlE M

=C
L∑

l=lE M+1

k−l

Nl
+ Var

(
φlE M

)
NlE M

, (3.16)

where C is a positive constant. Recall that a mean square accuracy of k−2L = ε2 is wanted.

Inspired by (3.16), the number of simulations per level is chosen such that

Nl =
 k2Lk−l (L− (lE M +1)) if l ∈ {lE M +1, lE M +2, . . . ,L},

k2L if l = lE M .
(3.17)

Hence, for the variance of our estimator Var
(
Ẽ

)=O
(
ε2

)
holds and the mean square error is

indeed MSE
(
Ẽ

)=O
(
ε2

)
. We compute now the computational complexity that is necessary to

achieve such a mean square accuracy. Taking the choice of Nl in (3.17) into consideration, we

51

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

obtain a computational complexity of

Cost
(
Ẽ

) =
L∑

l=lE M+1
Nl Ml (1+m)+NlE M MlE M (1+m)

=
L∑

l=lE M+1
k2L−l (L− (lE M +1))k l (1+m)+k2Lk lE M (1+m)

= k2L(1+m)
[
(L− (lE M +1))(L− lE M)+k lE M

]
= ε−2(1+m)

[(
log

(
εlE M /L

)−log(ε)
log(k) −1

)(
log

(
εlE M /L

)−log(ε)
log(k)

)
+ε−lE M /L

]
.

≤ ε−2(1+m)

[
C

(
log(ε)
log(k)

)2 +ε−lE M /L
]
=O

(
ε−2

((
log(ε)

)2 +ε−lE M /L
))

,

where C is a positive constant.

Remark 3.3.3. Note that as lE M tends to L, the computational cost of Ẽ tends to O
(
ε−3

)
, the

computational cost of the standard Monte Carlo approach. If lE M tends to zero, the computa-

tional cost tends to O
(
ε−2

(
log(ε)

)2
)
, which is the computational cost of the multilevel Monte

Carlo method for nonstiff SDEs. Indeed in that case, there is no stepsize restriction for the EM

method.

3.3.2 Stabilized Multilevel Monte Carlo Method

We describe now a stabilized multilevel Monte Carlo method, which enables us to use all the

levels of the MLMC approach even in presence of stiffness. As numerical integrator we use

the S-ROCK1 method presented in Section 3.2. The following stability constraint is taken into

account: (for sl ≥ 2)
k−lρ

cSR1s2
l

≤ 1, (3.18)

where the stiffness parameter ρ and cSR1 are two positive constants. For the test problem (3.4),

ρ = ρSR = |λ|. In other words, the number of stages at level l satisfies sl ≥ max
(√

ρ
cSR1

k−l /2,2
)
.

For the same reasons as in Remark 3.3.2 a O (1) value for T is assumed.

Remark 3.3.4. The value of cSR1 depends on sl , but it can be estimated numerically for any

sl ≥ 2 (see Abdulle and Li [12]). It lies between 0.33 and 1.01.

Using the same notation as above, the stabilized multilevel Monte Carlo estimator is given by

Ê :=
L∑

l=0
Êl with Êl := 1

Nl

Nl∑
i=1

(
φ(i)

l −φ(i)
l−1

)
52

3.3. Multilevel Monte Carlo Method for Stiff SDEs

a sample average over Nl independent samples. Again we emphasize that the estimates

φ(i)
l and φ(i)

l−1 are based on the same Brownian motion path. The mean square error of the

stabilized estimator Ê can be decomposed as in (3.10)

MSE
(
Ê

) = Var
(
Ê

)+ (
bias

(
Ê

))2
. (3.19)

By the weak order of convergence 1 of the S-ROCK1 scheme (see Section 3.2), for the bias the

following holds:

bias
(
Ê

)= E[
Ê

]−E = E[
φL

]−E =O
(
k−L)

.

For the variance of Ê we obtain

Var
(
Ê

)= L∑
l=0

Var
(
φl −φl−1

)
Nl

=C
L∑

l=0

k−l

Nl
(3.20)

with C a positive constant. To establish this we have used the independence of the samples,

φ being Lipschitz continuous and strong order of convergence 1
2 of the S-ROCK1 method

(see Section 3.2). Suppose now that a mean square accuracy of MSE
(
Ê

)=O
(
ε2

)
with ε= k−L

is desired. Inspired by (3.20), we set the number of simulations per level l to Nl = k2Lk−l L

such that Var
(
Ê

)=C k−2L
(
1+ 1

L

)
, and thus, MSE

(
Ê

)=O
(
ε2

)
. The computational complexity

to achieve such a mean square accuracy is given by

Cost
(
Ê

) =
L∑

l=0
Nl Ml (sl +m) = k2LL

(√
ρ

cSR1

L∑
l=0

k−l /2 +m(L+1)

)

= k2LL
(√

ρ
cSR1

p
k−k−L/2p

k−1
+m(L+1)

)

= ε−2
(
− log(ε)

log(k)

)(√
ρ

cSR1

p
k−ε1/2p

k−1
+m

(
− log(ε)

log(k) +1
))

≤ Cε−2
(∣∣log(ε)

∣∣pρ+m(log(ε))2
)=O

(
ε−2

(
log(ε)

)2
(
1+

p
ρ

| log(ε)|
))

,

(3.21)

where C is a positive constant. Note that we recover the result for nonstiff problems up to a

factor
p
ρ. It is also worth noting that using MLMC with Euler-Maruyama for stiff SDEs only

standard Monte Carlo can be applied in the case lE M > L, see Section 3.3.1. The resulting

computational complexity is given by O
(
ε−3

MC

)
. Taking into account that ε= k−L > k−lE M = εMC ,

one observes that the computational cost for stabilized MLMC is significantly smaller.

Remark 3.3.5. If lE M ≤ L, then the Euler-Maruyama method can be applied from level lE M up

to level L. The variance (3.20) can be decomposed as

Var
(
Ê

)= lE M−1∑
l=0

Var
(
φl −φl−1

)
Nl

+
L∑

l=lE M

Var
(
φl −φl−1

)
Nl

.

53

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

Using the strong convergence of order 1/2 of the numerical schemes yields

Var
(
Ê

)=C

(
lE M−1∑

l=0

k−l

Nl
+

L∑
l=lE M

k−l

Nl

)
.

Inspired by this decomposition, the number of simulations per level is chosen according to

Nl = k2Lk−l (lE M−1) for l ∈ {0,1, . . . , lE M−1} and Nl = k2Lk−l (L−lE M) for l ∈ {lE M , lE M+1, . . . ,L}

such that MSE
(
Ê

)=O
(
ε2

)
with ε= k−L . The resulting computational cost is similar.

Stabilized Multilevel Monte Carlo versus Stabilized Single-Level Monte Carlo

In the previous section we have seen that the multilevel Monte Carlo method with S-ROCK1

as numerical integrator requires a computational cost of Cost
(
Ê

)
, as specified in (3.21), to

achieve a mean square accuracy of MSE
(
Ê

)=O
(
ε2

)
.

Using the same numerical method and the same mean square accuracy, the standard Monte

Carlo method satisfies ML =O
(
ε−1

)
, NL =O

(
ε−2

)
and sL =O

(p
ερ

)
(due to the stability crite-

rion (3.18)), and thus, the computational cost required is given by

Cost
(
ÊMC

)= ML NL(sL +m) =O
(
ε−5/2pρ+ε−3) . (3.22)

Remark 3.3.6. In applications ε corresponds to the user’s desired accuracy. As in the multilevel

construction, Monte Carlo using S-ROCK1 can be applied for any ε, whereas Monte Carlo using

Euler-Maruyama can be subject to stepsize restriction, and thus, one is forced to choose an ε̄

which is significantly smaller than the user’s desired accuracy ε.

Figure 3.2 compares the computational cost of the stabilized MLMC method and the standard

MC method using S-ROCK1 as a basic integrator against the finest stepsize hL for k = 2, m = 1

and different values of the stiffness parameter ρ with ρ ∈ {1,1000}. Recall that ε= k−L = hL ,

and thus, as hL decreases the accuracy increases. One observes that for any stiffness ρ, as hL

decreases the stabilized multilevel Monte Carlo method prevails over the Monte Carlo method

based on S-ROCK1. For instance, in Fig. 3.2 (b) for ρ = 1000, at hL = 2−20 the computational

cost of Monte Carlo is about 103 times larger than the computational cost of multilevel Monte

Carlo.

Note that as the stiffness ρ increases, the number of stages per level sl increases, and thus,

the computational complexity. Since the standard Monte Carlo method only uses sL stages,

whereas the MLMC method uses at each level l sl stages, the number of function evaluations

for standard MC is smaller than for MLMC for small values of L. However, as L increases, the

MLMC approach significantly reduces the computational cost compared to the MC approach.

54

3.4. Improved Stabilized Multilevel Monte Carlo Method for Stiff SDEs

MLMC S-ROCK1 vs MC S-ROCK1

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

10
20

(a) ρ=1

h
L

fu
nc

tio
n

ev
al

ua
tio

ns

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

(b) ρ=1000

h
L

fu
nc

tio
n

ev
al

ua
tio

ns

MLMC

MC

MLMC

MC

Figure 3.2: Computational cost of the stabilized multilevel Monte Carlo and the standard
Monte Carlo method (using S-ROCK1), respectively, against the finest stepsize hL for different
values of the stiffness parameter ρ.

3.4 Improved Stabilized Multilevel Monte Carlo Method for Stiff SDEs

In this section we describe how the stabilized multilevel Monte Carlo method presented in

Section 3.3.2 can further be improved. As mentioned in Section 3.2.1, the Euler-Maruyama

method as well as the S-ROCK1 method are both of weak order 1 and strong order 1/2. The

idea is to use a numerical integrator of higher weak order for the finest time grid (see [34]), in

our case S-ROCK2 [15] with weak order 2, which leads to a reduction of the bias. In fact, due

to the telescopic sum representation of the multilevel estimator, only the estimator based on

the smallest time stepsize (which uses S-ROCK2) appears in the bias. A smaller bias yields

a reduction of the total number of levels, and thus, a reduced computational cost without

decreasing the accuracy. Note that in the following we focus on problems that are either stiff

or nonstiff but with significant noise. Problems with no stability issues can be treated in a

similar way.

Recall the sequence of nested stepsizes (3.9). For l = 0,1, . . . ,L −1 we denote by φl the ap-

proximation of φ (X (T)) using S-ROCK1 with time stepsize hl . The approximation of φ (X (T))

using S-ROCK2 on the finest time grid which is based on hL is indicated by φL . The improved

stabilized multilevel Monte Carlo estimator is defined by

Ẽ :=
L∑

l=0

1

Nl

Nl∑
i=1

(
φ(i)

l −φ(i)
l−1

)
with φ−1 ≡ 0, (3.23)

a sum of sample averages over Nl independent and identically distributed samples. Note

55

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

that φ(i)
l and φ(i)

l−1 are based on the same Wiener path. The accuracy of the estimator Ẽ can

be measured, e.g. by the mean square error (see e.g. [49]), which can be split into bias and

variance as follows:

MSE
(
Ẽ

)= E[(
Ẽ −E

)2
]
= Var

(
Ẽ

)+ (
bias

(
Ẽ

))2
.

Using the properties of the expectation we obtain

E
[
Ẽ

]= L∑
l=0

(
E
[
φl

]−E[
φl−1

])= E[
L∑

l=0

(
φl −φl−1

)]= E[
φL

]
.

Hence the bias satisfies

bias
(
Ẽ

)= E[
Ẽ

]−E = E[
φL

]−E =O
(
k−2L)

(3.24)

since the S-ROCK2 method, on which φL is based, is of weak order 2. Furthermore, for the

variance we use the Cauchy-Schwarz inequality to obtain

Var
(
φl −φl−1

)≤ (
Var

(
φl −E

)1/2 +Var
(
φl−1 −E

)1/2
)2

.

Both numerical integrators, S-ROCK1 and S-ROCK2, are of strong order 1/2 and φ is Lipschitz

continuous by assumption. Thus

Var
(
φl −E

)≤ E[(
φl −E

)2
]
≤ E

[(
φ

(
XMl

)−φ (X (T))
)2

]
≤C k−l

and therefore

Var
(
Ẽ

)= L∑
l=0

Var
(
φl −φl−1

)
Nl

≤C

(
L−1∑
l=0

k−l

Nl
+ k−L

NL

)
, (3.25)

where C is a positive constant.

Assume now a mean square precision of MSE
(
Ẽ

)=O
(
ε2

)
is desired for some ε> 0. Consider-

ing (3.24) we obtain a total number of levels L =−1
2

log(ε)
log(k) (or equivalently ε= k−2L). Inspired

by (3.25) the number of simulations per level l is set to Nl = k−l k4L(L−1) for l = 0,1, . . . ,L−1

and NL = k−Lk4L , which yields Var
(
Ẽ

)≤C k−4L
(
2+ 1

L−1

)=O
(
ε2

)
.

As mentioned above the stability constraint of S-ROCK1 is given by k−lρ

cSR1s2
l
≤ 1. In a similar way

one can define a stability criterion for S-ROCK2 k−Lρ

cSR2(sL+2)2 ≤ 1 with sL ≥ 2 and with cSR2 as

defined above.

Theorem 3.4.1. Let Ẽ be the improved stabilized MLMC estimator introduced in (3.23). For a

desired mean square accuracy of MSE
(
Ẽ

)=O
(
ε2

)
the computational cost of Ẽ is given by

Cost
(
Ẽ

)= 1

4
ε−2

(
log(ε)

log(k)

)2

α̃,

where α̃=
(
m L−1

L + 1
L

(p
kp

k−1

)√
ρ

cSR1

)
−

(
d1

ε1/4pρ
L +d2

(pρ−d3)
L2

)
with d1, d2, d3 some positive con-

56

3.5. Numerical Examples

stants.

Proof. For the computational cost of Ẽ we obtain Cost
(
Ẽ

)
=

L−1∑
l=0

Nl Ml (sl +m)+NL ML (sL +8+2m)

=
L−1∑
l=0

k4L(L−1)

(√
ρ

cSR1
k−l/2 +m

)
+k4L

(√
ρ

cSR2
k−L/2 +6+2m

)
= k4L(L−1)

(√
ρ

cSR1

p
k−k−L/2+1/2p

k−1
+mL

)
+k4L

(√
ρ

cSR2
k−L/2 +6+2m

)
.

Using ε = k−2L and rearranging terms yields Cost
(
Ẽ

) = 1
4ε

−2
(

log(ε)
log(k)

)2
α̃ with α̃ as defined

above.

In comparison, for a same mean square accuracy, the cost of the stabilized MLMC estimator

Ê of [4] is given by Cost
(
Ê

)= ε−2
(

log(ε)
log(k)

)2
α̂, where α̂=

(
m L+1/2

L + 1
2L

(p
kp

k−1

)√
ρ

cSR1

)
−d4

ε1/2pρ
L

with d4 a positive constant.

Asymptotically we observe that for both estimators

Cost
(
Ẽ

)= Cost
(
Ê

)=O

(
ε−2 (

log(ε)
)2

(
1+

p
ρ

| log(ε)|
))

,

however with a smaller constant prefactor for Ẽ allowing for a cost reduction by a factor

roughly between 0.25 (nonstiff problems but significant noise) and 0.5 (stiff problems). This

can be seen by comparing α̃ and α̂.

3.5 Numerical Examples

In this section we study the multilevel Monte Carlo method for stiff stochastic differential

equations numerically. Comparisons of the MLMC method for SDEs using S-ROCK1 and

Euler-Maruyama, respectively, are carried out first on a one-dimensional linear SDE, followed

by a two-dimensional nonlinear SDE and finally on a stochastic partial differential equation.

The last numerical experiment is based again on a two-dimensional nonlinear SDE and the

improved stabilized multilevel Monte Carlo method is compared to the stabilized MLMC

method and the standard MLMC approach. In the following we use a refinement factor of

k = 2.

3.5.1 Linear Stochastic Differential Equation

The first problem taken into account is the scalar linear test problem (3.4) with t ∈ [0,1]. To

test numerically how well the stabilized MLMC method using S-ROCK1 performs compared

57

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

to the MLMC method using Euler-Maruyama, we count the number of function evaluations

(adding the number of drift and diffusion evaluations) using a total number of levels L, where

L ∈ {1,2, . . . ,15}.

We consider two scenarios:

• a setting usually considered as nonstiff where λ=−1 and µ=p−2λ−δ with 0 < δ≤ 2.

In this scenario, as δ→ 0 the parameters of the exact SDE are approaching the boundary

of the exact stability domain. Then the gap between the EM mean square stability

domain and the boundary of the true stability domain (see Figure 3.3 left) triggers an

increasingly severe stepsize restriction. In turn only limited levels of the MLMC are

accessible. In contrast the stabilized MLMC is always applicable and the mean square

stability region for large value of |µ| is much larger and moreover not vanishing with

increasing value of |µ| belonging to the true mean square stability region (see Figure 3.3

right).

• a setting considered as stiff with λ ∈ {−1,−100,−10000} and µ=
√
|λ| where as expected,

a decreasing number of levels are accessible for the MLMC based on the EM method in

contrast to the stabilized MLMC.

In Figure 3.4 (a)-(c) we report the results for the first scenario and monitor the number of

function evaluations required for the stabilized MLMC method and the MLMC method using

EM, respectively, against the finest stepsize hL . The diffusion is chosen such that δ= 0.1 (Fig.

3.4 (a)), δ= 0.01 (Fig. 3.4 (b)) and δ= 0.0001 (Fig. 3.4 (c)). As expected, the stabilized MLMC

method prevails over the MLMC method using Euler-Maruyama. The latter is subject to a

stepsize restriction which becomes more severe for decreasing δ.

58

3.5. Numerical Examples

In Figure 3.4 (d)-(f) we report the results for the second scenario comparing the the stabilized

MLMC method and the MLMC method using EM We consider a varying drift term with

λ ∈ {−1,−100,−10000} and a diffusion term given by µ = |λ|1/2. In all cases the parameters

(λ,µ) lie in the stability region of the test problem (3.5). One observes that as |λ| increases, the

EM approach can only be used from a certain stepsize on, whereas the S-ROCK1 approach

can be used for any stepsize.

6 5 4 3 2 1 0
0

2

4

6

8

10

12

p

q
2

6 5 4 3 2 1 0
0

2

4

6

8

10

12

p

q
2

Figure 3.3: One-dimensional linear SDE: Stability regions of the test problem (3.4) (light gray),
the EM method (dark gray, left-hand side) and the S-ROCK1 method with s = 2 (dark gray,
right-hand side). Straight lines of slope −1.5 (dashed) and −1 (dotted), respectively.

3.5.2 Nonlinear Stochastic Differential Equation

The second stiff numerical experiment that we consider here is a two-dimensional noncom-

mutative stiff SDE given by

d

 X1(t)

X2(t)

 =
 α(X2(t)−1)−λ1X1(t)(1−X1(t))

−λ2X2(t)(1−X2(t))

dt

+
 −µ1X1(t)(1−X1(t))

−µ2X2(t)(1−X2(t))

dW1(t)

+
 −µ2(1−X1(t))

0

dW2(t), 0 ≤ t ≤ T, X1(0)

X2(0)

 given,

(3.26)

where (W1(t))t∈[0,T] and (W2(t))t∈[0,T] represent two independent standard Brownian motions.

This model is inspired by the one-dimensional population dynamic model (see [84]). One

can observe that (X1(t), X2(t)) = (1,1) ∀t ∈ [0,T] represents a stationary solution of (3.26).

We carry out a similar numerical experiment as in Section 3.5.1 by comparing the MLMC

method using S-ROCK1 and Euler-Maruyama, respectively. As parameter we choose T = 1,L ∈

59

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

MLMC S-ROCK1 vs MLMC EM (linear SDE)

Nonsti� case

10
−5

10
0

10
0

10
5

10
10

10
15

(a) λ=−1, µ=sqrt(−2λ−0.1)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(b) λ=−1, µ=sqrt(−2λ−0.01)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(c) λ=−1, µ=sqrt(−2λ−0.0001)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(d) λ=−1, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(e) λ=−100, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(f) λ=−10000, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

Sti� case

10
−5

10
0

10
0

10
5

10
10

10
15

(a) λ=−1, µ=sqrt(−2λ−0.1)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(b) λ=−1, µ=sqrt(−2λ−0.01)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(c) λ=−1, µ=sqrt(−2λ−0.0001)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(d) λ=−1, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(e) λ=−100, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
−5

10
0

10
0

10
5

10
10

10
15

(f) λ=−10000, µ=|λ|1/2

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

Figure 3.4: One-dimensional linear SDE: Function evaluations against finest stepsize hL

comparing the MLMC method using S-ROCK1 with the MLMC method using Euler-Maruyama.

{1,2, . . . ,10},α= 2,λ2 =−1,µ2 = 0.5 with (λ1,µ1) the same as (λ,µ) in the previous section. As

initial condition we pick (X1(0), X2(0)) = (0.95,0.95). Note that the two sets of parameters

(λ1,µ1) and (λ2,µ2) both lie in the stability domain with (λ1,µ1) governing the stiffness of the

SDE.

Figure 3.5 illustrates the number of function evaluations against the finest stepsize for the

two-dimensional nonlinear noncommutative SDE given in (3.26). The results are similar to

the ones of the scalar linear SDE. Note that stability of the approximations has been checked

by looking at the second moment at the time end point T = 1. The S-ROCK1 approach can be

applied under any choice of the finest stepsize hL , whereas the Euler-Maruyama approach

has some severe stepsize restrictions. Again this corroborates our theoretical findings and

illustrates the significant improvement of the stabilized MLMC over the standard MLMC

method.

60

3.5. Numerical Examples

MLMC S-ROCK1 vs MLMC EM (nonlinear SDE)

Nonsti� case

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(d) λ
1
=−1, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(e) λ
1
=−100, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(f) λ
1
=−10000, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(b) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.01)

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(c) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.0001)

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

(a) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.1)

h
L

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

Sti� case

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(d) λ
1
=−1, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(e) λ
1
=−100, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(f) λ
1
=−10000, µ

1
=|λ

1
|1/2

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(b) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.01)

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(c) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.0001)

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

(a) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.1)

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

S−ROCK

EM

Figure 3.5: Two-dimensional nonlinear noncommutative stiff SDE: Function evaluations
against finest stepsize hL comparing the MLMC method using S-ROCK1 with the MLMC
method using Euler-Maruyama for different values of λ1 and µ1.

We next study the error behavior of the multilevel Monte Carlo method using S-ROCK1 applied

to the two-dimensional noncommutative nonlinear SDE (3.26). We focus again on the second

moment of the stochastic process

 X1(t)

X2(t)

 at the time end point T = 1. Since an exact

solution of the second moment is not known, a reference solution is computed using standard

Monte Carlo with Euler-Maruyama and a stepsize of h = 2−12. In total 224 Monte Carlo

simulations are carried out. Figure 3.6 illustrates an approximation of the root mean square

error of the second moment of X1(t) and X2(t), respectively, at t = 1 against the finest stepsize

hL , approximating the expectation by taking a sample average (over 10 samples). We take

into account a nonstiff problem with (λ1 = −1,µ1 =
√
−2λ1 −0.01) (see Fig. 3.6(a)) and a

stiff problem with (λ1 =−100,µ1 = |λ1|1/2) (see Fig. 3.6(b)). The other parameters have been

61

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

Error behavior MLMC S-ROCK1 (nonlinear SDE)

10
−4

10
−2

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) λ
1
=−100, µ

1
=|λ

1
|
1/2

h
L

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
s
e

c
o

n
d

 m
o

m
e

n
t

10
−4

10
−2

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.01)

h
L

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
s
e

c
o

n
d

 m
o

m
e

n
t

First component

Second component

Slope = 1

First component

Second component

Slope = 1

Figure 3.6: Two-dimensional nonlinear noncommutative stiff SDE: Error behavior of the
MLMC method using S-ROCK1 applied to (3.26) in a nonstiff (a) and a stiff (b) context. The
first and second component correspond to the RMSE of the second moment of X1(1) and
X2(1), respectively.

chosen as above. One observes that in both cases, stiff or nonstiff, the behavior of the RMSE is

as expected roughly linear and of slope 1.

3.5.3 Space-discretized Stochastic Parital Differential Equation

The last problem we consider is a stochastic partial differential equation (SPDE) obtained by

adding multiplicative noise to the heat equation. The SPDE is specified through

∂u(t ,x)
∂t = ∂2u(t ,x)

∂x2 +σu(t , x)Ẇ (t , x), (t , x) ∈ [0,T]× [0,1],

u(0, x) = 1, x ∈ [0,1],

u(t ,0) = 5, t ∈ [0,T], ∂u(t ,1)
∂x = 0, t ∈ [0,T],

(3.27)

where Ẇ is a space-time white noise and σ a noise parameter (see e.g. [72]). Discretizing in

space by using the method of lines yields

dui = ui+1 −2ui +ui−1

∆x2 dt +σ uip
∆x

dWi , i = 1,2, . . . ,
1

∆x
= M ,

62

3.5. Numerical Examples

where ui ≈ u(t , xi) with xi = i∆x. By the boundary conditions we have u0 = 5 and uM+1 = uM .

Note that W1,W2, . . . ,WM are M independent standard Brownian motions and Itô noise has

been considered. In the following we use T = 1 and σ= 10−2. Figure 3.7 shows one trajectory

of the heat equation with noise (3.27) using a space stepsize of ∆x = 1/40 and a time stepsize

of h = 1/40.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

6

xt

u
(t

,x
)

Figure 3.7: Stochastic partial differential equation: Numerical approximation of the heat
equation with multiplicative noise (3.27) using ∆x = 1/40 and h = 1/40.

Remark 3.5.1. In the following we only vary the time stepsize with the level in the multilevel

Monte Carlo construction and consider a fixed spatial discretization. Note that for some appli-

cations (especially for multi-dimensional problems) the spatial meshing is not trivial and the

flexibility to adapt the spatial mesh is limited (see e.g. [14, 37]). We however mention MLMC

approaches for SPDEs, where both the time and the space discretizations are adapted [20, 47].

These are certainly interesting approaches when applicable but will not be pursued here.

Figure 3.8 illustrates the number of function evaluations of the stabilized multilevel Monte

Carlo method and the standard Monte Carlo method using S-ROCK1 as numerical integrator.

The space stepsize is set to ∆x = 1/40 and the finest time stepsize varies between 2−7 and 2−20.

It can be observed that for small time stepsizes hL the stabilized MLMC method reduces the

computational cost significantly compared to the standard MC method.

In Figure 3.9 the mean of u(t , x) is approximated at t = 1 using stabilized multilevel Monte

Carlo. The finest time stepsize is chosen as hL = 2−10. For the space discretization ∆x = 1/40

(see Fig. 3.9(a)) and ∆x = 1/80 (see Fig. 3.9(b)) are used, respectively. In addition, on each

plot a single trajectory of u(t , x) at t = 1 using S-ROCK1 and h = 2−10 is added. Note that

an approximation of the mean of u(t , x) using the standard Monte Carlo method with Euler-

Maruyama would require in the case ∆x = 1/40 a time stepsize smaller than 3.1×10−4 and a

computational cost of approximately 2.6×1012 function evaluations. In the case∆x = 1/80, the

63

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

MLMC S-ROCK1 vs MC S-ROCK1 (SPDE)

10
−8

10
−6

10
−4

10
−2

10
5

10
10

10
15

10
20

h
L

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

MC

MLMC

Figure 3.8: Stochastic partial differential equation: Number of function evaluations for the
stabilized multilevel Monte Carlo method and the stabilized single-level Monte Carlo method,
respectively, using ∆x = 1/40 and hL ∈ {2−7,2−8, . . . ,2−20}.

time stepsize would have to be smaller than 7.8×10−5 and the corresponding computational

cost would be about 3.4×1014 function evaluations.

Figure 3.10 illustrates an approximation of the second moment of u(t , x) at t = 1 using the

stabilized multilevel Monte Carlo method with finest time stepsize hL = 2−10 and space dis-

cretization ∆x = 1/40 and ∆x = 1/80, respectively. The number of simulations per level varies

from N0 = 10 · 220 for the coarsest grid to NL = 10 · 210 for the finest grid. Furthermore, a

dotted line represents a single trajectory of the approximation of u(1, xi)2 using S-ROCK1 with

h = 2−10.

In Figure 3.11 approximations of E
[
u(t , xi)u(t , x j)

]
at t = 1 with i , j ∈ {0,1, . . . ,1/∆x} are shown.

As approximation procedure the stabilized MLMC method with L = 10 and space discretization

∆x = 1/40 and ∆x = 1/80, respectively, is used. Single trajectories of S-ROCK1 approximations

of u(t , xi)u(t , x j) at t = 1 are illustrated in Figure 3.12.

3.5.4 Comparison Improved Stabilized MLMC vs Stabilized MLMC vs Standard
MLMC

In this section we compare the improved stabilized multilevel Monte Carlo method with the

stabilized MLMC method and the standard MLMC method. As numerical experiment we use

64

3.5. Numerical Examples

0 0.2 0.4 0.6 0.8 1
4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

55
(a) ∆x=1/40

x

a
p

p
ro

x
im

a
ti
o

n
 o

f
m

e
a

n

0 0.2 0.4 0.6 0.8 1
4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

55
(b) ∆x=1/80

x
a

p
p

ro
x
im

a
ti
o

n
 o

f
m

e
a

n

MLMC approximation

Single trajectory

MLMC approximation

Single trajectory

Approximation of mean using stabilized MLMC (SPDE)

Figure 3.9: Stochastic partial differential equation: Approximation of E [u(1, xi)], the mean
of u(t , x) at t = 1, using stabilized MLMC with L = 10, ∆x = 1/40 (see (a)) and ∆x = 1/80 (see
(b)), respectively. The dotted lines represent a single trajectory at t = 1 using S-ROCK1 with
h = 2−10.

the two-dimensional nonlinear noncommutative SDE (3.26), which we can rewrite as

d

 X1(t)

X2(t)

 =
 αa2(t)−λ1b1(t)

−λ2b2(t)

dt +
 −µ1b1(t) µ2a1(t)

−µ2b2(t) 0

 dW1(t)

dW2(t)


for 0 ≤ t ≤ T , where ai (t) = Xi (t)− 1 and bi (t) = Xi (t)(1− Xi (t)) for i ∈ {1,2}. The initial

condition is given by (X1(0), X2(0)) = (0.95,0.95) and (W1(t))t∈[0,1] and (W2(t))t∈[0,1] are two

independent Wiener processes. We consider two different scenarios. First a stiff problem with

drift term λ1 ∈ {−1,−100,−10000} and noise term µ1 =
√

|λ1|. And then a nonstiff problem

with no small noise by fixing λ1 =−1 and varying µ1 =
√

−2λ1 −δ with δ ∈ {10−1,10−2,10−4}.

In addition we pick α= 2, λ2 =−1, µ2 = 0.5, k = 2. As root mean square accuracy we choose

k−2L with L ∈ {1,2, . . . ,5}. Stability is guaranteed by assessing the second moment at the time

end point. In Figure 3.13 we compare the number of function evaluations (by counting the

drift and diffusion evaluations) of the improved stabilized (using S-ROCK1 and S-ROCK2),

the stabilized (using S-ROCK1) and the standard (using EM) MLMC method. As expected the

improved stabilized approach yields a cost reduction over the other two methods (see also

Table 3.1).

65

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

0 0.2 0.4 0.6 0.8 1
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25
(a) ∆x=1/40

x

a
p

p
ro

x
im

a
ti
o

n
 o

f
s
e

c
o

n
d

 m
o

m
e

n
t

0 0.2 0.4 0.6 0.8 1
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25
(b) ∆x=1/80

x

a
p

p
ro

x
im

a
ti
o

n
 o

f
s
e

c
o

n
d

 m
o

m
e

n
t

MLMC approximation

Single trajectory

MLMC approximation

Single trajectory

Approximation of second moment using stabilized MLMC (SPDE)

Figure 3.10: Stochastic partial differential equation: Approximation of E
[
u(1, xi)2

]
, the second

moment of u(t , x) at t = 1, using stabilized MLMC with L = 10, ∆x = 1/40 (see (a)) and
∆x = 1/80 (see (b)), respectively. The dotted lines represent a single trajectory at t = 1 using
S-ROCK1 with h = 2−10.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

20

22

24

26

x
i

(a) ∆x=1/40

x
j

a
p
p
ro

x
im

a
ti
o

n
 o

f
E

[u
(1

,x
i)u

(1
,x

j)]

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

20

22

24

26

x
i

(b) ∆x=1/80

x
j

a
p
p

ro
x
im

a
ti
o
n

 o
f

E
[u

(1
,x

i)u
(1

,x
j)]

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Figure 3.11: Stochastic partial differential equation: Approximation of E
[
u(t , xi)u(t , x j)

]
at

t = 1 using stabilized MLMC with L = 10, ∆x = 1/40 (see (a)) and ∆x = 1/80 (see (b)).

66

3.6. Conclusion

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

20

22

24

26

x
i

(a) ∆x=1/40

x
j

a
p

p
ro

x
im

a
ti
o
n

 o
f

u
(1

,x
i)u

(1
,x

j)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

20

22

24

26

x
i

(b) ∆x=1/80

x
j

a
p

p
ro

x
im

a
ti
o
n

 o
f

u
(1

,x
i)u

(1
,x

j)
20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Figure 3.12: Stochastic partial differential equation: Single trajectory of u(t , xi)u(t , x j) at t = 1
using S-ROCK1 with h = 2−10, ∆x = 1/40 (see (a)) and ∆x = 1/80 (see (b)).

Table 3.1: Number of function evaluations of the improved stabilized MLMC (using S-ROCK1
and S-ROCK2), the stabilized MLMC (using S-ROCK1) and standard MLMC (using EM) for dif-
ferent values of the root mean square error. As parameters we take λ1 =−1,µ1 =

√
−2λ1 −0.01

(b) and λ1 =−100,µ1 =
√

|λ1| (e).

precision 2−2 2−4 2−6 2−8 2−10

(b)

imp.stab.MLMC 64 4352 184320 5.70×106 14.99×107

stab.MLMC 672 35840 1204224 19.92×106 37.12×107

MLMC 10.49×106 10.49×106 10.49×106 42.27×106 70.25×107

(e)

imp.stab.MLMC 256 16896 614400 16.91×106 39.53×107

stab.MLMC 2272 95232 2629632 42.73×106 73.61×107

MLMC 10.49×106 10.49×106 10.49×106 42.27×106 70.25×107

3.6 Conclusion

We have presented a new stabilized multilevel Monte Carlo method for mean square stable

SDEs with multiple scales. We have shown that the standard MLMC method fails to achieve the

optimal computational complexity O (ε−2(log(ε))2) to compute the expectation of functionals

with an accuracy of O (ε) as some or all the sequence of stepsizes needed in the MLMC method

are not accessible due to stepsize restriction. In the worst case, only a standard Monte Carlo

method can be used and the computational complexity can deteriorate to O (ε−3
MC), where

67

Chapter 3. Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential
Equations

Improved stabilized MLMC vs stabilized MLMC vs standard MLMC

Nonsti� case

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(a) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.1)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(b) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.01)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(c) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.0001)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(d) λ
1
=−1, µ

1
=|λ

1
|
1/2

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(e) λ
1
=−100, µ

1
=|λ

1
|
1/2

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

(f) λ
1
=−10000, µ

1
=|λ

1
|
1/2

imp.stab.MLMC stab.MLMC MLMC

Sti� case

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(a) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.1)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(b) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.01)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(c) λ
1
=−1, µ

1
=sqrt(−2λ

1
−0.0001)

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(d) λ
1
=−1, µ

1
=|λ

1
|
1/2

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(e) λ
1
=−100, µ

1
=|λ

1
|
1/2

0.01 0.10.001
10

0

10
5

10
10

accuracy

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

(f) λ
1
=−10000, µ

1
=|λ

1
|
1/2

imp.stab.MLMC stab.MLMC MLMC

Figure 3.13: Function evaluations against root mean square accuracy comparing the improved
stabilized MLMC method using S-ROCK1 and S-ROCK2 with the stabilized (S-ROCK1) and the
standard (EM) MLMC method.

εMC is smaller than ε, the desired accuracy. We have then shown that using the S-ROCK1

methods, a family of stabilized methods based on the Euler-Maruyama scheme, it is possible

to define a stabilized MLMC method that is applicable for stiff mean square stable problems.

By an optimal choice of the stabilization procedure, varying from the coarse to the fine MLMC

levels, we showed that it is possible to recover the optimal complexity of the MLMC for nonstiff

problems up to a factor involving the square root of a quantity called the stiffness parameter.

Even though our stability analysis relies on the usual linear scalar SDE used to characterize

mean square stability of numerical integrators, we have shown through numerical experiments

on multidimensional nonlinear noncommutative stiff SDEs and on a system of SDEs obtained

from a space-discretized SPDE that our new stabilized MLMC method is efficient also for more

general problems. Furthermore, by using a higher weak order scheme (namely S-ROCK2) we

have presented an improved stabilized MLMC method and we have compared it numerically

to the stabilized MLMC method and the standard MLMC method.

68

4 S-ROCK Methods for Jump-Diffusion
Processes

In this chapter we introduce an explicit stabilized numerical integrator based on orthogonal

Chebyshev polynomials that can be used to approximate the solution of stochastic problems

characterized by stochastic differential equations driven by jump-diffusion processes. In

particular we present two new numerical schemes, the S-ROCK1-JD method and the PIROCK-

JD method. Both discretization methods are an extension of existing methods for diffusions

to jump-diffusions. We study rigorously the strong order of convergence of the two methods,

which we prove to be equal to 1/2. In this chapter we also analyze the mean square stability

of the newly defined methods and we specify their stability domains. Finally, we carry out

several numerical experiments to numerically visualize the theoretical findings.

4.1 Introduction

In many different fields the number of stochastic problems that are modeled by jump-diffusion

processes is increasing. In finance (see e.g. [32, 26, 54]), in biology (see e.g. [103, 54]), in

chemistry (see e.g. [48]), in medicine (see e.g. [54]), and so on models based on jump-

diffusions are very useful to capture sudden, unforeseeable events, that can lead to a huge

variation of the underlying stochastic process over a very small time period. Mathematical

models based on diffusions are not able to account for such events, and thus, an extension

to models driven by jump-diffusion processes is essential (see for instance [80, 18, 98]). As

for diffusion models, often there does not exist an analytical solution of the jump-diffusion

models. Hence, one requires numerical integrators to provide an approximate solution. There

are various scientific papers and books that propose and analyze numerical integrators that

can solve jump-diffusion processes (see for instance [26, 59, 73, 50, 32, 49, 54]).

Discretizing stochastic partial differential equations, which possibly include a jump term,

by using the method of lines, it is possible that stepsize restrictions arise due to stability

issues. These restrictions can force explicit numerical integrators into using potentially a very

small time stepsize, which can make the numerical approximation very expensive in terms of

function evaluations. In this chapter we consider stiff mean square stable systems for which

69

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

standard numerical integrator, such as the Euler-Maruyama method (see e.g. [59, 92]), face

severe time stepsize restrictions.

We provide in this chapter stabilized explicit numerical integrators that approximate stiff

stochastic differential equations driven by jump-diffusion processes efficiently. The methods

we propose remain fully explicit and they are simple to implement. The idea to extend the

S-ROCK methods to stochastic differential equations driven by jump-diffusion processes first

came up in [21]. Here, we give a rigorous study of the strong convergence of the suggested nu-

merical integrators. In addition, we study the mean square stability of the numerical methods

and we carry out various numerical experiments. To the best of the author’s knowledge such

stabilized explicit numerical integrators for stiff stochastic differential equations driven by

jump-diffusions do not exist in the literature. We note though that drift-implicit numerical

integrators have been suggested for jump-diffusion models (see for instance [59]). These

methods are a good alternative when they can be applied. However, for instance for stochastic

problems modeled by stochastic partial differential equations with stiff nonlinear terms, it can

be really difficult or even impossible to solve such large systems with an implicit integrator.

This chapter is organized as follows. First, we specify in Section 4.2 which kind of stochastic

differential equations we deal with and we define the numerical integrators that we use in this

chapter. In Section 4.3 we prove the strong order of convergence of the numerical integrators.

This is followed by the study of the mean square stability of the two numerical methods in

Section 4.4. Finally, we provide in Section 4.5 various numerical experiments to illustrate the

theoretical findings of the previous sections.

The following is based on a scientific paper that is in preparation [6].

4.2 Preliminaries

In this chapter we consider stochastic differential equation driven by a jump-diffusion process,

which are characterized by
dX (t) = f (X (t−))dt +

m1∑
r=1

g r
1 (X (t−))dW r

t +
m2∑
r=1

g r
2 (X (t−))dN r

t , 0 ≤ t ≤ T,

X (0) = X0 ,

(4.1)

where X (t) is a Rd -valued random variable, X (t−) = lim
s↗t

X (s), f : Rd → Rd is the drift term,

g r
1 : Rd → Rd with r = 1,2, . . . ,m are the diffusion terms, g r

2 : Rd → Rd with r = 1,2, . . . ,m are

the jump terms, (W r (t))t∈[0,T] with r = 1,2, . . . ,m are independent one-dimensional Wiener

processes and (N r (t))t∈[0,T] with r = 1,2, . . . ,m are independent Poisson processes with jump

intensity ρ. Without loss of generality we assume in this chapter autonomous stochastic

differential equations. Using a simple transformation any non-autonomous SDE can be

changed into an autonomous one (see Remark 2.1.3).

70

4.2. Preliminaries

To get a numerical approximation of the solution of (4.1), we take into account a discrete map

Xn+1 =Ψ (Xn ,∆t ,ξn) , (4.2)

whereΨ (·,∆t ,ξn) :Rd →Rd , Xn ∈Rd with n ≥ 0, ∆t the time stepsize of the numerical scheme

and ξn a random vector. We use two concepts in this chapter, namely the accuracy measured

by the mean square stability and the convergence of the numerical integrators. They are

introduced in detail in Section 2.2 and we briefly recall them here. When dealing with stochas-

tic differential equations, there are two different types of convergence. In this chapter we

study the strong convergence, and thus, we recall its definition here. Starting from the initial

condition X0 of (4.1), a numerical scheme (4.2) is said to be of strong order of convergence rs

if

∃C ∈R+ such that max
0≤n≤T /h

(
E
[|Xn −X (τn)|2])1/2 ≤C∆t rs

with τn = n∆t ∈ [0,T] and ∆t sufficiently small. Note that C is a constant that is independent

of the time stepsize ∆t .

The next concept of SDEs that we study in this chapter is the mean square stability of a

numerical method. The mean square stability is interesting if one is fixing a time stepsize ∆t

and then looks at the long-time behavior of the exact and the approximate solution. In fact, a

stochastic process (X (t))t≥0 is said to be mean square stable if

lim
t→∞E

[
X (t)2]= 0.

By using a specific test problem, see Section 4.4, we can find the true stability domain of the

test problem. To avoid a time stepsize restriction, which especially arises for stiff problems, it

is useful to have a numerical integrator that covers as much as possible of this true stability

domain. A numerical method is said to be mean square stable if

lim
n→∞E

[
X 2

n

]= 0.

Details of the test problem, the stability domains of the test problem and the numerical

schemes are given in Section 4.4.

4.2.1 Numerical Schemes

In this section we briefly define the numerical integrators that we use in this chapter. Since

we are dealing with jump-diffusion processes, one has to distinguish between a regular time

grid and a jump-adapted time grid. The difference is that the regular time grid is based on a

uniform time stepsize, whereas in the jump-adapted time grid the jump times are added to

the regular time steps. To define the numerical integrators, we consider a time grid

τN
∆t := {t0, t1, . . . , tN } , (4.3)

71

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

which is, depending on the situation, the time grid of the regular or the jump-adapted numeri-

cal scheme with an underlying uniform stepsize of ∆t .

S-ROCK1-JD

The first scheme that we introduce here is the S-ROCK1-JD method, which we define as

follows.

Definition 4.2.1 (S-ROCK1-JD method). Consider the time grid (4.3). The S-ROCK1-JD method

with s stages (with s ≥ 2) for (4.1) is defined by

K0 = Yn ,

K1 = Yn +∆tn+1
ω1
ω0

f (K0) ,

K j = 2∆tn+1ω1
T j−1(ω0)

T j (ω0) f
(
K j−1

)+2ω0
T j−1(ω0)

T j (ω0) K j−1 − T j−2(ω0)
T j (ω0) K j−2, j = 2,3, . . . , s,

Yn+1 = Ks +
m1∑
r=1

g r
1 (Ks)∆W r

n+1 +
m2∑
r=1

g r
2 (Ks)∆N r

n+1,

(4.4)

where ∆tn+1 = tn+1 − tn , ω0 = 1+ η

s2 , ω1 = Ts (ω0)
T ′

s (ω0) , ∆W r
n+1 =W r (tn+1)−W r (tn) and

∆N r
n+1 = N r (tn+1)−N r (tn).

Note that
(
T j (x)

)
j≥0 represent the orthogonal Chebyshev polynomials and η is a damping

parameter, which allows to adjust the stability domain of the numerical integrator (see [12]).

PIROCK-JD

The second numerical scheme that we define here is the so-called PIROCK-JD method. It is

based on the PIROCK method introduced in [14] to which we add a jump component. The

PIROCK-JD method (with no reaction and no advection) that we use in this chapter is defined

as follows.

72

4.3. Strong Convergence

Definition 4.2.2 (PIROCK-JD method). Consider the time grid (4.3). The PIROCK-JD method

with s stages for (4.1) is defined by

K0 = Yn ,

K1 = Yn +αµ1∆tn+1 f (K0) ,

K j = αµ j∆tn+1 f
(
K j−1

)−ν j K j−1 −κ j K j−2, j = 2,3, . . . , s

K ∗
s−1 = Ks−2 +σα∆tn+1 f (Ks−2) ,

K ∗
s = K ∗

s−1 +σα∆tn+1 f
(
K ∗

s−1

)
,

K ∗
s+1 = Ks +β∆tn+1 f (Ks)

Yn+1 = K ∗
s −σα

(
1− τα

σ2
α

)
∆tn+1

(
f
(
K ∗

s−1

)− f (Ks−2)
)

+
m1∑
r=1

g r
1

(
K ∗

s+1

)
∆W r

n+1 +
m2∑
r=1

g r
2

(
K ∗

s+1

)
∆N r

n+1,

(4.5)

where ∆tn+1 = tn+1 − tn , ∆W r
n+1 = W r (tn+1)−W r (tn) and ∆N r

n+1 = N r (tn+1)−N r (tn). The

parameters α= 1,β= 1−2αP ′
s(0) and µ j ,ν j ,κ j ,τα,σα are as defined in [14].

Euler-Maruyama-JD Method

Here, we give briefly the definition of the Euler-Maruyama method for stochastic differential

equations driven by jump-diffusions (called the Euler-Maruyama-JD method in the following)

that has been discussed e.g. in [26, 59]. As the two previous schemes, the Euler-Maruyama

method is defined as well on a regular as on a jump-adapted time grid. In Section 4.5.2 we

compare numerically the Euler-Maruyama method to the S-ROCK1-JD method.

Definition 4.2.3 (Euler-Maruyama-JD method). Consider the time grid (4.3). The Euler-

Maruyama-JD method for (4.1) is defined by

Yn+1 = Yn + f (Yn)∆tn+1 +
m1∑
r=1

g r
1 (Yn)∆W r

n+1 +
m2∑
r=1

g r
2 (Yn)∆N r

n+1,

where ∆tn+1 = tn+1 − tn , ∆W r
n+1 =W r (tn+1)−W r (tn) and ∆N r

n+1 = N r (tn+1)−N r (tn).

4.3 Strong Convergence

In this section we derive the strong order of convergence of the S-ROCK1-JD method and of the

PIROCK-JD method defined in Definition 4.2.1 and Definition 4.2.2, respectively. We show that

both numerical integrators are of strong order of convergence 1/2. The following is inspired

by [59], which proves in particular the strong order of convergence of the Euler-Maruyama

73

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

method for jump-diffusion processes. We start by proving the strong order of convergence of

the S-ROCK1-JD method.

4.3.1 Strong Convergence of S-ROCK1-JD

In the following we consider a stochastic differential equation driven by a jump-diffusion

process of the form (4.1). As numerical integrator we take into account the S-ROCK1 method

for jump-diffusions with s stages defined in (4.4), where we suppose that we use a time stepsize

of ∆t . Note that in the jump-adapted case this represents the largest time stepsize of the time

grid and in the regular case it is the uniform time stepsize.

We state now a few assumptions, that we use in the following. We indicate them with (A·),

where · represents a specific number. First of all, we assume that the functions f , g r
1 , g r

2 are

Lipschitz continuous (A1), i.e.

∣∣ f (x)− f (y)
∣∣2 ≤ K |x − y |2,∣∣g r

1 (x)− g r
1 (y)

∣∣2 ≤ K1|x − y |2,∣∣g r
2 (x)− g r

2 (y)
∣∣2 ≤ K2|x − y |2,

for all x, y and for all r with K ,K1 and K2 some positive constants. It follows that these functions

also allow a linear growth bound, namely

∣∣ f (x)
∣∣2 ≤ L

(
1+|x|2) ,∣∣g r

1 (x)
∣∣2 ≤ L1

(
1+|x|2) ,∣∣g r

2 (x)
∣∣2 ≤ L2

(
1+|x|2) ,

where L,L1 and L2 are some positive constants. Furthermore, we assume that the second

moment of the initial condition is finite, i.e. E
[|X0|2

]<+∞ and that X0 is independent of the

Brownian processes
(
W r

t

)
t∈[0,T] and the Poisson processes

(
N r

t

)
t∈[0,T] (A2). This guarantees

the existence and uniqueness of a solution to (4.1) (see e.g. [26]).

We show now that the S-ROCK1-JD method (4.4) has a strong order of convergence 1/2. This

requires a few lemmas and results in a theorem, which proves the convergence. But first

observe that we can rewrite (4.4) as

Yn+1 = Yn +α (Ks ,Yn)∆t +
m1∑
r=1

g r
1 (Ks)∆W r

n+1 +
m2∑
r=1

g r
2 (Ks)∆N r

n+1,

where

α (Ks ,Yn) = Ks −Yn

∆t
. (4.6)

It is straightforward to show by recurrence thatα (Ks ,Yn) =
s−1∑
j=0

λs j f
(
K j

)
, and thus, the function

α is also Lipschitz continuous and has a linear growth bound. For a solely theoretical purpose

74

4.3. Strong Convergence

we can extend the discrete numerical solution to continuous time. In fact, we define

Z1(t) =∑
k

Yk 1[k∆t ,(k+1)∆t [(t),

and thus, we can write the numerical solution in continuous time as

Y (t) = Y0 +
∫ t

0
α (Z1(s)+O (∆t) , Z1(s))ds

+
m1∑
r=1

∫ t

0
g r

1 (Z1(s)+O (∆t))dW r
s +

m2∑
r=1

∫ t

0
g r

2 (Z1(s)+O (∆t))dN r
s ,

(4.7)

where we have used that Ks = Yn +∆t
s−1∑
j=0

λs j f
(
K j

) = Yn +O (∆t). Proposition 4.3.1 gives

another result, which we use to prove the strong convergence.

Proposition 4.3.1. Suppose that the assumption (A1) holds. Consider the function α defined in

(4.6). Then α satisfies the following upper bound:

|α (Ks ,Yn)|2 ≤ Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+2 |Yn |2 +O

(
∆t 2)) .

Proof. Taking into account the definition of α we get

|α (Ks ,Yn)|2 =
∣∣∣∣Ks −Yn

∆t

∣∣∣∣2

=
∣∣∣∣∣s−1∑

j=0
λs j f

(
K j

)∣∣∣∣∣
2

.

Using the Cauchy-Schwarz inequality, the linear growth bound for f and the fact that

K j = Yn +O (∆t) we obtain the desired upper bound

|α (Ks ,Yn)|2 =
∣∣∣∣∣s−1∑

j=0
λs j f

(
K j

)∣∣∣∣∣
2

≤
s−1∑
j=0

∣∣λs j
∣∣2

s−1∑
j=0

∣∣ f
(
K j

)∣∣2

≤
s−1∑
j=0

∣∣λs j
∣∣2

s−1∑
j=0

L
(
1+ ∣∣K j

∣∣2
)

≤
s−1∑
j=0

∣∣λs j
∣∣2

s−1∑
j=0

L
(
1+2 |Yn |2 +O

(
∆t 2))

≤ Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+2 |Yn |2 +O

(
∆t 2

))
.

We state and prove now three lemmas before we tackle the theorem.

75

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Lemma 4.3.2. Suppose that the assumptions (A1) and (A2) hold. Then there exists ∆t∗ > 0 such

that for all 0 <∆t ≤∆t∗

E
[|Yk |2

]≤C1
(
1+E[|X (0)|2]) , ∀ k∆t ≤ T.

Proof. By extension to continuous time we have

Yk+1 = Y0 +
∫ (k+1)∆t

0 α (Z1(s)+O (∆t) , Z1(s))ds

+
m1∑
r=1

∫ (k+1)∆t

0
g r

1 (Z1(s)+O (∆t))dW r
s

+
m2∑
r=1

∫ (k+1)∆t

0
g r

2 (Z1(s)+O (∆t))dN r
s .

Hence, for (k +1)∆t ≤ T ,

E
[|Yk+1|2

] ≤ 4E
[|Y0|2

]+4E

[∣∣∣∫ (k+1)∆t
0 α (Z1(s)+O (∆t) , Z1(s))ds

∣∣∣2
]

+4m1

m1∑
r=1

E

[∣∣∣∣∫ (k+1)∆t

0
g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣∣2]

+4m2

m2∑
r=1

E

[∣∣∣∣∫ (k+1)∆t

0
g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣∣2]
.

We derive now for each of the last three expressions an upper bound.

(i) The first upper bound controls the deterministic integral. In fact, using the Cauchy-

Schwarz inequality, Proposition 4.3.1 and Fubini’s theorem we get

E

[∣∣∣∫ (k+1)∆t
0 α (Z1(s)+O (∆t) , Z1(s))ds

∣∣∣2
]

≤ TE
[∫ (k+1)∆t

0 |α (Z1(s)+O (∆t) , Z1(s))|2 ds
]

≤ TE

[∫ (k+1)∆t
0 Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+2 |Z1(s)|2 +O

(
∆t 2

))
ds

]

≤ Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T

(
T

(
1+O

(
∆t 2

))+2
∫ (k+1)∆t

0 E
[|Z1(s)|2]ds

)

= Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T 2

(
1+O

(
∆t 2

))+2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T∆t

k∑
0
E
[|Yi |2

]
.

(i i) The next upper bound that we derive deals with the stochastic integral with respect to a

Brownian motion. Taking into account the Itô isometry and the linear growth bound

76

4.3. Strong Convergence

yields

E

[∣∣∣∫ (k+1)∆t
0 g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣2
]

= ∫ (k+1)∆t
0 E

[∣∣g r
1 (Z1(s)+O (∆t))

∣∣2
]

ds

= ∆t
k∑

j=0
E
[∣∣Y j +O (∆t)

∣∣2
]

≤ ∆tL
k∑

j=0
E
[(

1+ ∣∣Y j +O (∆t)
∣∣2

)]
≤ T L

(
1+O

(
∆t 2

))+2∆tL
k∑

j=0
E
[∣∣Y j

∣∣2
]

.

(i i i) Note that (N r)t∈[0,T] are Poisson processes with intensity ρ. Hence, the processes

defined by
(
N̂ r

)
t∈[0,T] with N̂ r (t) := N r (t)−ρt are the associated compensated Poisson

processes, which are martingales, and thus, the martingale isometry holds for these

processes (see e.g. [54]). For the stochastic integral with respect to the jump processes

we can derive the following upper bound. Using the martingale isometry, the Cauchy-

Schwarz inequality, Fubini’s theorem and the linear growth bound of g r
2 we get

E

[∣∣∣∫ (k+1)∆t
0 g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣2
]

= E

[∣∣∣∫ (k+1)∆t
0 g r

2 (Z1(s)+O (∆t))dN̂ r
s +ρ ∫ (k+1)∆t

0 g r
2 (Z1(s)+O (∆t))ds

∣∣∣2
]

≤ 2E

[∣∣∣∫ (k+1)∆t
0 g r

2 (Z1(s)+O (∆t))dN̂ r
s

∣∣∣2
]

+2ρ2E

[∣∣∣∫ (k+1)∆t
0 g r

2 (Z1(s)+O (∆t))ds
∣∣∣2

]
≤ 2ρ

∫ (k+1)∆t
0 E

[∣∣g r
2 (Z1(s)+O (∆t))

∣∣2
]

ds

+2ρ2T
∫ (k+1)∆t

0 E
[∣∣g r

2 (Z1(s)+O (∆t))
∣∣2

]
ds

= (
2ρ+2ρ2T

)
∆t

k∑
j=0

E
[∣∣g r

2

(
Y j +O (∆t)

)∣∣2
]

≤ (
2ρ+2ρ2T

)
∆tL

k∑
j=0

E
[

1+ ∣∣Y j +O (∆t)
∣∣2

]
≤ (

2ρ+2ρ2T
)

T L
(
1+O

(
∆t 2

))+2∆tL
k∑

j=0
E
[∣∣Y j

∣∣2
]

= 2ρT
(
1+ρT

)
L

(
1+O

(
∆t 2

))+4ρ
(
1+ρT

)
∆tL

k∑
j=0

E
[∣∣Y j

∣∣2
]

.

77

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Taking all upper bounds computed in (i)− (i i i), we obtain

E
[|Yk+1|2

]
≤ 4E

[|Y0|2
]

+4

(
Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T 2

(
1+O

(
∆t 2

))+2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T∆t

k∑
0
E
[|Yi |2

])

+4m1

m1∑
r=1

(
T L

(
1+O

(
∆t 2))+2∆tL

k∑
j=0

E
[∣∣Y j

∣∣2
])

+4m2

m2∑
r=1

(
2ρT

(
1+ρT

)
L

(
1+O

(
∆t 2))+4ρ

(
1+ρT

)
∆tL

k∑
j=0

E
[∣∣Y j

∣∣2
])

= 4E
[|Y0|2

]+4T L
(
1+O

(
∆t 2

))(
s

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T +m2

1 +2m2
2ρ

(
1+ρT

))

+8∆tL

(
s

(
s−1∑
j=0

∣∣λs j
∣∣2

)
T +m2

1 +2m2
2ρ

(
1+ρT

)) k∑
j=0

E
[∣∣Y j

∣∣2
]

.

Note that
(
1+O

(
∆t 2

))
is bounded for ∆t sufficiently small. Applying the discrete Gronwall

inequality (see e.g. [74]) yields the result of the lemma.

Remark 4.3.3. Observe that the stage number s appears in the final upper bound derived in the

proof of Lemma 4.3.2 in combination with the expression
s−1∑
j=0

∣∣λs j
∣∣2. Note that it can be shown

that the coefficients λs j behave like 1
s2 as s increases, and thus, s

(
s−1∑
j=0

∣∣λs j
∣∣2

)
remains bounded

as s increases.

Lemma 4.3.4. Suppose that the assumptions (A1) and (A2) hold. Then there exists ∆t∗ > 0 such

that for all 0 <∆t ≤∆t∗

E

[
sup

t∈[0,T]
|Y (t)|2

]
≤C2

(
1+E[|X (0)|2]) .

Proof. Consider the discrete solution expressed in continuous time

Y (t) = Y0 +
∫ t

0 α (Z1(s)+O (∆t) , Z1(s))ds

+
m1∑
r=1

∫ t

0
g r

1 (Z1(s)+O (∆t))dW r
s +

m2∑
r=1

∫ t

0
g r

2 (Z1(s)+O (∆t))dN r
s .

Taking first the square of the norm, then the supremum over the time interval [0,T] and finally

78

4.3. Strong Convergence

the expectation yields

E
[
supt∈[0,T] |Y (t)|2] ≤ 4E

[
supt∈[0,T] |Y0|2

]
+4E

[
supt∈[0,T]

∣∣∫ t
0 α (Z1(s)+O (∆t) , Z1(s))ds

∣∣2
]

+4m1

m1∑
r=1

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣∣2
]

+4m2

m2∑
r=1

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣∣2
]

.

As in the previous lemma, we look separately for an upper bound for the last three expressions.

(i) We derive first an upper bound for the deterministic term. Observe that

E
[

supt∈[0,T]

∣∣∫ t
0 α (Z1(s)+O (∆t) , Z1(s))ds

∣∣2
]

≤ E
[
supt∈[0,T]

∫ t
0 12ds

∫ t
0 |α (Z1(s)+O (∆t) , Z1(s))|2 ds

]
≤ TE

[∫ T
0 |α (Z1(s)+O (∆t) , Z1(s))|2 ds

]
≤ T 2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+O

(
∆t 2

))+2T Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)∫ T
0 E

[|Z1(s)|2]ds,

where we have successively applied the Cauchy-Schwarz inequality, Proposition 4.3.1

and Fubini’s theorem.

(i i) Next, we find an upper bound for the expression with the Brownian motion. Using Doob’s

inequality, the Itô isometry, the linear growth bound of g r
1 and Fubini’s theorem we

obtain
E
[

supt∈[0,T]

∣∣∫ t
0 g r

1 (Z1(s)+O (∆t))dW r
s

∣∣2
]

≤ 4E

[∣∣∣∫ T
0 g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣2
]

= 4E
[∫ T

0

∣∣g r
1 (Z1(s)+O (∆t))

∣∣2 ds
]

≤ 4T L
(
1+O

(
∆t 2

))+8L
∫ T

0 E
[|Z1(s)|2]ds.

(i i i) Finally, we are looking to control the expression corresponding to the Poisson process.

Using the same trick with the compensated Poisson process as in (i i i) of the proof of

Lemma 4.3.2, Doob’s inequality, the Cauchy-Schwarz inequality and the linear growth

79

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

bound of g r
2 we get

E
[

supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))dN r
s

∣∣2
]

= E
[

supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))dN̂ r
s +ρ ∫ t

0 g r
2 (Z1(s)+O (∆t))ds

∣∣2
]

≤ 2E
[

supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))dN̂ r
s

∣∣2
]

+2ρ2E
[

supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))ds
∣∣2

]
≤ 8E

[
supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))dN̂ r
s

∣∣2
]

+2ρ2E
[

supt∈[0,T]

∣∣∫ t
0 g r

2 (Z1(s)+O (∆t))ds
∣∣2

]
≤ 8ρ

∫ T
0 E

[∣∣g r
2 (Z1(s)+O (∆t))

∣∣2
]

ds +2ρ2TE
[∣∣g r

2 (Z1(s)+O (∆t))
∣∣2

]
ds

≤ (
8ρL+2ρ2T L

)(
T

(
1+O

(
∆t 2

))+2
∫ T

0 E
[|Z1(s)|2]ds

)
.

Putting the results (i)− (i i i) together, we obtain

E
[
supt∈[0,T] |Y (t)|2]

≤ 4E
[|Y0|2

]+4T 2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+O

(
∆t 2

))
+16m2

1T L
(
1+O

(
∆t 2

))+4m2
2T

(
8ρL+2ρ2T L

)(
1+O

(
∆t 2

))
+

(
8T Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)
+32m2

1L+8m2
2

(
8ρL+2ρ2T L

))∫ T
0 E

[|Z1(s)|2]ds.

Applying Lemma 4.3.2 yields the desired result.

Lemma 4.3.5. Assume that the assumptions (A1) and (A2) hold. Then there exists ∆t∗ > 0 such

that for all 0 < t ≤∆t∗

E

[
sup

t∈[0,T]
|Y (t)−Z1(t)|2

]
≤C3∆t

(
1+E[|X (0)|2]) .

80

4.3. Strong Convergence

Proof. Let t ∈ [k∆t , (k +1)∆t], a subinterval of [0,T]. By definition of the numerical scheme

in continuous time we get

Y (t)−Z1(t) = Y (t)−Yk = ∫ t
k∆t α (Z1(s)+O (∆t) , Z1(s))ds

+
m1∑
r=1

∫ t

k∆t
g r

1 (Z1(s)+O (∆t))dW r
s

+
m2∑
r=1

∫ t

k∆t
g r

2 (Z1(s)+O (∆t))dN r
s .

Taking the square of the norm it follows that

|Y (t)−Z1(t)|2 ≤ 3
∣∣∫ t

k∆t α (Z1(s)+O (∆t) , Z1(s))ds
∣∣2

+3m1

m1∑
r=1

∣∣∣∣∫ t

k∆t
g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣∣2

+3m2

m2∑
r=1

∣∣∣∣∫ t

k∆t
g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣∣2

.

Note that this holds for any t ∈ [k∆t , (k +1)∆t]. Therefore, we can take the supremum and the

expectation, so that we get

E
[
supt∈[0,T] |Y (t)−Z1(t)|2]

≤ 3E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
α (Z1(s)+O (∆t) , Z1(s))ds

∣∣∣∣2
)]

+3m1

m1∑
r=1

E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣∣2
)]

+3m2

m2∑
r=1

E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣∣2
)]

.

As for Lemma 4.3.2 and Lemma 4.3.4, we derive for each of the last three expressions an upper

bound, and then we put them together.

81

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

(i) Using the Cauchy-Schwarz inequality, Proposition 4.3.1 and Fubini’s theorem for the

deterministic part we obtain

E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
α (Z1(s)+O (∆t) , Z1(s))ds

∣∣∣∣2
)]

≤ max
k=0,1,..., T

∆t −1
E

[
sup

τ∈[k∆t ,(k+1)∆t]

∫ τ

k∆t
12ds

∫ τ

k∆t
|α (Z1(s)+O (∆t) , Z1(s))|2 ds

]

≤ max
k=0,1,..., T

∆t −1
∆tE

[∫ (k+1)∆t

k∆t
|α (Z1(s)+O (∆t) , Z1(s))|2 ds

]

≤ max
k=0,1,..., T

∆t −1
∆t

(
∆tLs

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+O

(
∆t 2))

+2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)∫ (k+1)∆t
k∆t E

[|Z1(s)|2]ds

)
.

(i i) Taking into account Doob’s inequality, the Itô isometry, the linear growth bound of g r
1

and Fubini’s theorem yields for the stochastic expression associated to the Brownian

motion

E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣∣2
)]

≤ maxk=0,1,..., T
∆t −1 4E

[∣∣∣∫ (k+1)∆t
k∆t g r

1 (Z1(s)+O (∆t))dW r
s

∣∣∣2
]

= maxk=0,1,..., T
∆t −1 4E

[∫ (k+1)∆t
k∆t

∣∣g r
1 (Z1(s)+O (∆t))

∣∣2 ds
]

≤ maxk=0,1,..., T
∆t −1 4L

(
∆t

(
1+O

(
∆t 2

))+2
∫ (k+1)∆t

k∆t E
[|Z1(s)|2]ds

)
.

In the last step we have used a similar argument to (i i) in the proof of Lemma 4.3.4.

(i i i) For the term corresponding to the Poisson process we have

E

[
max

k=0,1,..., T
∆t −1

(
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
g r

2 (Z1(s)+O (∆t))dN r
s

∣∣∣∣2
)]

≤ max
k=0,1,..., T

∆t −1
2E

[
sup

τ∈[k∆t ,(k+1)∆t]

∣∣∣∣∫ τ

k∆t
g r

2 (Z1(s)+O (∆t))dN̂ r
s

∣∣∣∣2
]

+ max
k=0,1,..., T

∆t −1
2ρ2E

[
sup

τ∈[k∆t ,(k+1)∆t]

∫ τ

k∆t
g r

2 (Z1(s)+O (∆t))ds|2
]

≤ max
k=0,1,..., T

∆t −1

(
2ρL+2ρ2∆tL

)(
∆t

(
1+O

(
∆t 2))+2

∫ (k+1)∆t

k∆t
E
[|Z1(s)|2]ds

)
,

where we have used the compensated Poisson process
(
N̂ r

t

)
t∈[0,T] with N̂ r

t = N r
t −ρt

and the bounds derived in (i i i) of the proof of Lemma 4.3.4.

82

4.3. Strong Convergence

Considering the results (i)− (i i i), we get

E
[
supt∈[0,T] |Y (t)−Z1(t)|2]

≤ max
k=0,1,..., T

∆t −1
3∆t 2Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)(
1+O

(
∆t 2))

+12m2
1L∆t

(
1+O

(
∆t 2

))
+3m2

2

(
2ρL+2ρ2∆tL

)
∆t

(
1+O

(
∆t 2

))
+

(
6Ls

(
s−1∑
j=0

∣∣λs j
∣∣2

)∫ (k+1)∆t
k∆t +24m2

1L+6m2
2

(
2ρL+2ρ2∆tL

))
·∫ (k+1)∆t

k∆t E
[|Z1(s)|2]ds.

Observe that by Lemma 4.3.2∫ (k+1)∆t

k∆t
E
[|Z1(s)|2]ds ≤

∫ (k+1)∆t

k∆t
C1

(
1+E[|X (0)|2])ds =∆tC1

(
1+E[|X (0)|2]) ,

and thus, there is no more dependance on k and the result follows.

We have now everything at hand to prove the following theorem.

Theorem 4.3.6. Let (X (t))t∈[0,T] be a stochastic process defined by (4.1) and let (Y (t))t∈[0,T]

be the numerical approximation by the S-ROCK1-JD method (4.4) that we have extended to

continuous time (4.7). Suppose that the assumptions (A1) and (A2) hold. Then there exists a

∆t∗ > 0 such that for all 0 <∆t ≤∆t∗

E

[
sup

t∈[0,T]
|Y (t)−X (t)|2

]
≤C5∆t

(
1+E[|X (0)|2]) .

Proof. By the definition of Y (t) and X (t) we have

Y (t)−X (t) = ∫ t
0

(
α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)

)
ds

+
m1∑
r=1

∫ t

0

(
g r

1 (Z1(s)+O (∆t))− g r
1 (Xs−)

)
dW r

s

+
m2∑
r=1

∫ t

0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN r

s .

83

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Let 0 ≤ t1 ≤ T and take the norm, the supremum over [0, t1] and the expectation to get

E
[
supt∈[0,t1] |Y (t)−X (t)|2]

≤ 3E
[

supt∈[0,t1]

∣∣∫ t
0

(
α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)

)
ds

∣∣2
]

+3m1

m1∑
r=1

E

[
sup

t∈[0,t1]

∣∣∣∣∫ t

0

(
g r

1 (Z1(s)+O (∆t))− g r
1 (Xs−)

)
dW r

s

∣∣∣∣2
]

+3m2

m2∑
r=1

E

[
sup

t∈[0,t1]

∣∣∣∣∫ t

0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN r

s

∣∣∣∣2
]

.

We proceed now by investigating each of the three expressions on the right-hand side sepa-

rately.

(i) Using the Cauchy-Schwarz inequality and Fubini’s theorem a first upper bound is given by

E
[

supt∈[0,t1]

∣∣∫ t
0

(
α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)

)
ds

∣∣2
]

≤ E
[

supt∈[0,t1]

∫ t
0 12ds

∫ t
0

∣∣α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)
∣∣2 ds

]
≤ t1

∫ t1
0 E

[∣∣α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)
∣∣2

]
ds.

Observe that for the S-ROCK1-JD method we have

Ks = Yn +∆tω1
T ′

s (ω0)

Ts (ω0)
f (Yn)+O

(
∆t 2)

with ω1
T ′

s (ω0)
Ts (ω0) = 1 by the choice of ω1 (and since the method converges). Hence, we get

Ks = Yn +∆t f (Yn)+O
(
∆t 2) ,

and thus, α can be expressed as

α (Ks ,Yn) = f (Yn)+O (∆t) .

It follows that∣∣α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)
∣∣2 = ∣∣ f (Z1(s))+O (∆t)− f (Xs−)

∣∣2

≤ 2K |Z1(s)−Xs−|2 +O
(
∆t 2

)
,

where we have used that f is Lipschitz continuous. Therefore, putting the results

84

4.3. Strong Convergence

together yields

E
[

supt∈[0,t1]

∣∣∫ t
0

(
α (Z1(s)+O (∆t) , Z1(s))− f (Xs−)

)
ds

∣∣2
]

≤ t1
∫ t1

0 E
[
2K |Z1(s)−Xs−|2 +O

(
∆t 2

)]
ds

= 2K t1
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds + t 2

1O
(
∆t 2

)
.

(i i) For the stochastic part driven by the Brownian motion we use Doob’s inequality, the Itô

isometry, the Lipschitz continuity of g r
1 and Fubini’s theorem to get

E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

1 (Z1(s)+O (∆t))− g r
1 (Xs−)

)
dW r

s

∣∣2
]

≤ 4E
[∣∣∫ t1

0

(
g r

1 (Z1(s)+O (∆t))− g r
1 (Xs−)

)
dW r

s

∣∣2
]

= 4E
[∫ t1

0

∣∣g r
1 (Z1(s)+O (∆t))− g r

1 (Xs−)
∣∣2 ds

]
≤ 4E

[∫ t1
0 K1 |Z1(s)+O (∆t)−Xs−|2 ds

]
≤ 4K1

(
t1O

(
∆t 2

)+2
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds

)
.

(i i i) We consider the compensated Poisson process
(
N̂ r

t

)
t∈[0,T] associated to the Poisson

process
(
N r

t

)
t∈[0,T] by N̂ r

t = N r
t −ρt . Observe that

E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN r

s

∣∣2
]

≤ 2E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN̂ r

s

∣∣2
]

+2ρ2E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
ds

∣∣2
]

.

Using Doob’s inequality and the martingale isometry we obtain

2E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN̂ r

s

∣∣2
]

≤ 8E
[∣∣∫ t1

0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN̂ r

s

∣∣2
]

= 8ρ
∫ t1

0 E
[∣∣g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

∣∣2
]

ds

≤ 8ρK2
(
t1O

(
∆t 2

)+2
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds

)
,

where we have used for the last step that g r
2 is Lipschitz continuous and Fubini’s theorem

to swap the integral and the expectation.

Furthermore, the Cauchy-Schwary inequality combined with the Lipschitz continuity of

85

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

g r
2 and Fubini’s theorem results in

2ρ2E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
ds

∣∣2
]

≤ 2ρ2t1E
[∫ t1

0

∣∣g r
2 (Z1(s)+O (∆t))− g r

2 (Xs−)
∣∣2 ds

]
≤ 2ρ2t1K2

(
t1O

(
∆t 2

)+2
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds

)
.

Merging all upper bounds yields for the Poisson expression

E
[

supt∈[0,t1]

∣∣∫ t
0

(
g r

2 (Z1(s)+O (∆t))− g r
2 (Xs−)

)
dN r

s

∣∣2
]

≤ (
8ρ+2ρ2t1

)
K2

(
t1O

(
∆t 2

)+2
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds

)
.

Taking the results (i)− (i i i) we get

E
[
supt∈[0,t1] |Y (t)−X (t)|2]

≤ 3t 2
1O

(
∆t 2

)+12m2
1K1t1O

(
∆t 2

)+3m2
2

(
8ρ+2ρ2t1

)
K2t1O

(
∆t 2

)
+(

6K t1 +24m2
1K1 +6m2

2

(
8ρ+2ρ2t1

)
K2

)∫ t1
0 E

[|Z1(s)−Xs−|2
]

ds

= B1O
(
∆t 2

)+B2
∫ t1

0 E
[|Z1(s)−Xs−|2

]
ds

with

B1 := 3t 2
1 +12m2

1K1t1 +3m2
2

(
8ρ+2ρ2t1

)
K2t1

and

B2 := 6K t1 +24m2
1K1 +6m2

2

(
8ρ+2ρ2t1

)
K2.

Now observe that

|Z1(s)−Xs−|2 = |Z1(s)−Y (s)+Y (s)−Xs−|2 ≤ 2 |Z1(s)−Y (s)|2 +2 |Y (s)−Xs−|2 ,

and thus,

E
[
supt∈[0,t1] |Y (t)−X (t)|2]

≤ B1O
(
∆t 2

)+2B2
(∫ t1

0 E
[|Z1(s)−Y (s)|2]ds +∫ t1

0 E
[|Y (s)−Xs−|2

]
ds

)
≤ B1O

(
∆t 2

)+2B2C3t1∆t
(
1+E[|X (0)|2])+2B2

∫ t1
0 E

[|Y (s)−Xs−|2
]

ds

≤ B1O
(
∆t 2

)+2B2C3t1∆t
(
1+E[|X (0)|2])+2B2

∫ t1
0 E

[
supt∈[0,s] |Y (s)−Xs−|2

]
ds,

where we have used Lemma 4.3.5. By using the continuous Gronwall inequality (see e.g.

[76, 85]) we find the result of the theorem.

86

4.3. Strong Convergence

This proves that the S-ROCK1-JD method for jump-diffusion processes is of strong order of

convergence 1/2.

4.3.2 Strong Convergence of PIROCK-JD

In the previous section we have shown that the S-ROCK1-JD method for jump-diffusion

processes is of strong order of convergence 1/2. Here, we show now that this result also holds

for the PIROCK-JD method, which consists of the PIROCK method introduced in [14] enriched

with a Poisson noise that deals with jumps and is defined in Definition 4.2.2. We consider the

numerical approximation (4.5) with a time stepsize ∆t . As for the S-ROCK1-JD method, this

time stepsize represents the uniform time stepsize in a regular time grid and the largest time

stepsize in a jump-adapted time grid.

Observe that we can rewrite the PIROCK-JD method scheme as

Yn+1 = Yn +α(
K ∗

s ,K ∗
s−1,Ks−2,Yn

)
∆t +

m1∑
r=1

g r
1

(
K ∗

s+1

)
∆W r

n+1 +
m2∑
r=1

g r
2

(
K ∗

s+1

)
∆N r

n+1

with

α
(
K ∗

s ,K ∗
s−1,Ks−2,Yn

)= K ∗
s −σα

(
1− τα

σ2
α

)
∆t

(
f
(
K ∗

s−1

)− f (Ks−2)
)−Yn

∆t
.

We state and prove now two propositions, which are required so that the proof of strong

convergence for S-ROCK1-JD in Section 4.3.1 also holds for PIROCK-JD.

Proposition 4.3.7. Consider the numerical method PIROCK-JD as defined in (4.5). Assume

that f is sufficiently smooth. Then the following holds:

(a) K j = Yn +αP ′
j (0)∆t f (Yn)+O

(
∆t 2

)
, j = 0,1, . . . , s,

(b) K ∗
s−1 = Yn +O (∆t) ,

(c) K ∗
s = Yn +O (∆t) ,

(d) K ∗
s+1 = Yn +O (∆t) ,

(e) K j = Yn +∆t
j−1∑
i=0

λ j i f (Ki) , j = 0,1, . . . , s.

87

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Proof. (a) We use a proof by recurrence. Observe that the assertion holds for K0 = Yn and

K1 = Yn +αµ1∆t f (Yn). Suppose now that the assertion is true for any i ≤ j −1. Then we

have

K j = αµ j∆t f
(
K j−1

)−ν j K j−1 −κ j K j−2

= αµ j∆t f
(
Yn +αP ′

j−1(0)∆t f (Yn)+O
(
∆t 2

))
−ν j

(
Yn +αP ′

j−1(0)∆t f (Yn)+O
(
∆t 2

))
−κ j

(
Yn +αP ′

j−2(0)∆t f (Yn)+O
(
∆t 2

))
= (−ν j −κ j

)
Yn +α

(
µ j −ν j P ′

j−1(0)−κ j P ′
j−2(0)

)
∆t f (Yn)+O

(
∆t 2

)
= Yn +αP ′

j (0)∆t f (Yn)+O
(
∆t 2

)
,

where we have used f
(
Yn +αP ′

j−1(0)∆t f (Yn)+O
(
∆t 2

)) = f (Yn) +O (∆t) (by Taylor

expansion), −ν j −κ j = 1 (by normalization of the orthogonal polynomials P j) and

µ j −ν j P ′
j−1(0)−κ j P ′

j−2(0) = P ′
j (0).

(b) Using (a) and the Taylor expansion we obtain

K ∗
s−1 = Ks−2 +σα∆t f (Ks−2)

= Yn +O (∆t)+σα∆t f (Yn +O (∆t))

= Yn +O (∆t)+σα∆t f (Yn)+O
(
∆t 2

)= Yn +O (∆t) .

(c) Applying the result (b) and using Taylor expansion we get

K ∗
s = K ∗

s−1 +σα∆t f
(
K ∗

s−1

)
= Yn +O (∆t)+σα∆t f (Yn +O (∆t))

= Yn +O (∆t)+σα∆t f (Yn)+O
(
∆t 2

)= Yn +O (∆t) .

(d) The proof is similar to (a).

(e) We prove the result by recurrence. For K0 = Yn and K1 = Yn +αµ1∆t f (K0) the assertion

88

4.3. Strong Convergence

holds. Suppose now that the assertion is also true for any i ≤ j −1. It follows that

K j = αµ j∆t f
(
K j−1

)−ν j K j−1 −κ j K j−2

= αµ j∆t f
(
K j−1

)−ν j

(
Yn +∆t

j−2∑
i=0

λ j−1i f (Ki)

)

−κ j

(
Yn +∆t

j−3∑
i=0

λ j−2i f (Ki)

)
= (−ν j −κ j)Yn

+∆t

(
αµ j f

(
K j−1

)+ j−3∑
i=0

(−ν jλ j−1i −κ jλ j−2i) f (Ki)−ν jλ j−1 j−2 f
(
K j−2

))
,

= Yn +∆t
j−1∑
i=0

λ j i f (Ki) ,

where we used again the normalization of the polynomials P j .

Proposition 4.3.8. Consider the numerical scheme PIROCK-JD (4.5). Assume that f is Lipschitz

continuous.

Then the following holds:

(a) α
(
K ∗

s ,K ∗
s−1,Ks−2,Yn

) = f (Yn)+O (∆t)

(b)
∣∣α(

K ∗
s ,K ∗

s−1,Ks−2,Yn
)∣∣2 ≤ Ĉ

(
1+2 |Yn |2 +O

(
∆t 2

))
,

where

Ĉ :=
(

6L(s −2)

(
s−3∑
i=0

|λs−2i |2
)
+12σ2

αL+8

(
σα

(
1− τα

σ2
α

))2

K

)(
1+2 |Yn |2 +O

(
∆t 2)) .

Proof. (a) Since the numerical method converges it holds that Yn+1 = Yn +∆t f (Yn)+O
(
∆t 2

)
.

The result follows.

(b) By definition we have

α
(
K ∗

s ,K ∗
s−1,Ks−2,Yn

) =
K ∗

s −σα
(
1− τα

σ2
α

)
∆t(f (K ∗

s−1)− f (Ks−2))−Yn

∆t

= K ∗
s −Yn

∆t −σα
(
1− τα

σ2
α

)(
f
(
K ∗

s−1

)− f (Ks−2)
)

.

89

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

It follows that ∣∣α(
K ∗

s ,K ∗
s−1,Ks−2,Yn

)∣∣2

≤ 2
∣∣∣K ∗

s −Yn

∆t

∣∣∣2 +2
(
σα

(
1− τα

σ2
α

))2 ∣∣ f
(
K ∗

s−1

)− f (Ks−2)
∣∣2

≤ 2
∣∣∣K ∗

s−1−Yn

∆t +σα f
(
K ∗

s−1

)∣∣∣2 +2
(
σα

(
1− τα

σ2
α

))2
K

∣∣K ∗
s−1 −Ks−2

∣∣2

≤ 2
∣∣∣Ks−2−Yn

∆t +σα f
(
K ∗

s−1

)+σα f (Ks−2)
∣∣∣2

+2
(
σα

(
1− τα

σ2
α

))2
K

(
2
∣∣K ∗

s−1

∣∣2 +2 |Ks−2|2
)

≤ 6
∣∣∣Ks−2−Yn

∆t

∣∣∣2 +6σ2
α

∣∣ f
(
K ∗

s−1

)∣∣2 +6σ2
α

∣∣ f (Ks−2)
∣∣2

+16
(
σα

(
1− τα

σ2
α

))2
K

(|Yn |2 +O
(
∆t 2

))
,

where we have used that f is Lipschitz continuous, the definitions of K ∗
s and K ∗

s−1 and

Proposition 4.3.7 (a). Observe that
∣∣∣Ks−2−Yn

∆t

∣∣∣2 =
∣∣∣∣∣s−3∑

i=0
λs−2i f (Ki)

∣∣∣∣∣
2

by Proposition 4.3.7 (e).

Using Proposition 4.3.1 yields∣∣∣∣Ks−2 −Yn

∆t

∣∣∣∣2

≤ L(s −2)

(
s−3∑
i=0

|λs−2i |2
)(

1+2 |Yn |2 +O
(
∆t 2)) .

Moreover, taking into account the linear growth bound of f and Proposition 4.3.7 (b) we

obtain ∣∣ f
(
K ∗

s−1

)∣∣2 ≤ L
(
1+ ∣∣K ∗

s−1

∣∣2
)
≤ L

(
1+2 |Yn |2 +O

(
∆t 2)) .

The same holds for
∣∣ f (Ks−2)

∣∣2.

Putting all upper bounds together results in

∣∣α(
K ∗

s ,K ∗
s−1,Ks−2,Yn

)∣∣2

≤
(

6L(s −2)

(
s−3∑
i=0

|λs−2i |2
)
+12σ2

αL

)(
1+2 |Yn |2 +O

(
∆t 2

))
+16

(
σα

(
1− τα

σ2
α

))2
K

(|Yn |2 +O
(
∆t 2

))
≤

(
6L(s −2)

(
s−3∑
i=0

|λs−2i |2
)
+12σ2

αL+8
(
σα

(
1− τα

σ2
α

))2
K

)
·(1+2 |Yn |2 +O

(
∆t 2

))
,

which concludes the proof.

90

4.4. Mean Square Stability

Considering the results of Proposition 4.3.7 and Proposition 4.3.8 it is straightforward to adapt

the proof of strong convergence for S-ROCK1-JD in Section 4.3.1 to the numerical method

(4.5). Therefore, the PIROCK-JD method with no reaction and no advection term is also of

strong order of convergence 1/2.

4.4 Mean Square Stability

In this section we study the mean square stability of S-ROCK1-JD and PIROCK-JD. Let the time

stepsize ∆t be fixed and let us look at the long-term behavior of the stochastic problem, i.e.

how does the exact and the numerical solution to the problem behave as t →∞.

First of all, to study the mean square stability, we consider the linear test equation given by
dX (t) = µX (t−)dt +σX (t−)dWt +γX (t−)dNt , t > 0,

X (0) = X0,

(4.8)

with X0 given (X0 6= 0 with probability one), X (t) ∈ R, µ,σ and γ real constants. The exact

solution to (4.8) is given by

X (t) = X0 exp

{(
µ− 1

2
σ2

)
t +σW (t)

}(
1+γ)N (t) (4.9)

(see e.g. [50, 67]). In what follows we suppose that γ 6= −1, however the results remain true in

the case γ=−1. Observe that

E
[(

1+γ)2N (t)
]

= E
[

exp
{

N (t) ln
(
1+γ)2

}]
= exp

{
ρt

(
exp

(
ln

(
1+γ)2

)
−1

)}
= exp

{
ρt

((
1+γ)2 −1

)}
= exp

{
ρtγ

(
γ+2

)}
,

(4.10)

where we have used the moment generating function of a Poisson distribution. Putting X (t)

of (4.9) to the square and taking the expectation yields

E
[

X (t)2
] = E

[
X 2

0

]
exp

{
2
(
µ− 1

2σ
2
)

t
}
E
[
exp{2σW (t)}

]
E
[(

1+γ)2N (t)
]

= E
[

X 2
0

]
exp

{
2
(
µ− 1

2σ
2
)

t
}

exp
{
2σ2t

}
exp

{
ρtγ

(
γ+2

)}
= E

[
X 2

0

]
exp

{(
2µ+σ2 +ργ(

γ+2
))

t
}
,

where we have taken into account the moment generating function of a normal distribution

and (4.10). Since X0 6= 0 with probability one, it follows that the exact solution of (4.8) is mean

91

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

square stable if and only if

lim
t→∞E

[
X (t)2]= 0 ⇔ 2µ+σ2 +ργ(

γ+2
)< 0. (4.11)

We proceed now by computing the mean square stability domains of the numerical schemes

and then we will compare them to the true mean square stability domain (4.11).

4.4.1 Mean Square Stability Domain of S-ROCK1-JD

In this section we derive the mean square stability domain of the S-ROCK1-JD method defined

in (4.4). First of all, we apply the S-ROCK1-JD scheme for jump-diffusions to the linear test

problem (4.8), which results in

Yn+1 = Ks +σKs∆Wn+1 +γKs∆Nn+1

with

K j = 2∆tµω1
T j−1 (ω0)

T j (ω0)
K j−1 +2ω0

T j−1 (ω0)

T j (ω0)
K j−1 −

T j−2 (ω0)

T j (ω0)
K j−2.

Proposition 4.4.1. Using the S-ROCK1-JD method (4.4) applied to the linear test equation (4.8)

leads to

K j =
T j

(
ω0 +∆tµω1

)
T j (ω0)

Yn ,

for all j = 0,1, . . . , s.

Proof. The result is straightforward using a proof by recurrence.

Next by using Proposition 4.4.1 we obtain

Yn+1 = Ts(ω0+∆tµω1)
Ts (ω0) Yn +σTs(ω0+∆tµω1)

Ts (ω0) Yn∆Wn+1 +γTs(ω0+∆tµω1)
Ts (ω0) Yn∆Nn+1

= (
1+σ∆Wn+1 +γ∆Nn+1

) Ts(ω0+∆tµω1)
Ts (ω0) Yn .

Putting Yn+1 to the square and taking the expectation yields

E
[
Y 2

n+1

]= T 2
s

(
ω0 +∆tµω1

)
T 2

s (ω0)
E
[(

1+σ∆Wn+1 +γ∆Nn+1
)2

]
E
[
Y 2

n

]
,

92

4.4. Mean Square Stability

where we have used the independence of the stochastic increments. Observe that

E
[(

1+σ∆Wn+1 +γ∆Nn+1
)2

]
= E

[
1+σ2∆W 2

n+1 +γ2∆N 2
n+1 +2σ∆Wn+1 +2γ∆Nn+1 +2σ∆Wn+1γ∆Nn+1

]
= 1+σ2E

[
∆W 2

n+1

]+γ2E
[
∆N 2

n+1

]+2σE [∆Wn+1]+2γE [∆Nn+1]+2σE [∆Wn+1]γE [∆Nn+1]

= 1+σ2∆t +γ2ρ∆t
(
1+ρ∆t

)+2γρ∆t

= 1+σ2∆t +ρ∆tγ
(
γ+2

)+γ2ρ2∆t 2,

where we have used the independence of the stochastic processes as well as the mean and the

variance of a normal and a Poisson distribution, and thus,

E
[
Y 2

n+1

]= T 2
s

(
ω0 +∆tµω1

)
T 2

s (ω0)

(
1+σ2∆t +ρ∆tγ

(
γ+2

)+γ2ρ2∆t 2)E[
Y 2

n

]
.

Finally, the S-ROCK1-JD method is mean square stable if and only if

lim
t→∞E

[
Y 2

n+1

]= 0 ⇔
∣∣∣∣∣T 2

s

(
ω0 +∆tµω1

)
T 2

s (ω0)

(
1+σ2∆t +ρ∆tγ

(
γ+2

)+γ2ρ2∆t 2)∣∣∣∣∣< 1. (4.12)

4.4.2 Mean Square Stability Domain of PIROCK-JD

Here, we study the mean square stability of the PIROCK-JD method (4.5). Before we start

developing the mean square stability domain of the PIROCK-JD scheme, we state a result for

the internal stages.

Proposition 4.4.2. Applying the PIROCK-JD scheme to the linear test problem (4.8) yields for

the Runge-Kutta stages

K j = P j
(
α∆tµ

)
Yn = P j

(
αp

)
Yn

for j = 0,1, . . . , s and with p =∆tµ.

Proof. We prove the result by recurrence. For K0 and K1 the assertion holds. Suppose now the

result is also true for any i ≤ j −1. Then we have

K j = αµ j∆tµK j−1 −ν j K j−1 −κ j K j−2

= ((
µ jα∆tµ−ν j

)
P j−1

(
α∆tµ

)−κ j P j−2
(
α∆tµ

))
Yn

= P j
(
α∆tµ

)
Yn ,

where we have used the recurrence relation of the orthogonal polynomials (see [1]).

93

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Using Proposition 4.4.2 we get for the additional stages

K ∗
s−1 = Ks−2 +σα∆tµKs−2 = (

1+σαp
)

Ps−2
(
αp

)
Yn ,

K ∗
s = K ∗

s−1 +σα∆tµK ∗
s−1 = (

1+σαp
)2 Ps−2

(
αp

)
Yn ,

K ∗
s+1 = Ks +β∆tµKs = (

1+βp
)

Ps
(
αp

)
Yn .

Hence, we obtain

Yn+1 = K ∗
s −σα

(
1− τα

σ2
α

)
∆tµ

(
K ∗

s−1 −Ks−2
)+σK ∗

s+1∆Wn+1 +γK ∗
s+1∆Nn+1

= (
1+σαp

)2 Ps−2
(
αp

)
Yn −σα

(
1− τα

σ2
α

)
p

((
1+σαp

)
Ps−2

(
αp

)
Yn −Ps−2

(
αp

)
Yn

)
+σ(

1+βp
)

Ps
(
αp

)
Yn∆Wn+1 +γ

(
1+βp

)
Ps

(
αp

)
Yn∆Nn+1

= (
1+2σαp +ταp2

)
Ps−2

(
αp

)
Yn

+p∆tσ
(
1+βp

)
Ps

(
αp

)
Ynξ+γ

(
1+βp

)
Ps

(
αp

)
Yn∆Nn+1,

where ξ∼ N (0,1). For simplicity we can rewrite this as

Yn+1 =
(

A(p)+B(p)qξ+γC (p)∆Nn+1
)

Yn ,

where we use q := p
∆tσ, A(p) := (

1+2σαp +ταp2
)

Ps−2
(
αp

)
, B(p) := (

1+βp
)

Ps
(
αp

)
and

C (p) := B(p). Without loss of generality we assume now Y0 = 1. Taking the expectation of

Yn+1 to the power two and using the mean and the variance of the Gaussian and the Poisson

distribution leads to

E
[
Y 2

n+1

] = E
[
Y 2

n

](
A(p)2 +B(p)2q2E

[
ξ2

]+γ2C (p)2E
[
∆N 2

n+1

]+2A(p)B(p)qE [ξ]

+2A(p)C (p)γE [∆Nn+1]+2B(p)γC (p)qE [ξ]E [∆Nn+1]
)

= E
[
Y 2

n

](
A(p)2 +B(p)2q2 +γ2

(
ρ∆t + (

ρ∆t
)2

)
C (p)2 +2A(p)C (p)γρ∆t

)
.

Therefore, the PIROCK-JD method is mean square stable if and only if

lim
t→∞E

[
Y 2

n+1

]= 0

⇔
∣∣∣A(p)2 +B(p)2q2 +ρ∆tγ2C (p)2 +2ρ∆tγA(p)C (p)+ (

ρ∆t
)2
γ2C (p)2

∣∣∣< 1.

4.4.3 Illustration of the Stability Regions of S-ROCK1-JD

In this section we illustrate the stability regions (i.e. we restrict the stability domain to real

parameters) for the S-ROCK1-JD method. Recall that we consider the test problem (4.8) and

94

4.4. Mean Square Stability

that the stability region of the exact solution to the test problem is characterized by

2µ+σ2 +ργ(
γ+2

)< 0

(see (4.11)). By multiplying on both sides by the uniform time stepsize ∆t , we can rewrite this

as

2µ∆t +σ2∆t +ργ(
γ+2

)
∆t < 0

or as

q2 <−2p − r (4.13)

with p = µ∆t , q = σ
p
∆t and r = ργ

(
γ+2

)
∆t . Observe that one can reformulate the mean

square stability condition of the S-ROCK1-JD integrator (4.12) as∣∣∣∣∣T 2
s

(
ω0 +pω1

)
T 2

s (ω0)

(
1+q2 + r1 + r2

)∣∣∣∣∣< 1,

where p and q are defined as above and r1 = ργ
(
γ+2

)
∆t and r2 = ρ2γ2∆t 2. This characteriza-

tion is equivalent to

q2 < T 2
s (ω0)

T 2
s

(
ω0 +pω1

) −1− r1 − r2. (4.14)

Using (4.13) and (4.14), we illustrate now how much of the true stability region is covered by

the stability region of the S-ROCK1-JD method. We distinguish two different scenarios, first

we look at r ≥ 0 and then we study the case where r < 0. For the first case we proceed as

follows. We fix a stage number s and then we plot the stability domains for different values of r ,

respectively r1. Note that to get the plots we have ignored r2. Since r2 consists only of positive

terms, it is positive as well. Hence, neglecting the proportion between r1 and r2, adding r2 has

the same effect as increasing r1.

Figure 4.1 shows the stability regions of the S-ROCK1-JD integrator using s = 6 stages and

an adequate damping (see [12, 15]). The values of r we have chosen to plot are r = 0 (which

corresponds to the case with no jumps), r = 1, r = 10 and r = 20. One observes that in

all cases still a portion of the true stability region is covered by the stability region of the

numerical scheme. As r increases, the region of the true stability region moves to the left and

the stability region of the S-ROCK1-JD method is slightly reduced on the left-hand as well as

on the right-hand side.

In Figure 4.2 the results for the S-ROCK1-JD method with s = 13 is shown. The same comments

as for the previous case with 6 stages hold. In addition, one observes that as r increases, the

stability region of the numerical scheme decreases in height. However, there is still a whole

portion of the true stability domain covered.

Figure 4.3 shows the stability regions of the S-ROCK1-JD method with s = 28 stages. The same

can be said about these regions as for the two previous figures. Note that in the last two plots

95

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

r=0 r=1

r=10 r=20

Figure 4.1: Stability regions of the S-ROCK1-JD method with s = 6 stages and for different
values of r ∈ {0,1,10,20}. The true stability region is indicated by the area below the dotted
line.

(r = 10 and r = 20) the stability region of the numerical integrator nearly cuts into the stability

region of the true stability region of the test problem. Should this be the case, one can increase

the damping accordingly which will increase the stability region in vertical direction. However,

this also reduces the area covered by the stability domain in horizontal direction. Hence, if

needed one can also increase the stage number s.

Note that a critical area for numerical stability is often the region around the origin. In

Figure 4.4 we show that stability region of the numerical method covers everything of the true

stability region near the origin. Similar plots can be obtained for the other cases.

We study now the second scenario. What happens if r is negative, i.e. r < 0? First of all, observe

that we can express r2 by r1. In fact,

r2 = ρ2γ2∆t 2 = ρ2γ2∆t 2

(
γ+2

)2(
γ+2

)2 = r 2
1(

γ+2
)2 .

Without loss of generality we assume that γ = −1. Next, we fix a stage number s and an

96

4.4. Mean Square Stability

r=0 r=1

r=10 r=20

Figure 4.2: Stability regions of the S-ROCK1-JD method with s = 13 stages and for different
values of r ∈ {0,1,10,20}. The true stability region is indicated by the area below the dotted
line.

adequate damping (see [12, 15]). Finally, we vary the value of r , respectively r1. Here we

consider r ∈ {−1,−0.5,−0.1}.

Figure 4.5 shows the stability regions of the S-ROCK1-JD scheme with s = 6 stages. A region of

special interest is the one around the origin, that is why we provide for each stability region a

zoom of the region near zero. One can observe that for r =−1 there is a whole part of the true

stability region that is not covered by the stability region of the numerical method. However,

by decreasing r in its absolute value, one notices that more and more of the true stability

domain is covered around the origin.

Figure 4.6 and Figure 4.7 lead to the same conclusion for the case of s = 13 and s = 28 as for the

case of s = 6. Since r depends on ρ and γ, which are usually fixed and given by the problem,

one can only change the value of r by adjusting the time stepsize ∆t . We state and prove now

a proposition that helps us to choose an appropriate time stepsize.

97

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

r=0 r=1

r=10 r=20

Figure 4.3: Stability regions of the S-ROCK1-JD method with s = 28 stages and for different
values of r ∈ {0,1,10,20}. The true stability region is indicated by the area below the dotted
line.

r=0

Figure 4.4: Zoom of the stability region of the S-ROCK1-JD method with s = 6 stages around
the origin. The true stability region is represented by the area below the dotted line.

98

4.4. Mean Square Stability

r=-1 r=-1 (zoom)

r=-0.5 r=-0.5 (zoom)

r=-0.1 r=-0.1 (zoom)

Figure 4.5: Stability regions of the S-ROCK1-JD method with s = 6 stages and for different
values of r ∈ {−1,−0.5,−0.1}. The true stability region is indicated by the area below the dotted
line.

99

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

r=-1 r=-1 (zoom)

r=-0.5 r=-0.5 (zoom)

r=-0.1 r=-0.1 (zoom)

Figure 4.6: Stability regions of the S-ROCK1-JD method with s = 13 stages and for different
values of r ∈ {−1,−0.5,−0.1}. The true stability region is indicated by the area below the dotted
line.

100

4.4. Mean Square Stability

r=-1 r=-1 (zoom)

r=-0.5 r=-0.5 (zoom)

r=-0.1 r=-0.1 (zoom)

Figure 4.7: Stability regions of the S-ROCK1-JD method with s = 28 stages and for different
values of r ∈ {−1,−0.5,−0.1}. The true stability region is indicated by the area below the dotted
line.

101

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Proposition 4.4.3. Consider the test problem (4.8). Furthermore, consider the S-ROCK1-JD

method with s stages. Let µ,σ,γ,ρ be parameters that lie in the true stability domain (4.11).

If γ ∈]−2,0[and σ2 = (−2+δ)
(
µ+ ργ(γ+2)

2

)
for some δ ∈]0,2[, then one has to choose a time

stepsize ∆t such that

T 2
s (ω0)

T 2
s

(
ω0 +µ∆tω1

) −1+ (2−δ)µ∆t − δ

2
c1∆t − c2∆t 2 > 0

with c1 = ργ
(
γ+2

)
and c2 = ρ2γ2 to guarantee that the chosen values of µ,σ,γ,ρ lie in the

stability domain of the numerical scheme.

Proof. Since δ ∈]0,2[and σ2 = (−2+δ)
(
µ+ ργ(γ+2)

2

)
we have that σ2 <−2

(
µ+ ργ(γ+2)

2

)
, and

thus, the parameters lie in the true stability domain. To guarantee that the parameters also lie

in the stability domain of the numerical scheme, by (4.14), we require that

σ2∆t < T 2
s (ω0)

T 2
s

(
ω0 +µ∆tω1

) −1−ργ(
γ+2

)
∆t −ρ2γ2∆t 2.

Rearranging the terms and using the choice of σ, we obtain the desired condition.

In the case where r is negative, necessarily we have γ ∈]−2,0[since the other terms of r are

positive. Hence, we can apply Proposition 4.4.3. In fact, suppose that we use as numerical

integrator the S-ROCK1-JD method with s stages and suppose that the parameters µ,σ,γ,ρ

are given and lie in the true stability domain. If γ ∈]−2,0[, then we can pick the largest ∆t

such that the condition of Proposition 4.4.3 holds.

4.5 Numerical Experiments

In this section we analyze numerically the strong convergence of the S-ROCK1-JD method for

three different models. Further, we compare the S-ROCK1-JD method to the Euler-Maruyama

method for jump-diffusions for a one-dimensional linear SDE and a two-dimensional nonlin-

ear SDE, both times driven by a jump-diffusion process. In the following we focus solely on

the S-ROCK1-JD method, the numerical study of the PIROCK-JD method can be carried out in

a similar way.

4.5.1 Numerical Study of the Strong Convergence

Here, we distinguish between two different time grids. First there is the regular time grid

consisting of a uniform time stepsize and then we consider a jump-adapted time grid, where

we add to the the time steps obtained by a fixed time stepsize the times of the jumps. Let T = 10

be the time endpoint and let the number of uniform time steps be given by L ∈ {
25,26,27,28,29

}
.

Then the uniform time stepsize of the regular S-ROCK1-JD method is given by ∆t = T
L . For the

102

4.5. Numerical Experiments

jump-adapted S-ROCK1-JD method, the jump times are added to the time grid obtained by

∆t . To determine the strong convergence of the two S-ROCK1-JD schemes, we estimate the

strong error

e str ong
∆t :=

√
E
[|X (T)−YL |2

]
,

at the time endpoint T , where X (T) represents the exact solution at T and YL the approximate

solution at T obtained with a regular or a jump-adapted grid based on∆t = T
L . To approximate

the expectation a sample average over 10000 simulations is taken. In the subsequent sections

we present the numerical results for the Merton model, the Kou model and a model with

constants marks (jumps with a deterministic jump size).

Strong Convergence for the Merton Model

The first model that we consider is the so-called Merton model, which was first introduced by

Robert C. Merton in [80] in the mid-seventies. It was the first model in the financial sector that

includes jumps. The Merton model is characterized by the stochastic differential equation
dX (t) = µX (t−)dt +σX (t−)dW (t)+X (t−)dJ (t), 0 ≤ t ≤ T,

dX (0) = 1,

(4.15)

where J (t) =
N (t)∑
i=1

(Vi −1) with (N (t))t∈[0,T] a Poisson process with intensityρ and V1,V2, . . . ,VN (t)

independent and identically distributed log-normal variables, i.e.

log(Vi) iid∼ N
(
η,ν2)

for all i and with η = 0 and ν = 0.01. The exact solution of the Merton model has been

computed in Proposition 2.1.14 and is given by

X (T) = exp

{(
µ− σ2

2

)
T +σW (T)

}N (t)∏
i=1

Vi . (4.16)

Figure 4.8 shows the results for four different stage numbers (s ∈ {3,10,50,100}). The drift

parameter is fixed to µ=−0.05 and the diffusion parameter to σ= 0.1. As jump intensity we

have chosen ρ = 1. One can observe that for any of the four values of s the curves of the regular

as well as the jump-adapted S-ROCK1-JD method have a slope of roughly 1/2 underlining the

theoretical finding that the S-ROCK1-JD methods are of order of strong convergence 1/2. Both

numerical schemes seem to perform similarly and the corresponding curves nearly coincide.

103

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

∆ t

10-2 10-1 100

a
p
p

ro
x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-3

10-2

10-1
s=3

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-2 10-1 100

a
p
p

ro
x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-3

10-2

10-1
s=10

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-2 10-1 100

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-3

10-2

10-1
s=50

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-2 10-1 100

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-3

10-2

10-1
s=100

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

Figure 4.8: Strong convergence of the Merton model using different stage numbers s.

Strong Convergence for the Kou Model

The next model that we consider is the Kou model, which was proposed in 2002 by Steven

G. Kou (see [67]). The Kou model is also characterized by the stochastic differential equation

(4.15) of the Merton model, but here the jump sizes are not log-normally distributed, they are

double exponentially distributed. In particular for the variables Vi it holds that

log(Vi) iid∼ K
(
η1,η2, p

)
with K an asymmetric exponential distribution defined by its density function

fK (x) := pη1e−η1x 1{x≥0} +
(
1−p

)
η2eη2x 1{x<0},

104

4.5. Numerical Experiments

where x is any real number, η1 > 1, η2 > 0 (indicating the behaviour of the tails of the positive

and negative jumps, respectively) and p ∈ [0,1] (the probability of an upward jump). In the

following we pick η1 = 50, η2 = 25 and p = 0.3. The other model parameters are chosen as in

the previous section. The exact solution of the Kou model is again given by (4.16).

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2
s=3

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2
s=10

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2
s=50

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2
s=100

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

Figure 4.9: Strong convergence of the Kou model using different stage numbers s.

Figure 4.9 gives the numerical results of the study of the strong convergence of S-ROCK1-JD

applied to the Kou model. As for the Merton model one observes that the curves of both

numerical methods (regular and jump-adapted) are approximately of slope 1/2. Furthermore

one can see that for this model, the jump-adapted S-ROCK1-JD method performs slightly

better than the regular S-ROCK1-JD method.

105

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

Strong Convergence for Mark independent Jumps

The last model that we consider for the numerical study of the strong convergence is the

model given by constant marks, i.e. the jump sizes are deterministic. This model can also be

expressed by the stochastic differential equation (4.15), where we have

J (t) =
N (t)∑
i=1

Vi −1 = γN (t),

i.e. Vi = γ+1. Here we choose γ= 0.1 and the other parameters are chosen as in Section 4.5.1.

The exact solution of this model is given by

X (T) = exp

{(
µ− σ2

2

)
T +σW (T)

}(
1+γ)N (T) .

In Figure 4.10 the numerical results for different stage numbers of S-ROCK1-JD are illustrated.

The numerical results suggest that the S-ROCK1-JD method is of strong order 1/2, which is

consistent with the theoretical results in Section 4.3. One can observe that for this model the

S-ROCK1-JD method based on a jump-adapted time grid is more accurate than the one based

on a regular grid.

4.5.2 Comparison S-ROCK1-JD and Euler-Maruyama for Jump-Diffusions

In this section we compare the S-ROCK1-JD method to the Euler-Maruyama method for

jump-diffusions (see Definition 4.2.3). In [59] it has been shown, that the Euler-Maruyama-JD

method applied to the test problem (4.8) is mean square stable if for the time stepsize it holds

that

∆t <
∣∣2µ+σ2 +ργ(

γ+2
)∣∣(

µ+ρµ)2 .

Observe that we can rewrite this as

ρE M∆t < 1, (4.17)

with

ρE M :=
(
µ+ρµ)2∣∣2µ+σ2 +ργ(

γ+2
)∣∣ , (4.18)

which represents the stiffness parameter of the Euler-Maruyama-JD method. Note that by set-

ting the jump-related terms to zero we recover the stiffness parameter of the Euler-Maruyama

method for diffusions (see (3.7)). Choosing
(
µ,σ,γ,ρ

) ∈R4 such that the test problem (4.8) is

mean square stable, the stepsize ∆t of the Euler-Maruyama-JD method has to be chosen such

that

∆t < 1

ρE M

to guarantee that the numerical integrator is also mean square stable.

106

4.5. Numerical Experiments

∆ t

10-3 10-2 10-1

a
p
p

ro
x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2

10-1
s=3

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p
p

ro
x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2

10-1
s=10

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2

10-1
s=50

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

∆ t

10-3 10-2 10-1

a
p

p
ro

x
im

a
ti
o

n
 o

f
R

M
S

E
 o

f
X

(T
)-

Y
L

10-4

10-3

10-2

10-1
s=100

Regular S-ROCK1-JD

Jump-Adapted S-ROCK1-JD

Slope = 1/2

Figure 4.10: Strong convergence of the model with constant marks using different stage
numbers s.

Similarly, one can establish for S-ROCK methods with s stages, and in particular for the

S-ROCK1-JD method, a stability criterion

∆tρSR

cSR s2 < 1 (4.19)

with cSR some constant that can numerically be estimated and ρSR the stiffness parameter

associated to the S-ROCK method (see [12, 15]). For the test problem (4.8) the stiffness

parameter is given by

ρSR := ∣∣µ∣∣ , (4.20)

where we consider the parameters
(
µ,σ,γ,ρ

) ∈ R4. Note that the stiffness parameter of the

S-ROCK methods is independent of the diffusion term σ, which is due to the fact that with

107

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

an adequate damping and the right choice of the stage number s a whole portion of the true

stability region of the test problem is covered by the stability region of the numerical integrator

(see [12, 15]).

In the following we use Monte Carlo to approximate the second moment of the corresponding

SDE with jumps at the time endpoint. To measure the performance of the different approaches,

we count the number of function evaluations required to reach a certain precision, which we

measure by the root mean square accuracy. In Section 2.3 we have shown that to reach a mean

square accuracy of O
(
ε2

)
a computational cost (given as the number of function evaluations)

of O
(
ε−3

)
is required.

Comparison based on a Linear SDE with Jumps

Here, we consider the one-dimensional linear stochastic differential equation with jumps

characterized by
dX (t) = µX (t−)dt +σX (t−)dWt +γX (t−)dJt , 0 < t < T,

X (0) = X0,

where J(t) is the jump component of the Merton model (see (4.15)). In the following we

consider the parameters T = 1, X0 = 1, γ= 1, ρ = 1, η = 0 and ν= 0.01. In addition, as time

stepsizes we take into account

∆t ∈ {
2−1,2−2, . . . ,2−13} .

For the drift term we consider different values µ ∈ {−10,−100,−1000} and we pick as diffusion

coefficient σ=
√∣∣µ∣∣. Note that all sets of parameters

(
µ,σ,γ,ρ

)
lie in the true stability domain.

In Figure 4.11 we illustrate the number of function evaluations of the two approaches using

as numerical integrator the S-ROCK1-JD method and the Euler-Maruyama-JD method, re-

spectively, against the precision measured by the root mean square stability. One observes

that as the stiffness of the SDE increases, i.e. as
∣∣µ∣∣ increases, the S-ROCK1-JD approach

clearly prevails. This is due to the time stepsize restriction that suffers the Euler-Maruyama-JD

method through the stability constraint (4.17). As the stiffness of the problems increases, the

stepsize restriction becomes more severe and the Monte Carlo approach can only be applied

if the time stepsize is sufficiently small. In contrast, the S-ROCK1-JD does not suffer from

any restriction and by adjusting the stage number any time stepsize can be used (see (4.19)).

Note that in the case where both numerical methods can be applied, the Euler-Maruyama

approach is cheaper, since the S-ROCK method uses a certain number of stages s (with s ≥ 2).

However, usually one defines the S-ROCK methods by stating that in the case where the stage

number s < 2 the S-ROCK method coincides with the Euler-Maruyama scheme.

108

4.5. Numerical Experiments

Monte Carlo S-ROCK1-JD vs Monte Carlo Euler-Maruyama-JD (linear SDE)

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015
(a) 7=-10, <=|7|1/2

EM-JD
S-ROCK1-JD

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015
(b) 7=-100, <=|7|1/2

EM-JD
S-ROCK1-JD

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015
(c) 7=-1000, <=|7|1/2

EM-JD
S-ROCK1-JD

Figure 4.11: One-dimensional linear SDE with jumps: Number of function evaluations
against the time stepsize ∆t comparing the Monte Carlo method using S-ROCK1-JD and
Euler-Maruyama-JD.

Comparison based on a Nonlinear SDE with Jumps

Here, we consider a two-dimensional noncommutative stiff stochastic differential equations

with jumps, which is inspired by the one-dimensional population model (see [84]) and to

which we have added a jump component. The stochastic model is defined by

d

 X1(t)

X2(t)

 =
 αa2(t−)−µ1b1(t−)

−µ2b2(t−)

dt +
 −σ1b1(t−) σ2a1(t−)

−σ2b2(t−) 0

 dW 1
t

dW 2
t


+

 X1(t−)

X2(t−)

dJt

for 0 ≤ t ≤ T , ai (t) = Xi (t)−1 and bi (t) = Xi (t)(1−Xi (t)) with i = 1,2. As initial condition we

take (X1(0), X2(0)) = (0.98,0.98). The processes
(
W 1(t)

)
t∈[0,T] and

(
W 2(t)

)
t∈[0,T] are indepen-

dent one-dimensional standard Brownian motions. The process (J (t))t∈[0,T] is independent

from the Brownian motions and corresponds to the jump term of the Merton model (see

(4.15)). We carry out similar simulations to the previous section. We consider as parameters

T = 1, α= 2, γ= 1, ρ = 1, η= 0 and ν= 0.01. Furthermore, we take µ2 =−2 and σ2 = 0.25 and

109

Chapter 4. S-ROCK Methods for Jump-Diffusion Processes

we look at the influence of the parameters µ1 ∈ {−10,−100,−1000} and σ1 =
√∣∣µ1

∣∣. As time

stepsize we consider

∆t ∈ {
2−1,2−2, . . . ,2−13} .

Observe that the parameter sets
(
µ1,σ1,γ,ρ

)
and

(
µ2,σ2,γ,ρ

)
both lie in the true stability

domain with the former one regulating the stiffness of the stochastic problem.

Monte Carlo S-ROCK1-JD vs Monte Carlo Euler-Maruyama-JD (nonlinear SDE)

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015

(a) 7
1
=-10, <

1
=|7

1
|1/2

EM-JD
S-ROCK1-JD

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015

(b) 7
1
=-100, <

1
=|7

1
|1/2

EM-JD
S-ROCK1-JD

accuracy
10-4 10-2 100

fu
nc

tio
n

ev
al

ua
tio

ns

100

105

1010

1015

(c) 7
1
=-1000, <

1
=|7

1
|1/2

EM-JD
S-ROCK1-JD

Figure 4.12: Two-dimensional nonlinear SDE with jumps: Number of function evaluations
against the time stepsize ∆t comparing the Monte Carlo method using S-ROCK1-JD and
Euler-Maruyama-JD.

Figure 4.12 shows the result for the nonlinear SDE with jumps. As in the linear case the S-

ROCK1-JD approach performs generally better than the one that uses the Euler-Maruyama

method for jump-diffusions. In fact, for a large stiffness the Euler-Maruyama-JD scheme faces

severe time stepsize restrictions, which can be omitted using the S-ROCK1-JD integrator. We

note that the stability has been verified by looking at the second moment of the stochastic

process at the time endpoint T .

4.6 Conclusion

In this chapter we have extended two S-ROCK methods so that they account for jumps in a

stochastic problem driven by jump-diffusions. The S-ROCK1-JD method and the PIROCK-JD

110

4.6. Conclusion

method have both been studied in detail. We have proven that the new numerical methods

are of strong order of convergence 1/2. This has been numerically verified by carrying out

simulations on the Merton and the Kou model and on a model based on mark independent

jumps. The mean square stability domains of the S-ROCK1-JD and the PIROCK-JD schemes

have been characterized. Numerical experiments have been realized to study the stability of

the numerical schemes for a linear SDE with jumps and a nonlinear SDE with jumps.

111

5 Multilevel Monte Carlo Method for
Stochastic Differential Equations
driven by Jump-Diffusion Processes
There are many applications in economy, biology, chemistry, physics and so on that based on

jump-diffusion models (see Section 2.1). Often one is interested in the expectation of some

functional based on underlying the jump-diffusion process. In this chapter we extend the

multilevel Monte Carlo method to stochastic differential equations driven by jump-diffusion

processes, which allows to speed up the simulation procedure in the situations mentioned

above. We show that the MLMC method based on jump-diffusions for a reasonable jump

intensity reduces the computational complexity of the algorithm significantly compared to

the standard Monte Carlo approach for a given mean square accuracy. Numerical experiments

are carried out to underline our theoretical findings. In the numerical part we also study

the antithetic variates and the control variates, two variance reduction techniques, and we

compare them to the MLMC approach. In the last part of this chapter we combine the results

of MLMC for jump-diffusion and the stabilized MLMC approach from Chapter 3 to obtain a

stabilized multilevel Monte Carlo method for stiff stochastic differential equations driven by

jump-diffusion processes.

The following is mainly taken from the scientific paper [8].

5.1 Introduction

Monte Carlo methods are commonly applied when we are interested in computing expecta-

tions of functionals depending on a stochastic process. Here, we assume that the stochastic

process is given by a stochastic differential equation (SDE) incorporating a jump term with

a finite rate intensity. In a Monte Carlo (MC) approach, sample paths of the solution of an

SDE are computed by a numerical integrator and the expected value of the given functional

is approximated by the average over those samples. This procedure represents computing

a statistical estimator of the desired quantity, and bias and statistical errors are introduced

due to the numerical method and the approximation of the expectation, respectively. The

bound on the statistical error for the MC method involves the inverse of the square root of

the number of samples, as well as the variance of the process. The nature of this bound can

113

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

not be changed, however many strategies to reduce the variance of the estimators and hence

the complexity of the procedure have been proposed in the past few years. Among them,

we mention variance reduction techniques such as estimators based on control variates or

antithetic variates (see e.g. [49]).

A recent approach, originating with Heinrich [56], proposed by Kebaier [65] as a statistical

Romberg method with two levels and extend by Giles [46] to the so-called multilevel Monte

Carlo (MLMC) method, allows to significantly speed up the classical MC method thanks to

hierarchical sampling. By applying the Monte Carlo method for several nested time stepsizes

and choosing the right balance between the stepsizes and the number of simulations at each

level, it is possible to reduce the computational complexity of the Monte Carlo method for

a given mean square accuracy. More precisely, to compute the expectation of functionals

with an accuracy (here, the square root of the mean square error is chosen as a measure

of the accuracy) of O (ε), the computational cost of O (ε−3) for the MC method is reduced to

O (ε−2(logε)2) for the MLMC method.

In this chapter, we study the MLMC method for jump-diffusion processes. This class of

processes becomes important for example in financial modeling, when stock prices based on

diffusion processes should be modelled by taking into account sudden, unforeseeable events

[18, 98]. Then, models based on jump-diffusion processes are required for more realistic

modeling [80]. Furthermore, some physical processes cannot be modeled by continuous

processes and need to take into account single events. We mention here the modeling of

biological network dynamics [103] or chemical kinetics [48].

To the best of our knowledge, the MLMC method for jump-diffusions with finite rate activity

has first been discussed in [23] and [105], whereas the case of Lévy processes with infinite

rate activity has been studied in [35, 79]. The purpose of this chapter is to give a rigorous

proof of the complexity theorem of the MLMC for jump-diffusion problems, in particular for

the jump-adapted version of the Euler-Maruyama method. This appears not to have been

treated in the literature. We show that the above reduction factor in the computational cost

obtained by replacing MC methods with MLMC methods remains valid for the estimation of

the expectation of functionals depending on jump-diffusion processes. We test the MLMC

for jump-diffusion problems on various examples and show significant speed-up compared

to standard MC computations. The new approach is also compared to estimators based on

variance reduction techniques. The results show that for sufficiently small errors, the MLMC

method always outperforms these other techniques for the models considered.

This chapter is organized as follows. In Section 5.2 we discuss jump-diffusion processes

and numerical methods used to approximate such processes. In Section 5.3 we construct

the MLMC method for jump-diffusions and we give an extended version of the complexity

theorem presented in [46]. Numerical experiments to illustrate our theoretical findings are

presented in Section 5.4. Finally, we create a stabilized multilevel Monte Carlo method for

jump-diffusion processes by combining the results of Section 5.3 and Chapter 3.

114

5.2. Preliminaries

5.2 Preliminaries

Throughout this chapter let (Ω,F ,P,Ft) be a filtered probability space where the filtration

(Ft)t≥0 satisfies the usual conditions (see e.g. [77] or [95]). We use in this chapter the terms

computational cost and computational complexity synonymously to represent overall for an

algorithm the number of time steps of a numerical discretization, the number of samples

generated and the number of function evaluations. These terms measure the complexity of

algorithms and they will be used when we compare the performance of algorithms.

Here we consider stochastic processes (S(t))t∈[0,T] on the bounded interval [0,T] described by

the stochastic differential equation incorporating diffusion and jump terms dS(t) = a(t ,S(t−))dt +b(t ,S(t−))dW (t)+ c(t ,S(t−))dJ (t), 0 ≤ t ≤ T,

S(0) = S0 ,
(5.1)

with S(t−) denoting S(t−) = lim
s↗t

S(s). Here (W (t))t∈[0,T] is an m−dimensional Wiener process

and (J (t))t∈[0,T] an r−dimensional compound Poisson process, J(t) = (J 1(t), J 2(t), . . . , J r (t)).

Each component J k (t) is defined by

J k (t) =
N k (t)∑
i=1

(V k
i −1),

where N k (t) is a Poisson process with intensity λk and where the jump sizes are characterized

by V k
i . Further, the functions a : [0,T]×Rd →Rd , b : [0,T]×Rd →Rd×m , and c : [0,T]×Rd →

Rd×r represent the drift, the diffusion and the jump coefficient, respectively. We assume

standard Lipschitz and linear growth conditions on a, b and c to ensure the existence of a

strong solution of the SDE (5.1).

Remark 5.2.1. Note that if γk
i corresponds to the i -th jump time of J k (t), then the jump size of

this jump is given by

S
(
γk

i

)
−S

(
γk

i −
)
= ck

(
γk

i ,S
(
γk

i −
))(

V k
i −1

)
.

If we now assume ck
(
γk

i ,S
(
γk

i −
))= S

(
γk

i −
)
, as this is the case for the models we consider in the

following, then

S
(
γk

i

)
−S

(
γk

i −
)
= S

(
γk

i −
)(

V k
i −1

)
,

and consequently

S
(
γk

i

)
= S

(
γk

i −
)

V k
i ,

which means V k
i corresponds to the ratio of the stochastic process before and after the i -th jump

of J k (t). Thus the choice of V k
i −1 above (see also e.g. [49]).

115

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

5.2.1 Numerical Schemes

In this section we recall two numerical schemes, the regular and the jump-adapted Euler

method, to approximate solutions of the SDE (5.1). The former is iterated using a uniform

stepsize, whereas the latter includes the jump times into the otherwise uniform time grid. we

discuss the strong and the weak convergence of these numerical schemes. For details and

additional references on numerical methods for jump-diffusion problems see [26, 25, 44, 58,

71, 73, 83, 28].

Regular Euler Method

The first numerical method that we consider is a natural extension of the Euler-Maruyama

method for SDEs driven by diffusion processes. The regular Euler method is defined by a

uniform stepsize h and the grid is given by

τT /h
h = {τ0,τ1, . . . ,τT /h}, (5.2)

where τ j = j h ∀ j ∈ {0,1, . . . ,T /h}. Now, let S j be an approximation of the stochastic process

S(t) at t = τ j , i.e. S j ≈ S
(
τ j

)
.

Definition 5.2.2 (Regular Euler method). Consider the time grid (5.2). The regular Euler scheme

is defined by

S j = S j−1 +a
(
τ j−1,S j−1

)(
τ j −τ j−1

)+b
(
τ j−1,S j−1

)
∆W j + c

(
τ j−1,S j−1

)
∆J j (5.3)

with j ∈ {1,2, . . . ,T /h}. By the initial condition, we have S0 = S(0) and the increments of the

m-dimensional Wiener process and the r -dimensional compound Poisson process are given by

∆W j =W
(
τ j

)−W
(
τ j−1

)
and ∆J j = J

(
τ j

)− J
(
τ j−1

)
, respectively.

Note that, by setting the jump coefficient c to zero, we get the Euler-Maruyama method, which

can be used for numerical approximations of SDEs driven by diffusions (see e.g. [57]).

Jump-Adapted Euler Method

The second numerical method that we consider, is the jump-adapted Euler scheme. Unlike

the previous scheme, this method does not have a uniform stepsize if there is at least one

jump. In the case of the jump-adapted Euler scheme, the jump times have to be added to the

regular grid with uniform stepsize h defined in (5.2). Recall that we consider a r -dimensional

jump process, and thus, the number of jumps in the time interval [0,T] are specified by the

Poisson variables N 1(T), N 2(T), . . . , N r (T) with intensities λ1T,λ2T, . . . ,λr T . Hence, the grid

for the jump-adapted Euler scheme is given by

{τ0,τ1, . . . ,τT /h}∪ {γ1
1,γ1

2, . . . ,γ1
N 1(T)}∪·· ·∪ {γr

1,γr
2, . . . ,γr

N r (T)}, (5.4)

116

5.2. Preliminaries

where γk
1 ,γk

2 , . . . ,γk
N k (T)

are the jump times in the interval [0,T] of the jump component J k (t).

Thus, there are in total T /h+∑r
i=1 N i (T) time steps. Adding the jump times to the regular grid

and rearranging the grid such that the j -th entry τ j corresponds to the j -th time step.

Definition 5.2.3 (Jump-Adapted Euler method). Consider the time grid (5.4). The jump-

adapted Euler scheme for (5.1) is defined by

S j = S j−1 +a
(
τ j−1,S j−1

)(
τ j −τ j−1

)+b
(
τ j−1,S j−1

)
∆W j + c

(
τ j−1,S j−1

)
∆J j (5.5)

with j ∈ {
1,2, . . . ,T /h +∑r

i=1 N i (T)
}
. By the initial condition, we have S0 = S(0) and the incre-

ments of the m-dimensional Wiener process and the r -dimensional compound Poisson process

are given by ∆W j =W
(
τ j

)−W
(
τ j−1

)
and ∆J j = J

(
τ j

)− J
(
τ j−1

)
, respectively.

Note that the definition of the jump-adapted Euler scheme is identical to the regular method

in (5.3), but the time grid and thus the range of the iteration parameter j changes.

Remark 5.2.4. To ease the notation we describe in the sequel both numerical schemes by (5.3)

with j ∈ {1,2, . . . ,G}, where G = T /h+∑r
i=1 N i (T) in the jump-adapted case and G = T /h in the

regular case.

Convergence of Numerical Methods

In this chapter we consider two types of convergence: the strong convergence and the weak

convergence, respectively. The are properly defined in Section 2.2.1 and we briefly recall them

here.

Let S(t j) be the exact solution of the SDE (5.1) at t = t j and let (S j) j∈N be the approximate

solution by a numerical method at the same time point.

1. A numerical method is converging with a strong order of convergence γstr ong if

∃C ∈R+ such that max
0≤ j≤T /h

(
E
[|S j −S(τ j)|2])1/2 ≤C hγstr ong , (5.6)

where τ j = j h ∈ [0,T] and h is tending to 0.

2. A numerical method is converging with weak order of convergence γweak if there exists

C ∈R+ such that for all functions p in a certain class (usually p satisfies smoothness and

polynomial growth conditions) we have

|E[p(S j)]−E[p(S(τ j)]| ≤C hγweak (5.7)

for any τ j = j h ∈ [0,T] fixed and h tending to 0.

Note that a possible class for the functions p is given by C l
P (R). This class contains functions

117

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

of the type p :R→R that are l times continuously differentiable and that, together with their

partial derivatives up to order l , have polynomial growth (see e.g. [66]).

The regular Euler method and the jump-adapted Euler scheme have, under appropriate

conditions for the coefficient functions a, b and c, a strong convergence of order 1/2 (see e.g.

[26, 25]) .

Under appropriate conditions for the drift function a, the diffusion function b, the jump

function c, the initial condition S0 and the jump intensities λ1,λ2, . . . ,λr , the regular Euler

scheme as well as the jump-adapted Euler scheme have a weak convergence of order 1 (see

e.g. [26, 25]) .

5.3 Multilevel Monte Carlo Method for Jump-Diffusion Processes

In this section we generalize the multilevel Monte Carlo method to stochastic differential

equations driven by jump-diffusions. We present here the construction of the Monte Carlo

method and the multilevel Monte Carlo method for jump-diffusions. Furthermore, we state

and prove the corresponding complexity theorem. Consider the jump-diffusion process

(S(t))t∈[0,T] solution of the SDE (5.1) and a numerical approximation (e.g. the Euler method or

the jump-adapted Euler method previously introduced). For a Lipschitz continuous function

f : Rn → R we want to estimate the expectation E
[

f (S(T))
]

from many realizations of the

numerical solution of (5.1).

For simplicity of the presentation we describe in the sections 5.3.1 and 5.3.2 the Monte Carlo

and the multilevel Monte Carlo method for one-dimensional jump processes with intensity

λ. We emphasize that our complexity theorem will be presented for the general case of a

r -dimensional jump process.

5.3.1 Monte Carlo Method for Jump-Diffusions

We recall the standard Monte Carlo estimator, which is given by

E
[

f (S(T))
]≈ 1

N

N∑
i=1

f
(
S(i)

G

)
=: Ŷ , (5.8)

where we take a sample average over N independent paths with SG a numerical approximation

of S(t) at the time end point T (see Section 5.2.1).

Remark 5.3.1. Note that h, as defined in Section 5.2.1, is the uniform time stepsize of the regular

Euler scheme. For the jump-adapted Euler scheme, the jump times are added to the regular grid.

Hence, if there is at least one jump, the grid is not regular any more. However, in that case h

corresponds to the maximum stepsize, i.e.

h = max
j∈{1,2,...,G}

(
τ j −τ j−1

)
.

118

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

Applying the Monte Carlo method, two types of error arise (see e.g. [81]). Firstly, there is an

error due to the numerical approximation of S(t). This error introduces a bias. In fact, we

approximate the stochastic process (S(t))t∈[0,T] at t = T using a numerical scheme, so that

S(T) ≈ SG . Evaluating the function f and taking the expectation on both sides leads to

E
[

f (S(T))
]≈ E[

f (SG)
]

.

By linearity of the expectation and the fact that the samples S(i)
G are identically distributed, we

have

E
[
Ŷ

]= E[
1

N

N∑
i=1

f
(
S(i)

G

)]
= E[

f (SG)
]

.

Hence, we obtain

bias
(
Ŷ

)= E[
Ŷ

]−E[
f (S(T))

]= E[
f (SG)

]−E[
f (S(T))

]=O (h) , (5.9)

where we have used the first order weak convergence of the numerical schemes (see Sec-

tion 5.2.1) for the last equality.

Secondly, there is an error arising from the estimation of the expectation. The expectation,

which is an integral, is approximated by taking the sample average over N simulations. Due to

the strong law of large numbers (see e.g. [42]) and the central limit theorem (see e.g. [31]), this

approximation is almost surely unbiased. However, there is a certain variance that depends on

the number of simulations N (see e.g. [45]). Indeed, for the variance of the estimator we have

Var
(
Ŷ

)= 1

N 2

N∑
i=1

Var
(

f
(
S(i)

G

))
=

Var
(

f
(
S(1)

G

))
N

=O
(
N−1) , (5.10)

where we have used first the independence of S(1)
G ,S(2)

G , . . . ,S(N)
G and then the fact that they are

identically distributed.

One way to describe the trade-off between the bias and the variance is given by the mean

square error, which can be decomposed as

MSE
(
Ŷ

)= E[(
Ŷ −E[

f (S(T))
])2

]
= Var

(
Ŷ

)+ (
bias

(
Ŷ

))2
. (5.11)

By (5.9) and (5.10), we get

MSE
(
Ŷ

)=O (N−1)+ (O (h))2 =O
(
N−1 +h2) . (5.12)

In other words, for N large enough and h sufficiently small, there exists two constants C1 and

C2 such that

MSE
(
Ŷ

)≈C1N−1 +C2h2.

119

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

Now, let ε, a positive constant, be the desired mean square accuracy in the sense that

MSE
(
Ŷ

)=O
(
ε2) .

To achieve such an accuracy, one requires N = O
(
ε−2

)
simulations and a regular stepsize

h =O (ε). We have to distinguish now between the two numerical schemes. The regular Euler

method has T /h steps, which is proportional to h−1 = O
(
ε−1

)
, and thus, a computational

complexity of O
(
ε−3

)
is required for the regular scheme. In the jump-adapted case, the jump

times are added to the regular grid. The number of jumps over the time interval [0,T] is given

by the random variable N (T) which follows a Poisson distribution with intensity λT . The

expected number of jumps is given by E [N (T)] =λT . Therefore, for the jump-adapted scheme,

there are T /h +λT =O
(
ε−1 +λ)

steps, and thus, the computational complexity amounts to

O
(
ε−2

(1
ε +λ

))
.

Summing up the results for the standard Monte Carlo method for jump-diffusions, to achieve

a mean square error of order O
(
ε2

)
, the regular Euler approach requires a computational

cost of O
(
ε−3

)
. For the jump-adapted Euler approach, a computational cost of O

(
ε−2

(1
ε +λ

))
is necessary. Note that, by setting the jump intensity λ to zero, we reproduce the result for

diffusion processes in [46].

5.3.2 Multilevel Monte Carlo Method for Jump-Diffusions

The idea of the multilevel Monte Carlo method [46] is to apply the Monte Carlo method for

several nested levels of time stepsizes and to compute different numbers of paths on each

level, from a few paths when the time stepsize is small to many paths when the stepsize is large.

By choosing the right balance between the stepsizes and the number of simulated trajectories

at each level it is possible to reduce the computational complexity compared to that of the

standard Monte Carlo method for a given mean square accuracy.

We introduce now the multilevel Monte Carlo method for stochastic differential equations

driven by jump-diffusions. Fix a positive number T as the time end point, an integer M ≥ 2

as the refinement factor and an integer L as the total number of levels. Define the uniform

nested time stepsizes

hl =
T

M l
, l = 0,1, . . . ,L.

Furthermore, we fix an m-dimensional Wiener process (W (t))t∈[0,T] and a one-dimensional

compound Poisson process (J (t))t∈[0,T]. Let P denote the payoff function (e.g. P = f (S(T)))

and approximate P by Pl , where Pl = f
(
SM l

)
is an approximation of P based on the numerical

discretization of S(t) with a regular stepsize hl . Applying the telescopic sum, we can write

PL = P0 +P1 −P0 +P2 −P1 ± . . .+PL−1 −PL−2 +PL −PL−1

= P0 +
L∑

l=1
(Pl −Pl−1) .

120

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

Taking the expectation on both sides and using the linearity of the expectation we obtain

E [PL] = E [P0]+
L∑

l=1
E [Pl −Pl−1]. (5.13)

The idea of the multilevel Monte Carlo method is to approximate each term on the right-hand

side independently. In fact for the first term we have

E [P0] ≈ 1

N0

N0∑
i=1

P (i)
0 =: Ŷ0,

where we take the average over N0 independent samples. The other terms are estimated using

Nl independent samples such that

E [Pl −Pl−1] ≈ 1

Nl

Nl∑
i=1

(
P (i)

l −P (i)
l−1

)
=: Ŷl ,

for l ∈ {1,2, . . . ,L}. We emphasize that the estimates P (i)
l and P (i)

l−1 are based on the same jump-

diffusion path, i.e. the same Brownian motion path and also on the same sample path of the

compound Poisson process. Therefore the estimator for the MLMC method is given by

E [PL] ≈ 1

N0

N0∑
i=1

P (i)
0 +

L∑
l=1

1

Nl

Nl∑
i=1

(
P (i)

l −P (i)
l−1

)
=

L∑
l=0

Ŷl =: Ŷ . (5.14)

Next we derive the variance and the computational cost for the MLMC estimator Ŷ . Firstly

we point out that in the partial estimator Ŷl = 1
Nl

∑Nl

i=1

(
P (i)

l −P (i)
l−1

)
each term in the sum is

produced from a jump-diffusion process that is independent of the jump-diffusion processes

used for the other summands. Using this independence combined with the fact that the

jump-diffusion processes are identically distributed and denoting the variance of a single

sample of P (i)
l −P (i)

l−1 by Vl , the variance of the partial estimator Ŷl is given by

Var
(
Ŷl

)= Var

(
1

Nl

Nl∑
i=1

(
P (i)

l −P (i)
l−1

))
= 1

N 2
l

Nl∑
i=1

Var
(
P (i)

l −P (i)
l−1

)
︸ ︷︷ ︸

=:Vl

= Vl

Nl
.

Thus the variance of the combined estimator Ŷ is given by

Var
(
Ŷ

)= Var

(
L∑

l=0
Ŷl

)
=

L∑
l=0

Var
(
Ŷl

)= L∑
l=0

Vl

Nl
. (5.15)

Note that we have used the independence of the partial estimators Ŷl resulting from the

independence of the jump-diffusion processes.

Secondly, concerning the computational complexity of Ŷ , at each level l there are Nl Monte

Carlo simulations required to approximate the expectation. Furthermore, d numerical dis-

121

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

cretizations (one for each component of the d-dimensional SDE (5.1)) are carried out with a

regular stepsize hl . For the jump-adapted Euler scheme, the expected number of jumps λT

of each discretization has to be added to the number of steps resulting from the regular grid,
T
hl

. Hence, there are d
(

T
hl

+λT
)

steps necessary in the jump-adapted case. Considering the

evaluation of the function f as a single operation, the computational cost is given by

Cost
(
Ŷ

)= L∑
l=0

2Nl d

(
T

hl
+λT

)
=

L∑
l=0

2Nl d
T(
hl

1+λhl

) .

For the regular Euler scheme, the jumps do not affect the time grid, and thus there are T
hl

steps. The computational cost, given by Cost
(
Ŷ

)=∑L
l=0 2Nl d T

hl
, is the same as for diffusion

problems. Taking also into account that the order of weak and strong convergence are the

same as for the Euler-Maruyama method, the construction for regular Euler is identical to

the one in the diffusion case. Therefore we concentrate in the following on the jump-adapted

Euler approach.

Finally, fixing a positive constant D as the fixed computational budget, we can set up an opti-

mization problem, which minimizes the variance of Ŷ for a fixed computational complexity:

minimize Var
(
Ŷ

)= L∑
l=0

Vl

Nl

subject to Cost
(
Ŷ

)= L∑
l=0

2Nl d
T(
hl

1+λhl

) = D ,

(5.16)

where we want to find a solution with respect to the positive variables Nl > 0, with l ∈
{0,1, . . . ,L}. The optimization problem (5.16) can be solved by standard methods (e.g. us-

ing Lagrange multipliers). The following proposition holds.

Proposition 5.3.2. The solution to the optimization problem for the continuous variables

N0, N1, . . . , NL given in (5.16) satisfies for l ∈ {0,1, . . . ,L}

Nl =
D

2dT

√
Vl

hl
1+λhl

L∑
k=0

√√√√ Vk
hk

1+λhk

. (5.17)

Now we show that Vl =O (hl). Note that since the jump-diffusion processes are i.i.d., we work

in the following with the notation Pl instead of P (i)
l . The strong order of convergence 1/2 of

the jump-adapter Euler method (see Section 5.2.1) yields

E
[|SM l −S(T)|2]=O (hl) as l →∞. (5.18)

122

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

For the variance of one single sample we have

Vl = Var(Pl −Pl−1) ≤ (
Var(Pl −P)1/2 +Var(Pl−1 −P)1/2)2

,

where we have used the Cauchy-Schwarz inequality.

Furthermore, using the property of f being Lipschitz continuous, we have

Var(Pl −P) ≤ E
[
(Pl −P)2

]
= E

[(
f (SM l)− f (S)

)2
]

≤ CE
[|SM l −S|2] ,

where C ∈R+. Thus, by (5.18),

Var(Pl −P) =O (hl) as l →∞.

Note that we also have Var(Pl−1 −P) =O (hl), as hl−1 = Mhl with M being constant. We thus

have Vl = O (hl) and in other words, for hl sufficiently small, there is a positive constant K

such that Vl = K hl .

We can then write the number of simulations per level as

Nl =

D

2dT

√
K hl

hl

1+λhl

L∑
k=0

√√√√√ K hk

hk

1+λhk

= D

2dT

hl

√
1

1+λhl

L∑
k=0

√
1+λhk

. (5.19)

Combining this with (5.15), we obtain for the variance of the MLMC estimator

Var
(
Ŷ

)= L∑
l=0

Vl

Nl
=

L∑
l=0

K hl

D

2dT

hl

√
1

1+λhl

L∑
k=0

√
1+λhk

= 2dT K

D

(
L∑

l=0

√
1+λhl

)2

. (5.20)

Note that by increasing the computational budget the variance can be made as small as

desired. However, usually the computational budget is limited. Thus we fix now a mean square

accuracy of O
(
ε2

)
and we determine the corresponding computational budget D and the

number of levels L.

123

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

We consider now the mean square error (5.11). For the bias we have

bias
(
Ŷ

)= E[
Ŷ

]−E[P] = E [PL]−E[P] = E [PL −P] ,

where we have used the linearity of the expectation. Using the first order weak convergence of

the jump-adapted Euler scheme (see Section 5.2.1), we obtain

bias
(
Ŷ

)= E [PL −P] =O (hL) . (5.21)

Hence, to achieve a mean square error of MSE
(
Ŷ

)=O
(
ε2

)
, we require in particular that the

bias satisfies bias
(
Ŷ

)=O (ε), and thus,

hL = T

M L
= K̃ ε,

for L large enough and where K̃ is a positive constant. Rearranging terms and taking the

natural logarithm we obtain L = 1
log M

(
logT + log K̃ −1 + logε−1

)
. Hence, the number of levels

L satisfies

L = logε−1

log M
+O (1) . (5.22)

This shows us how to choose L. Finally, to achieve a mean square accuracy of O
(
ε2

)
we also

require Var
(
Ŷ

)=O
(
ε2

)
. Considering (5.20), this is equivalent to

2dT K

D

(
L∑

l=0

√
1+λhl

)2

= K̂ ε2,

where K̂ is a positive constant. Rearranging terms and taking an upper bound, we get

D = 2dT K K̂ −1ε−2

(
L∑

l=0

√
1+λhl

)2

≤ 2dT K K̂ −1ε−2

(p
1+λT

L∑
l=0

1

)2

= 2dT K K̂ −1ε−2 (1+λT) (L+1)2 . (5.23)

Hence, the computational budget satisfies

D =O
(
dε−2(logε)2(1+λT)

)
,

where we have used the result for L in (5.22).

Therefore, considering the multilevel Monte Carlo method for jump-diffusions and using the

124

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

jump-adapted Euler method, to achieve a mean square error of

MSE
(
Ŷ

)=O
(
ε2)

a computational complexity of

Cost
(
Ŷ

)=O
(
dε−2(logε)2(1+λT)

)
is necessary.

Remark 5.3.3. Note that when considering the jump-adapted method instead of the regular

one, the additional term (1+λT) appears in the computational cost. Usually the time end point

T is fixed and thus the parameter of interest is the jump intensity λ. Observe that by setting λ to

zero, we produce the results for the MLMC method for multi-dimensional diffusions. Hence, the

approach in this paper delivers a natural extension of the MLMC method to jump-diffusion

processes.

Remark 5.3.4. As mentioned earlier, the construction of the MLMC method for jump-diffusions

is based on a one-dimensional jump process. In a more general approach, where jumps are

driven by an r -dimensional compound Poisson process, the computational cost for a fixed mean

square accuracy of MSE
(
Ŷ

)=O
(
ε2

)
is given by

Cost
(
Ŷ

)=O

(
dε−2(logε)2

(
1+

r∑
i=1

λi T

))
.

5.3.3 Complexity Theorem for Jump-Diffusions

In this section we give an extended version of the complexity theorem, which was stated and

proven for diffusion processes in the one-dimensional case in [46]. We extend the theorem

to jump-diffusions and consider a d-dimensional SDE driven by an m-dimensional Wiener

process and an r -dimensional compound Poisson process.

Theorem 5.3.5 (Complexity Theorem for Jump-Adapted Schemes). Fix two positive integers T

and M such that M ≥ 2 and let λ1,λ2, . . . ,λr be r positive numbers. Let (S(t))t∈[0,T] ⊂ Rd be a

solution to the stochastic differential equation (5.1). Let P be a functional of S(t). Denote by Pl

an approximation of P using a jump-adapted numerical approximation with a regular time

stepsize hl = T /M l .

Suppose that there exist independent estimators Ŷl (based on Nl Monte Carlo simulations) and

that there exist positive constants α≥ 1/2, β> 0, ci > 0 (i ∈ {1,2,3}) such that:

(i) E [Pl −P] ≤ c1hαl ,

(ii) E
[
Ŷl

]=
 E [P0] , l = 0

E [Pl −Pl−1] , l > 0
,

125

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

(iii) Var
(
Ŷl

)≤ c2
hβ

l
Nl

,

(iv) Cost
(
Ŷl

)≤ c3d
Nl

hl
(1+ λ̃hl),

where λ̃=∑r
i=1λi . If Conditions (i)-(iv) hold, then there exists a positive constant c4 such that

for all ε< 1
e there exist positive integers L ∈N∗ and Nl ∈N∗ such that the combined estimator of

E [P],

Ŷ =
L∑

l=0
Ŷl ,

has a mean square error that is bounded by

MSE
(
Ŷ

)= E[(
Ŷ −E [P]

)2
]
≤ ε2

with a computational complexity bounded by

Cost
(
Ŷ

)≤


c4dε−2(1+ λ̃T), β> 1,

c4dε−2(logε)2(1+ λ̃T), β= 1,

c4dε−2−(1−β)/α(1+ λ̃T), 0 <β< 1,

where the logarithm is taken with the natural basis.

An immediate consequence of the theorem above is the result for the regular Euler-Maruyama

scheme presented in the following corollary, which also holds for multi-dimensional diffusion

problems.

Corollary 5.3.6 (Regular Schemes). Suppose we use a regular scheme for the numerical ap-

proximation. Subject to the assumptions (i)-(iii) as in Theorem 5.3.5, and replacing (iv) with

Cost
(
Ŷl

) ≤ c3d
Nl

hl
, the mean square error is bounded by MSE

(
Ŷ

) ≤ ε2 and the bound for the

computational cost is characterized by

Cost
(
Ŷ

)≤


c4dε−2, β> 1,

c4dε−2(logε)2, β= 1,

c4dε−2−(1−β)/α, 0 <β< 1.

Proof of Theorem 5.3.5. Throughout this proof the notation dxe is used for rounding up the

real number x to the next higher integer. First, let ε< 1
e and we choose the total number of

levels L to be equal to

L =
⌈

log
(p

2c1Tαε−1
)

α log M

⌉
. (5.24)

126

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

In the first part we prove that the squared bias of Ŷ is bounded above by ε2

2 . In the second part

we prove that the variance of Ŷ has an upper bound given by ε2

2 . Combining the results of the

two parts leads to an upper bound of

MSE
(
Ŷ

)= Var
(
Ŷ

)+ (
bias

(
Ŷ

))2 ≤ ε2

2
+ ε2

2
= ε2. (5.25)

(a) Estimation of
(
bias

(
Ŷ

))2

Using L as defined in (5.24), the following inequalities can be established:

log
(p

2c1Tαε−1
)

α log M
≤ L < log

(p
2c1Tαε−1

)
α log M

+1

⇐⇒ p
2c1ε

−1 ≤
(

M L

T

)α
︸ ︷︷ ︸
=h−α

L

< p
2c1ε

−1Mα.

Therefore we get the inequalities

M−αεp
2

< c1hαL ≤ εp
2

. (5.26)

Recall that Ŷ is an estimator of E [P], and thus the bias of the combined estimator is given by

bias
(
Ŷ

)= E[
Ŷ

]−E [P] .

Taking into account the linearity of the expectation and condition (ii), we have

E
[
Ŷ

]= E[
L∑

l=0
Ŷl

]
=

L∑
l=0

E
[
Ŷl

]= E [P0]+
L∑

l=1
E [Pl −Pl−1] = E [PL] .

Using in addition Condition (i), the squared bias satisfies
(
bias

(
Ŷ

))2 ≤ c2
1h2α

L , and taking into

account the upper bound of (5.26), we obtain

(
bias

(
Ŷ

))2 ≤ ε2

2
.

(b) Estimation of Var
(
Ŷ

)
Now it remains to show that the variance of Ŷ is bounded by ε2

2 . First we establish the inequality

L∑
l=0

h−1
l < M 2

M −1

(p
2c1

)1/α
ε−2. (5.27)

127

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

In fact we have by the definition of the time stepsize hl

L∑
l=0

h−1
l =

L∑
l=0

(
T

M l

)−1

= h−1
L

L∑
l=0

M l−L < h−1
L

M

M −1
.

In addition, by the lower limit of (5.26), we have h−1
L < M

(
εp
2c1

)−1/α
, and thus

L∑
l=0

h−1
l < M 2

M −1

(p
2c1

)1/α
ε−1/α.

Finally, since by assumption ε< 1 the following inequalities are equivalent:

ε−1/α ≤ ε−2 ⇔α≥ 1

2
.

As by assumption α≥ 1
2 we obtain (5.27).

To pursue the proof we need to distinguish three cases.

Case 1: β= 1. Inspired by (5.19), we set the number of samples at level l to

Nl =

ÈÌÌÌÌ2ε−2(L+1)c2
hl√

1+ λ̃hl

√
1+ λ̃T

ÉÍÍÍÍ . (5.28)

Now, by considering first the independence of the partial estimators Ŷl , followed by

Condition (iii) and then the definition of Nl in (5.28), we have for the variance an upper

bound given by ε2

2 .

Indeed, using Var
(
Ŷ

)= Var

(
L∑

l=0
Ŷl

)
=

L∑
l=0

Var
(
Ŷl

)
, we have

L∑
l=0

Var
(
Ŷl

) ≤
L∑

l=0
c2N−1

l hl

≤
L∑

l=0
c2hl

ε2

2
(L+1)−1c−1

2

√
1+ λ̃hl

hl

1√
1+ λ̃T


= ε2

2 (L+1)−1 1p
1+λ̃T

L∑
l=0

√
1+ λ̃hl , ≤ ε2

2
,

where we used
L∑

l=0

√
1+ λ̃hl ≤

√
1+ λ̃T (L+1). Therefore, in the case of β= 1, the mean

square error of Ŷ is bounded by ε2, i.e. (5.25) is satisfied. We derive now an upper bound

for the computational complexity of the combined estimator in the case of β= 1. The

idea is to bound first Nl and then to use condition (iv). By definition of Nl (see (5.28)),

128

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

we have in particular

Nl < 2ε−2(L+1)c2
hl√

1+ λ̃hl

√
1+ λ̃T +1. (5.29)

We aim to find an upper bound for L+1. By definition of L (see (5.24)), the number of

levels is bounded above by

L < log
(p

2c1Tαε−1
)

α log M
+1 = logε−1

α log M
+ log

(p
2c1Tα

)
α log M

+1.

Furthermore we notice that ε< 1
e ⇔ e < ε−1 ⇔ 1 < logε−1. Thus we get

L+1 < logε−1

α log M
+ log

(p
2c1Tα

)
α log M

+2 ≤ c5 logε−1, (5.30)

where c5 = 1
α log M +max

(
0,

log
(p

2c1T α
)

α log M

)
+2. Using first condition (iv), followed by the

upper bound (5.29) of Nl and the inequality (5.27) as well as the bound (5.30) for L+1,

we end up with the computational complexity for Cost
(
Ŷ

)= L∑
l=0

Cost
(
Ŷl

)
bounded by

Cost
(
Ŷ

) ≤
L∑

l=0
c3d Nl

1+ λ̃hl

hl

<
L∑

l=0
c3d

1+ λ̃hl

hl

2ε−2(L+1)c2
hl√

1+ λ̃hl

√
1+ λ̃T +1


= c3d2ε−2(L+1)c2

√
1+ λ̃T

L∑
l=0

√
1+ λ̃hl + c3d

L∑
l=0

1+ λ̃hl

hl

≤ c3d2ε−2(L+1)2c2(1+ λ̃T)+ c3d(1+ λ̃T)
L∑

l=0
h−1

l

≤ (1+ λ̃T)dε−2
(
logε

)2
[

c32c2
5c2 + c3

M 2

M−1

(p
2c1

)1/α
]

.

Hence an upper bound for the computational cost is given by

Cost
(
Ŷ

)≤ c4dε−2(logε)2(1+ λ̃T),

where c4 = 2c3c2
5c2 + c3

M 2

M−1

(p
2c1

)1/α
.

129

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

Case 2: β> 1. The number of simulations at level l is chosen such that

Nl =

ÈÌÌÌÌ2ε−2c2T (β−1)/2
(
1−M−(β−1)/2

)−1 h(β+1)/2
l√
1+ λ̃hl

√
1+ λ̃T

ÉÍÍÍÍ . (5.31)

Observe that the choice of Nl is the same as in the first case if the parameter β is fixed at

β= 1. In the following the derivation of the upper bound of the variance of the combined

estimator is very similar as in the case with β= 1. Due to the independence of the partial

estimators Ŷl , condition (iii) and the definition of Nl in (5.31), we have

L∑
l=0

Var
(
Ŷl

) ≤
L∑

l=0
c2

hβl
Nl

≤ ε2

2 T −(β−1)/2
(
1−M−(β−1)/2

) L∑
l=0

h(β−1)/2
l .

Using the above upper bound with the inequality

L∑
l=0

h(β−1)/2
l < T (β−1)/2 M (β−1)/2

M (β−1)/2 −1
, (5.32)

we obtain

Var
(
Ŷ

) ≤ ε2

2 T −(β−1)/2
(
1−M−(β−1)/2

) L∑
l=0

h(β−1)/2
l < ε2

2 .

Hence the inequality (5.25) for the mean square error of Ŷ holds also in this case. It

remains to find the appropriate upper limit of the computational complexity of the

combined estimator Ŷ in this case where β> 1. By the choice of Nl in (5.31), we have in

particular

Nl < 2ε−2c2T (β−1)/2
(
1−M−(β−1)/2

)−1 h(β+1)/2
l√
1+ λ̃hl

√
1+ λ̃T +1.

130

5.3. Multilevel Monte Carlo Method for Jump-Diffusion Processes

Combining this with condition (iv) and the inequalities (5.27) and (5.32), we arrive at

Cost
(
Ŷ

) ≤
L∑

l=0
c3d Nl

1+ λ̃hl

hl

<
L∑

l=0
c3d

(1+ λ̃hl)

hl

2ε−2c2T (β−1)/2
(
1−M−(β−1)/2

)−1 h(β+1)/2
l

√
1+ λ̃T√

1+ λ̃hl

+1]

≤ (1+ λ̃T)d

[
2ε−2c2c3T (β−1)/2

(
1−M−(β−1)/2

)−1
L∑

l=0
h(β+1)/2

l

+c3

L∑
l=0

h−1
l

]

< (1+ λ̃T)d
[

2ε−2c2c3T (β−1)
(
1−M−(β−1)/2

)−2 + c3
M 2

M−1

(p
2c1

)1/α
ε−2

]
.

Rearranging this expression we get the required upper bound for the computational

cost of Ŷ :

Cost
(
Ŷ

)≤ c4dε−2(1+ λ̃T)

with c4 = 2c2c3T β−1
(
1−M−(β−1)/2

)−2 + c3
M 2

M−1

(p
2c1

)1/α
.

Case 3: 0 <β< 1. In the last case, we set the number of simulations for level l to

Nl =

ÈÌÌÌÌ2ε−2c2h−(1−β)/2
L

(
1−M−(1−β)/2

)−1 h(β+1)/2
l√
1+ λ̃hl

√
1+ λ̃T

ÉÍÍÍÍ . (5.33)

Similarly to the previous cases, taking into account the independence of the partial

estimators Ŷl , condition (iii) and the definition of Nl in (5.33), we obtain

L∑
l=0

Var
(
Ŷl

) ≤
L∑

l=0
c2

hβl
Nl

≤ ε2

2 h(1−β)/2
L

(
1−M−(1−β)/2

) L∑
l=0

h−(1−β)/2
l .

In addition we observe that

L∑
l=0

h−(1−β)/2
l = h−(1−β)/2

L

L∑
l=0

(
M−(1−β)/2

)l
,

where we applied the definition of the time stepsize hl = T
M l . Using next (recall that

β ∈]0,1[)
L∑

l=0

(
M−(1−β)/2

)l <
∞∑

l=0

(
M−(1−β)/2

)l =
(
1−M−(1−β)/2

)−1
,

131

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

we have
L∑

l=0
h−(1−β)/2

l < h−(1−β)/2
L

(
1−M−(1−β)/2

)−1
. (5.34)

Therefore the variance upper bound is given by

Var
(
Ŷ

) ≤ ε2

2 h(1−β)/2
L

(
1−M−(1−β)/2

) L∑
l=0

h−(1−β)/2
l

< ε2

2 h(1−β)/2
L

(
1−M−(1−β)/2

)
h−(1−β)/2

L

(
1−M−(1−β)/2

)−1

= ε2

2 .

Finally we have to find the appropriate upper bound for the computational complexity

of the combined estimator in the case where 0 <β< 1. First, using condition (iv), the

upper bound of Nl as in (5.33), we obtain

Cost
(
Ŷ

) ≤
L∑

l=0
c3d Nl

1+ λ̃hl

hl

<
L∑

l=0
c3d

1+ λ̃hl

hl

2ε−2c2h−(1−β)/2
L

(
1−M−(1−β)/2

)−1 h(β+1)/2
l

√
1+ λ̃T√

1+ λ̃hl

+1]

≤ (1+ λ̃T)d

[
2ε−2c2c3h−(1−β)/2

L

(
1−M−(1−β)/2

)−1
L∑

l=0
h(β−1)/2

l

+c3

L∑
l=0

h−1
l

]
.

Taking into account inequality (5.34), we observe

h−(1−β)/2
L

(
1−M−(1−β)/2

)−1 L∑
l=0

h−(1−β)/2
l < h−(1−β)

L

(
1−M−(1−β)/2

)−2

and then using the lower bound given in (5.26), we obtain

h−(1−β)/2
L

(
1−M−(1−β)/2

)−1
L∑

l=0
h−(1−β)/2

l

< (p
2c1

)(1−β)/α
M 1−βε−(1−β)/α

(
1−M−(1−β)/2

)−2
.

In addition we notice that since β ∈]0,1[, α> 0 and ε< e−1 < 1,

ε−2 < ε−2−(1−β)/α.

132

5.4. Numerical Examples

Combining this results with the inequality (5.27), we end up with

Cost
(
Ŷ

)< c4dε−2−(1−β)/α(1+ λ̃T),

where

c4 = 2c3c2

(p
2c1

)(1−β)/α
M 1−β

(
1−M−(1−β)/2

)−2 + c3
M 2

M −1

(p
2c1

)1/α
.

This completes the last case and therefore the proof of the complexity theorem.

Remark 5.3.7. Note that by setting the jump intensities λ1,λ2, . . . ,λr to zero, and by considering

the one-dimensional case, we reproduce the complexity theorem for the multilevel Monte Carlo

method based on diffusions stated in [46].

Now we briefly discuss the conditions of the complexity theorem. The first condition, (i),

defines an upper bound for the bias of the estimator Pl . The constant α can be obtained

by looking at the order of weak convergence of the numerical approximation method. For

the regular and the jump-adapted Euler method, under appropriate conditions for a(t ,S(t)),

b(t ,S(t)), c(t ,S(t)) and the jump intensities λ1,λ2, . . . ,λr , the weak order is one and therefore

α = 1 (see Section 5.2.1). The second condition, (ii), and the last condition, (iv), limit the

choice of the partial estimators Ŷl . Condition (ii) fixes the mean of Ŷl and the fourth condition

(iv) defines an upper bound for the computational complexity of the partial estimators Ŷl .

Note that these two conditions can usually be met by choosing partial estimators that are

located around a given point (can be obtained by deducting the bias of the estimator from

the estimator and using this difference as a new estimator) and by considering an upper limit

for the computational complexity of the estimators. The most delicate condition is the third

one, (iii). This condition demands the variance of Ŷ to be bounded by the term given on the

right-hand side of (iii). In the case of the regular and the jump-adapted Euler method, as in

the approach in Section 5.3.2, an upper bound for the variance, in particular β, can be found

using the strong convergence property of the numerical method. In particular for the Euler

method, we have β= 1 (see Section 5.2.1).

5.4 Numerical Examples

In this section we consider two jump-diffusion models, the Merton and the Kou model, and

compare numerically the performance of the proposed multilevel Monte Carlo method to

the standard Monte Carlo method without any variance reduction technique, as well as to

the standard Monte Carlo method with variance reduction techniques, in this case we use

antithetic variates and control variates.

133

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

5.4.1 The Merton and the Kou model

The Merton model, introduced in 1976 by Robert C. Merton in [80], is historically the first

jump-diffusion model in finance. The Kou model was first presented in 2002 by Steven G.

Kou in [67]. The two models are studied in detail in Section 2.1.2. Here we briefly recall their

definition and exact solutions. Both models are specified by the particular form (d = 1, m = 1,

r = 1) of the SDE (5.1): dS(t) = µS(t−)dt +σS(t−)dW (t)+S(t−)dJ (t), 0 ≤ t ≤ T,

S(0) = S0,
(5.35)

where J(t) =
N (t)∑
i=1

(Vi −1), and where N (t) is a Poisson process with intensity λ. In the Merton

model the jump sizes are characterized by

log(Vi) iid∼ N
(
η,ν2)

with η ∈R and ν> 0. In the Kou model the jump sizes are double exponentially distributed, i.e.

log(Vi) iid∼ K
(
η1,η2, p

)
,

where K is an asymmetric exponential distribution, whose density function is given by

fk (x) = pη1e−η1x 1{x≥0} + (1−p)η2eη2x 1{x<0} (5.36)

with x ∈ R, η1 > 1, η2 > 0 and p ∈ [0,1]. The parameters η1 and η2 define the decay of the

tails in the distribution of positive and negative jumps and the parameter p specifies the

probability of an upward jump (see e.g. [32]).

Both jump-diffusion models admit an analytical solution given by

S(t) = S0 exp

{(
µ− σ2

2

)
t +σW (t)

}N (t)∏
i=1

Vi

(see Proposition 2.1.14).

In the following we focus on pricing European call options, that is we intend to estimate the

expectation E
[

f (S(T))
]

with f given as

f (S(T)) = e−r T max(S(T)−K ,0) ,

where r is the risk-free interest rate, T the maturity and K the strike price of the option, and

S(T) is specified by equation (5.35) (see e.g. [32]).

Remark 5.4.1. To price options one works with risk-neutral measures. Under the risk-neutral

probability measure, i.e. under the measure such that the discounted underlying
(
e−r t S(t)

)
t≥0

134

5.4. Numerical Examples

is a martingale (see [70]), the Merton model is given by (5.35) with drift

µ= r −λ (E [Vi]−1) = r −λ
(
exp

(
η+ ν2

2

)
−1

)
(see e.g. [80] and [49]). Similarly, the drift for the Kou model in the risk-neutral case can be

specified by

µ= r −λ
(

pη1

η1 −1
+ qη2

η2 +1
−1

)
(see e.g. [68]).

5.4.2 Two Variance Reduction Techniques

A brief overview of the most common variance reduction techniques is given in Section 2.3.2.

Here we describe now the two variance reduction techniques which we compare in the

following numerically with the MLMC method.

Antithetic Variates

The idea of the antithetic variates is to produce for every sample path an antithetic one, which

is based on the realizations of the original path, and thus is computationally cheap to get. For

instance, if the random variable U is uniformly distributed over the interval [0,1], then so is

1−U . Suppose sample paths are generated by realizations u1,u2, . . . of U . Then the antithetic

paths are produced using 1−u1,1−u2, . . . as realizations (see e.g. [49]).

The antithetic variates estimator is given by

ŶAV = 1

2N

(
N∑

i=1
f
(
S(i)

G

)
+

N∑
i=1

f
(
S̃(i)

G

))
,

where the realizations S̃(i)
G are based on an antithetic path. To produce sample paths of the

two jump-diffusion models presented in Section 5.4.1 one requires realizations of the normal

distribution for the diffusion part, and the log-normal and the double exponential distribution

for either of the jump parts. If x is a realization of the normal distribution, then we take

x̃ =−x for the antithetic path. For the Merton model, if x is log-normally distributed, then the

antithetic realization is obtained by

x̃ = exp

(
µ−σ

(
log(x)−µ

σ

))
.

For the Kou model, observe that a realization of the double exponential distribution with

135

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

density given in (5.36) can be obtained by

x =


1
η2

ln
(

u
1−p

)
, if u < 1−p,

− 1
η1

[
ln

(
1
p

)
+ ln(1−u)

]
, if u ≥ 1−p,

where u is a realization of a standard uniform distribution. Hence, for the antithetic path we

take into account 1−u instead of u, i.e.

x̃ =


1
η2

ln
(

1−u
1−p

)
, if 1−u < 1−p,

− 1
η1

[
ln

(
1
p

)
+ ln(u)

]
, if 1−u ≥ 1−p.

Control Variates

Suppose we would like to estimate the mean of a random variable Y . Let Ȳ be an unbiased

estimator of E [Y] and let X be another random variable (called control variate) with known

mean. Then Y ∗ = Ȳ −ξ (X −E [X]) is also an unbiased estimator of E [Y] for any coefficient ξ,

but the variance of Y ∗ can be minimized. Note that the parameter ξ can be estimated using a

least-squares approach (see e.g. [49]). The same idea also applies for functionals of random

variables.

For our example, under the risk-neutral measure the process
(
e−r t S(t)

)
t≥0 is a martingale.

Hence,

E
[
e−r T S(T)

]= S0,

and thus, S(T) can be used as control variate (see [49]). The control variates estimator is given

by

ŶCV = 1

N

N∑
i=1

(
f
(
S(i)

G

)
− ξ̂N

(
S(i)

G −er T S0

))
,

where ξ̂N is the least-squares estimator of ξ (see e.g. [49]).

5.4.3 Numerical Results

We consider Equation (5.35) in the setting of Section 5.4.1 with T = 1, S0 = 1, K = 1, r = 0.05,

σ= 0.2, λ= 1. Further we employ the refinement factor M = 4 in the MLMC method. For the

Merton model, as in Example 10.2 in [32], we fix η=−0.1 and ν= 0.1. For the Kou model, we

set the probability of an upward jump to p = 0.3 and we fix η1 = 50 and η2 = 25, as, for instance,

in [68].

Remark 5.4.2. With regard to a financial model, the chosen data have the following meaning:

The parameter T represents the maturity of the option and the initial share price S0 as well as

the strike price are 1 (we do not specify the currency here). The risk-free interest rate is set to 5%

136

5.4. Numerical Examples

and the implied volatility is chosen to be 20% (see e.g. [61]). In a financial context the jump

intensity typically lies between 0.05 and 2, see e.g. [25]. Here we have chosen λ = 1 as this is

often the case in [32].

1 2 3 4 5 6
−16

−14

−12

−10

−8

−6

−4

−2

0

Level l

lo
g

M
 V

a
ri
a
n
c
e

P
l

P
l
−P

l−1

Slope = −1

1 2 3 4 5 6
−15

−10

−5

0

Level l

lo
g

M
 |
M

e
a
n
|

P
l

P
l
−P

l−1

Slope = −1

Figure 5.1: Comparison of the variance (left figure) and the mean (right figure) of the MLMC
and the MC method over different levels using the Merton model and jump-adapted Euler.

In Figure 5.1 we compare the variance and the mean of the MLMC method and the standard

Monte Carlo method without any variance reduction technique using the jump-adapted

Euler method applied to the Merton model. To produce the two plots, 2×104 sample paths

have been generated. The left plot shows the logarithm with base M of the variance of Pl , the

discrete approximation of the variable P using the time stepsize hl = T
M l , and Pl−1, respectively,

against the number of levels l . One observes that the curve for Pl −Pl−1 is almost parallel to

the straight line of slope minus one. This indicates that the variance of a single sample verifies

Var(Pl −Pl−1) = O (hl) as suggested by the theory, see Section 5.3.2. Note that the variance

of Pl , used for the standard MC method, is more or less constant whereas the variance of

Pl −Pl−1, used for the MLMC method, decreases as l increases. At level l = 6, Var(Pl −Pl−1) is

approximately 46 times smaller than Var(Pl).

The right plot of Figure 5.1 represents the logarithm with base M of the absolute value of

the mean of Pl and Pl −Pl−1, respectively, against the number of levels l . The curve for

E [Pl −Pl−1] is almost linear with slope minus one. Therefore, we have E [Pl −Pl−1] = O (hl),

which corresponds to the weak convergence of order one of the jump-adapted Euler method,

see Section 5.2.1. At level l = 6, the absolute value of E [Pl −Pl−1], used for the MLMC method,

is about 48 times smaller than the absolute value of E [Pl], used for the standard Monte Carlo

method.

We next also compare the MLMC method to the standard MC method with two variance

reduction techniques described in Section 5.4.2. As a measure of the effectiveness of the

methods we use the mean square error (MSE) described in Section 5.3.1 (see also e.g. [49]).

137

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

The MSE can be approximated by a sample average over N∗ simulations:

MSE
(
Ŷ

)= E[(
Ŷ −E[

f (S(T))
])2

]
≈ 1

N∗
N∗∑
i=1

(
Ŷ (i) −Y

)2
, (5.37)

where Ŷ (i) are independent realizations at time T . For our computations we have used

N∗ = 1000. We also report the computational cost of the different methods for ε being the

desired parameter in the mean square accuracy of MSE
(
Ŷ

)=O
(
ε2

)
for the MLMC method.

Based on (5.23) in Section 5.3.2 we can bound the computational cost of the MLMC method

in the jump-adapted case by

Cost
(
Ŷ

)≤ 2T ε−2(1+λT)(L+1)2, (5.38)

where we have set the constants K and K̂ in (5.23) to 1. Similarly we get in the regular case

the same upper bound without the factor (1+λT). The computational cost of the other three

methods is given by

Cost
(
Ŷ

)=


2N
(T

h +λT
)

, for jump-adapted Euler,

2N T
h , for regular Euler.

(5.39)

Remark 5.4.3. The only additional cost, compared to the standard Monte Carlo method, of

the control variates estimator is due to the computation of ξ̂N . However, this cost is negligible

compared to the other cost since ξ̂N can often be computed using vector multiplication. For

the antithetic variates, antithetic paths are generated, but these are based on realizations of the

original sample paths, and thus, no significant additional cost occurs.

ε MLMC MC AV CV

0.1 1.00e-2 1.10e-3 2.89e-4 2.44e-5

0.01 1.00e-4 7.98e-5 3.96e-5 1.99e-5

0.005 2.50e-5 3.68e-5 2.56e-5 1.31e-5

0.002 4.00e-6 2.81e-5 2.33e-5 1.14e-5

0.001 1.00e-6 2.27e-5 2.21e-5 1.06e-5

0.0001 1.00e-8 2.18e-5 2.15e-5 1.03e-5

Table 5.1: Estimated mean square error of the methods MLMC, standard MC, antithetic
variates (AV) and control variates (CV) for different values of ε using the Merton model and
jump-adapted Euler.

Table 5.1 shows the estimated mean square error of the four methods for different values

of ε using the Merton model and jump-adapted Euler. Similar results have been obtained

in the regular case and for the Kou model. The results are obtained through the following

procedure. For a given ε, using (5.38), the upper bound for the computational cost of the

138

5.5. Stabilized Multilevel Monte Carlo Method for Jump-Diffusion Processes

MLMC is computed and then fixed. Furthermore, the total number of levels L is determined

according to (5.22). For the MC, the antithetic and the control variates methods, we fix the

stepsize h = hL = T /M L as in [65] or [46]. Then, the number of simulations N is computed for

these methods by (5.39). Finally, we run the N simulations and approximate the MSE of the

different methods according to (5.37). Figure 5.2 illustrates the results in a loglog-plot. The

accuracy ε is taken from the set

ε ∈ {0.1,0.01,0.005,0.002,0.001,0.0001} .

We observe that as ε gets smaller, i.e. as the accuracy increases, the MLMC method has

the lowest mean square error of all methods, followed by the control variates method, the

antithetic method and the standard Monte Carlo method. In addition we notice that the MSE

of the MLMC method decays linearly as ε tends to zero, whereas the MSE of the other three

methods first roughly decays linearly to finally hardly decay as ε decreases.

10
−4

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Merton Model, Jump−Adapted Euler

ε

M
S

E

MLMC

MC

AV

CV

Figure 5.2: Estimated mean square error of the methods MLMC, standard MC, antithetic
variates (AV) and control variates (CV) for different values of ε using the Merton model and
jump-adapted Euler.

5.5 Stabilized Multilevel Monte Carlo Method for Jump-Diffusion

Processes

In this section we combine the approach of the previous sections with the concepts of Chap-

ter 3 and Chapter 4, i.e. we introduce a stabilized multilevel Monte Carlo method for jump-

diffusion processes. This is especially useful for applications characterized by stiff stochastic

differential equations based on jump-diffusions. Before we start investigating the stabilized

139

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

MLMC approach for jump-diffusions, we briefly present the stabilized Monte Carlo method

for jump-diffusions.

In what follows we consider SDE (5.1) and the numerical integrator S-ROCK1-JD introduced

in Definition 4.2.1. Without loss of generality we assume d = 1. The extension to the multi-

dimensional case is straightforward. Additionally to the strong order of convergence 1/2 of

S-ROCK1-JD that we have proven in Chapter 4, we assume that this integrator is of weak order

of convergence 1. Similar to (3.18) we consider the following stability constraint:

M−lρ

c1s2
l

≤ 1, (5.40)

for sl ≥ 2 indicating the stage number, hl = T
M l the time stepsize, ρ the stiffness parameter

and c1 some constant similar to cSR1 but for the S-ROCK1-JD method instead of the S-ROCK1

method.

5.5.1 Stabilized Monte Carlo Method for Jump-Diffusions

Here, we proceed as in Section 5.3.1. The stabilized Monte Carlo estimator for jump-diffusions

is defined by

E
[

f (S(T))
]≈ 1

N

N∑
i=1

f
(
S(i)

G

)
=: Ỹ , (5.41)

where the S(i)
G are independent numerical approximations of S(T) using the S-ROCK1-JD

method with s stages and a uniform time stepsize h. In the jump-adapted case the jump times

are added to the grid (see Remark 5.3.1). Similar to (5.9) one can show that for the bias of the

estimator Ỹ it holds that

bias
(
Ỹ

)=O (h) ,

where we have used in particular the weak order of convergence one of the S-ROCK1-JD

method. By taking into account the strong order of convergence 1/2 of the S-ROCK1-JD

method and by proceeding as in (5.10) one obtains for the variance

Var
(
Ỹ

)=O
(
N−1) .

Therefore, for the mean square error we get

MSE
(
Ỹ

)= Var
(
Ỹ

)+ (
bias

(
Ỹ

))2 =O
(
N−1 +h2) .

Assume now that a mean square accuracy of O (ε) is desired for some ε> 0. It follows that we

require N =O
(
ε−2

)
samples and a regular time stepsize h =O (ε).

Distinguishing between the regular and the jump-adapted S-ROCK1-JD method, we can

compute the corresponding computational cost. First, for the regular approach we have T /h

140

5.5. Stabilized Multilevel Monte Carlo Method for Jump-Diffusion Processes

steps per sample, and thus, the computational cost is given by

Cost
(
Ỹ

)= N
T

h
(s +m) =O

(
ε−5/2pρ+ε−3) ,

where we have used that s = max
(√

ρ
c1

h,2
)
=O

(p
ρε

)
by (5.40). This coincides with the result

found in (3.22). Second, for the jump-adapted method we add to the T /h steps the expected

number of jumps, i.e. E [N (T)] = λT . It follows that the computational cost in this case is

specified by

Cost
(
Ỹ

)= N
T

h
(s +m) (1+λT) =O

((
ε−5/2pρ+ε−3) (1+λT)

)
,

where we have used again that s = max
(√

ρ
c1

h,2
)
= O

(p
ρε

)
by (5.40). Hence, by using the

jump-adapted instead of the regular S-ROCK1-JD method the term (1+λT) appears.

5.5.2 Stabilized Multilevel Monte Carlo Method for Jump-Diffusions

We introduce now the stabilized multilevel Monte Carlo method for jump-diffusions. Consider

the following sequence of nested time stepsizes

hl =
T

M l
, l = 0,1, . . . ,L,

where T is some fixed time endpoint, M the refinement factor and L the total number of levels.

Furthermore, let

Pl = f
(
SM l

)≈ f (S(T))

with SM l the approximation of S(T) using S-ROCK1-JD with sl stages and time stepsize hl .

The stabilized MLMC estimator for jump-diffusions is defined by

Y ∗ :=
L∑

l=0
Y ∗

l with Y ∗
l = 1

Nl

Nl∑
i=1

(
P (i)

l −P (i)
l−1

)
with P−1 ≡ 0 and where the P (i)

l are independent and P (i)
l and P (i)

l−1 are based on the same

sample path. Using the weak order of convergence 1 of the S-ROCK1-JD method, we obtain

for the bias of the estimator Y ∗

bias
(
Y ∗)=O (hL) . (5.42)

To get this result we can proceed similar to Section 3.3.2. By taking into account the strong

order of convergence 1/2 of the S-ROCK1-JD scheme and the Lipschitz continuity of f we can

show that (see Section 3.3.2)

Var
(
Y ∗)=C

L∑
l=0

M−l

Nl
. (5.43)

We suppose now that a mean square accuracy of MSE(Y ∗) =O
(
ε2

)
with ε= M−L is desired.

141

Chapter 5. Multilevel Monte Carlo Method for Stochastic Differential Equations driven
by Jump-Diffusion Processes

Then we obtain for the bias bias(Y ∗) =O (ε), where we used (5.42). Inspired by (5.43), we put

Nl = M 2L M−l L,

and thus, for the variance it holds Var(Y ∗) = O
(
ε2

)
. Therefore, the mean square error is as

desired MSE(Y ∗) =O
(
ε2

)
.

We compute now the corresponding computational cost. We show the result for the jump-

adapted S-ROCK1-JD method. The computational cost is given by

Cost(Y ∗) =
L∑

l=0
Nl M l (sl +m) (1+λT)

= (1+λT)
L∑

l=0
M 2L M−l LM l (sl +m)

= (1+λT) M 2LL

(
L∑

l=0
sl +m (L+1)

)

= (1+λT) M 2LL

(√
ρ
c1

L∑
l=0

M−l /2 +m (L+1)

)
= (1+λT) M 2LL

(√
ρ
c1

p
M−M−L/2p

M−1
+m (L+1)

)
= O

(
ε−2

(
logε

)2
(p

ρ

|logε| +1
)

(1+λT)
)

,

(5.44)

where we have used (5.40) to determine the number of stages sl . Note that this result corre-

sponds to the one for diffusion processes (3.21) except there is the additional term (1+λT),

which results from the jumps. The computational cost for the regular S-ROCK1-JD approach

can be obtained by the same procedure. In the regular case there is no (1+λT) term though,

and thus, to achieve a mean square accuracy of MSE(Y ∗) = O
(
ε2

)
one requires a computa-

tional cost of

Cost
(
Y ∗)=O

(
ε−2 (

logε
)2

(p
ρ∣∣logε

∣∣ +1

))
.

Remark 5.5.1. Similar to Section 3.3.1, due to the time stepsize restriction, which results from

stability issues of stiff SDEs, the multilevel Monte Carlo method for jump-diffusions based

on the Euler-Maruyama integrator cannot exploit all levels, and thus, the MLMC approach

becomes less efficient and the corresponding computational cost increases. In contrast, the

suggested stabilized MLMC method for jump-diffusions can use all the levels by adapting the

stage number accordingly and therefore preserves the speeding-up feature of the multilevel

Monte Carlo procedure.

Furthermore, note that by setting the jump-related terms equal to zero, we recover the results

from Chapter 3, and thus, the suggested stabilized MLMC method for jump-diffusion processes

is a natural extension of the stabilized MLMC approach for diffusions. In addition, by setting

the terms corresponding to the stiffness equal to zero we rediscover the results from the previous

sections of this chapter. Hence, the new stabilized multilevel Monte Carlo method for jump-

142

5.6. Conclusion

diffusions is also a natural extension of the MLMC approach for jump-diffusions.

5.6 Conclusion

In this chapter we have extended the multilevel Monte Carlo method to multi-dimensional

stochastic differential equations driven by jump-diffusions. We have stated and proven a com-

plexity theorem for estimating the expectation of functionals depending on d-dimensional

SDEs driven by an m-dimensional Wiener process and an r -dimensional compound Poisson

process. Numerical experiments have been carried out to compare the MLMC method to the

Monte Carlo method without any variance reduction technique as well as with two variance

reduction techniques, the antithetic variates and the control variates. The numerical results

confirm our theoretical findings and show for a sufficiently small mean square accuracy a

significant reduction of the computational complexity of the MLMC method compared to the

other methods. We have further extended the MLMC method by suggesting a stabilized multi-

level Monte Carlo method for stiff stochastic differential equations driven by jump-diffusion

processes.

143

6 S-ROCK Method with Variable Time
Stepping for Stiff Stochastic Differen-
tial Equations
In this chapter we introduce a variable time stepping algorithm that uses the S-ROCK method

as numerical integrator to approximate the weak solution of stiff stochastic differential equa-

tions. A computable leading term of the error resulting from the time discretization is derived

here. Furthermore, an algorithm is presented that adapts the time grid and the number of

stages of the S-ROCK method per time step at the same time. Realizing two numerical experi-

ments we show that the algorithm is suitable to deal with stiffness in the underlying stochas-

tic model, whereas approaches based on classical integrators such as the Euler-Maruyama

method struggle in the presence of stiffness due to mean square stability issues.

6.1 Introduction

There are various approaches that offer variable stepsize solutions for stochastic differential

equations. We mention here a few of them. Gaines and Lyons describe in [43] a variable

time stepping algorithm for pathwise solutions to SDEs, i.e. for strong solutions. They also

discuss Brownian trees and the approximation of Lévy areas. Burrage and Burrage in [29]

present a variable stepsize implementation for strong solutions to SDEs using an embedding

strategy. Ilie and Teslya propose another adaptive time grid approach to approximate strong

solutions of the chemical Langevin equation (see [63]). They use the Milstein scheme as

numerical integrator. Römisch and Winkler present a variable time stepping method for

strong approximations of stochastic differential equations with small noise that is based

on the mean square of the pth mean of the local error. As numerical integrators they have

considered the drift-implicit Euler method and the drift-implicit Milstein scheme. Valinejad

and Hosseini in [99, 100] suggest a variable time stepping algorithm for weak solutions to

stochastic differential equations and they also provide an algorithm for SDEs with small noise.

Küpper, Lehn and Rößler introduce in [33, 90] an adaptive time stepping algorithm for the

weak solution of stochastic differential equations that is based on embedding.

A lot of research on variable time stepping methods has also been carried out by Szepessy et

al. (see for instance [96, 82, 38, 83]). In [96] Szepessy et al. suggest a variable time stepping

145

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

algorithm for the approximation of the expectation of functionals depending on stochastic

processes. Their approach is based on the Euler-Maruyama method. In the following we

describe an adaptive algorithm for approximating weak solutions of SDEs using the S-ROCK

method as numerical integrator. The approach that we present in this chapter can readily

handle models defined by stochastic differential equations with multiple scales. The Euler-

Maruyama method can face in such a setting severe time stepsize restrictions due to mean

square stability issues. We call such stochastic problems stiff. The S-ROCK methods are explicit

integrators that use orthogonal Chebyshev polynomials and that have an extended stability

domain which is very useful if one is to solve stiff stochastic models. We introduce here an

algorithm that adapts the time grid and at the same time adjusts the number of stages of the

S-ROCK method to account for the stiffness of the problem.

This chapter is organized as follows. First, we specify which kind of stochastic processes we

consider here and which numerical integrators are used. We briefly recall the concept of

mean square stability and define the stability domains of the numerical schemes. Next, we

study an algorithm that generates a time grid with variable stepsize for the S-ROCK method to

approximate weak solutions of the stochastic problem. In particular we derive a computable

leading term to estimate the time discretization error. After describing the adaptive algorithm

in detail we finally carry out some numerical experiments to corroborate the theoretical

findings.

The following is part of a scientific paper that is in preparation [7].

6.2 Preliminaries

In this chapter we consider stochastic processes (X (t))t∈[0,T] that are defined on a bounded

time interval [0,T] and that are characterized by a stochastic differential equation
dX (t) = f (t , X (t))dt +

m∑
r=1

g r (t , X (t))dW r (t), 0 ≤ t ≤ T,

X (0) = X0 ,

(6.1)

where X (t) ∈Rd , f : [0,T]×Rd →Rd defines the drift, g r : [0,T]×Rd →Rd specify the diffusion

terms and (W r (t))t∈[0,T] are independent one-dimensional standard Brownian motions (with

r = 1,2, . . . ,m). To guarantee that a strong solution to the SDE (6.1) exists, we assume standard

Lipschitz continuity and linear growth conditions on the drift and the diffusion functions (see

for instance [17, 66, 81]).

6.2.1 Numerical Schemes

As a numerical integrator we consider in this chapter two different schemes, the Euler-

Maruyama method and the S-ROCK1 method. Both these schemes have been properly

146

6.2. Preliminaries

introduced in Section 2.2 and we recall them here briefly. Without loss of generality we

define here the numerical schemes for autonomous SDEs of (6.1). A simply transformation

can be used to pass from a non-autonomous system to an autonomous one (see Remark 2.1.3).

Let

τN := {t0, t1, . . . , tN } (6.2)

be a time grid of [0,T] with t0 = 0 and tN = T .

Euler-Maruyama Method

The first numerical integrator that we use in this chapter is the well-known Euler-Maruyama

method, which we have defined in Definition 2.8. The Euler-Maruyama method based on the

time grid (6.2) is specified by

X n+1 = X n + f
(

X n

)
∆tn +

m∑
r=1

g r
(

X n

)
∆W r

n ,

where ∆tn = tn+1 − tn and ∆W r
n =W r (tn+1)−W r (tn).

S-ROCK1 Method

The second numerical scheme that we take into account here is the so-called S-ROCK1 method

that we have introduced in Definition 2.2.8. This numerical scheme is the S-ROCK method

with weak order of convergence 1 and strong order of convergence 1/2 (see [12]). Considering

the time grid (6.2) the S-ROCK1 method with s stages (s ≥ 2) is defined by

K0 = X n

K1 = X n +∆tn
ω1
ω0

f (K0)

Ki = 2∆tnω1
Ti−1(ω0)

Ti (ω0) f (Ki−1)+2ω0
Ti−1(ω0)

Ti (ω0) Ki−1 − Ti−2(ω0)
Ti (ω0) Ki−2, i = 2,3, . . . , s,

X n+1 = Ks +
m∑

r=1
g r (Ks−1)∆W r

n ,

(6.3)

where ω0 = 1 + η

s2 , ω1 = Ts (ω0)
T ′

s (ω0) , ∆tn = tn+1 − tn and ∆W r
n = Wr (τn+1) −Wr (τn). We recall

that (Ti (x))i≥0 represent the orthogonal Chebyshev polynomials, which can recursively be

computed by

T0(x) = 1, T1(x) = x, Ti (x) = 2xTi−1(x)−Ti−2(x) for i ≥ 2, x ∈R.

We also recall that the parameter η is the so-called damping of the S-ROCK1 method and it

can be used to adjust the stability domain of the numerical method in the vertical direction. If

there is no noise, the S-ROCK1 method coincides with the Chebyshev method discussed in

147

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

[101]. For simplicity we call the S-ROCK1 method in the following S-ROCK method.

Due to stability issues stiffness can lead to severe time stepsize restrictions of some classical

explicit integrators such as the Euler-Maruyama method. S-ROCK methods are explicit integra-

tors with an extended stability domain, and thus, they can handle stiff stochastic differential

equations very well (see e.g. [12, 10, 15, 14]). In the next section we briefly recall the concept

of mean square stability and we illustrate, why the S-ROCK method is powerful when it comes

to stiff problems.

6.2.2 Mean Square Stability

Here, we recall the notion of mean square stability. For more details we refer to Section 2.2.2.

A stochastic process (X (t))t≥0 is called mean square stable if

lim
t→∞E

[
X (t)2]= 0.

To study the stability of a numerical method we consider the linear test problem
dX (t) =µX (t)dt +σX (t)dW (t), 0 < t ≤ T,

X (0) = 1,

(6.4)

where X (t) ∈R, µ is the drift coefficient and σ the diffusion coefficient. The initial condition

is given by X (0) = 1. The stochastic process (W (t))t∈[0,T] is a one-dimensional standard

Brownian motion. The exact solution to (6.4) is given by

X (t) = exp

{(
µ− σ2

2

)
t +σW (t)

}
(see Proposition 2.1.5). It can be shown that the stability domain of the test problem (6.4) is

given by

Sexact :=
{

(µ,σ) ∈C2 | R{µ}+ 1

2
|σ|2 < 0

}
(see (2.7)).

A numerical integrator
(

X n

)
n≥0

is said to be mean square stable if

lim
n→∞E

[
X

2
n

]
= 0.

The mean square stability domain of the Euler-Maruyama method is given by

SE M := {
(p, q) ∈C2 | |1+p|2 +q2 < 1

}
,

where (p, q) = (hµ,
p

h|σ|). Assuming the parameters µ and σ to be real-valued, for the test

problem it can be established that the time stepsize ∆tn of the Euler-Maruyama method has

148

6.2. Preliminaries

to be chosen such that

ρE M∆tn < 1 with ρE M :=
∣∣µ∣∣2

2
∣∣µ∣∣−|σ|2 , (6.5)

where ρE M represents the stiffness parameter of the Euler-Maruyama scheme. For more

general problems we adjust the stiffness parameter ρE M accordingly.

To define the stability domain of S-ROCK methods, we need to introduce the notion of a

portion of the true stability domain first:

SSDE ,a =
{

(p, q) ∈ [−a,0]×R | |q| ≤√−2p
}

.

In addition, we define a parameter

a∗ = sup
{

a > 0 | SSDE ,a ⊂Snum
}

with Snum indicating the stability domain of the corresponding numerical integrator. It can

be shown that S-ROCK methods have large parameters a∗ and that they grow quadratically

with the stage number s, i.e. usually there is some constant cSR depending solely on s that can

be estimated numerically (see [12]). The number of function evaluations grows only linearly

with the stage number s. That makes S-ROCK methods so powerful.

Similar to (6.5), one can set a stability criterion up for the S-ROCK method. In fact, we consider

here
ρSR∆tn

cSR s2
n

< 1, (6.6)

where ∆tn is the time stepsize, sn the corresponding stage number, cSR some constant de-

pending on sn (that can be estimated numerically and lies between 0.33 and 1.01, see [12])

and where ρSR is the stiffness parameter, which for the test problem is equal to
∣∣µ∣∣.

-6 -5 -4 -3 -2 -1 0
0.0

0.5

1.0

1.5

2.0

2.5

p

q
2

-60 -50 -40 -30 -20 -10 0
0

50

100

150

200

250

p

q
2

Figure 6.1: Comparison of the stability domains (dark gray) of the Euler-Maruyama scheme
(left-hand side) and the S-ROCK scheme with s = 10 stages and damping η= 5.9 (right-hand
side). The stability domain (light gray) of the linear test problem is delimited by the dashed
line.

149

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

In Figure 6.1 we illustrate the stability domain of the Euler-Maruyama method and the S-

ROCK method with s = 10 stages and a damping of η= 5.9. The true stability domain of the

test problem is indicated by the area beneath the dashed line. To avoid stability issues, a

numerical integrator should cover as much as possible of the true stability domain. One can

observe that the S-ROCK scheme covers significantly more of the true stability domain than

the Euler-Maruyama method, which only covers a small part of it. That is why the Euler-

Maruyama method can face severe time stepsize restrictions due to stability. In contrast, the

stability domain of the S-ROCK method can be enlarged by increasing the stage number s, and

thus, the S-ROCK methods can avoid time stepsize restrictions by choosing the stage number

accordingly.

6.3 Variable Time Stepping S-ROCK Method Using A Posteriori Er-

ror Control

In the following we introduce an adaptive S-ROCK method which is based on a posteriori error

estimates to get weak approximations of stochastic differential equations. This approach is

inspired by the deterministic time stepping algorithm of Szepessy, Tempone and Zouraris in

[96], which uses Euler-Maruyama as numerical scheme.

Let (X (t))t∈[0,T] be a stochastic process defined by (6.1). Let φ : Rd → R be some functional.

The goal is to estimate the expectation of the functionalφ depending on the stochastic process

(X (t))t∈[0,T], i.e. we aim to approximate

E := E[
φ (X (T))

]
(6.7)

using Monte Carlo simulations and the S-ROCK method (6.3) based on variable time steps.

The estimator of E , that we consider here, is given by

Ê := 1

M

M∑
j=1

φ
(

X
j
N

)
(6.8)

a sample average over M independent identically distributed samples of X N ≈ X (T), the

numerical S-ROCK approximation based on a time grid, that is not necessarily uniform. We

aim to bound the error by some given tolerance, denoted by TOL, i.e.

E − Ê ≤ TOL.

150

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

Observe that this error can be decomposed as

E − Ê = E
[
φ (X (T))

]− 1
M

M∑
j=1

φ
(

X
j
N

)
=

(
E
[
φ (X (T))

]−E[
φ(X N)

])
+

(
E
[
φ(X N)

]
− 1

M

M∑
j=1

φ
(

X
j
N

))
= errT +errS

(6.9)

with

errT :=
(
E
[
φ (X (T))

]−E[
φ(X N)

])
and

errS :=
(
E
[
φ(X N)

]
− 1

M

M∑
j=1

φ
(

X
j
N

))
,

i.e. the error resulting from the time discretization is denoted by errT and the statistical error

due to approximating the expectation by a sample average by errS . The discretization error

component will be used to refine the time grid and the statistical error one to adjust the

number of simulations M .

6.3.1 Derivation of a Computable Leading Term of the Time Error

In this section we derive analytically a computable leading term of the time discretization error

errT . Before we state the theorem which suggests an a posterior error estimate for a variable

time stepping S-ROCK method, we introduce some notation. To ease this notation, we apply

in what follows the summation convention, i.e. as soon as we have an index appearing twice

in a term, the sum over this index is used. For instance, if we write

fk (t1, X (t1)) fk (t2, X (t2))

this can be interpreted as
d∑

k=1
fk (t1, X (t1)) fk (t2, X (t2)).

Furthermore, observe that the S-ROCK method with s stages (6.3) can be reformulated as

X n+1 = X n + Ks−X n
∆tn

∆tn +
m∑

r=1
g r (Ks−1)∆W r

n

=: X n +α(tn , X n)∆tn +
m∑

r=1
βr (tn , X n)∆W r

n .
(6.10)

151

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

Then for each k ∈ {1,2, . . . ,d} we define the piecewise constant functions

αk (t , X) := αk (tn , X n) and

β
r
k (t , X) := βr

k (tn , X n)

for all t ∈ [tn , tn+1[, n = 0,1, . . . , N −1 and r = 1,2, . . . ,m.

Moreover, we define a function ϕ and its first variation ϕ′ by a dual backward problem. First,

let

ci (tn , x) := xi +∆tnαi (tn , x)+
m∑

r=1
∆W r

nβ
r
i (tn , x)

with the functions α and β as defined above. The function ϕ is characterized by
ϕi (tn) = ∂

∂xi
c j

(
tn , X n

)
ϕ j (tn+1), tn < T,

ϕi (T) = ∂
∂xi
φ

(
X N

) (6.11)

and its first variation

ϕ′
i k (tn) = ∂xk (tn)ϕi (tn) := ∂ϕi

∂xk

(
tn , X n = x

)
satisfies 

ϕ′
i k (tn) = ∂i c j

(
tn , X n

)
∂k cp

(
tn , X n

)
ϕ′

j p (tn+1)

+∂i k c j

(
tn , X n

)
ϕ j (tn+1) , tn < T,

ϕ′
i k (T) = ∂i kφ

(
X N

)
.

(6.12)

We have now everything at hand to state the theorem that gives us a computable leading term

of the time error.

Theorem 6.3.1. Let (X (t))t∈[0,T] be the stochastic process defined in (6.1) and let X n be its S-

ROCK approximation (6.3) at t = tn . Suppose that for m0 >
⌈

d
2

⌉
+10 there exist two positive

constants C1 ∈N and C2 ∈R such that

(i) φ ∈ C m0

loc

(
Rd

)
with

∣∣∂ξφ(x)
∣∣ ≤ C2

(
1+|x|C1

) ∀|ξ| ≤ m0 (all derivatives up to order ξ have

polynomial growth);

(ii) E
[|X (0)|2C1+d+1 +|X0|2C1+d+1

]≤C2;

(iii) f and g r are bounded in C m0
(
[0,T]×Rd

)
;

(iv) X (0) and X0 have the same distribution.

152

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

Then the time discretization error satisfies

E
[
φ (X (T))−φ

(
X N

)]
=

N−1∑
n=0

1

M

M∑
j=1

[(
fk

(
tn+1, X n+1

(
ω j

))−αk

(
tn , X

(
ω j

)))
ϕk

(
tn+1,ω j

)
+

(
fk

(
tn , X n

(
ω j

))−αk

(
tn , X

(
ω j

)))
ϕk

(
tn ,ω j

)] ∆tn
2

+
N−1∑
n=0

m∑
r=1

1

2

1

M

M∑
j=1

[((
g r

k g r
`

)(
tn+1, X n+1

(
ω j

))− (
β

r
kβ

r
`

)(
tn , X

(
ω j

)))
ϕ′

kl

(
tn+1,ω j

)
+

((
g r

k g r
`

)(
tn , X n

(
ω j

))− (
β

r
kβ

r
`

)(
tn , X

(
ω j

)))
ϕ′

kl

(
tn ,ω j

)] ∆tn
2

+
N−1∑
n=0

∆t 2
nO

(
∆tn +

N−1∑
m=n+1

∆t 2
m + ∆tn−1

∆tn

N−1∑
m=n

∆t 2
m

)
,

where we neglect the statistical error, which depends on the number of simulations M.

The theorem leads to a proposition that we can use in the following to define the algorithm.

Proposition 6.3.2. Suppose the assumptions (i)-(iv) from Theorem 6.3.1 hold. Define the

piecewise constant function ρ as follows:

ρ(t) := ρn ∀t ∈ [tn , tn+1[and n = 0,1, . . . , N −1

with

ρn =
[(

fk

(
tn+1, X n+1

)
−αk

(
tn , X

))
ϕk (tn+1)

+
(

fk

(
tn , X n

)
−αk

(
tn , X

))
ϕk (tn)

]
1

2∆tn

+
m∑

r=1

1

2

[(
g r

k

(
tn+1, X n+1

)
g r
`

(
tn+1, X n+1

)
−βr

k

(
tn , X

)
β

r
`

(
tn , X

))
ϕ′

kl (tn+1)

+
(
g r

k

(
tn , X n

)
g r
`

(
tn , X n

)
−βr

k

(
tn , X

)
β

r
`

(
tn , X

))
ϕ′

kl (tn)
]

1
2∆tn

.

Then for the time discretization error (as in the previous theorem, neglecting the statistical error

depending on M)

E
[
φ (X (T))−φ

(
X N

)]
= 1

M

M∑
j=1

N−1∑
n=0

ρn
(
ω j

)
∆t 2

n +O
(
∆t 3

n

)
holds and

1

M

M∑
j=1

N−1∑
n=0

ρn
(
ω j

)
∆t 2

n

can be used as a posteriori error estimate.

153

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

Proof of Proposition 6.3.2. Follows immediately from Theorem 6.3.1.

To prove Theorem 6.3.1 four lemmas are required. The first lemma gives a description of the

time discretization error by some function u(t , x) (to be specified later). The second lemma

quantifies the quadrature error obtained by approximating integrals. In the third lemma the

function u(t , x) is replaced by some computable function u(t , x) (for definition see below)

and the resulting error is quantified. Finally the last lemma shows how the derivatives of the

function u can be expressed by dual functions.

Before we state the first lemma, observe that using (6.10) the S-ROCK method can be written

(for theoretical purposes only) as

X (t)−X (tn) =
∫ t

tn

α
(
τ, X

)
dτ+

∫ t

tn

m∑
r=1

β
r

(τ, X)dW r
τ (6.13)

with α
(
τ, X

)
and β

(
τ, X

)
as defined above.

Lemma 6.3.3. Let us assume that conditions (i)-(iv) of Theorem 6.3.1 hold. Then one can show

that

E
[
φ (X (T))−φ(X (T))

]
=

∫ T

0
E

[
d∑

k=1

(
fk

(
t , X (t)

)
−αk

(
t , X

))
∂k u

(
t , X (t)

)]
dt

+
m∑

r=1

1

2

∫ T

0
E

[
d∑

k,`=1

(
g r

k

(
t , X (t)

)
g r
`

(
t , X (t)

)
−βr

k

(
t , X

)
β

r
`

(
t , X

))
∂k`u

(
t , X (t)

)]
dt

with u (t , x) = E[
φ (X (T)) |X (t) = x

]
.

Proof of Lemma 6.3.3. Similar to the proof of Lemma 2.1. in [96], using the Kolmogorov Back-

ward Equation, the Feynman-Kac formula with zero potential, applying Itô’s formula to (6.13)

and using some basic properties from stochastic calculus leads to the result.

Lemma 6.3.4. Suppose that the assumptions (i)-(iv) of Theorem 6.3.1 hold. For the quadrature

error the following equalities can be established:∫ tn+1

tn

E
[(

fk

(
t , X (t)

)
−αk

(
t , X

))
∂k u

(
t , X (t)

)]
dt

= ∆tn
2 E

[(
fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
∂k u

(
tn+1, X (tn+1)

)
+

(
fk

(
tn , X (tn)

)
−αk

(
tn , X

))
∂k u

(
tn , X (tn

)]
+O

(
∆t 3

n

)
(6.14)

154

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

and ∫ tn+1

tn

E

[
1

2

(
g r

k

(
t , X (t)

)
g r
`

(
t , X (t)

)
−βr

k

(
t , X

)
β

r
`

(
t , X

))
∂k`u

(
t , X (t)

)]
dt

= ∆tn
2 E

[
1
2

((
g r

k g r
`

)(
tn+1, X (tn+1)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
∂k`u

(
tn+1, X (tn+1)

)
+1

2

(
g r

k

(
tn , X (tn)

)
g r
`

(
tn , X (tn)

)
−βr

k

(
tn , X

)
β

r
`

(
tn , X

))
∂k`u

(
tn , X (tn)

)]
+O

(
∆t 3

n

)
.

(6.15)

Proof of Lemma 6.3.4. This proof follows the idea of the proof of Lemma 2.3. in [96]. Let

γ
(
t , X (t)

)
:=

(
fk

(
t , X (t)

)
−αk

(
t , X

))
∂k u

(
t , X (t)

)
and

γ(t)

:= γ
(
tn , X (tn)

)
+ t−tn

∆tn

((
fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
∂k u

(
tn+1, X (tn+1)

)
−γ

(
tn , X (tn)

))
.

Using the definitions of γ and γ it is straightforward to show that∫ tn+1

tn

(
E
[
γ

(
t , X (t)

)]
−E[

γ(t)
])

dt

=
∫ tn+1

tn

E
[
γ

(
t , X (t)

)]
dt − ∆tn

2
E
[(

fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
·∂k u

(
tn+1, X (tn+1

)
+

(
fk

(
tn , X (tn)

)
−αk

(
tn , X

))
∂k u

(
tn , X (tn

)]
.

Since this corresponds to a linear interpolation, the interpolation error can be bounded by∣∣∣∣∫ tn+1

tn

(
E
[
γ

(
t , X (t)

)]
−E[

γ(t)
])

dt

∣∣∣∣≤ ∫ tn+1

tn

1

8
∆t 2

n

∣∣∣∣ d 2

d t 2 E
[
γ

(
t , X (t)

)]∣∣∣∣dt .

Furthermore, applying Itô’s lemma twice and using assumption (iii) one obtains the desired

upper bound of (6.14). The proof of (6.15) is similar.

Before we pass on to the next lemma, we have to introduce some more notation (stochastic

flow representation). Recall that u (t , x) = E[
φ (X (T)) |X (t) = x

]
. By the chain rule it follows

that
∂k u(t , x) = ∂

∂xk
E
[
φ (X (T)) |X (t) = x

]
= E

[
∂
∂xi
φ (X (T)) ∂Xi (T)

∂xk
|∂Xi (t)
∂xk

= δi k , X (t) = x
]

,

where we denote ∂Xi (T)
∂xk

=: X ′
i k (T) and where δi k represents the Kronecker delta. The first

155

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

variation is defined by
dX ′

i j (τ) = ∂
∂xk

fi (τ, X (τ)) X ′
k j (τ)dτ+ ∂

∂xk
g r

i (τ, X (τ)) X ′
k j (τ)dW r (τ), t < τ≤ T,

Xi j (t) = δi j .

Similarly one can define the second, third and fourth variation. Therefore, we can set up the

following system. Let Y := (
X , X ′, X ′′, X ′′′, X ′′′′)T and

dY (t) = F (t ,Y)dt +
m∑

r=1
Gr (t ,Y)dW r (t), t > t0,

Y (t0) = (x, I ,0,0,0)T .

The S-ROCK approximation of this system is given by

dY =A
(
t ,Y

)
dt +

m∑
r=1

B
r
(
t ,Y

)
dW r (t)

with A and B piecewise constant functions (similar to the definition of α and β). Moreover,

we introduce the function

u (t , x) := E
[
φ

(
X (T)

)
|X (t) = x

]
,

which is purely based on the approximated solution. In the next lemma we show how we can

replace the function u by u.

Lemma 6.3.5. Let Ftn be the σ-algebra generated by {W (τ) | τ≤ tn}. Further, let ∆t (τ) :=∆tn

for all τ ∈ [tn , tn+1[for all n. Suppose that the assumptions of Theorem 6.3.1 hold. Replacing u

by u results in the following errors

(i) ∂i u
(
t , X (t)

)
= ∂i u

(
t , X (t)

)
+

∫ T

t
O (∆t (τ))dτ (the same holds for the derivatives up to order

four);

(ii)
E
[(

fk

(
t , X (t)

)
−αk

(
t , X

))(
∂k u

(
t , X (t)

)
−∂k u

(
t , X (t)

))]
= ∆tn

∫ T
t O (∆t (τ))dτ;

(iii)

E
[

1
2

(
g r

k

(
t , X (t)

)
g r
`

(
t , X (t)

)
−βr

k

(
t , X

)
β

r
`

(
t , X

))
·
(
∂k`u

(
t , X (t)

)
−∂k`u

(
t , X (t)

))]
= ∆tn

∫ T
t O (∆t (τ))dτ.

156

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

Proof of Lemma 6.3.5. By the above (stochastic flow representation) we define

ϕi (Y) := ∂kφ(X)X ′
ki

ϕi j (Y) := ∂kφ(X)X ′′
ki j +∂knφ(X)X ′

ki X ′
n j

and similiarly ϕi j m(Y) and ϕi j mn(Y). In the following we prove the result for the derivative of

order 1, the proof for the orders 2, 3 and 4 is a natural extension. Observe that

∂i u
(
t , X (t)

)
−∂i u

(
t , X (t)

)
= E

[
ϕi (Y (T))−ϕi

(
Y (T)

)
|Y (t) = Y (t) = (x, I ,0,0,0)T

]
=

∫ T

t
E
[
Γ

(
τ,Y (τ)

)
|Ft

]
dτ

with Γ
(
τ,Y (τ)

)
:=

(
F −A

)
k
∂kν

i
(
τ,Y (τ)

)
+ 1

2

(
Gr

kGr
`
−B

r
kB

r
`

)
∂k`ν

i
(
τ,Y (τ)

)
and


−∂νi

∂t −Fk∂kν
i − 1

2Gr
kGr

`
∂k`ν

i = 0, t < T,

νi (T, ·) = ϕi ,

where we have used Lemma 6.3.3.

Let LY ω
(
τ,Y (τ)

)
:=

(
∂
∂tω+A k∂kω+ 1

2B
r
kB

r
`∂k`ω

)(
τ,Y (τ)

)
and tm ≤ τ≤ tm+1. By Itô’s lemma

one obtains

E
[
Γ

(
τ,Y (τ)

)
|Ftm

]
= E

[
Γ

(
tm ,Y (tm)

)
|Ftm

]
+∫ τ

tm
E
[
LY Γ

(
ε,Y (ε)

)
|Ftm

]
dε

≤ E
[
Γ

(
tm ,Y (tm)

)
|Ftm

]
+C∆tm ,

where we have bounded E
[
LY Γ

(
ε,Y (ε)

)
|Ftm

]
by C due to the smoothness of the coefficients

(drift and diffusion). The former term of the upperbound can be decomposed as

E
[
Γ

(
tm ,Y (tm)

)
|Ftm

]
= E

[(
F −A

)
k

(
tm ,Y (tm)

)
∂kν

i
(
tm ,Y (tm)

)
|Ftm

]
+ E

[
1
2

(
Gr

kGr
`
−B

r
kB

r
`

)(
tm ,Y (tm)

)
∂k`ν

i
(
tm ,Y (tm)

)
|Ftm

] (6.16)

with νi
(
tm ,Y (tm)

)
= E

[
ϕi (Y (T)) |Y (tm) = Y (tm)

]
. The first term is of order O (∆tm). In fact,

one can show that for the S-ROCK method (since the method converges)

A
(
tm ,Y (tm)

)
= F

(
tm ,Y (tm)

)
ω1

T ′
s (ω0)

Ts (ω0)
+O (∆tm) = F

(
tm ,Y (tm)

)
+O (∆tm) .

157

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

And thus,

E
[(

F −A
)

k

(
tm ,Y (tm)

)
∂kν

i
(
tm ,Y (tm)

)
|Ftm

]
= E

[
O (∆tm)∂kν

i
(
tm ,Y (tm)

)
|Ftm

]
= O (∆tm)E

[
∂kν

i
(
tm ,Y (tm)

)
|Ftm

]
= O (∆tm) ,

where we used the smoothness of the drift and diffusion coefficients. The second term of

(6.16) is also of order O (∆tm). In fact, for the S-ROCK method we have

B
r
k

(
tn ,Y (tn)

)
=Gr

k (Ks−1) =Gr
k

(
Y (tn)+O (∆tn)

)
since

Ks−1 = Y (tn)+∆tnω1
T ′

s−1 (ω0)

Ts−1 (ω0)
F

(
tn ,Y (tn)

)
+O

(
∆t 2

n

)= Y (tn)+O (∆tn) .

By Taylor expansion we get

B
r
k

(
tn ,Y (tn)

)
=Gr

k

(
Y (tn)+O (∆tn)

)
=Gr

k

(
Y (tn)

)
+O (∆tn)

and hence,

Gr
k

(
tm ,Y (tm)

)
Gr
`

(
tm ,Y (tm)

)
−B

r
k

(
tm ,Y (tm)

)
B

r
`

(
tm ,Y (tm)

)
= Gr

k

(
tm ,Y (tm)

)
Gr
`

(
tm ,Y (tm)

)
−

(
Gr

k

(
Y (tm)

)
+O (∆tm)

)(
Gr
`

(
Y (tm)

)
+O (∆tm)

)
= Gr

k

(
tm ,Y (tm)

)
Gr
`

(
tm ,Y (tm)

)
−Gr

k

(
tm ,Y (tm)

)
Gr
`

(
tm ,Y (tm)

)
+O (∆tm)

= O (∆tm) .

It follows that

E
[

1
2

(
Gr

kGr
`
−B

r
kB

r
`

)(
tm ,Y (tm)

)
∂k`ν

i
(
tm ,Y (tm)

)
|Ftm

]
= E

[
O (∆tm)∂k`ν

i
(
tm ,Y (tm)

)
|Ftm

]
= O (∆tm) ,

where we used once more the smoothness of the coefficients. Therefore, we have

E
[
Γ

(
tm ,Y (tm)

)
|Ftm

]
=O (∆tm) .

This completes the proof of part (i) for derivatives of order 1.

158

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

To prove part (ii), we define

γ
(
t , X (t)

)
:= (

fk −αk
)(
∂k u −∂k u

)(
t , X (t)

)
.

For tn ≤ t ≤ tn+1, we have

E
[
γ

(
t , X (t)

)]
= E

[
γ

(
tn , X (tn)

)]
+

∫ t

tn

E
[
Lγ

(
τ, X (τ)

)]
with Lγ

(
τ, X (τ)

)
=

(
∂
∂t γ+ fk∂kγ+ 1

2 g r
k g r

`
∂k`γ

)(
τ, X (τ)

)
. Observe that

Lγ
(
τ, X (τ)

)
= γ1

(
τ, X (τ)

)
+γ2

(
τ, X (τ)

)
,

where γ1

(
τ, X (τ)

)
regroups the terms of the form

(
fk −αk

)
v with v a smooth function of(

t , X (t)
)

and γ2

(
τ, X (τ)

)
the terms of the form v

(
∂k u −∂k u

)
. By (i) we have that

E
[
γ2

]
(s) = ∫ T

s O (∆t (τ))dτ. By Itô’s formula,

E
[
γ1

]
(s) = E[

γ1 (tm)
]+∫ s

tm

E
[
Lγ1

]
(τ)dτ=O (∆tm)

since
(

fk −αk
)

(tm) =O (∆tm) as above and since E
[
Lγ1

]
(τ) is bounded. Hence,∫ t

tn

E
[
Lγ

(
τ, X (τ)

)]
dτ

=
∫ t

tn

E
[
γ1

(
τ, X (τ)

)]
dτ+

∫ t

tn

E
[
γ2

(
τ, X (τ)

)]
dτ

=
∫ t

tn

O (∆tn)dτ+
∫ t

tn

∫ T

τ
O (∆t (ε))dεdτ

= O
(
∆t 2

n

)+∫ T

tn

O (∆t (ε))dε∆tn

= ∆tn

∫ T

tn

O (∆t (ε))dε.

159

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

Furthermore, using from above
(

fk −αk
)(

tn , X (tn)
)
=O (∆tn) and the result from (i) we get

E
[
γ

(
tn , X (tn)

)]
= E

[(
fk −αk

)(
tn , X (tn)

)(
∂k u −∂k u

)(
tn , X (tn)

)]
= E

[
O (∆tn)

(
∂k u −∂k u

)(
tn , X (tn)

)]
= O (∆tn)E

[(
∂k u −∂k u

)(
tn , X (tn)

)]
= O (∆tn)E

[∫ T
tn

O (∆t (τ))dτ
]

= O (∆tn)
∫ T

tn
O (∆t (τ))dτ

= ∆tn
∫ T

tn
O (∆t (τ))dτ.

Therefore,

E
[
γ

(
t , X (t)

)]
=∆tn

∫ T

tn

O (∆t (τ))dτ,

which concludes the proof of (ii). The proof of (iii) is similar to the one of (ii), and thus, we

omit it here.

The next lemma shows how ∂i u can be represented by dual functions.

Lemma 6.3.6. Suppose the assumptions (i)-(iv) of Theorem 6.3.1 hold. Let ϕ and ϕ′ be the

solutions of the dual backward problem defined in (6.11) and (6.12). Then the following holds:

(i)

∂i u
(
tn , X (tn)

)
= E

[
ϕi (tn) |Ftn

]
,

∂i j u
(
tn , X (tn)

)
= E

[
ϕ′

i j (tn) |Ftn

]
;

(ii) for t = tn+1 or t = tn

E
[(

fi

(
t , X (t)

)
−αi

(
t , X

))
E
[
ϕi (t)|Ft

]]= E[(
fi

(
t , X (t)

)
−αi

(
t , X

))
ϕi (t)

]
;

(iii)

E
[

1
2

(
g r

i

(
t , X (t)

)
g r

j

(
t , X (t)

)
−βr

i

(
t , X

)
β

r
j

(
t , X

))
E
[
ϕ′

i j (t)|Ft

]]
= E

[
1
2

(
g r

i

(
t , X (t)

)
g r

j

(
t , X (t)

)
−βr

i

(
t , X

)
β

r
j

(
t , X

))
ϕ′

i j (t)
]

.

Proof of Lemma 6.3.6. Since the S-ROCK method is a Runge-Kutta scheme, we can exchange

derivation and the application of the numerical method. Hence, we have

∂i u
(
t , X (t)

)
= ∂iE

[
φ

(
X (T)

)
|X (t) = X (t)

]
= E

[
∂ jφ

(
X (T)

)
X

′
j i (T, t) |Ft

]
,

160

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

where X
′
j i represents the S-ROCK approximation of X ′ with initial condition X j i (t , t) = δ j i .

Then one can proceed as in the proof of Lemma 2.5 in [96] to show that

ϕk (tm) = ∂iφ
(

X (T)
)

X
′
i k (T, tm) .

Therefore,

∂i u
(
tn , X (tn)

)
= E

[
∂ jφ

(
X (T)

)
X

′
j i (T, tn) |Ftn

]
= E[

ϕi (tn) |Ftn

]
,

which proves part one of (i). Observe that

∂i j u
(
tn , X (tn)

)
= ∂ j

(
∂i u

(
tn , X (tn)

))
= ∂ jE

[
ϕi (tn) |Ftn

]= E
∂x j (tn)ϕ

′
i (tn)︸ ︷︷ ︸

=ϕ′
i j (tn)

|Ftn

 .

As in Lemma 2.5 of [96] one can show that ϕ′
i j satisfies the dual backward problem defined in

(6.12), and thus, we obtain

∂i j u
(
tn , X (tn)

)
= E

[
ϕ′

i j (tn) |Ftn

]
,

which completes the proof of (i). To prove (ii) and (iii) respectively, one uses that the corre-

sponding functions are measurable and the properties of conditional expectations.

We have now everything that is required to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Suppose the assumptions (i)-(iv) of Theorem 6.3.1 hold. For the time

discretization error we have E
[
φ (X (T))−φ

(
X (T)

)]
is equal to

∫ T

0
E
[(

fk

(
t , X (t)

)
−αk

(
t , X

))
∂k u

(
t , X (t)

)]
dt

+
m∑

r=1

1

2

∫ T

0
E
[(

g r
k

(
t , X (t)

)
g r
`

(
t , X (t)

)
−βr

k

(
t , X

)
β

r
`

(
t , X

))
∂k`u

(
t , X (t)

)]
dt ,

where we have used Lemma 6.3.3. Taking into account the addition property of integrals we

obtain

N−1∑
n=0

∫ tn+1

tn

E
[(

fk

(
t , X (t)

)
−αk

(
t , X

))
∂k u

(
t , X (t)

)]
dt

+
N−1∑
n=0

m∑
r=1

1

2

∫ tn+1

tn

E
[(

g r
k

(
t , X (t)

)
g r
`

(
t , X (t)

)
−βr

k

(
t , X

)
β

r
`

(
t , X

))
∂k`u

(
t , X (t)

)]
dt .

161

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

By Lemma 6.3.4 it follows that this corresponds to

N−1∑
n=0

∆tn

2
E
[(

fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
∂k u

(
tn+1, X (tn+1

)]
+∆tn

2 E
[(

fk

(
tn , X (tn)

)
−αk

(
tn , X

))
∂k u

(
tn , X (tn

)]
+

N−1∑
n=0

m∑
r=1

∆tn

2
E

[
1

2

((
g r

k g r
`

)(
tn+1, X (tn+1)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
∂k`u

(
tn+1, X (tn+1)

)]
+∆tn

2 E
[

1
2

((
g r

k g r
`

)(
tn , X (tn)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
∂k`u

(
tn , X (tn)

)]
+O

(
∆t 3

n

)
.

Next, applying Lemma 6.3.5 yields

N−1∑
n=0

∆tn

2

(
E
[(

fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
∂k u

(
tn+1, X (tn+1

)]
+∆tn

∫ T
tn+1

O (∆t (τ))dτ
)

+∆tn
2

(
E
[(

fk

(
tn , X (tn)

)
−αk

(
tn , X

))
∂k u

(
tn , X (tn

)]
+∆tn−1

∫ T
tn

O (∆t (τ))dτ
)

+
N−1∑
n=0

m∑
r=1

∆tn

2

(
E

[
1

2

((
g r

k g r
`

)(
tn+1, X (tn+1)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
∂k`u

(
tn+1, X (tn+1)

)]
+∆tn

∫ T
tn+1

O (∆t (τ))dτ
)

+∆tn
2

(
E
[

1
2

((
g r

k g r
`

)(
tn , X (tn)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
∂k`u

(
tn , X (tn)

)]
+∆tn−1

∫ T
tn

O (∆t (τ))dτ
)

+O
(
∆t 3

n

)
.

Finally, considering Lemma 6.3.6 we get

E
[
φ (X (T))−φ

(
X (T)

)]
=

N−1∑
n=0

∆tn

2
E
[(

fk

(
tn+1, X (tn+1)

)
−αk

(
tn , X

))
ϕk (tn+1)

]
+ ∆t 2

n

2

∫ T

tn+1

O (∆t (τ))dτ

+∆tn
2 E

[(
fk

(
tn , X (tn)

)
−αk

(
tn , X

))
ϕk (tn)

]
+ ∆tn−1∆tn

2

∫ T
tn

O (∆t (τ))dτ+O
(
∆t 3

n

)
+

N−1∑
n=0

m∑
r=1

1

2

[
∆tn

2
E
[((

g r
k g r

`

)(
tn+1, X (tn+1)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
ϕ′

k` (tn+1)
]

+∆t 2
n

2

∫
t T

n+1
O (∆t (τ))dτ

+∆tn
2 E

[((
g r

k g r
`

)(
tn , X (tn)

)
−

(
β

r
kβ

r
`

)(
tn , X

))
ϕ′

k` (tn)
]

+ ∆tn−1∆tn
2

∫ T
tn

O (∆t (τ))dτ
]
+O

(
∆t 3

n

)
.

162

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

By approximating the expectations by a sample average one obtains the result of the theorem.

We use now the results form this section to define in the next section an adaptive algorithm.

6.3.2 Adaptive Algorithm

In this section we describe an algorithm to approximate E , given by (6.7), by Ê , defined by

(6.8), using the S-ROCK method with variable time stepping. The aim is to generate a suitable

time grid and to pick the right number of simulations M such that the error E − Ê is bounded

by the given tolerance TOL. The algorithm is partly based on [96], but we extend it to account

for the choice of the stage numbers of the S-ROCK method.

Main Routine

Suppose an initial number of simulations M 0
T , a time grid τ0 of the interval [0,T] and some

tolerance TOL > 0 are given at the start of the algorithm. Furthermore suppose that the

tolerance is split into TOLT and TOLS such that TOLT +TOLS = TOL. The aim is to achieve

errT ≤ TOLT as well as errS ≤ TOLS . Then (6.9) implies that E − Ê ≤ TOL.

First an adaptive time grid is generated for the interval [0,T]. Observe that usually the expecta-

tions in the time discretization error errT cannot be computed explicitly. Using the expression

of the computable leading term derived in Section 6.3.1 we can define some kind of error

density ρ, which measures the time discretization error over [0,T]. This density is a piecewise

constant function with ρ(t) = ρn for t ∈ [tn , tn+1[for n = 0,1, . . . , N −1. The time disretization

error can further be approximated by

|errT | =
∣∣∣E[

φ (X (T))
]−E[

φ(X N)
]∣∣∣

≈
∣∣∣∣∣E

[
N−1∑
n=0

(∆tn)2ρn

]∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣E

[
N−1∑
n=0

(∆tn)2ρn

]∣∣∣∣∣−A

(
MT ,

N−1∑
n=0

(∆tn)2ρn

)∣∣∣∣∣
+

∣∣∣∣∣A
(

MT ,
N−1∑
n=0

(∆tn)2ρn

)∣∣∣∣∣
=: êrrT S + êrrT T

(6.17)

with A (M ,Y) representing the sample average over M independent identically distributed

samples of Y . The former term in the last line of (6.17), êrrT S , can further be approximated

using the so-called Berry-Esseen theorem and approximating the standard deviation by the

163

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

sample standard deviation S (M ,Y):

êrrT S =
∣∣∣∣∣
∣∣∣∣∣E

[
N−1∑
n=0

(∆tn)2ρn

]∣∣∣∣∣−A

(
MT ,

N−1∑
n=0

(∆tn)2ρn

)∣∣∣∣∣≤ c0

S

(
MT ,

N−1∑
n=0

(∆tn)2ρn

)
p

MT

with c0 ≥ 1.65 defining the confidence interval.

Splitting TOLT = TOLT S+TOLT T , at the start of the loop we set êrr0
T S and êrr0

T T to, for instance,

êrr0
T S = 2TOLT S and êrr0

T T = 2TOLT T , respectively. Moreover, taking into account the stiffness

of the problem and the initial time grid we define the number of stages of the S-ROCK needed at

each time step. Then we iterate as long as êrri
T S+êrri

T T > TOLT T +TOLT S . At each iteration i we

recompute the estimates êrri
T S and êrri

T T based on the time grid τi and with M i
T simulations.

If êrri
T S > TOLT S , then we increase the number of simulations M i

T according to a subroutine

(see below) which yields M i+1
T . The time grid τi remains unchanged though, i.e. τi+1 = τi .

Also the number of stages of S-ROCK for each time stepsize remains the same. Otherwise

if êrri
T T > TOLT T then we refine the time grid according to a subroutine (see below) which

yields τi+1. Since the time stepsizes change, one has also to adapt the number of stages s of

the S-ROCK method. The subroutine to update the stage number is given below. The number

of simulations M i+1
T is given by the previous number M i

T .

At the end of the first part of the algorithm, we have generated a specific time grid τI , with

I representing the final iteration. From now on the time grid and the associated number

of stages are fixed and we are left to determine the number of simulations M to control the

statistical error. The starting value of M is chosen such that M 0 = M I
T . Similar as above the

statistical error errS can be approximated by

errS = E
[
φ

(
X N

)]
− 1

M

M∑
j=1

φ
(

X
j
N

)
≈ c0

S
(
M ,φ

(
X N

))
p

M
=: êrrS .

Iterate as long as êrri
S > TOLS . At each iteration i compute M i samples of φ(XN) and then

compute Ê = A
(
M i ,φ(XN)

)
and êrri+1

S evaluating the sample standard deviation. Then

increase the number of simulations to M i+1 according to a specified subroutine (see below).

At the end of the second part of the algorithm we have computed an approximation Ê of E

such that E − Ê ≤ TOL as desired.

Subroutines

The subroutine to update M is given by

M new = min

{⌈(
c0S

0.95TOL

)2⌉
, N1 ×M

}

164

6.3. Variable Time Stepping S-ROCK Method Using A Posteriori Error Control

with S the corresponding sample standard deviation and N1 some integer used to avoid an

explosion of the number of simulations due to a bad sample. The number of simulations MT

can be updated similarly.

The subroutine to refine the time grid takes as arguments the desired tolerance (here TOLT),

the current time grid (here τi at the i th iteration) and an approximation ρ̂i of the error density

functionρi , which is obtained by taking a sample average (over M i
T samples). First we compute

an optimal (in terms of minimal number of steps to be within the given tolerance, Lagrange

multipliers approach) time grid τ∗ such that

τ∗n = TOLT√
ρ̂i

n
∑N−1

k=0 ρ̂
i
k

.

The new time grid τi+1 is obtained by dividing ∆τi
n+1 into in+1 subintervals with

in+1 = min

{
max

{⌈
∆τi

n+1

∆τ∗n+1

⌉
,1

}
, N2

}
,

where ∆τ∗n+1 = τ∗n+1 −τ∗n and N2 is some integer bound the number of increments. Observe

that if the error density is large at say τn , then τ∗n is small, and thus, the corresponding interval

is refined by adding possibly many more steps.

If the time grid changes, the number of stages of S-ROCK has to be adapted (this is also the

case for the initial time grid). The following routine shows how to update the stage numbers.

Let sn be the stage number corresponding to the time stepsize ∆τn . For the S-ROCK integrator

we consider the stability constraint (6.6), i.e.

∆τnρ
?

cSR s2
n

< 1

with ρ? a given stiffness parameter (e.g. for the test problem ρ? = ρSR) and cSR a computable

positive constant that with increasing sn quickly settles at 0.33. Hence, the stage number

corresponding to the time interval [τn ,τn+1[can be computed by

sn =
⌊√

∆τn

cSR
ρ?

⌋
+1

for each n.

Recall that for the Euler-Maruyama method the time stepsize has to satisfy

∆τnρ < 1

due to stability issues, see (6.5). Therefore, if the time stepsize ∆τn suggested by the adaptive

algorithm is too large, one is forced to use a smaller time stepsize that satisfies the stability

165

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

constraint. This drawback does not exist for S-ROCK. In fact by adjusting the stage number sn

any suggested (by the adaptive algorithm) time stepsize ∆τn can be used. Adapting the time

stepsize of the Euler-Maruyama approach to account for the stepsize restriction is beyond

the scope of this chapter and we use the S-ROCK approach, when the variable time stepping

algorithm based on Euler-Maruyama cannot be applied.

6.4 Numerical Experiments

In this section we carry out two numerical experiments. We show first that the adaptive

algorithm of Section 6.3.2, that uses S-ROCK as numerical integrator, works well for a two-

dimensional stochastic differential equation that is not stiff. Then we consider again a two-

dimensional SDE but this time the stiffness of the stochastic problem depends on one of the

parameters of the model. Numerical experiments show that in a scenario with stiffness the

Euler-Maruyama approach cannot be used, whereas the S-ROCK approach yields an adaptive

time grid by adjusting the number of stages to the stiffness of the problem.

6.4.1 Nonstiff Stochastic Differential Equation

The first example that we consider here is a two-dimensional nonstiff stochastic differential

equation defined by the SDE

d

 X1(t)

X2(t)

 =
 −X2(t)

X1(t)

dt +
 0

sin(X1(t)+X2(t))p
1+t

dW 1(t)

+
 cos(X1(t)+X2(t))p

1+t

0

dW 2(t), 0 < t ≤ T,

(6.18)

with initial condition (X1(0), X2(0)) = (1,1) and
(
W 1(t)

)
t∈[0,T] and

(
W 2(t)

)
t∈[0,T] two inde-

pendent one-dimensional standard Brownian motions. Moreover, as functional we consider

φ (X (t)) = X1(t)2+X2(t)2. It can be shown that the exact solution of E
[
φ (X (T))

]= 2+log(1+T).

This example was also used in [96] and [97]. In [96] it has been shown that the algorithm for

Euler-Maruyama works well for this example. Here, we use this stochastic problem to illustrate

that the variable time stepping algorithm that uses S-ROCK as numerical integrator can be

applied too. To give us an idea how the solutions to (6.18) look like, Figure 6.2 shows a sample

path of the two-dimensional SDE using the S-ROCK method with s = 3 stages and a uniform

time grid with time stepsize 0.001.

In the following we use the parameters T = 1, M 0
T = 100, TOL = 0.02, TOLT T = 2/9TOL,

TOLT S = 1/9TOL, TOLS = 2/3TOL, c0 = 1.96, N1 = 50 and N2 = 3. Furthermore, the initial

time grid that we consider is a uniform one with time stepsize 0.1.

Table 6.1 shows the results of the algorithm described in Section 6.3.2 applied to the stochastic

problem (6.18) using the S-ROCK integrator with s = 3 stages. One observers that first the

166

6.4. Numerical Experiments

t
0 0.2 0.4 0.6 0.8 1

X
(t

)

-0.5

0

0.5

1

1.5

2

2.5
Illustration of a sample path

X
1
(t)

X
2
(t)

Figure 6.2: Illustration of a sample path of (6.18) using S-ROCK with s = 3 stages and a uniform
time grid with 1000 steps.

Table 6.1: Results of the algorithm for variable time stepping using S-ROCK with s = 3 stages to
solve (6.18).

iteration N i M i
T êrri

T T êrri
T S

0 10 100 0.0089 0.0044

1 10 5000 0.0568 0.0323

2 10 28922 0.0529 0.0051

3 30 28922 0.0522 0.0021

4 79 28922 0.0170 0.0022

5 137 28922 0.0056 0.0008

iteration 0 1 2

M i 28922 28922 100932

êrri
S 0.0267 0.0237 0.0126

number of simulations M i
T increases, which leads to a reduced êrri

T S . Then once êrri
T S falls

below TOLT S , the time grid is adjusted and the number of time steps N i increases, which

yields that êrri
T T decreases and eventually is smaller than TOLT T . Once the time grid is fixed,

the number of simulations used for the Monte Carlo approach is determined. The error of the

approximation of E
[
φ (X (T))

]
we obtain by the adaptive algorithm is E − Ê = 0.0164, and thus,

smaller than the desired tolerance of TOL = 0.02. Hence, the algorithm using S-ROCK with

167

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

s = 3 works well for this example. Various other simulations have been carried out for larger

values of s and each time the algorithm delivered successfully an adaptive time grid.

6.4.2 Stiff Stochastic Differential Equation

The next example that we consider here is one derived from the one-dimensional population

dynamic model (see [84]). It is characterized by the SDE

d

 X1(t)

X2(t)

 =
 α(X2(t)−1)−µ1X1(t)(1−X1(t))

−µ2X2(t)(1−X2(t))

dt

+
 −σ1X1(t)(1−X1(t))

−σ2X2(t)(1−X2(t))

dW 1(t)

+
 −σ2(1−X1(t))

0

dW 2(t), 0 ≤ t ≤ T, X1(0)

X2(0)

 =
 0.95

0.95

 ,

(6.19)

where (W1(t))t∈[0,T] and (W2(t))t∈[0,T] are two independent one-dimensional standard Brow-

nian motions. As functional we consider again φ (X (t)) = X1(t)2 +X2(t)2. The parameters of

(6.19) that we take into account here are T = 1, α = 2, µ2 = −1, σ2 = 0.5. Depending on the

values of
(
µ1,σ1

)
, the SDE (6.19) is stiff (see also Section 3.5.2). Hence, we vary in the following

the value of µ1 while considering σ1 =
√∣∣µ1

∣∣. Note that the choice of the sets of parameters

that we pick here
(
µ1,σ1

)
and

(
µ2,σ2

)
lie both in the true stability domain of the test problem.

For the adaptive algorithm we use M 0
T = 100, TOL = 0.02, TOLT T = 2/9TOL, TOLT S = 1/9TOL,

TOLS = 2/3TOL, c0 = 1.96, N1 = 50, N2 = 3 and an initial time grid with uniform time stepsize

0.2.

Table 6.2: Results of the algorithm for the variable time stepping Euler-Maruyama method for
the stochastic problem (6.19) with µ1 =−1.

iteration N i M i
T êrri

T T êrri
T S

0 5 100 0.0089 0.0044

1 5 346 0.0004 0.0039

iteration 0 1 2

M i 346 346 424

êrri
S 0.0267 0.0140 0.0133

168

6.4. Numerical Experiments

Choosing µ1 =−1 and using the adaptive algorithm of Section 6.3.2 with the Euler-Maruyama

method as numerical integrator, we get the results from Table 6.2. The time grid is not refined,

and thus, the final time grid coincides with the initial one. However, if we increase the stiffness

by taking for instance µ1 = −10 the algorithm based on the Euler-Maruyama method does

not converge in this setting due to stability issues. One would have to adjust the initial time

stepsize according to the stability constraint of Euler-Maruyama (6.5). The same has been

tested for µ1 =−100 or µ1 =−1000. In both cases the algorithm did not yield a result.

We apply now the variable time stepping algorithm of Section 6.3.2 with the S-ROCK method

as numerical integrator. Table 6.3 shows the result for µ1 =−1. The algorithm works and the

Table 6.3: Results of the algorithm for the variable time stepping S-ROCK method for the
stochastic problem (6.19) with µ1 =−1.

iteration N i M i
T êrri

T T êrri
T S

0 5 100 0.0089 0.0044

1 5 259 0.0095 0.0034

2 11 259 0.0082 0.0020

3 11 259 0.0040 0.0009

iteration 0 1 2

M i 259 259 306

êrri
S 0.0267 0.0138 0.0123

∆t I
n 0.0667 0.0667 0.0667 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

s I
n 3 3 3 3 3 3 3 3 3 3 3

final time grid that one obtains is also illustrated in the table (the time stepsizes of the final

grid are represented by ∆t I
n and the corresponding stage numbers by s I

n). Since the stochastic

problem is not stiff, a stage number of s = 3 is sufficient. We increase now the stiffness in the

next step.

In Table 6.4 the results for µ1 =−10 are illustrated. Recall that the Euler-Maruyama approach

did not converge for this set of parameters, but in the table we can see, that the S-ROCK

approach works perfectly well. Again the final time grid is shown with some refinement at the

start of the interval and at the end. Since the stiffness is not that large, the stage number is still

s = 3 for every time step.

Table 6.5 presents the results we obtain using µ1 =−100. The algorithm yields a refined time

grid with variable time stepsize. In addition, due to the stiffness of the problem the stage

numbers are adjusted. For the three first steps, the stage number is equal to s = 5. For the

remaining steps the stage number is equal to s = 6. Note that the stage numbers corresponding

169

Chapter 6. S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential
Equations

Table 6.4: Results of the algorithm for the variable time stepping S-ROCK method for the
stochastic problem (6.19) with µ1 =−10.

iteration N i M i
T êrri

T T êrri
T S

0 5 100 0.0089 0.0044

1 5 329 0.0044 0.0038

2 7 329 0.0051 0.0019

3 7 329 0.0037 0.0014

iteration 0 1

M i 329 329

êrri
S 0.0267 0.0033

∆t I
n 0.1 0.1 0.2 0.2 0.2 0.1 0.1

s I
n 3 3 3 3 3 3 3

Table 6.5: Results of the algorithm for the variable time stepping S-ROCK method for the
stochastic problem (6.19) with µ1 =−100.

iteration N i M i
T êrri

T T êrri
T S

0 5 100 0.0089 0.0044

1 5 1700 0.0005 0.0044

2 11 1700 0.0078 0.0020

3 11 1700 0.0019 0.0018

iteration 0 1

M i 1700 1700

êrri
S 0.0267 0.0010

∆t I
n 0.0667 0.0667 0.0667 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

s I
n 5 5 5 6 6 6 6 6 6 6 6

to the initial time grid were all equal to s = 8.

In Table 6.6 we have further increased the stiffness of the problem by taking µ1 = −1000.

The resulting time grid is characterized by variable time stepsizes. The corresponding stage

numbers are also adjusted. Note that the initial stage number was s = 25.

To sum up, the variable time stepping S-ROCK algorithm can account for the stiffness by

170

6.5. Conclusion

Table 6.6: Results of the algorithm for the variable time stepping S-ROCK method for the
stochastic problem (6.19) with µ1 =−1000.

iteration N i M i
T êrri

T T êrri
T S

0 5 100 0.0089 0.0044

1 5 5000 0.0235 0.0271

2 5 17172 0.0046 0.0039

3 10 17172 0.0053 0.0021

4 10 17172 0.0012 0.0018

iteration 0 1

M i 17172 17172

êrri
S 0.0267 0.0003

∆t I
n 0.0667 0.0667 0.0667 0.2 0.1 0.1 0.1 0.1 0.2

s I
n 15 15 15 25 18 18 18 18 25

adjusting the time grid and the corresponding stage numbers simultaneously, while the same

approach using Euler-Maruyama as numerical integrator fails for stiff scenarios.

6.5 Conclusion

We have presented a variable time stepping algorithm for the S-ROCK method that can be

used to tackle stiff stochastic differential equations. Analytically a leading term of the time

discretization error has been derived. In addition, we have suggested here an algorithm that

can be used to compute a time grid with variable time stepsizes and we have shown how

to choose the number of stages of the S-ROCK method accordingly to avoid problems that

can appear in stiff scenarios. Two different numerical experiments have been carried out, a

nonstiff one and a stiff one. In both cases the adaptive S-ROCK approach works well, whereas

the adaptive Euler-Maruyama approach struggles in the latter one.

171

7 Conclusion and Outlook

In this chapter we recapitulate the main findings of this thesis and we give a brief outlook what

topics could be part of future research.

7.1 Conclusion

In this thesis, we have first recalled in Chapter 2 some definitions and results from stochastic

calculus and numerical analysis. We have presented diffusion processes and we have also de-

fined and motivated the use of jump-diffusion processes. Furthermore, numerical methods for

stochastic differential equations have been discussed and concepts such as convergence and

stability have been introduced. In Chapter 2 we have also presented some Monte Carlo tech-

niques, in particular the standard Monte Carlo method, some variance reduction techniques

and the multilevel Monte Carlo method.

Next, in Chapter 3 we have introduced a stabilized multilevel Monte Carlo method for stiff

stochastic differential equations. We have shown that for the standard MLMC method that

uses Euler-Maruyama, stiffness can prevent from exploiting all levels. The stabilized MLMC

method that we have presented uses S-ROCK as numerical integrator. By adjusting the stage

number of the S-ROCK method, this approach can use every level, and thus, for stiff problems

the stabilized MLMC method performs better than the standard MLMC method. Another

finding of this chapter is that even for nonstiff problems, that have a significant noise term, the

stabilized MLMC method leads to a better performance. Using a higher weak order scheme

on the finest time grid, we have also given an improved stabilized multilevel Monte Carlo

method that can be used to further speeding up the simulation procedure. Various numerical

experiments have been carried out to illustrate the performance of the stabilized MLMC

method. We have also numerically shown that the improved stabilized MLMC method yields

better results.

In Chapter 4 we have presented an extension of the S-ROCK methods to stochastic processes

driven by jump-diffusions. It has been proven that the two numerical methods that we have

173

Chapter 7. Conclusion and Outlook

considered in this chapter are both of strong order of convergence 1/2. Furthermore, the

mean square stability domains have been characterized and plots of the stability regions have

illustrated the theoretical findings. In the numerical part we have shown for two models from

finance, the Merton and the Kou model, that the strong order of convergence 1/2 holds. In

addition, we have carried out numerical experiments on stiff problems with jumps to show

that the presented stabilized numerical integrators can handle stiffness.

Chapter 5 provides an extension of the multilevel Monte Carlo method to jump-diffusion pro-

cesses. Using either a regular or a jump-adapted time grid, we have shown how the hierarchical

sampling strategy of multilevel Monte Carlo can be combined with the inclusion of jumps to

yield a technique that performs better than the standard Monte Carlo approach. Moreover,

we have stated and proven a complexity theorem that specifies how much computational

work is necessary for the newly introduced method to achieve a certain mean square accuracy.

Various numerical experiments have been carried out that corroborate the theoretical results.

In the last part of Chapter 5 we have combined the results of previous parts of the chapter

with the ones from Chapter 4 to define a stabilized multilevel Monte Carlo method that can

account for jumps.

Finally, in Chapter 6 we have proposed a variable time stepping algorithm to approximate

weak solutions of stiff stochastic differential equations using the S-ROCK method. We have

derived a computable leading term of the time discretization error for the stabilized algorithm.

In addition, we have described an adaptive algorithm that specifies how to refine the time

grid and to choose the stage numbers of the S-ROCK method simultaneously. Numerical

experiments have shown that the algorithm based on Euler-Maruyama cannot be applied for

stiff problems, unless one takes into account the stability constraint that leads to a reduction

of the time stepsize. However, the stabilized approach based on S-ROCK methods that we

have provided yields the expected numerical results even in presence of stiffness.

7.2 Outlook

In this section we briefly discuss how the existing research of this thesis could further be

expanded.

One topic that future work could address is the rigorous study of the weak convergence of

the newly introduced S-ROCK methods for jump-diffusions. The weak order of convergence

of S-ROCK methods has been proven for stochastic problems based on diffusions in [12, 15].

One would have to take into account the additional jump term to establish a weak order of

convergence result for the S-ROCK methods for stochastic differential equations driven by

jump-diffusion processes.

Another part of research could be the numerical study of the stabilized multilevel Monte Carlo

method for jump-diffusion that has been presented in this thesis. By considering various

numerical experiments, in particular stiff problems, one could try to corroborate numerically

174

7.2. Outlook

the theoretical findings.

Future research could also try to combine some results of this thesis to provide a variable time

stepping algorithm to approximate the weak solutions of stochastic differential equations

with multiple scales driven by jump-diffusions processes. One could try to achieve this by

considering the S-ROCK methods for jump-diffusions and by adapting the adaptive algorithm

proposed in this thesis.

Finally, it could be very interesting to investigate how the efficient stabilized numerical tech-

niques presented in this thesis can be used for applications in the financial sector, in natural

sciences or in engineering to solve current problems.

175

Bibliography

[1] A. Abdulle. On roots and error constants of optimal stability polynomials. BIT Numerical

Mathematics, 40(1):177–182, 2000.

[2] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci.

Comput., 23(6):2041–2054, 2002.

[3] A. Abdulle, A. Barth, and C. Schwab. Multilevel Monte Carlo methods for stochastic

elliptic multiscale pdes. SIAM Multiscale Model. Simul., 11(4):1033–1070, 2013.

[4] A. Abdulle and A. Blumenthal. Stabilized multilevel Monte Carlo method for stiff stochas-

tic differential equations. J. Comput. Phys., 251:445–460, 2013.

[5] A. Abdulle and A. Blumenthal. Improved Stabilized Multilevel Monte Carlo Method for

Stiff Stochastic Differential Equations. Lect. Notes Comput. Sci. Eng., 103:537–545, 2015.

[6] A. Abdulle and A. Blumenthal. S-ROCK Methods for Stiff Stochastic Differential Equa-

tions driven by Jump-Diffusion Processes. Preprint, 2015.

[7] A. Abdulle and A. Blumenthal. Variable Time Stepping S-ROCK Methods for Weak

Solutions of Stiff Stochastic Differential Equations. Preprint, 2015.

[8] A. Abdulle, A. Blumenthal, and E. Buckwar. The multilevel monte carlo method for

stochastic differential equations driven by jump-diffusion processes. MATHICSE Tech-

nical Report, 2011.

[9] A. Abdulle and S. Cirilli. Stabilized methods for stiff stochastic systems. C. R. Math. Acad.

Sci. Paris, 345(10):593–598, 2007.

[10] A. Abdulle and S. Cirilli. S-ROCK: Chebyshev methods for stiff stochastic differential

equations. SIAM J. Sci. Comput., 30(2):997–1014, 2008.

[11] A. Abdulle, W. E, and T. Li. Effectiveness of implicit methods for stiff stochastic differen-

tial equations. Commun. Comput. Phys., 3(2):295–307, 2008.

[12] A. Abdulle and T. Li. S-ROCK methods for stiff Ito SDEs. Commun. Math. Sci., 6(4):845–

868, 2008.

177

Bibliography

[13] A. Abdulle and A. Medovikov. Second order chebyshev methods based on orthogonal

polynomials. Numer. Math., 90(1):1–18, 2001.

[14] A. Abdulle and G. Vilmart. PIROCK: a swiss-knife partitioned implicit-explicit orthogonal

Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with

or without noise. J. Comput. Phys., 242:869–888, 2013.

[15] A. Abdulle, G. Vilmart, and K. Zygalakis. Weak second order explicit stabilized methods

for stiff stochastic differential equations. SIAM J. Sci. Comput., 35(4):A1792–A1814, 2013.

[16] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University Press,

Cambridge, 2004.

[17] L. Arnold. Stochastic differential equations: theory and applications. John Wiley and

Sons, New york, 1974.

[18] Y. Aït-Sahalia. Telling from discrete data whether the underlying continuous-time model

is a diffusion. Journal of Finance, 57:2075–2112, 2002.

[19] L. Bachelier. Théorie de la spéculation. Annales scientifiques de l’École normale

supérieure, 17:21–86, 1900.

[20] A. Barth and A. Lang. Multilevel Monte Carlo method with applications to stochastic

partial differential equations. Int. Journal of Computer Mathematics, 89(18):2479–2498,

2012.

[21] A. Belqadhi. Runge-Kutta-Chebyshev methods for jump-diffusion stiff stochastic differ-

ential equations. Master’s thesis, EPFL, 2010.

[22] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of

Political Economy, 81:637–654, 1973.

[23] A. Blumenthal. The multilevel Monte Carlo method for SDEs driven by jump-diffusions

with application in finance. Master’s thesis, EPFL, 2011.

[24] R. Brown. A brief Account of Microscopical Observations made in the Months of June,

July, and August, 1827, on the Particles contained in the Pollen of Plants; and on the

general Existence of active Molecules in Organic and Inorganic Bodies. Philosophical

Magazine, 4:161–173, 1828.

[25] N. Bruti-Liberati and E. Platen. Approximation of Jump Diffusions in Finance and

Economics. Computational Economics, 29:283–312, 2007.

[26] N. Bruti-Liberati and E. Platen. Numerical Solution of Stochastic Differential Equations

with Jumps in Finance. Springer, Sydney, 2010.

[27] E. Buckwar and C. Kelly. Towards a systematic linear stability analysis of numerical

methods for systems of stochastic differential equations. SIAM Journal on Numerical

Analysis, 48(1):298–321, 2010.

178

Bibliography

[28] E. Buckwar and M. G. Riedler. Runge-Kutta methods for jump-diffusion differential

equations. Journal of Computational and Applied Mathematics, 236(6):1155–1182, 2011.

[29] P. Burrage and K. Burrage. A variable stepsize implementation for stochastic differential

equations. SIAM J. Sci. Comput., 24(3):848–864, 2002.

[30] Y. Cao, D. Gillespie, and L. Petzold. Adaptive explicit-implicit tau-leaping method with

automatic tau selection. J. Chem. Phys., 126(224101):1–9, 2007.

[31] G. M. Clarke and D. Cooke. A basic course in statistics. Edward Arnold, London, third

edition, 1992.

[32] R. Cont and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC,

London, 2004.

[33] D. Küpper, J. Lehn and A. Rößler. A step size control algorithm for the weak approxima-

tion of stochastic differential equations. Numer Algor, 44:335–346, 2007.

[34] K. Debrabant and A. Rößler. On the Acceleration of the Multi–Level Monte Carlo Method.

J. Appl. Probab., 52(2), 2015.

[35] S. Dereich. Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian

correction. Ann. Appl. Probab., 21(1):283–311, 2011.

[36] D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, Princeton, 2001.

[37] T. Dumont, M. Duarte, S. Descombes, M.-A. Dronne, M. Massot, and V. Louvet. Sim-

ulation of human ischemic stroke in realistic 3D geometry. Commun. Nonlinear. Sci.

Numer. Simulat., 18(6):1539–1557, 2013.

[38] A. Dzougoutov, K.-S. Moon, von Schwerin E., A. Szepessy, and R. Tempone. Adaptive

Monte Carlo algorithms for stopped diffusion. Lect., 44:59–88, 2005.

[39] K. D. Elworthy, A. Truman, H. Z. Zhao, and J. G. Gaines. Approximate travelling waves

for generalized KPP equations and classical mechanics. Proc. Roy. Soc. London Ser. A,

446(1928):529–554, 1994.

[40] A. Ern and M. Vohralik. Adaptive inexact newton methods with a posteriori stopping

criteria for nonlinear diffusion pde. to appear in SIAM J. Sci. Comput., 2013.

[41] M. Evans and T. Swartz. Approximating Integrals via Monte Carlo and Deterministic

Methods. Oxford University Press, Oxford, 2000.

[42] V. Fabian and J. Hannan. Introduction to Probability and Mathematical Statistics. John

Wiley & Sons, Michigan, 1985.

[43] J. G. Gaines and T. J. Lyons. Variable step size control in the numerical solution of

stochastic differential equations. SIAM J. Appl. Math., 57:1455–1484, 1997.

179

Bibliography

[44] A. Gardoń. The order of approximations for solutions of Itô-type stochastic differential

equations with jumps. Stochastic Anal. Appl., 22(3):679–699, 2004.

[45] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer, New York,

2003.

[46] M. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617,

2008.

[47] M. Giles and C. Reisinger. Stochastic finite differences and multilevel Monte Carlo for a

class of SPDEs in finance. SIAM Journal of Financial Mathematics, 3(1):572–592, 2012.

[48] D. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58,

2007.

[49] P. Glasserman. Monte Carlo methods in financial engineering, volume 53 of Applications

of Mathematics (New York). Springer-Verlag, New York, 2004.

[50] P. Glasserman and N. Merener. Numerical solution of jump-diffusion LIBOR market

models. Finance Stoch., 7(1):1–27, 2003.

[51] P. W. Glynn and W. Whitt. The Asymptotic Efficiency of Simulation Estimators. Opera-

tions Research, 40(3):505–520, 1992.

[52] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff

Problems, volume 8. Springer Verlag Series in Comput. Math., Berlin, 1993.

[53] E. Hairer and G. Wanner. Solving ordinary differential equations II. Stiff and differential-

algebraic problems. Springer-Verlag, Berlin and Heidelberg, 1996.

[54] F. B. Hanson. Applied Stochastic Processes and Control for Jump-Diffusions: Modeling,

Analysis and Computation. Society for Industrial and Applied Mathematics, Chicago,

2007.

[55] R. Hasminskii. Stochastic stability of differential equations. Sijthoff and Noordhoff, The

Netherlands, 1980.

[56] S. Heinrich. Monte Carlo complexity of global solution of integral equations. Journal of

Complexity, 14:151–175, 1998.

[57] D. Higham. An algorithmic introduction to numerical simulation of stochastic differen-

tial equations. SIAM Review, 43(3):525–546, 2001.

[58] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic differential

equations with jumps. Numerische Mathematik, 101:101–119, 2005.

[59] D. J. Higham and P. E. Kloeden. Convergence and stability of implicit methods for

jump-diffusion systems. Int. J. Numer. Anal. Model., 3(2):125–140, 2006.

180

Bibliography

[60] D. J. Higham and X. Mao. Nonnormality and stochastic differential equations. BIT,

46(3):525–532, 2006.

[61] J. Hull. Options, futures, and other derivatives. Pearson Prentice Hall, New Jersey, 2009.

[62] M. Hutzenthaler, A. Jentzen, and P. Kloeden. Divergence of the multilevel Monte Carlo

method. ArXiv preprint, 1105.0226, 2011.

[63] S. Ilie and A. Teslya. An adaptive stepsize method for the chemical langevin equation. J.

Chem. Phys., 136(184101):1–14, 2012.

[64] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Markets.

Springer, London, 2009.

[65] A. Kebaier. Statistical Romberg Extrapolation: A new variance reduction method and

applications to option pricing. Annals of Applied Probability, 15(4):2681–2705, 2005.

[66] P. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Springer-

Verlag, Berlin and New York, 1992.

[67] S. G. Kou. A Jump-Diffusion model for Option Pricing. Management Science, 48:1086–

1101, 2002.

[68] S. G. Kou and H. Wang. Option Pricing Under a Double Exponential Jump Diffusion

Model. Management Science, 50:1178–1192, 2004.

[69] A. R. Krommer and C. W. Ueberhuber. Computational Integration. Society for Industrial

and Applied Mathematics, Philadelphia, 1998.

[70] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance.

ellipses, Paris, 1997.

[71] X. Q. Liu and C. W. Li. Weak approximation and extrapolations of stochastic differential

equations with jumps. SIAM J. Numer. Anal., 37(6):1747–1767, 2000.

[72] G. J. Lord, C. E. Powell, and T. Shardlow. An Introduction to Computational Stochastic

PDEs. Cambridge University Press, Cambridge, 2014.

[73] Y. Maghsoodi. Mean square efficient numerical solution of jump-diffusion stochastic

differential equations. Sankhyā Ser. A, 58(1):25–47, 1996.

[74] X. Mao. Stability of stochastic differential equations with respect to semimartingales.

Longman Scientific and Technical, London, 1991.

[75] X. Mao. Stochastic stabilization and destabilization. Systems Control Lett., 23(4):279–290,

1994.

[76] X. Mao. Stochastic differential equations and applications. Horwood, Chichester, 1997.

181

Bibliography

[77] X. Mao and C. Yuan. Stochastic Differential Equations with Markovian Switching. Impe-

rial College Press, London, 2006.

[78] G. Maruyama. Continuous markov processes and stochastic equations. Rend. Circ. Mat.

Palermo, 4:48–90, 1955.

[79] H. Marxen. The Multilevel Monte Carlo methof used on a Lévy driven SDE. Monte Carlo

methods and Applications, 16(2):167–190, 2010.

[80] R. C. Merton. Option pricing when underlying stock returns are discontinuous. Journal

of Financial Economics, 3:125–144, 1976.

[81] G. Milstein and M. Tretyakov. Stochastic Numerics for Mathematical Physics. Scientific

Computing. Springer-Verlag, Berlin and New York, 2004.

[82] K.-S. Moon, A. Szepessy, R. Tempone, and G. E. Zouraris. Convergence rates for adaptive

weak approximation of stochastic differential equations. Stochastic Anal. Appl., 23, 2005.

[83] E. Mordecki, A. Szepessy, and R. Tempone. Adaptive weak approximation of diffusions

with jumps. SIAM J. Numer. Anal., 4:1732–1768, 2008.

[84] J. Murray. Mathematical Biology I: An Introduction. Springer, Seattle, 2002.

[85] B. Pachpatte. Inequalities for Differential and Integral Equations. Academic Press, San

Diego, 1998.

[86] E. Platen and N. Bruti-Liberati. Numerical solution of stochastic differential equations

with jumps in Finance, volume 64 of Stoch. Model. and Appl. Prob. Springer, Berlin

Heidelberg, 2010.

[87] C. Profeta, B. Roynette, and M. Yor. Option Prices and Probabilities: A New Look at

Generalized Black-Scholes Formulae. Springer, Berlin, 2010.

[88] A. Rathinasamy and K. Balachandran. Mean-square stability of second-order Runge-

Kutta methods for multi-dimensional linear stochastic differential systems. J. Comput.

Appl. Math., 219(1):170–197, 2008.

[89] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, Paris, second

edition, 2004.

[90] A. Rößler. An adaptive discretization algorithm for the weak approximation of stochastic

differential equations. Proc. Appl. Math. Mech., 4:19–22, 2004.

[91] P. Rué, J. Villà-Freixa, and K. Burrage. Simulation methods with extended stability for

stiff biochemical Kinetics. BMC Systems Biology, 4(110):1–13, 2010.

[92] Y. Saito and T. Mitsui. Stability analysis of numerical schemes for stochastic differential

equations. SIAM J. Numer. Anal., 33:2254–2267, 1996.

182

Bibliography

[93] Y. Saito and T. Mitsui. Mean-square stability of numerical schemes for stochastic

differential systems. Vietnam J. Math., 30(suppl.):551–560, 2002.

[94] R. Seydel. Tools for Computational Finance. Springer, Köln, 2002.

[95] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer

Finance, Pittsburgh, 2004.

[96] A. Szepessy, R. Tempone, and G. E. Zouraris. Adaptive weak approximation of stochastic

differential equations. Comm. Pure Appl. Math., 54:1169–1214, 2001.

[97] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving

stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.

[98] P. Tankov and E. Voltchkova. Jump-diffusion models: a practitioner’s guide. Banque et

Marchés, 2009.

[99] A. Valinejad and S. M. Hosseini. A variable step-size control algorithm for the weak

approximation of stochastic differential equations. Numer Algor, 55(4):429–446, 2010.

[100] A. Valinejad and S. M. Hosseini. A stepsize control algorithm for SDEs with small noise

based on stochastic Runge-Kutta Maruyama methods. Numer Algor, 61(3):479–498,

2012.

[101] P. Van der Houwen and B. Sommeijer. On the internal stage Runge-Kutta methods for

large m-values. Z. Angew. Math. Mech., 60:479–485, 1980.

[102] E. Vanden-Eijnden. Numerical techniques for multiscale dynamical system with stochas-

tic effects. Commun. Math. Sci., 1:385–391, 2003.

[103] D. Wilkinson. Stochastic Modelling for Systems Biology. Chapman and Hall/CRC, 2006.

[104] P. Wilmott, S. Howison, and J. Dewynne. The Mathematics of Financial Derivatives.

Cambridge University Press, Cambridge, 1997.

[105] Y. Xia. Multilevel Monte Carlo method for jump-diffusion SDEs. Technical report,

University of Oxford, http://arxiv.org/abs/1106.4730, 2011.

183

Curriculum Vitae

Personal Data
Name

Date of birth

Nationality

Adrian Blumenthal

February 4th, 1985

Swiss

Education
2011 - 2015 PhD in Applied Mathematics

École Polytechnique Fédérale de Lausanne, Switzerland.

Thesis advisor: Prof. A. Abdulle.
2009 - 2011 Master of Science in Applied Mathematics

École Polytechnique Fédérale de Lausanne, Switzerland.

Master thesis at Heriot-Watt University Edinburgh, United Kingdom.

2006 - 2009 Bachelor of Science in Mathematics

École Polytechnique Fédérale de Lausanne, Switzerland.

Exchange year at Heriot-Watt University Edinburgh, United Kingdom.

Publications
[1] A. Abdulle and A. Blumenthal. Improved Stabilized Multilevel Monte Carlo Method for

Stiff Stochastic Differential Equations. Lect. Notes Comp. Sci. Eng., 103:537–545, 2015.

[2] A. Abdulle and A. Blumenthal. Stabilized multilevel Monte Carlo method for stiff

stochastic differential equations. J. Comput. Phys., 251:445–460, 2013.

[3] A. Abdulle, A. Blumenthal, and E. Buckwar. The multilevel Monte Carlo Method for

Stochastic Differential Equations driven by Jump-Diffusion Processes. MATHICSE

Technical Report, 2011.

[4] A. Abdulle and A. Blumenthal. S-ROCK Methods for Stiff Stochastic Differential Equa-

tions driven by Jump-Diffusion Processes. Preprint, 2015.

[5] A. Abdulle and A. Blumenthal. Variable Time Stepping S-ROCK Methods for Weak

Solutions of Stiff Stochastic Differential Equations. Preprint, 2015.

185

Curriculum Vitae

Academic Distinctions
• Bourse d’excellence au niveau Master, École Polytechnique Fédérale de Lausanne, Switzer-

land.

• Roderick MacLeod Shearer Memorial Prize for excellence in mathematics in the final

honours course, Heriot-Watt University Edinburgh, United Kingdom.

Presentations
• Swiss Numerics Colloquium (contributed talk), Lausanne, Switzerland, 2013.

Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential Equations.

• Doctoral Seminar EPFL (invited talk), Lausanne, Switzerland, 2013.

Efficient Numerical Methods for Stochastic Differential Equations.

• ENUMATH conference (contributed talk), Lausanne, Switzerland, 2013.

Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Problems.

• SciCADE (minisymposium), Valladolid, Spain, 2013.

Solving Stiff Stochastic Differential Equations with a Stabilized Multilevel Monte Carlo

Method.

• University of Rennes (invited talk), Rennes, France, 2013.

Une nouvelle méthode multilevel Monte Carlo stabilisée pour des problèmes stochastiques

raides.

• Swiss Numerics Colloquium (poster), Zurich, Switzerland, 2014.

Stabilized Multilevel Monte Carlo Method for Stochastic Differential Equations.

186

	Title page

	Acknowledgements
	Abstract
	Contents

	Introduction
	Main Contributions

	Stochastical and Numerical Background
	Stochastic Differential Equations driven by Jump-Diffusion Processes
	Diffusion Processes
	Jump-Diffusion Processes

	Numerical Schemes
	Strong and Weak Convergence
	Stability
	Euler-Maruyama Method
	S-ROCK Method

	Monte Carlo Techniques
	Monte Carlo Method
	Variance Reduction Techniques
	Multilevel Monte Carlo Method

	Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential Equations
	Introduction
	Preliminaries
	Numerical Schemes
	Stability of Numerical Methods

	Multilevel Monte Carlo Method for Stiff SDEs
	Standard Multilevel Monte Carlo Method
	Stabilized Multilevel Monte Carlo Method

	Improved Stabilized Multilevel Monte Carlo Method for Stiff SDEs
	Numerical Examples
	Linear Stochastic Differential Equation
	Nonlinear Stochastic Differential Equation
	Space-discretized Stochastic Parital Differential Equation
	Comparison Improved Stabilized MLMC vs Stabilized MLMC vs Standard MLMC

	Conclusion

	S-ROCK Methods for Jump-Diffusion Processes
	Introduction
	Preliminaries
	Numerical Schemes

	Strong Convergence
	Strong Convergence of S-ROCK1-JD
	Strong Convergence of PIROCK-JD

	Mean Square Stability
	Mean Square Stability Domain of S-ROCK1-JD
	Mean Square Stability Domain of PIROCK-JD
	Illustration of the Stability Regions of S-ROCK1-JD

	Numerical Experiments
	Numerical Study of the Strong Convergence
	Comparison S-ROCK1-JD and Euler-Maruyama for Jump-Diffusions

	Conclusion

	Multilevel Monte Carlo Method for Stochastic Differential Equations driven by Jump-Diffusion Processes
	Introduction
	Preliminaries
	Numerical Schemes

	Multilevel Monte Carlo Method for Jump-Diffusion Processes
	Monte Carlo Method for Jump-Diffusions
	Multilevel Monte Carlo Method for Jump-Diffusions
	Complexity Theorem for Jump-Diffusions

	Numerical Examples
	The Merton and the Kou model
	Two Variance Reduction Techniques
	Numerical Results

	Stabilized Multilevel Monte Carlo Method for Jump-Diffusion Processes
	Stabilized Monte Carlo Method for Jump-Diffusions
	Stabilized Multilevel Monte Carlo Method for Jump-Diffusions

	Conclusion

	S-ROCK Method with Variable Time Stepping for Stiff Stochastic Differential Equations
	Introduction
	Preliminaries
	Numerical Schemes
	Mean Square Stability

	Variable Time Stepping S-ROCK Method Using A Posteriori Error Control
	Derivation of a Computable Leading Term of the Time Error
	Adaptive Algorithm

	Numerical Experiments
	Nonstiff Stochastic Differential Equation
	Stiff Stochastic Differential Equation

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Curriculum Vitae

