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Abstract

Networked systems are composed of interconnected nodes that work collaboratively to max-
imize a given overall utility function. Typical examples of such systems are wireless sensor
networks (WSNs) and participatory sensing systems: sensor nodes, either static or mobile, are
deployed for monitoring a certain physical field. In these systems, there are a set of problems
where we need to adaptively select a strategy to run the system, in order to enhance the efficiency
of utilizing the resources available to the system. In particular, we study four adaptive selection
problems as follows.

We start by studying the problem of base-station (BS) selection in WSNs. Base stations
are critical sensor nodes whose failures cause severe data losses. Deploying multiple fixed BSs
improves the robustness, yet this scheme is not energy efficient because BSs have high energy
consumptions. We propose a scheme that selects only one BS to be active at a time; other BSs
are kept passive and act as regular sensor nodes. This scheme substantially reduces the energy
supplies required by individual BSs. Then, we propose an algorithm for adaptively selecting the
active BS so that the spatially and temporally varying energy resources are efficiently utilized.
We also address implementation issues and apply the proposed algorithm on a real WSN. Field
experiments have shown the effectiveness of the proposed algorithm.

We generalize the BS selection problem by considering both the energy efficiency of regular
sensor nodes and that of BSs. In this scheme, a subset of active BSs (instead of only one) is
adaptively selected and the routing of regular sensor nodes is adjusted accordingly. Because
BSs have high fixed-energy consumptions and because the number of candidate subsets of active
BSs is exponential with the number of BSs, this general BS selection problem is NP-hard. We
propose a polynomial-time algorithm that is guaranteed, under mild conditions, to achieve a
network lifetime at least 62% of the optimal one. Through extensive numerical simulations, we
verify that the lifetime achieved by the proposed algorithm is always very close to the optimum.

We then study the problem of scheduling the sparse-sensing patterns in WSNs. We observe
that the traditional scheme of periodically taking sensing samples is not energy efficient. Instead,
we propose to adaptively schedule when and where to activate sensors for sampling a physical
field, such that the energy efficiency is enhanced and the sensing precision is maintained. The
schedules are learnt from the temporal signal models derived from the collected measurements.
Then, using the obtained signal models and the sparse sensing-measurements, the original signal
can be effectively recovered. This proposed method requires minimal on-board computation, no
inter-node communications and achieves an appealing reconstruction performance. With exper-
iments on real-world datasets, we demonstrate significant improvements over both traditional
sensing schemes and the state-of-the-art sparse-sensing schemes, particularly when the measured
data is characterized by a strong temporal correlation.

In the last part of the thesis, we discuss the sparse-sensing framework by exploiting the spatial
correlations rather than the temporal correlations among the captured measurements. In this
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framework, application-specific utility functions can be employed. By adaptively selecting a small
subset of active sensors for sensing, a certain utility is guaranteed and the efficiency of the sensing
system is enhanced. We apply this framework both in static WSNs and participatory sensing
systems where sensors move in an uncoordinated manner. Through extensive simulations, we
show that our proposed algorithm enhances the resource efficiency.

Keywords: networked system, wireless sensor networks, participatory sensing, resource ef-
ficiency, adaptive selection problem, network optimization, sparse sampling.



Résumé

Les réseaux de systèmes sont composés de nœuds interconnectés qui travaillent en collabora-
tion pour la maximisation d’une fonction objectif globale donnée. Deux exemples typiques sont
les réseaux de capteurs sans fil (WSN) et les systèmes de collecte de données participatifs: les
capteurs, soit statiques, soit mobiles, sont déployés pour superviser un certain champ de captage.
Dans ces systèmes, il y a un certain nombre de situations où il est nécessaire de sélectionner de
façon adaptative une stratégie de fonctionnement pour le système qui améliore l’efficacité de
l’utilisation des ressources à disposition du système. Nous étudions en particulier les quatre
problèmes de sélection adaptative suivant.

Nous commençons par étudier le problème de la re-sélection de la station de base (BS) dans
les WSNs. Les stations de base sont des capteurs critiques dont la défaillance peut causer de
graves pertes de données. L’utilisation de plusieurs BSs au sein du même réseau améliore sa
robustesse, néanmoins cette stratégie n’offre pas un rendement optimal car les BSs ont une
consommations en énergie élevée. Nous proposons une stratégie qui sélectionne uniquement
une BS à la fois pour être active; les autres BSs sont maintenues passives et agissent en tant
que capteurs réguliers. Cette stratégie réduit sensiblement les réserves d’énergie nécessaires aux
BSs. Puis, nous proposons un algorithme pour re-sélectionner de manière adaptative les BS
actives de façon à ce que les ressources énergétiques, variables dans l’espace et le temps, soient
utilisées efficacement. Nous abordons également les questions de mise en oeuvre et appliquons
l’algorithme proposé sur un WSN réel. Les expériences sur le terrain ont démontré l’efficacité de
l’algorithme proposé.

Nous généralisons le problème de re-sélection des BSs en considérant le rendement énergétique
des capteurs réguliers et des BSs. Dans cette stratégie, un sous-ensemble de BSs actif (au lieu
d’une seule) est re-sélectionné de manière adaptative et le routage des capteurs réguliers est
ajusté en conséquence. Puisque les BSs ont une consommation énergétique avec un coût fixe
élevé et parce que le nombre de sous-ensembles de BSs actives candidates est exponentiel dans
le nombre de BSs, ce problème général de re-sélection des BSs est NP-difficile. Nous proposons
un algorithme à temps polynomial qui est garanti, sous des conditions modérées, d’atteindre une
durée de vie du réseau d’au moins 62% de l’optimal. Par des simulations numériques poussées,
nous vérifions que la durée de vie atteinte par l’algorithme proposé est toujours très proche de
l’optimum.

Nous continuons notre étude du problème de la planification des motifs de captages parci-
monieux dans les WSNs. Nous observons que la stratégie classique qui consiste à acquérir péri-
odiquement des échantillons n’est pas efficace énergétiquement parlant. Nous proposons donc à
la place de planifier adaptativement quand et où les capteurs sont activés pour échantillonner
le champs physique de façon à améliorer l’efficacité énergétique tout en maintenant la préci-
sion des mesures. Les planning sont appris sur la base des des modèles de signaux temporelles
dérivées des mesures collectées. Puis, à l’aide des modèles de signaux obtenus et des échantillons

v



vi Résumé

parcimonieux capturés, les signaux originaux peuvent être efficacement récupérés. La méthode
proposée nécessite peu de calculs embarqués, aucune communications entre les capteurs et at-
teint une performance de reconstruction attrayante. En outre, grâce à des expériences sur des
jeux de données provenant de systèmes utilisés en pratiques, nous démontrons une amélioration
significative en comparaison l’état de l’art en matière de stratégies de captage traditionnelles
et parcimonieuse, tout particulièrement quand les données mesurées sont caractérisée par une
corrélation temporelle forte.

Dans la dernière partie de la thèse, nous discutons le cadre de captage parcimonieux qui ex-
ploite la corrélation spatiale plutôt que temporelle dans les mesures capturées. Dans ce cadre, des
fonctions utilité spécifiées par l’utilisateur peuvent être utilisée. En re-sélectionnant adaptative-
ment un petit sous-ensemble de capteurs actifs pour le captage, une utilité donnée est garantie
et l’efficacité du captage du système est améliorée. Nous appliquons ce cadre à la fois dans les
WSNs statiques et dans le captage mobile, où les capteurs se meuvent de façon non-coordinée.
Par des simulations numériques poussées, nous démontrons que l’algorithme que nous proposons
améliore l’efficacité de l’utilisation des ressources et maintient l’utilité du captage.

Mot clés: Les réseaux de systèmes, les réseaux de capteurs sans fil, les systèmes de collecte de
données participatifs, l’efficacité de l’utilisation des ressources, problème de sélection adaptative,
l’optimisation du réseau, échantillonnage clairsemé
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Notations

Active Base-Station Selection in Wireless Sensor Networks

τ Length of a time slot ∈ R+

Vb (|Vb|) The set of BSs (number of BSs)
e Initially available energy of every BS ∈ R+

e(n) Available energy of all BSs at the n-th time slot ∈ R|Vb|

N Number of time slots before the first BS drains out of energy∈ N+

u The uniform vector [1, 1, · · · 1]⊤ ∈ R|Vb|

v(n) Decision vector at the n-th time slot ∈ {0, 1}|Vb|

C Cost matrix ∈ R|Vb|×|Vb|

s(n) Energy-recharge rates of all BSs at the n-th time slot ∈ R|Vb|

s̄ Average energy-recharge rates of all BSs ∈ R|Vb|

Joint Selection of Base Stations and Routing

τ Length of a time slot ∈ R+

Vb (|Vb|) Set of BSs (number of BSs)
Vr (|Vr|) Set of RSNs (number of RSNs)
ei Initially availaible energy of BS or RSN i, ei ∈ R+

e Initially availaible energy of all RSNs and BSs ∈ R|Vb∪Vr|

e(n) Availaible energy of all RSNs and BSs at the n-th time slot ∈ R|Vb∪Vr|

N Number of time slots before the first BS or RSN drains out of energy ∈ N+

r Data-generating rate of each RSN ∈ R+

xij Data rate on short-range communication link from node i to node j, xij ∈ R+

x (x(n)) Data rates on all short-range communication links (at the n-th time slot)
yi Data rate on the long-range communication link of BS j, yi ∈ R+

y (y(n)) Data rates on long-range communication link of BSs (at the n-th time slot) ∈ R|Vb|

zi Indicator of activity state of BS i, zi ∈ {0, 1}
z (z(n)) Indicator vector of activity states of all BSs (at the n-th time slot) ∈ {0, 1}|Vb|

ci Energy-consumption rate of node i, ci ∈ R+

c (c(n)) Energy-consumption rates of all RSNs and BSs (at the n-th time slot) ∈ R|Vb∪Vr|

cc, cst, csr,
clc, clt

Constant parameters for modelling the energy consumption rates ∈ R+

L Set of all candidate configurations

ix



x Notations

L[k] Set of candidate configurations given that z = z[k], 1 ≤ k ≤ 2|Vb| − 1
θi Average energy-decrease rate of node i, θi ∈ R+

θ (θ(n)) Average energy-decrease rate of all RSNs and BSs (at the n-th time slot) ∈ R|Vb∪Vr|

T ∗ Optimal lifetime of the virtually-moving BSs problem

Sparse Sensor-Selection by Exploiting Temporal Correlations

N Desired number of samples in a block ∈ N+

M Number of measurements in a block, equals ⌊Nγ⌋, M ∈ N+

τ Temporal resolution of original signal ∈ R+

f Sampling frequency of original signal, equals 1/τ , f ∈ R+

fs Average sampling frequency of the sensor ∈ R+

γ Subsampling rate fs/f , γ ∈ R+

x̃ Reconstructed signal ∈ RN

x Original signal ∈ RN

y Measured signal ∈ RM

ω Measurement noise ∈ RM

χt Sampling pattern of the t-th block
Φt Sampling matrix of the t-th block ∈ RM×N

x Mean of the signal ∈ RN

Ψt Signal model of the t-th block ∈ RN×K

α Low-dimensional representation of x ∈ RK

Ψ̃
t

Rows of Ψt selected by τ t ∈ RM×K

Sparse Sensor-Selection by Exploiting Spatial Correlations

M Number of sensors ∈ N+

M Set of all sensors {1, 2, · · · ,M}
τ Length of a time slot ∈ R+

gn(·) Utility function defined at the n-th time slot
un(·) The minimum of the utility function gn() and the desired utility q
An The subet of selected sensors ∈ 2M

em Initially available resource of sensor m, em ∈ R+

e
(n)
m Available resource of sensor m at the n-th time slot, e(n)m ∈ R+

N∗ Maximum number of time slots running our proposed algorithm ∈ N+

Nopt Optimal number of time slots of problem 5.2, ∈ N+

λ
(n)
m Penalty we assigned on sensor m at the n-th time slot, ∈ R+

θm (θ(n)m ) Average resource-consumption rate of sensor m (in the first n time slots),
∈ R+

θ (θ(n)) Average resouce-consumption rate of all sensors (at time slot n), ∈ RM

M(q) Set of all subsets of M that has a utility at least q
pA Fraction of time that the subset of sensors A is activated ∈ R+
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Chapter 1

Introduction

It is tempting, if the only tool you have is a
hammer, to treat everything as if it were a
nail.

Abraham Harold Maslow

We live in networks. Everyday on this planet, communication networks, transportation net-
works, social networks, and the internet of things are connecting data, people, money and goods
to improve the well-being of society. As these systems are of central importance to the human
race, they serve as the basis of our modern society.

Communication networks include cellular networks, Wi-Fi local networks and wireless mesh
networks. These networks facilitate the exchanges of information through texts, emails, voices,
and videos. They enable people to collaborate on projects from wide distances and to execute
transactions across the globe.

Social networks, as a new type of information networks, have exploded in popularity in
the last decade. Popular sites such as Facebook, Twitter, and LinkedIn have reported to have
hundreds of millions of users. As these sites facilitate information propagation, they are becoming
increasingly important for online networking among people.

The internet of things designate the networks consisting of physical objects embedded with
sensors and communication electronics. The components in these networks autonomously collect
useful data from the environment and then execute certain pre-defined operations. Typical
applications of the internet of things include wireless sensor networks (WSNs), smart grids,
home automation, and smart transportation systems.

Although all the aforementioned systems play different roles in our lives, they share one essen-
tial characteristic in common: the components of these systems work cooperatively for achieving
a certain overall utility. We call such systems networked systems. To fully understand these
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(a) (b)

Figure 1.1: The WSN deployment on a swiss glacier site Plaine Morte. As shown in Figure 1.1a,
the Plaine Morte glacier is at 2750m above sea level in the canton of Berne in Switzerland. It
is one of the largest flat-glaciers in the Alps. It extends for about 10km2 and is located in the
Wildstrubel range. To measure the environmental data on this site, dozens of sensor nodes were
deployed as shown in Figure 1.1b.

systems, analyze them and optimize them, substantial research efforts have been made. This
thesis is also a part of those efforts.

In particular, this thesis focuses on two networked systems: wireless sensor networks (WSNs)
and participatory sensing systems.

1.1 Wireless Sensor Networks
Wireless sensor networks (WSNs) are used for monitoring physical conditions in many appli-

cations, e.g., environmental sensing, building monitoring, surveillance, and precision agriculture.
For example, the Sensorscope [34] project in EPFL, which we worked on for the last several years,
provides the public and environmental scientists with real-time, continuous and fine-grained data.
The deployments were in several alpine mountains where there are concerns about the melting
of the permafrost and mud streams, as shown in Figure 1.1.

In WSNs, there are two types of sensor nodes, regular sensor nodes (RSNs) and base
stations (BSs). Regular sensor nodes are tiny devices that perform sensing and transmit the
captured data using short-range communication, e.g., 802.15.4/Zigbee. The low-cost RSNs are
envisioned to be massively produced for ubiquitous sensing. They are usually equipped with
very little resources for computation and communication, and they have to work cooperatively
to achieve certain objectives, e.g., relay data packets in a multi-hop manner to a BS. The BSs
are the key sensor nodes that collect data across the whole network and then forward it to a
remote server by using long-range communication, e.g., GSM/GPRS, 3GPP or LTE. They serve
as communication bridges between the sensing field and the remote server.

Energy efficiency is always a major concern in WSNs. This is because WSNs are designed to
be used in scenarios where wireline sensor networks are not applicable, and in these scenarios,
the energy supplies of WSNs are usually from batteries of limited capacity and from energy
scavenging devices of limited capability. Therefore, given the limited available energy resources,
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Figure 1.2: The bottleneck-effects of the BS. In Figure 1.2a, we show a WSN with a single BS
and some RSNs in rings around that BS. Regular sensor nodes in the rings near the BS have
high communication loads and therefore have high energy consumptions. We use darker color for
the rings with higher energy consumptions. In Figure 1.2b, we show the power consumption of
a Telit GM-862 GSM/GPRS module when actively connecting to a remote server. This module
has to be activated for around 40s with an average power of 296mW just to start and stop each
connection. In the meantime, a typical power of a RSN is just a few milliwatts if duty cycling is
used. Therefore, the energy consumption of a BS is much higher than that of RSNs.

it is imperative to improve the energy efficiency, or in other words, to extend the operating time
of the WSNs. We call the operating time of WSNs the lifetime. There are many different ways
to define lifetime, such as the time that the first sensor node depletes its energy or the time that
a certain fraction of sensor nodes deplete their energy. Throughout this thesis, we define the
lifetime as the time that the first sensor node depletes its energy.

In a traditional WSN, there is only one BS and a number of RSNs deployed around the BS.
Researchers focus on designing energy-efficient MAC [22, 68] protocols and routing protocols [3,
16, 72] in order to optimize the multi-hop and short-range communication of RSNs. These
techniques, to some extent, improve the energy efficiency of a WSN. However, researchers soon
discover that the single BS is the bottleneck of the whole network due to the following three
reasons:

(i) Using only one BS creates a single point of failure. In many applications, WSNs are
deployed in adversarial and harsh environments (e.g., on the glacier Plaine Morte as shown
in Figure 1.1). Therefore, the BS is exposed to either human-induced destructions or natural
hazards. Once the single BS experiences a failure, the whole WSN gets stuck and starts losing
precious data.

(ii) Regular sensor nodes near the single BS deplete their batteries quickly. As shown in
Figure 1.2a, these RSNs have to forward the data from the whole network, and therefore they
have high energy consumptions. This problem is known as the “energy-hole” problem.

(iii) The single BS itself consumes a large and fixed amount of energy to forward the collected
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data by using long-range communication. As shown in Figure 1.2b, the BS has to activate its
GSM/GPRS module for 40 seconds just to start and stop each connection with the remote server.
The average power is 296mW during that time. In the meantime, the typical power of a RSN
is just a few milliwatts if duty cycling is used. Depending on the sampling rate of RSNs, the
energy consumption of the BS can be one or two orders of magnitude more than that of RSNs.

There are some existing solutions for partially solving the aforementioned problems: deploy
multiple BSs or physically move BSs. (i) Deploying multiple BSs [7, 29, 59] solves the issue of
single point of failure and alleviates the energy-hole problem. Using this scheme, the communi-
cation load will not be concentrated around a single BS, instead, it will be distributed around
the multiple deployed BSs. This results in a balanced energy-consumption load among the whole
network. However, the long-range communication on all BSs causes high energy consumptions of
the whole network. Therefore, this scheme is not energy-efficient if we consider both the energy
efficiency of RSNs and BSs. (ii) Physically moving BSs [4, 6, 25, 44, 45, 55, 56] can further
enhance the energy efficiency of the WSN because the communication loads in the networks will
be more balanced. However, physically moving BSs require additional implements like vehicles,
and the movement itself might be quite energy-consuming.

1.2 Participatory Sensing Systems
Static WSNs are capable of providing accurate and stable sensing measurements. These

WSNs are usually deployed by either authorities or specialists. Due to the high maintenance-
costs, the number of installations are too limited to provide appealing sensing results on a large
scale.

Participatory sensing systems provide an alternative means for people to share sensory infor-
mation. We envision that low-cost sensors are massively produced and are embedded on agents
like public vehicles, bicycles or mobile phones. These sensors travel with the agents and take
sensing measurements along the moving trajectories without intervening in the agents’ activities.
The captured sensing samples collectively form a body of knowledge and achieve application-
specific utilities. Due to the increasing number of smart phones and the versatile sensors installed
on them, participatory sensing has already enabled many interesting applications. For example,
in the project CarTel[33], a number of mobile phones are installed on private vehicles to mon-
itor traffic information. In the project Earphone [50], researchers use microphones on mobile
devices to collect the environmental noise level in urban areas. In the project OpenSense [2]
which we worked on at EPFL, sensor boxes are installed on public vehicles, such as buses and
metros, for monitoring air pollution levels in the city (as shown in Figure 1.3).

Although these applications are promising, they face several challenges when used on a large
scale. One major challenge is due to the limited resources of these mobile devices, that is,
battery energy, communication bandwidth and sensitive location information. If a mobile user
keeps the sensing application on, the energy-hungry sensors (e.g., GPS, microphones) will drain
the battery quickly, their communication bandwidth will be occupied and their location privacy
will be easily compromised. Therefore, a major design concern in participatory sensing systems
is to extend the lifetime of these systems given a limited amount of resources. To address this
concern, researchers consider two approaches:

(i) The first approach is to exploit free-lunch opportunities [42, 61], that is, those times when
mobile users place phone calls or use applications. Using this approach, mobile users do not have
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Figure 1.3: The Opensense [2] project using community-based sensing techniques to monitor air
pollutions in the city of Zurich 1. The sensor boxes (in the red circle in Figure 1.3a) are placed
on public transportation vehicles for real-time monitoring. The captured Ozone levels are shown
in Figure 1.3b.

to pay extra resources or leak extra privacy information in the sensor data.
(ii) The second approach is to schedule the sensing activities of mobile sensors and to let

them cooperate [67]. Using this approach, mobile sensors take turns to actively sense and rest.
Through careful scheduling, the number of sensing samples to be taken will be reduced, the high
loads of resource consumptions will be evenly distributed onto all mobile sensors, and in the
meantime, certain sensing utility will be guaranteed.

1.3 Adaptive Selection Problems
In the aforementioned networked systems, there are a set of problems we call adaptive

selection problems. In these problems, we need to adaptively select a strategy to run the
system, in order to perform load balancing or to enhance the efficiency of utilizing the resources
available to the system. We study in particular four adaptive selection problems as follows.

1.3.1 Active Base-Station Selection
As shown in Figure 1.2b, the energy consumption for using long-range communication is much

higher compared to that for using short-range communication. Therefore, the BS usually causes
the bottleneck of the lifetime in a medium-sized WSN. To alleviate the high energy consumption
on the single BS, we propose a novel scheme for organzing the WSN, as shown in Figure 1.4.
In this scheme, we deploy multiple BSs and adaptively re-select one active BS to use the long-
range communication, so as to emulate the physical movement of a single BS. The active BS
collects data from all RSNs and maintains long-range communication with the remote server.
Meanwhile, passive BSs behave as RSNs. They turn off their long-range communication devices,
only sampling and forwarding data by using short-range communications. Using this scheme,
the high energy consumption of the active BS for using long-range communication is shared

1. The figures we use here are from the Opensense website http://www.opensense.ethz.ch.
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Figure 1.4: A WSN with the proposed scheme that deploys multiple BSs, keeps only one of them
active and adaptively re-selects this active BS. At the current time, BS 1 is active. Some time
later, the active BS will be re-selected based on the state of the network, e.g., battery levels.
By using this scheme, the temporally and spatially varying energy resources of all BSs are fully
utilized.

among all candidate BSs. The batteries of all candidate BSs form a pool, thus emulating a
larger global power source. To build a sustainable WSN, the requirement is that the total energy
harvested by all candidate BSs sustains the consumption of the active BS. Consequently, the size
of the individual power sources can be substantially reduced. In the meantime, the energy-hole
problem is alleviated because the BS is virtually moving. Also, the hassles for physically moving
the BSs is avoided. This scheme also avoids the single-point of failure due to the existence of
multiple BSs. When the network has connectivity problems and splits into several connected
components, the aforementioned active-BS selection process automatically takes place in all these
small components.

Because we adaptively re-select one active BS, this scheme is also called “virtually moving
one BS”. When designing the algorithm for selecting the active BS, we should only use easily-
available information as the input due to the limited capability of WSN hardwares. Also, the
proposed algorithm should maximally use the temporally-varying energy available to all BSs
when sensor nodes are equipped with energy scavenging devices like solar panels.

1.3.2 Joint Selection of Active Base-Stations and Routing
In Section 1.3.1, we select the active BS for evenly distributing the high energy consump-

tion of long-range communication. However, this does not necessarily optimize the short-range
communication among RSNs. In a large-scale WSN, the energy consumption of the short-range
communication among RSNs accumulates quickly along the routing paths. In this scenario, the
bottleneck of the network lifetime might be caused by RSNs instead of BSs. Therefore, a more
general problem is to optimize the energy efficiency of BSs and RSNs together. In order to solve
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Figure 1.5: Two approaches to sensing in a WSN node. (a) Traditional scheme: collect periodical
samples at a frequency f , compress and transmit the compressed data. (b) The sparse sensing
scheme: collect samples with an optimized temporal pattern at an average frequency γ · f and
transmit the raw data.

this problem, we generalize the scheme “virtually moving one BS” into “virtually moving multiple
BSs”. In this scheme, a subset of active BSs, instead of one active BS, need to be adaptively
re-selected and the routing need to be adjusted accordingly. Using this scheme, the available
energy of all BSs and RSNs across the WSN will be optimally utilized.

The general scheme of virtually moving multiple BSs turns out to be complex, due to the
increased number of degrees of freedom. Because active BSs consume a large and fixed amount
of energy for using long-range communications, scheduling the virtual movement of multiple BSs
is a mixed integer programming problem. Therefore, it is much more complex compared to
the traditional maximum lifetime routing problem (e.g., [16]). Indeed, we will show later that
the fixed energy-consumption of long-range communication makes the problem NP-hard using a
reduction from the 3-SAT [9].

1.3.3 Sparse Sensor-Selection by Exploiting Temporal Correlations
Another adaptive selection problem that we consider is the sparse-sampling problem, both in

static WSNs and in participatory sensing systems.
The energy consumption of a sensor node comes mainly from three activities: sensing, data-

processing and communication. Traditionally, the costs for processing and communication are
assumed to dominate the overall energy consumption, whereas the cost for sensing is considered
negligible. Therefore, in a traditional sensing system, as shown in the upper part of Figure 1.5,
sensor nodes take samples as often as possible, they are subsequently compressed and transmitted
with the lowest possible rate.

However, sensors also consume a large amount of energy for frequent sampling. The ratio
between the energy consumption for taking one sample and that for transmitting one sample is
not as small as we might think. Therefore, ignoring the energy cost for sensing is sub-optimal. As
shown in the lower part of Figure 1.5, a novel sampling scheme is to take sparse sensing-samples
and reconstruct the missing data using algorithms that exploit the structure available in the
measured samples.

When designing the sparse-sampling scheme, we exploit the intra-node correlation, that is,
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the temporal correlation in the signal to be sensed. In particular, we need to resolve the following
three problems: i) learning the temporally-varying signal model by using the measured samples,
ii) selecting the sensors for sampling by using the signal model, and iii) reconstructing the original
sensing field by using the signal model and the measured samples.

1.3.4 Sparse Sensor-Selection by Exploiting Spatial Correlations
In Section 1.3.3, we raise the problem of sparse-sensor selection by exploiting temporal corre-

lations. We observe that in many sensing fields, the signal to be sensed has also strong inter-node
correlations (spatial correlations), especially in participatory sensing systems where the sensor
nodes are dense. Therefore, we consider the problem of exploiting this spatial correlation in
order to design sparse-sensing schemes.

Most existing works that exploit spatial correlations aim at minimizing the number of sensing
samples in a single time instant. In these works, a utility function is defined on the subset of
the selected sensors in that time instant. The utility function might be defined as the sensing
coverage [41], the mutual information [31], the frame potential [51], or the log determinant of
a confidence ellipsoid [38]. Leveraging on the submodular property of these utility functions,
greedy algorithms are proposed to select the sparse sensors in a single time instant.

However, in many practical WSNs or participatory sensing systems, we need to select sparse
sensors in a continuous sensing period instead of a single time instant. Therefore, the objective
is to extend the lifetime of the sensing system that guarantees a certain sensing utility given
limited amounts of resources for all sensors. In this problem, the load of sensing has to be fairly
distributed onto all sensor nodes, and therefore, the selected subset of sensors has to be adaptively
changed. Compared to the sparse-sensing problem in a single time instant, this problem is more
complicated due to the increased size of the optimization space. We have to adaptively decide
when, how many, and which sensors need to be activated for taking sensing samples.

1.4 Contributions
We now describe the contributions of the thesis. The details of the algorithms and imple-

mentations will be discussed in separate chapters.
In Chapter 2, we address the problem of active-BS selection in WSNs. The contributions

we make in this chapter are as follows:
1. We propose a novel scheme that deploys multiple BSs, keeps only one BS active at a time

and adaptively re-selects the active BS. By using this scheme, the temporally and spatially
varying energy resources available to all BSs are efficiently utilized. Consequently, the
energy supplies of individual BSs can be reduced substantially.

2. We propose an adaptive algorithm HEF for re-selecting the active BS. This algorithm
requires little exchange of information in the WSN and it is easy to implement. We show
that under certain mild conditions, this algorithm is asymptotically optimal.

3. We discuss the implementation issues of HEF on real WSNs. In particular, we discuss
how to start the network, how to gather the needed information and how to hand over the
active BS. The solutions we provide are distributed and robust.

4. To evaluate the proposed scheme, we run simulations on the simulator Omnet++/Castalia [47]
and real experiments on an outdoor testbed. To the best of our knowledge, ours is the first
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installation of a real testbed with multiple cooperative BSs. The obtained results show
that our proposed scheme is energy-efficient, has low communication-overhead and reacts
rapidly to network changes.

This chapter is based on the paper [69].
In Chapter 3, we generalize the active-BS selection problem to the problem of jointly se-

lecting active BSs and routing in WSNs. In this problem, multiple BSs might be active simul-
taneously and the energy consumption of RSNs are considered, as well as that of BSs. The
contributions we make in this chapter are as follows:

1. We analyze the general problem of jointly selecting BSs and routing in WSNs, and we
show that this problem is NP-hard. Because the formulation of this problem is general, the
analyses we provide can be used in many other networked systems, including super-node
selection in peer-to-peer networks and cooperative beamforming in cellular networks.

2. We propose an adaptive algorithm to solve the joint-selection problem. The proposed
algorithm is computationally light, it only requires easily available information as input
and guarantees, under mild conditions, to yield a lifetime that is at least 62% of the
optimal one. We verify the effectiveness of this algorithm through extensive numerical
simulations.

This chapter is based on the paper [70].
In Chapter 4, we address the sparse-sampling problem by exploiting the temporal correlation

among the signal to be sensed. We propose a scheme to adaptively learn temporal model from
the measurements and use the model to schedule when to take sensing samples. The main
contributions of this chapter are as follows:

1. The proposed method does not impose on-sensor computation nor inter-node communica-
tion. Each sensor node simply collects measurements according to a designated sampling
pattern and transmits the data to a common server. The server receives all the data from
one or multiple sensor nodes and performs signal reconstruction. This is actually in accor-
dance with the setup of distributed source coding [60], where no inter-node communication
is used. Hence, the proposed algorithm provides an alternative solution to the distributed
coding problem: the communication rate is reduced and the reconstruction error is bounded
without using any inter-node communication.

2. The proposed algorithm is tested on different sets of real-word data, outperforming both
the traditional sensing schemes and the state-of-the-art sparse-sensing schemes, in terms
of reconstruction quality given a fixed amount of measurements.

This chapter is based on the paper [17].
In Chapter 5, we address the sparse-sampling problem by exploiting spatial correlations in

both static WSNs and participatory sensing systems. The main contributions of this chapter are
as follows:

1. We propose a general framework for adaptively selecting sparse sensors, so that the sensing
lifetime is extended and in the meantime, a certain level of application-specific utility is
always guaranteed.

2. In static WSN scenarios, the proposed algorithm for selecting the sparse sensors guarantees
to achieve a lifetime at least 1/ logM the optimal one (M denotes the number of all sensors);
in participatory sensing systems where sensors are moving, this algorithm is also resource
efficient, as we validate that through simulations.
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Chapter 2

Active Base-Station Selection in
Wireless Sensor Networks

If you cannot explain it simply, you don’t know
it well enough.

Albert Einstein

In this chapter, we will discuss the first adaptive-selection problem that is our motivation for
this thesis: the base-station (BS) selection problem. In the following chapters, we will discuss
the generalizations of this problem.

2.1 Introduction
In the past few years, we worked on the Sensorscope Project [34]; the objective was to deploy

a WSN on glaciers in the mountains to monitor climate changes. Due to the harsh environment,
a BS might fail and the network might split into smaller networks. For the network to be
“robust”, or in other words, to be able to recover from the aforementioned incidents, we had to
install multiple BSs in the sensing field, as many others do [7, 59]. Because of the high energy-
consumption of long-range communications, all BSs were required to be equipped with large
batteries and large solar panels. This is definitely undesirable because of the increased difficulty
of both deployment and maintenance. It is imperative to have a new scheme for coordinating
the energy resources available to all the deployed BSs such that the sizes of energy sources for
individual BSs can be substantially reduced.

We propose a novel scheme to do just that. The idea is to deploy multiple BSs, to shut
down unnecessary BSs and to keep only one BS active, as shown in Figure 1.4. To share the
high load for using the long-range communication, we adaptively and iteratively select the BS

11
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that is activated. Meanwhile, other BSs remain passive and behave as RSNs: They turn off
their long-range communication devices, only sampling and forwarding data by using short-
range communication. When the network has connectivity problems and splits into several
connected components, the aforementioned active-BS selection process automatically takes place
in all these small components. In each connected component, the high energy-consumption of
using long-range communication for the active BS is shared among all BSs. The batteries of all
BSs form a pool, thus resulting in a larger global power source. To build a sustainable WSN, the
requirement is that the total energy harvested by all BSs sustains the consumption of the active
BS. Consequently, the size of the individual power sources can be substantially reduced.

Because in this scheme we adaptively select only one active BS, we call it “virtually moving
one BS”. In this scheme, we have to solve the following practical issues: (i) when the network is
connected, how to start the WSN into a state with only one active BS (the bootstrap problem),
(ii) how to adaptively gather the information and decide upon the next active BS, (iii) how to
manage the handover of the active BS and (iv) how to detect and recover from a network split
or from a failure of the active BS. The solutions we provide to these issues are distributed and
robust.

In each connected component of the network, we have to adaptively select one active BS.
The first idea was to use the Round-Robin (RR) protocol: we let all BSs be sequentially active
during an equal time. However, RR is not necessarily optimal because of the the heterogeneity
of BSs: (i) The energy recharged from solar panels of different BSs might be different because
the solar panels might have different positions, different angles to the sun and different energy
conversion efficiency. (ii) The circuit power of different BSs might be different, both when
being active or when being passive. To achieve the optimal lifetime, different BSs should be
active for different fractions of time, and these fractions cannot be computed beforehand due to
the unknown profile of the energy recharging process. We propose an adaptive algorithm that
enables all BSs to gradually achieve the optimal fractions of active time, i.e., “highest energy
first” (HEF). This algorithm adaptively selects the BS with the highest available energy to be
active. The appealing feature of HEF is that it requires little information as input and yet fits
perfectly for a solution of the WSN optimization problem. The active BS needs to gather only
the battery levels of passive BSs. We prove that this algorithm is asymptotically optimal under
mild conditions.

To evaluate our proposed scheme, we first run several simulations on the simulator Om-
net++/Castalia [47] and next we run real experiments on an outdoor testbed. Simulation re-
sults show that HEF is energy efficient, has low communication-overhead and reacts rapidly to
network changes. The real experiments lasted for 15 days, and they show that by using HEF
to coordinate 3 BSs, the lifetime of the WSN can be prolonged by a factor of 3 to 4. The
enhancement will be more pronounced if HEF is used on a larger number of cooperative BSs.

2.2 System Architecture
Our system architecture for coordinating multiple BSs is as follows. In our architecture, time

is partitioned into slots whose lengths are two hours each. At the beginning of each time slot,
one active BS is selected. This active BS begins broadcasting beacons and notifying the whole
network. Upon receiving these beacons, passive BSs and RSNs update their routing tables and
forward these beacons. Every sensor node takes sensing samples at a constant rate. The sensed
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data are then forwarded to the active BS by using short-range communication in a multi-hop
fashion. The active BS collects all the data packets and forwards them to the remote server. In
the next time slot, the active BS remains the same or it hands over the role to its successor,
depending on the output result of HEF. Then, the new active BS starts broadcasting the beacons
and the whole process is repeated.

In this architecture, we have to address the following problems: (i) how the network starts
into the state with only one active BS, (ii) how the active BS gathers the information needed for
the selections, (iii) how the active BS hands over the role to the selected successor, and (iv) how
the network recovers from unexpected failures. Before discussing these issues, we first briefly
review some details of our system.

2.2.1 Network Details
We will show how the network manages synchronization, MAC protocols, routing protocols

and the usage of GSM/GPRS. The interested reader can refer to the previously published work
for more details [34].

Synchronization

All sensor nodes are synchronized on universal coordinated time (UTC), retrieved by the
active BSs when they connect to our server. The current time Tc is inserted into beacons
through MAC time-stamping [26]. To estimate Tc, we use the crystal of sensor nodes to compute
the elapsed time since the last update of UTC. This mechanism, although simplistic, enables a
synchronization in the order of one millisecond, which is sufficient in our application.

MAC protocols

In the MAC layer, we adopt the commonly used T-MAC [58]. With T-MAC, sensor nodes
dynamically adjust their duty cycles, based on the communication loads.

Routing protocols

We use gradient routing where sensor nodes send the data packets to their neighbors who
have the shortest hop-distances to the active BS. We also make a few modifications on the classic
gradient-routing protocol, so that control messages for updating the active BS are handled by a
specific procedure, as will be discussed later.

GSM/GPRS usage

As the GSM/GPRS chip is an energy-hungry device (two orders of magnitude more than the
short-range radio transceiver), its connection to the server is duty-cycled. There is an obvious
trade-off between real-time information and energy savings. The typical connection interval that
we use is 5 minutes.

2.2.2 Starting the Network
In our architecture, starting the network is a bit more complex than in a traditional WSN.

Multiple BSs have to make a consensus on the one that should be the only active BS. We give a
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Figure 2.1: Starting the network.

de-centralized solution to this problem.
Once a BS is booted, it is passive and listens for beacons from other sensor nodes. If, after

some timeout, it still has not heard any beacon, it becomes active and begins broadcasting
beacons. Other sensor nodes receive the beacons and know their hop distances to the active BSs.
Because sensor nodes use the gradient routing protocol, they join the nearest active BS. Notice
that there might be several active BSs co-existing at this stage. The whole network is virtually
split into several clusters, where each cluster has one active BS.

Then, the network automatically merges these clusters in a de-centralized way. For simplicity
of discussion, we assume that the network has only two clusters Bi and Bj with the active BSs
bi and bj , respectively. There are obviously some nodes on the boundaries, belonging to one
cluster and having neighbors belonging to the other one. These nodes can detect the presence
of the two active BSs due to the beacon messages, as those belonging to Bi will eventually hear
about bj from their neighbors belonging to Bj . When these nodes detect the presence of the
two active BSs, it is their duty to fix the problem. For the sake of simplicity, we decide that the
active BS with the smaller identifier should be kept active. Assuming i < j, the boundary nodes
belonging to Bj would thus send a BS_DOWN message to bj , asking it to become passive in
favor of bi. Upon reception of this request, the BS bj stops sending beacons and becomes passive.
As a result, routes to bj in the cluster Bj gradually disappear while routes to bi propagate from
Bi to Bj . When the process is over, the cluster Bj has been merged with Bi, resulting in only
one cluster. This merging process is also applicable when multiple clusters are present.

Figure 2.1 provides an example showing the whole starting process. At the first step, BS 1

is started. As it cannot hear from any other sensor node, it becomes active, gathering its own
data and sending them to the server. Then, a RSN 2 is started. It detects the active BS 1 and
joins it to form a two-node network. At step three, BS 3 is started. It is too far away to hear
from BS 1 and RSN 2, so it becomes active. At step four, another BS 4 is added. It hears from
both active BS 3 and RSN 2, and it decides to join BS 3 rather than the small network {1, 2}
due to the shorter routing paths. Hence, there are two clusters: B1 = {1, 2} and B3 = {3, 4}.
The boundary nodes are RSN 2 and BS 4, and they advertise about active BSs 1 and 3. When
RSN 2 hears about BS 3, it does nothing as RSN 1, its active BS, has a lower identifier than BS
3. BS 4, however, sends a BS_DOWN message to BS 3. Once BS 3 becomes a passive BS and
stops sending beacons, the route from BS 4 to BS 3 breaks, so that at some point, BS 4 joins
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Figure 2.2: The handover process.

B1, as well as BS 3 later on, resulting in the final state of Figure 2.1.

2.2.3 Gathering the Information for Adaptive Selections
Before adaptively selecting the active BSs, the network needs to learn about the existence

of other passive BSs and their battery levels. For this purpose, we use a specific type of mes-
sage, called BS_ADVERT. The BS_ADVERT messages are periodically generated by passive
BSs, and then routed to the active BS, like any other data message using gradient routing.
The BS_ADVERT messages are specifically handled. All sensor nodes include their own IDs
in the packet, when forwarding the BS_ADVERT messages. When the active BS receives the
BS_ADVERT messages, it knows exactly the paths that these messages have traveled through.
By reverting these paths contained in the BS_ADVERT messages, the active BS stores a han-
dover table that is used when sending notifications to the next active BSs. This mechanism
is well-known in ad hoc networks (e.g., dynamic source routing [36]) and is sometimes called
piggybacking. The active BS also maintains a list of battery levels for all BSs. When the active
BS receives a BS_ADVERT message, it updates the corresponding elements in the list or table
if this message contains newer timestamps.

2.2.4 Handing Over the Active BS
Knowing the locations of all passive BSs and their battery levels, the active BS will decide

the next active BS based on the algorithm that will be described in Section 2.4. If the active
BS decides to hand over its role to another BS, it will send out a BS_UP message to notify its
successor. This BS_UP message contains the routing information from the handover table. Once
a RSN receives a BS_UP message, it forwards the message if it is on the route, and otherwise
it drops the message. When a BS receives the BS_UP message, it checks whether it is the
destination of the BS_UP message. If it is, this BS sends back a BS_UP_ACK message to the
currently active BS and becomes active by advertising its status through the beacon messages.
The previously active BS, upon reception of a BS_UP_ACK, becomes passive and stops its
beacons. In the case where no BS_UP_ACK is received (e.g., node unreachable), the active BS
tries again with the next best candidate. This process continues until a suitable candidate takes
over the active role.
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The whole process of executing the handover decision is illustrated in Figure 2.2. Initially,
BS 1 is active. It selects BS 4 as its successor. During step 1, a BS_UP message is routed from
BS 1 to BS 4 to inform BS 4 the decision made by BS 1. At step 2, BS 4 receives the BS_UP
message and becomes active. At the same time, it sends back a BS_UP_ACK message to BS
1. Finally, BS 1 becomes passive and BS 4 is the only active BS.

2.2.5 Recovering from Failures
In a sensor network, the active BS might fail and the network might split into small connected

components. With our architecture, the network automatically recovers from these incidents.
When the active BS fails, it either reboots or stops working; both cases lead to the disappearance
of active BS beacons. Should this happen, all routes in the network would disappear, and one
or multiple BSs would eventually decide to become active, just like during the starting process.
If multiples of them become active, the merging process would apply, eventually leading to
only one active BS. When the network splits into small components, the passive BSs within each
component are able to detect the disappearance of beacons from the active BS in this component.
Then, the bootstrapping process mentioned in Section 2.2.2 will ensure that there will eventually
be one active BS in each small component.

2.3 Adaptive BS-Selection Problem Formulation
On top of the system architecture we discussed in Section 2.2, we now consider the problem

of optimally selecting the active BS, so that the energy resources on all BSs are efficiently used.
We only consider the scenario where the network is fully connected. If the network splits into
small components, as we have seen in Section 2.2.5, the problem is the same within each small
component.

Consider a set of BSs Vb deployed in the sensing field. Time is discretized into slots n ∈ N+,
and we denote the length of a time slot by τ .

Decision vector: As the active BS is adaptively selected in different time slots, we let v
(n)
m

indicate whether BS m ∈ Vb is active at a given time slot n ∈ N+, i.e.,

v(n)m = I (BS m is active at the n-th time slot) ,

where I(A) denotes the indicator function: I(A) = 1 if argument A is true and I(A) = 0 otherwise.
Collect all v(n)m , m ∈ Vb, in a |Vb|×1 column vector v(n) =

[
v
(n)
1 v

(n)
2 · · · v(n)|Vb|

]⊤
with ⊤ denoting

transposition. Call v(n) the decision vector at the n-th time slot. Because only one BS is active
at one time slot, v(n) has |Vb|−1 zero entries and one entry equal to 1. We denote the sequence
of decision vectors up to time slot n by V(n) =

{
v(t)
}n
t=1

.
Cost matrix: The energy consumption of BSs is due to three sources: sensing, short-

range communication, and long-range communication. We assume that the sensing costs are
negligible. Let the MAC protocol and routing protocol of the WSN be predefined. Therefore,
when a specific BS is selected to be active, both the energy consumption from short-range
communication and from long-range communication of each BS is deterministic. Denote by Cml

the energy-consumption rate of BS m (m ∈ Vb) when BS l (l ∈ Vb) is active. We group all
energy-consumption rates in a |Vb| × |Vb| matrix C, which we call the cost matrix. If we neglect
the energy consumption from short-range communication, the passive BSs do not consume any
energy, and therefore the cost matrix becomes diagonal. In practice, the ratio between the energy
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consumption from long-range communication and that from short-range communication might
be a factor of 5 ∼ 20, based on different settings of the network.

Available energy: We denote the remaining amount of energy of BS m ∈ Vb at the end of
time slot n by e

(n)
m and we call it available energy. We gather the available energy of all BSs

in a vector e(n) =
[
e
(n)
1 e

(n)
2 · · · e(n)|Vb|

]⊤
. In practice, the available energy is lower-bounded by

zero and upper-bounded by the storage capacity. For simplicity, however, we assume that it is
not upper-bounded. Without loss of generality, we assume that all BSs have the same available
energy e ∈ R+ initially, with e(0) = eu, where u = [1 1 · · · 1]⊤ is a |Vb| × 1 all-ones vector.

Energy-recharge rates: At each time slot n ∈ N+, each BS m ∈ Vb receives a certain
amount of incoming energy. Denote the average rate of incoming energy at this time slot by s

(n)
m

and call it the energy-recharge rate. We group all the energy-recharge rates at the n-th time slot
into a vector s(n) =

[
s
(n)
1 s

(n)
2 · · · s(n)|Vb|

]⊤
. We denote the sequence of energy-recharge rates up

to time slot n by S(n) =
{
s(t)
}n
t=1

. In particular, S(∞) denotes the sequence of energy-recharge
rates over an infinite time horizon. We make the following realistic assumptions on S(∞):

— D1:
E
(
s(n) | S(n−1)

)
= s̄, ∀n ∈ N+, (2.1)

where s̄ is a constant vector and E
(
· | S(n−1)

)
denotes the expectation conditioned on

the sequence S(n−1). Let s̄m be the m-th element of s̄. This assumption is weaker than
assuming S(∞) is an i.i.d process.

— D2: ∥∥∥s(n)∥∥∥
∞
≤ S, ∀n ∈ N+. (2.2)

where S is a constant with 0 ≤ S < +∞.
Condition D1 amounts to saying that the energy-recharge rates are always constant conditioned
on the previous information. Condition D2 states that the energy-recharge rates are bounded by
a constant S.

Relations among the aforementioned parameters: At the n-th time slot, the amounts
of energy recharged for all BSs are given by τs(n) and the amounts of energy consumed are given
by τCv(n). Therefore, the available energy evolves according to

e(n) = e(n−1) + τs(n) − τCv(n). (2.3)

If we sum up the iterative equation (2.3) from time 0 to time n and use e(0) = eu, we have

e(n) = eu+ τ

n∑
t=1

s(t) − τC

n∑
t=1

v(t). (2.4)

Adaptive BS-selection problem: Denote by N the maximum number of time slots before
the first BS drains out of energy. The lifetime of the network is therefore τN . If the realization
of S(∞) is already known to us, the goal is to schedule the selections of active BSs, such that τN
is maximized. In other words, we want to find the longest sequence of decision vectors V(N) such
that for any 1 ≤ n ≤ N , the available energy e(n) ≥ 0. 2 Therefore, we formulate the problem

2. Without special mentioning, the inequalities between vectors are all component-wise.
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as an optimization problem

max
V(N)

N

s.t. τC
n∑

t=1

v(t) ≤ eu+ τ
n∑

t=1

s(t), ∀1 ≤ n ≤ N,

u⊤v(n) = 1, ∀1 ≤ n ≤ N, (2.5)
v(n) ∈ {0, 1}|Vb|, ∀1 ≤ n ≤ N,

where the first constraint follows from (2.4) and the constraint that e(n) ≥ 0, ∀1 ≤ n ≤ N .
We denote the optimal objective value of problem (2.5) by Nopt. We denote the offline

scheduling algorithm that optimizes (2.5) by OPT. We will use it for comparison in Section 2.5.
We note that (i) problem (2.5) is not a standard optimization problem because the number of
constraints depends on the objective value N , and that (ii) the optimal objective value Nopt

depends on the realization of the stochastic process S(∞). In the following, we will analyze the
performance of the optimal objective value Nopt via an auxiliary optimization problem.

Denote the fraction of active time of BS m ∈ Vb by v̄m. Group these fractions into a vector
v̄ =

[
v̄1 v̄2 · · · v̄|Vb|

]⊤. Notice that we have u⊤v̄ = 1. Let

R = C − s̄u⊤. (2.6)

where s̄ is defined by (2.1). If we select active BSs according to the fractions of active time v̄,
the expected energy-decrease rates of all BSs are Cv̄ − s̄, which are equivalent to Rv̄ because
of (2.6) and u⊤v̄ = 1. Because the lifetime of the network is decided by the maximum energy-
decrease rate among all BSs, maximizing the lifetime amounts to minimizing the maximum
energy-decrease rate. Therefore, to analyze the asymptotic property of the optimal lifetime
τNopt, we define the auxiliary optimization problem

min
v̄,f

f

s.t. Rv̄ ≤ fu,

u⊤v̄ = 1,

v̄ ≥ 0,

(2.7)

where f denotes the maximum energy-decrease rate among all sensors. The optimal solution of
problem (2.7) is denoted by (v̄∗, f∗).

In the following, we will show the relation between the optimal objective value Nopt of problem
(2.5) and the optimal objective value f∗ of problem (2.7) under assumptions D1 and D2: (i) If
f∗ < 0, by selecting the active BSs according to the optimal fractions v̄∗, the available energy
of all BSs has a tendency to increase with time. For any given e, there is a probability that
the optimal lifetime Nhef is infinite, and this probability becomes arbitrarily close to 1 when
e becomes large; and (ii) if f∗ > 0, any scheduling algorithm will almost surely result in a
finite lifetime. By selecting the active BSs according to the optimal fractions v̄∗, there is a high
probability that the optimal lifetime is within the range [(1 − δ)e/τf∗, (1 + δ)e/τf∗], for any
δ > 0. This probability becomes arbitrarily close to 1 when e becomes large. The arguments
above are summarized in Theorem 2.1.
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Theorem 2.1

If assumptions D1 and D2 on the energy-recharge rates S(∞) hold, the optimal objective
value Nopt of problem (2.5) has the following asymptotic performance:

— when f∗ < 0,
lim
e→∞

P (Nopt =∞) = 1, (2.8)

— when f∗ > 0,
lim
e→∞

P
(∣∣∣∣ Nopt

e/(τf∗)
− 1

∣∣∣∣ < δ

)
= 1, ∀δ > 0. (2.9)

The detailed proof can be found in Appendix 2.A.2, which we briefly sketch here. In the
simple deterministic scenario where the energy-recharge rates s(n) = s̄ for any n ∈ N, we can
easily show that: given that f∗ < 0, if e is sufficiently large, Nopt = ∞; and given that f∗ > 0,
if e is sufficiently large, Nopt is deterministically within the range [(1 − δ)e/τf∗, (1 + δ)e/τf∗],
for any δ > 0. Then, in the stochastic scenario, we rely on the assumptions D1 and D2 to relate
it to the deterministic scenario. Notice that the energy recharged in the first n time slots in the
deterministic scenario is ns̄ and that in the stochastic scenario is

∑n
t=1 s

(t). We show that their
difference

∑n
t=1 s

(t) − s̄ is a martingale with bounded difference. We use the Azuma-Hoeffding
inequality for martingales [30, p. 476] to show that the probability distribution of the distance
from

∑n
t=1 s

(t) − s̄ to the zero vector decays exponentially. Using this result, we will show that
when e → ∞, the optimal lifetime τNopt in the stochastic scenario converges in probability to
that in the simple deterministic scenario.

Solving (2.5) or (2.7) is however infeasible in practice for the following reasons: (i) Measuring
the cost matrix C requires expensive equipments such as high-frequency data loggers, and (ii)
estimating the energy-recharge rates S(n) is hard, because they depend on too many factors. For
example, the energy-recharge rate from a solar panel might depend on its location, the angle of
its surface to the sunlight, its energy conversion efficiency, and the weather. In a real WSN, the
only easy-to-capture information is the battery level, which can be used as an indicator of the
available energy. In the following, we will discuss an algorithm for selecting the active BS; it
only uses information on available energy as input.

2.4 The “Highest Energy First” (HEF) Algorithm
In this section, we propose the algorithm “highest energy first” (HEF) for solving the adaptive

BS-selection problem. In practice, this algorithm is easy to implement because it only requires
the battery levels of all BSs as the input.

The procedure of running HEF is summarized in Algorithm 2.1. At any time slot n, BS
m∗ ∈ Vb) is chosen to be active at the n-th time slot if and only if its available energy e

(n−1)
m∗ is

the highest, i.e.,
v
(n)
m∗ = I

(
e
(n−1)
m∗ ≥ e(n−1)

m , ∀1 ≤ m ̸= m∗ ≤ |Vb|
)
, (2.10)

with ties broken uniformly at random.
Let Nhef be the maximum number of time slots before the first BS drains out of energy using

the HEF scheduling algorithm, that is,

Nhef = inf{{∞} ∪ {n | ∃l∗ ∈ Vb, e
(n+1)
l∗ < 0}}.
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Algorithm 2.1: The “Highest Energy First” Algorithm
Input: The initially available energy e(0), the sequence of energy-recharge rates S(∞)

Output: Nhef , V(Nhef)

1 Set n←− 0

2 while e(n) ≥ 0 do
3 Find m∗ such that e

(n−1)
m∗ ≥ e

(n−1)
m , ∀1 ≤ m ̸= m∗ ≤ |Vb|

4 Set v(n) where v
(n)
m∗ ← 1 and v

(n)
m ← 0, for any m ̸= m∗

5 Update e(n) = e(n−1) − τCv(n) + τs(n), and n = n+ 1

6 Set Nhef ←− n− 1 and V(Nhef ) = {v(t)}Nhef
t=1

The HEF algorithm is a heuristic algorithm, yet we will show that it is asymptotically optimal
under mild conditions. We use the optimal objective value f∗ of problem (2.7) as a link between
Nhef and Nopt: (i) If f∗ < 0, for any large constant K, there is a high probability that Nhef > Ke

when the initial available energy e is large. This probability converges to 1 when e → ∞. This
result is a bit weaker than that lime→∞ P(Nhef = ∞) = 1 as in (2.8). (ii) If f∗ > 0, when e is
large, there is a high probability that Nhef is within the range [(1 − δ)e/τf∗, (1 + δ)e/τf∗], for
any δ > 0. This probability converges to 1 when e → ∞. We summarize the arguments above
in Theorem 2.2.
Theorem 2.2

If assumptions D1 and D2 on the energy-recharge rates S(∞) hold, and if in addition
— D3: Rij = Cij − s̄i < 0, ∀1 ≤ i ̸= j ≤ |Vb|, and
— D4: (C⊤)−1u > 0,

then
— when f∗ < 0,

∀K, lim
e→∞

P (Nhef > Ke) = 1, (2.11)

— when f∗ > 0,
lim
e→∞

P
(∣∣∣∣ Nhef

e/(τf∗)
− 1

∣∣∣∣ < δ

)
= 1,∀δ > 0. (2.12)

We interpret conditions D3 and D4 in Theorem 2.2 as follows: (i) Condition D3 states that
for any passive BS, the expected energy-recharge rate is larger than the energy-consumption
rate, regardless of the selection of the active BS. (ii) Condition D4 is satisfied when energy-
consumption rates of active BSs (diagonal elements of C) are much larger than the differences
among the energy-consumption rates of all passive BSs (differences among non-diagonal elements
of C). Indeed, we define cpb = min1≤i ̸=j≤|Vb| Cij and decompose C as C = Λ+ cpbuu

⊤. Then,
the diagonal elements of Λ are much larger than the non-diagonal elements. It follows that Λ is
near diagonal and therefore (Λ⊤)−1u > 0. Using the Sherman-Woodbury-Morrison identity 3,
we see that

(C⊤)−1u = (Λ⊤)−1u/(1 + cpbu
⊤Λ−1u) > 0.

3. The Sherman-Woodbury-Morrison identity states that for any matrix A and for any two vectors w1 and
w2, if 1 +w⊤

2 A−1w1 ̸= 0, we have (A+w1w⊤
2 )−1 = A−1 − (A−1w1w⊤

2 A−1)/(1 +w⊤
2 A−1w1).
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Table 2.1: Simulation settings

Sensing field 200m× 200m

Sensor node positions uniformly at random
Radio layer model XE1205 chip, unit-disk model, the trans-

mitting range is 40m

Radio energy-consumptions in
TX\RX\Sleep mode

79.45\46\1.4mW

Data-generating rate 1 packet/sec

Control message rate 1 packet/5min

GSM/GPRS connection rate once/5 minutes
Average power consumption of GSM/GPRS
per connection

296mW × 40 sec

Active BS handover interval every 2 hours

Initial available energy 14400 J

Solar panel 50 cm2

More justifications of conditions D3 and D4 through simulations are shown in Section 2.5.3.
The detailed proof of theorem 2.2 can be found in Appendix 2.A.3. Here, we sketch the

intuition for the proof: (i) First, we show that with condition D3, there is a high probability that
all BSs use up their available energy at time Nhef +1 when e is large. (ii) Secondly, we show that
the event that all BSs use up the energy at time Nhef +1 implies that the average decision vector∑Nhef+1

n=1 v(n)/(Nhef + 1) converges to R−1u/u⊤R−1u in probability. Under condition D4, we
show that the optimal solution of problem (2.7) is v̄∗ = R−1u/u⊤R−1u. (iii) Thirdly, given that
the average decision vector converges in probability to the optimal solution v̄∗ of problem (2.7),
we use the Azuma-Hoeffding inequality and deduce that: if f∗ < 0, there is a high probability
that Nhef > Ke; and if f∗ > 0, there is a high probability that Nhef > (1− δ)e/(τf∗). Noticing
that Nhef ≤ Nopt and (2.8), we conclude the proof.

2.5 Simulations
In this section, we will evaluate the proposed scheme by running several simulations on the

simulator Castalia/OMNeT++ [47].

2.5.1 General Settings
The general settings of the simulations are chosen to closely approximate our hardware specifi-

cations, as listed in Table 2.1. We simulate a sensor network composed of 5 BSs (|Vb| = 5) and 35

RSNs; they are distributed uniformly at random in a 200m×200m sensing field. In the physical
layer of all sensor nodes, we simulate the XE1205 radio transceiver, with the transmitting power
fixed to 0 dbm. We adopt the ideal unit-disk model for the wireless channel and choose the pa-
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rameters so that the transmitting range is fixed to 40m. In the MAC layer, the T-MAC protocol
is used. All sensors generate data packets at a rate of 1 packet/sec. The BS_ADVERT message
(Section 2.2) is transmitted at a rate of 1 packet/5minutes. Then, the energy-consumption rates
of sensor nodes for using the short-range communications are captured using the built-in mod-
ules of the simulator Castalia/OMNeT++. The active BS connects to the remote server with
GSM/GPRS every 5 minutes. Because the transmitted data volume during each connection is
small, the major part of the energy consumption comes from starting, maintaining and closing
the communication. We assume that for each GSM/GPRS connection, the active time and the
average power consumption is 40 seconds and 296mW (we choose these values based on the
measurements with a digital oscilloscope). The active BS decides whether to transfer its role
every 2 hours, which amounts to τ = 2hours for each time slot. Each BS is assumed to have a
set of AA NiMH rechargeable batteries with an initial energy of 800mAh× 5V = 14400 J and a
solar panel. We assume that the energy-recharge rate for BS m ∈ Vb at time slot n ∈ N is

s(n)m = ηmγmI(n)m Γdefault,

where ηm denotes the energy conversion efficiency of the solar panel for BS m, γm denotes the
coefficient for losses (inverter loss, temperature loss, energy transmission loss, energy conservation
loss and low radiation loss), I(n)m denotes the solar radiation on BS m at time n, and Γdefault is
the default size of the solar panel. The solar radiations {I(n)m }n (m ∈ Vb) we use are real data
captured in a Swiss valley during the Sensorscope Project [34]. We set Γdefault = 50 cm2. For all
m ∈ Vb, we let ηm be drawn from [0.05, 0.15] uniformly at random, and we set γm = 0.2. The
settings discussed above are default unless other settings are explicitly mentioned.

2.5.2 Performance of Different Algorithms
In the following, we show the performances of four different algorithms for organizing the

WSN, i.e., FIXED, Round-Robin (RR), OPT and HEF. FIXED denotes the scheme with the
active BS fixed to be BS 1. RR denotes the algorithm where all BSs take turns being active and
have perfectly identical active times. OPT is the offline optimal scheduling algorithm. It is not
applicable in practice and is only used for comparison. From the simulator Castalia/Omnet++,
we obtain the energy-consumption rates of all sensor nodes when different BSs are active. We
list these energy-consumption rates into the cost matrix C. Then, we solve the optimization
problem (2.5) and have the optimal selections of active BSs. Finally, HEF is the “highest energy
first” algorithm described in Section 2.4. In the following, we will compare the performances of
the aforementioned four schemes. To avoid the simulation running an infinitely long time, we
restrict the maximum running time to be 2400 time slots (200 days): if a network can sustain
2400 time slots, we consider its lifetime as infinite.

Available energy versus time: First, we show the available energy e(n) during 20 days
(1 ≤ n ≤ 240), when the network runs different algorithms in Figure 2.3. We see that HEF leads
e(n) to be a uniform vector despite different energy harvested for different BSs. RR cannot fully
utilize all the energy because different BSs can harvest different amount of energy from solar
panels. FIXED leads to a fast energy-decrease rate of the only active BS, resulting in an early
death of the WSN.

Lifetime versus size of solar panels: In Figure 2.4, we show that the lifetime of the
network increases with the size of the solar panel equipped on each sensor node. When the size
of the solar panel is large enough, the lifetime becomes infinite. To achieve an infinite lifetime,
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Figure 2.3: The available energy e(n) (1 ≤ n ≤ 240) when running different algorithms for
selecting active BSs. FIXED depletes the battery of the only active BS quickly, thus leading to
an early death of the WSN. RR cannot fully utilize all the energy because different BSs can have
very different energy recharged from solar panels. HEF equalizes the available energy of all BSs
despite different energy harvested on different BSs.

the minimum sizes of solar panels in a network running HEF, RR and FIXED are 62.5cm2,
112.5cm2 and 187.5cm2, respectively. The lifetime of HEF is always better than that of RR and
FIXED, and is close to that of OPT.

Lifetime versus initial available energy: In Figure 2.5, we show how the lifetime changes
when the sensor network is given different amounts of initial available energy e. Here all solar
panels have the default size 50cm2, which is not sufficient for the network to have an infinite
lifetime when running any algorithm. We see that in this scenario, the lifetime of both OPT
and HEF increases linearly with the initial available energy, as indicated by the arguments used
to prove Theorem 2.1 and 2.2 when f∗ > 0. HEF is close to OPT and is better than RR and
FIXED.

Lifetime versus number of BSs: In Figure 2.6, we show how the lifetime changes when
the sensor network has a different number of BSs |Vb|. We see that when running HEF or RR,
the lifetime increases with the number of BSs. This is because a large number of installed BSs
will average out the high cost of being the active BS. On the contrary, the lifetime of FIXED
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Figure 2.4: Lifetime versus size of the solar panels. The minimum sizes of solar panels to achieve
an infinite lifetime in a network running HEF, RR and FIXED are 62.5cm2, 112.5cm2 and
187.5cm2, respectively.
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Figure 2.5: Lifetime versus initial available energy. We see that the lifetime of HEF and OPT
increases linearly with the amount of the initial available energy. HEF is always close to OPT
and is better than RR and FIXED.

remains constant when the number of BSs increases because the burden of using long-range
communication is not shared among all BSs. From Figure 2.6, we see that the number of BSs
needed to sustain an infinite lifetime required by HEF and RR are 9 and 18, respectively.

To sum up, HEF is more energy efficient than RR and FIXED, and it is very close to OPT
in all simulated scenarios. We list the results in the second column of Table 2.2.

Communication overhead: Figure 2.7 shows the overall number of packets transmitted per
hour through short-range communication when the network runs different algorithms. FIXED
only transmits data packets and does not need to exchange any other control messages. It serves
as a baseline in the comparisons. HEF has additional packet exchanges of BS_ADVERT, BS_UP
and BS_UP_ACK messages. Because these messages are sent at low rates, e.g., 1 packet per
5 minutes for BS_ADVERT and 1 packet every 2 hours for BS_UP and BS_UP_ACK, the
communication overhead of HEF is almost negligible. The communication overhead of RR is the
same as HEF because they have the same amount of control messages. We summarize the result
in the fourth column of Table 2.2.

Reactions to network changes: We consider the following two incidents: (i) The active
BS fails at time slot n = 120, and (ii) the network suddenly experiences a connectivity problem
and splits into two components (one component contains BS 1 and BS 2 and the other component
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Figure 2.6: Lifetime versus number of BSs. We see that the lifetime when running HEF or RR
increases with the number of BSs. The number of BSs to sustain an infinite lifetime required by
HEF and RR are 9 and 18, respectively. When running FIXED, larger number of BSs does not
result in longer lifetime because the burden is not shared among all BSs.
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Figure 2.7: Overall number of packets transmitted per hour versus the sensing rate of each sensor
node. We see that the communication overheads of both RR and HEF are very small.

contains BS 3, BS 4 and BS 5) at time n = 120. Due to the proposed architecture in Section 2.2.5,
RR and HEF are robust to the aforementioned incidents, and FIXED is not. We record the
“robustness” of all these three schemes in Table 2.2. If we run the RR algorithm, the remaining
BSs will have the same active time, which is not necessarily optimal. In Figure 2.8, we show the
ratios of active time for all BSs in both scenarios. We see that the performance of HEF is always
close to that of OPT, before and after the network changes. Consequenlty, this shows that HEF
reacts rapidly to network changes.

2.5.3 Validations of Optimality Conditions
In Theorem 2.2, we need conditions D3 and D4 to ensure the asymptotic optimality of HEF.

In the following, we test the validity of these conditions.
Condition D3 requires that for any passive BS, the expected energy gain from the solar panel

be larger than the energy consumption regardless of the selection of the active BS. It equals
that the sizes of solar panels are large enough to support the operations for any passive BSs. To
validate condition D3, we generate 50 sensor networks with the sensor nodes distributed in the
sensing field uniformly at random. In Figure 2.9, we show the average of the required sizes of solar
panels in all these generated random networks under different data-generating rates. Confidence
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Figure 2.8: The reactions to network changes when running HEF. We use the ratios of active
time for all BSs as a metric. Figure 2.8a shows the scenario where BS 1 fails at time slot
n = 120. Figure 2.8b shows the scenario where the network splits into two small components
(one component has BS 1 and BS 2 and the other component has BS 3, BS 4 and BS 5) at time
slot n = 120. We see that in both scenarios, HEF reacts rapidly to network changes and always
closely follows OPT.

Table 2.2: Comparisons of Different Algorithms

Algorithms Energy efficiency Robustness Overhead
FIXED low no none

RR medium yes low
HEF high yes low
OPT high - -

intervals of 95% are used. We see that condition D3 is easily satisfied: equipping all BSs with a
50 cm2 solar panel is enough, when the data-generating rates are less than 60 packets/min.

Condition D4 requires that the energy-consumption rates of active BSs be much larger than
the differences of energy-consumption rates among all passive BSs. The energy-consumption
rates of active BSs depend mainly on the time interval between every two GPRS connections.
The larger the GPRS connection interval is , the smaller the energy-consumption rates of active
BSs are. In Figure 2.10, we randomly generate 50 sensor networks and test the validity of
condition D4 under different GPRS connection intervals. We define the condition fulfilled ratio
(CFR) as the fractions of instances that the generated sensor network fulfils condition D4. We
see that condition D4 is always satisfied with a GPRS connection interval less than 20 minutes.
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Figure 2.9: The minimum size of solar panels required by condition D3 in Theorem 2.2 under dif-
ferent data-generating rates. Confidence intervals of 95% are used. We see that the required size
of solar panels slightly increases with the data-generating rate. Equipping all BSs with a 50 cm2

solar panel is sufficient to satisfy condition D3 with a data-generating rate at 60 packets/min.
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Figure 2.10: The condition fulfilled ratio (CFR) versus the GPRS connecting interval. Confidence
intervals of 95% are used. We see that condition D4 is always satisfied with a GPRS interval less
than 20 minutes.

2.6 Real Experiments
We run a 15-day experiment on an outdoor testbed on the EPFL campus. As shown in

Figure 2.11, we deploy 2 different networks at the same 9 locations, resulting in a total number
of 18 sensor nodes. These two networks use 868MHz and 870MHz frequency bands separately
and thus do not interfere with each other. The general architecture of these two networks is
the same as discussed in Section 2.2. The first network N1 is composed of 3 BSs (A1, A2 and
A3) and 6 RSNs (A4, A5, A6, A7, A8 and A9). This network runs HEF to adaptively choose
one active BS. The second network N2 is also composed of 3 BSs (B1, B2 and B3) and 6 RSNs
(B4, B5, B6, B7, B8 and B9). It runs FIXED, which keeps BS B2 active and BSs B1, B3

passive. The data packet is generated as follows. Each sensor node generates a 2-byte counter
every 30 seconds. The value of the counter changes according to a triangular waveform. Then,
each counter is attached with a 4-byte timestamp and a 2-byte indicator for indicating message
types. We duplicate them into four copies and then encapsulate them into data packets. Each
data packet has a 3-byte header containing the node IDs and the hop distances to the active BS.
The average data-generating rate of each sensor node is 35 byte/30 sec. All these data packets
are routed to the active BS that connects to the remote server by using GSM/GPRS every 5
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Figure 2.11: Experiment testbed on the EPFL campus. Two groups of 9 sensor nodes are
installed at the same locations. The two groups use different communication radio frequencies
and thus form two separate networks. In the network with the black nodes, we use HEF to
coordinate 3 BSs, A1, A2 and A3. They are active for 31.4%, 38.1% and 30.5% of the total
time respectively. The network with the white nodes has a fixed active BS B2. The solid lines
represent communication links of sustained good quality. The dotted lines represent temporary
communication links.

minutes. On average, the active BS transmits 9× 35 byte× 5min/30 sec = 3150 byte data every
5 minutes.

In the experiment, we use the battery level as the indicator for the available energy. Ev-
ery 5 minutes, each BS sends its battery level to the active BS in a BS_ADVERT message
(Section 2.2.3). The active BS then forwards this message to the remote server, hence we are
able to observe the variations of the available energy in the WSN. Notice that this message is
transmitted with a low rate and it will not add much communication burden to the network.

BSs and RSNs are equipped with solar panels with areas of 100 cm2 and 50 cm2, respectively.
They are all equipped with 4 AA NiMH rechargeable batteries (each battery has a capacity of
800mAh). In Figure 2.12, we show the battery levels of the six BSs. We see that in network N1,
the 3 BSs with ID A1, A2 and A3 almost always keep the same battery levels, although their
solar panels harvest different amounts of energy. During this period of 15 days, their batteries
do not deplete. Meanwhile, in network N2, the passive BSs B1 and B3 always have high battery
levels because of their low energy-consumption rates. The always-active BS B2 consumes its
battery quickly and on the 4th, 8th and 12th days, the batteries of B2 drain out and we have to
change them. From the experiment, we conclude that by deploying multiple BSs and adaptively
choosing the active BS, the harvested energy is fully used and the network lifetime is prolonged.
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Figure 2.12: Battery levels versus time in the real experiment with six BSs. BSs with ID A1,A2
and A3 share the burden of being active and run the HEF algorithm. As a comparison, B2 is
an always-active BS while BSs B1 and B3 are always passive. We observe two facts as follows.
First, the amounts of available energy of the BSs A1, A2 and A3 are almost all the same during
this 15 days. To clarify this point, we especially investigate the data on Jan 5th. We see that
the active BS consumes energy quickly in each time interval of two hours. However, BSs running
HEF take turns to share this high cost and averages out the temporal and spatial variations of
the energy captured from solar panels. Second, by running the proposed scheme, the lifetime of
the WSN is prolonged. We have to change 3 times the batteries of BS B2 on Jan 3th, Jan 7th
and Jan 11th. Meanwhile, we do not need to change the batteries for the network running HEF
during the entire 15 days.

2.7 Conclusion

In this chapter, we presented and evaluated a novel scheme for organizing WSNs, in which
multiple BSs are deployed, but only one BS is adaptively selected to be active. By using the
proposed scheme, we efficiently utilize the temporally and spatially varying energy resources
available to all BSs. Therefore, the large batteries and energy harvesting devices of individual
BSs can be substantially reduced.

To adaptively choose the active BS, we proposed a simple yet powerful algorithm HEF. We
proved its asymptotic optimality under mild conditions.

Through simulations on the simulator Omnet++/Castalia and real experiments on an outdoor
testbed, we showed that the proposed scheme is energy-efficient, is adaptable to network changes
and is low in communication overhead.
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2.A Appendix

2.A.1 Azuma-Hoeffding inequality

In both the proofs of Theorem 2.1 and Theorem 2.2, we will use the Azuma-Hoeffding in-
equality [30, p. 476] for martingales with bounded differences. We repeat it here for convenience.

Lemma 2.1

Suppose {H(n)}n∈N is a martingale and |H(n) − H(n−1)| < cn almost surely, where cn is
positive real for any n ∈ N. Then for any positive integer N and any positive γ,

P (H(N) −H(0) ≥ γ) ≤ exp
(

−γ2

2
∑N

n=1 c
2
n

)
,

and conversely

P (H(N) −H(0) ≤ −γ) ≤ exp
(

−γ2

2
∑N

n=1 c
2
n

)
.

In our sensor network scenario, for any BS m ∈ Vb, we construct a martingale {h(n)
m }n∈N with

h(n)
m = e(0)m + τ

n∑
t=1

(
s(t)m − s̄

)
, (2.13)

where

En−1h
(n)
m = h(n−1)

m

because of (2.1). Here En−1 is shorthand for denoting the conditional expectation given S(n−1).
Using (2.4) and (2.6), we have

e(n)m = e(0)m + τ

n∑
t=1

(
s(t)m − s̄

)
− τ

n∑
t=1

(Rv(t))m.

Therefore, (2.13) is equivalent to

h(n)
m = e(n)m + τ

n∑
t=1

(Rv(t))m. (2.14)

Using Lemma 2.1, we have the following result.
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Corollary 2.1

When the energy-recharge rates {s(n)}n∈N satisfy conditions (2.1) and (2.2), for any n1 <

n2 ∈ N and for any ∆1,∆2 > 0,

P
(
h(n2)
m − h(n1)

m ≤ −∆1 − (n2 − n1)∆2

)
≤ exp

(
−(∆1 + (n2 − n1)∆2)

2

2(n2 − n1)τ2S2

)
≤ exp

(
−(n2 − n1)∆

2
2

2τ2S2

)
· exp

(
−∆1∆2

τ2S2

)
,

because of (2.13) and because (2.2) yields that s
(n)
m ≤ S. Similarly

P
(
h(n2)
m − h(n1)

m ≥ ∆1 + (n2 − n1)∆2

)
≤ exp

(
−(n2 − n1)∆

2
2

2τ2S2

)
· exp

(
−∆1∆2

τ2S2

)
.

2.A.2 Proof of Theorem 2.1
(i) We first show that (2.8) holds when f∗ < 0. We consider a scheduling algorithm that lets

the cumulative active time for BS m at time slot n be

n∑
t=1

v(t)m =


⌊nv̄∗m⌋, 1 ≤ m ≤ |Vb| − 1,

n−
|Vb|−1∑
k=1

⌊nv̄∗k⌋, m = |Vb|,

where v̄∗m is the m-th element of the optimal solution v̄∗ of problem (2.7). We see that: for any
1 ≤ m ≤ |Vb| − 1, nv̄∗m − 1 ≤

∑n
t=1 v

(t)
m ≤ nv̄∗m; for m = |Vb|, nv̄∗m ≤

∑n
t=1 v

(t)
m ≤ nv̄∗m + |Vb| − 1

due to
∑|Vb|

m=1 nv̄
∗
m = n and nv̄∗k − 1 ≤ ⌊nv̄∗k⌋ ≤ nv̄∗k for 1 ≤ k ≤ |Vb| − 1. Consequently,∥∥∥∥∥nv̄∗ −

n∑
t=1

v(t)

∥∥∥∥∥
∞

< |Vb|. (2.15)

We define the lifetime of each BS m (1 ≤ m ≤ |Vb|) as

Nm = inf{{∞} ∪ {n|e(n+1)
m < 0, n ∈ N}}.

The lifetime of the whole network using the aforementioned scheduling algorithm is

N∗ = min
1≤m≤|Vb|

Nm.

Because Nopt is the optimal lifetime, we have N∗ ≤ Nopt. To show (2.8), it suffices to show that

lim
e→∞

P(N∗ =∞) = 1. (2.16)
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Because of (2.14), e(n)m < 0 implies that

h(n)
m < τ

n∑
t=1

(Rv(t))m

= nτ(Rv̄∗)m + τR(

n∑
t=1

v(t) − nv̄∗)m

< nτ(Rv̄∗)m + |Vb|τ ∥R∥∞ ·

∥∥∥∥∥
n∑

t=1

v(t) − nv̄∗

∥∥∥∥∥
∞

< nτam + |Vb|2τ∥R∥∞, (2.17)

where in the second inequality we use (2.15) and in the third inequality we define am = (Rv̄∗)m.
Due to Rv̄∗ ≤ f∗u in problem (2.7), we have am ≤ f∗ < 0.

Using the union bound, we have

P (Nm <∞)

= P(∃n ≥ 1 : e(n+1)
m < 0)

= P(∃n ≥ 2 : e(n)m < 0)

≤ P(∃n ≥ 2 : h(n)
m < nτam + |Vb|2τ∥R∥∞)

≤
∞∑

n=2

P(h(n)
m < nτam + |Vb|2τ∥R∥∞) (2.18)

Using Corollary 2.1, we have

P(h(n)
m < nτam + |Vb|2τ∥R∥∞)

= P
(
h(n)
m − h(0)

m < −e+ nτam + |Vb|2τ∥R∥∞
)

≤ exp
(
−na2m
2S2

)
· exp

(
(e− |Vb|2τ∥R∥∞)am

τS2

)
(2.19)

By using (2.18) and (2.19) together and by noticing that
∑∞

n=2 exp
(
−na2m/2S2

)
= β < ∞, we

have that

P (Nm <∞) < β exp
(
(e− |Vb|2τ∥R∥∞)am

τS2

)
.

Using the union bound and taking the limit e→∞, we have

lim
e→∞

P(N∗ <∞) ≤ lim
e→∞

|Vb|∑
m=1

P(Nm <∞) = 0,

which implies (2.16). Therefore, we have (2.8).
(ii) Then, we will show that (2.9) holds when f∗ > 0 in the following two separate parts: lim

e→∞
P (Nopt ≤ (1− δ)e/(τf∗)) = 0, ∀δ > 0,

lim
e→∞

P (Nopt ≥ (1 + δ)e/(τf∗)) = 0, ∀δ > 0.

(2.20)

(2.21)
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1) In the first part, to show (2.20), it suffices to show that

lim
e→∞

P(N∗ ≤ (1− δ)e/(τf∗)) = 0,∀δ > 0, (2.22)

because N∗ ≤ Nopt.
Because of (2.17), e

(n+1)
m < 0 implies that h

(n+1)
m < (n + 1)τam + |Vb|2τ∥R∥∞. Using the

union bound,

P
(
Nm ≤

(1− δ)e

τf∗

)
= P

(
∃n ≤ (1− δ)e

τf∗ : e(n+1)
m < 0

)
= P

(
∃n ≤ (1− δ)e

τf∗ + 1 : h(n)
m < nτam + |Vb|2τ∥R∥∞

)

≤
(1−δ)e/τf∗+1∑

n=1

P
(
h(n)
m < nτam + |Vb|2τ∥R∥∞

)
. (2.23)

Now, using Lemma 2.1, we have

P(h(n)
m < nτam + |Vb|2τ∥R∥∞)

= P
(
h(n)
m − h(0)

m < −e+ |Vb|2τ∥R∥∞ + nτam

)
≤ exp

(
−(−e+ |Vb|2τ∥R∥∞ + nτam)2

2nτ2S2

)

≤ exp
(
−(δe− |Vb|2τ∥R∥∞)2

2(1− δ)eτS2/f∗

)
, (2.24)

where the inequality on the fourth line is due to n ≤ (1− δ)e/(τf∗), and am ≤ f∗ which follows
from am = (Rv̄∗)m and Rv̄∗ ≤ f∗u.

Combining (2.23) and (2.24) yields that

P
(
Nm ≤

(1− δ)e

τf∗

)
≤
(
(1− δ)e

τf∗ + 1

)
exp

(
−(δe− |Vb|2τ∥R∥∞)2f∗

2(1− δ)eτS2

)
. (2.25)

Using the union bound, we see that

P
(
N∗ ≤ (1− δ)e

τf∗

)
≤

|Vb|∑
m=1

P
(
Nm ≤

(1− δ)e

τf∗

)
.

Plugging in (2.25) and taking e→∞, we have (2.22).
2) In the second part, we will show (2.21). Consider the event that Nopt ≥ (1+ δ)e/(τf∗). It

implies that there exists a sequence of decision vectors {v(t)}t∈N such that the available energy
at time (1 + δ)e/(τf∗) is non-negative, i.e.,

e(
(1+δ)e
τf∗ ) ≥ 0. (2.26)
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Let v̄opt be the average decision vector from time 1 to (1 + δ)e/(τf∗), that is,

v̄opt =
1

(1 + δ)e/(τf∗)

(1+δ)e/(τf∗)∑
n=1

v(n). (2.27)

Using (2.4), (2.26) and that e(0) = eu, we have that

eu+

(1+δ)e/(τf∗)∑
n=1

τs(n) ≥ τC

(1+δ)e/(τf∗)∑
n=1

v(n).

Substracting (1+ δ)e/(τf∗)s̄ on both sides of this inequality and using (2.6) and (2.27), we have
that

eu+ τ

(1+δ)e/(τf∗)∑
n=1

(s(n) − s̄) ≥ (1 + δ)e

f∗ Rv̄opt. (2.28)

Because f∗ is the optimal objective value of (2.7), there exists 1 ≤ m∗ ≤ |Vb|, such that
(Rv̄opt)m∗ ≥ f∗. Plugging it into (2.28) and dividing both sides of the equation by (1 + δ)e/f∗,
we have

1

(1 + δ)e/(τf∗)

(1+δ)e/(τf∗)∑
t=1

(s
(t)
m∗ − s̄m∗) ≥ f∗δ

(1 + δ)
. (2.29)

Because s
(t)
m∗ − s̄m∗ is a martingale difference term, it is uncorrelated at different time. Using

the weak law of large numbers,
∑n0

n=1(s
(n)
m∗ − s̄m∗)/n0 weakly converges to 0 when n0 → ∞.

Therefore, the probability of (2.29) converges to zero when e→∞. Remember that event (2.29)
is implied by Nopt ≥ (1 + δ)e/(τf∗), which concludes the proof.

2.A.3 Proof of Theorem 2.2
Notations and a short summary

For the ease of discussion, we define four events:

A1 = {∃Nhef ≤
(1− δ)e

τf∗ , l∗ ∈ [1, |Vb|], s.t., e(Nhef+1)
l∗ < 0},

A′
1 = {∃Nhef ≤ Ke, l∗ ∈ [1, |Vb|], s.t., e(Nhef+1)

l∗ < 0},

A2 = {e(Nhef+1)
m < ϵ1e, ∀1 ≤ m ≤ |Vb|},

A3 =

{∥∥∥∥∥ 1

Nhef + 1

Nhef+1∑
n=1

v(n) − R−1u

u⊤R−1u

∥∥∥∥∥
∞

< ϵ2

}
, (2.30)

where K is the constant defined in (2.11) and ϵ1, ϵ2 are two positive numbers which can be set
arbitrarily small.

Events A1 and A′
1 mean that the lifetime incurred by HEF Nhef is not larger than (1− δ)e/τf∗

and Ke, respectively. Event A2 occurs when the available energy of any BS is smaller than ϵ1e

at time Nhef + 1. Event A3 means that the average of decision vectors up to time Nhef + 1 is
arbitrarily close to R−1u/u⊤R−1u.
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Because Nhef ≤ Nopt and because of (2.9), when f∗ > 0,

lim
e→∞

P
(

Nhef

e/(τf∗)
− 1 < δ

)
= 1, ∀δ > 0. (2.31)

Therefore, Theorem 2.2 can be recast as:

lim
e→∞

P(A1) = 0, if f∗ > 0, (2.32)

lim
e→∞

P(A′
1) = 0, if f∗ < 0. (2.33)

First, using Azuma-Hoeffding inequality [30, p. 476] and condition D3, we will show that the
probability that HEF uses up all the available energy of all BSs converges to 1 when e → ∞.
More precisely, we will show that lime→∞ P(A′

1 ∩ Ā2) = 0 and lime→∞ P(A1 ∩ Ā2) = 0.
Secondly, using the duality of linear programming and condition D4, we will show that

R−1u/u⊤R−1u is the optimal fractions of active time for all BSs. Then, we will show that if
event A3 is true, HEF performs optimally. We will deduce that: if f∗ < 0, lime→∞ P(A′

1∩A3) = 0;
and if f∗ > 0, lime→∞ P(A1 ∩A3) = 0.

Thirdly, we will show that if HEF uses up the available energy of all BSs (event A2 is true),
the average of decision vector

∑Nhef+1
n=1 v(n)/(Nhef + 1) is close to R−1u/u⊤R−1u (event A3 is

true). Then, we will deduce that: if lime→∞ P(A′
1 ∩ A3) = 0, we have lime→∞ P(A′

1 ∩ A2) = 0;
and if lime→∞ P(A1 ∩A3) = 0, we have lime→∞ P(A1 ∩A2) = 0.

To sum things up, to prove (2.32) and (2.33), we will show the following six separate points:
— Point 1A: lime→∞ P(A′

1 ∩ Ā2) = 0.
— Point 1B: lime→∞ P(A1 ∩ Ā2) = 0.
— Point 2A: If f∗ < 0, we have lime→∞ P(A′

1 ∩A3) = 0.
— Point 2B: If f∗ > 0, we have lime→∞ P(A1 ∩A3) = 0.
— Point 3A: Given that lime→∞ P(A′

1 ∩A3) = 0, we have lime→∞ P(A′
1 ∩A2) = 0.

— Point 3B: Given that lime→∞ P(A1 ∩A3) = 0, we have lime→∞ P(A1 ∩A2) = 0.
Then, combining Points 1A, 2A and 3A, we have

lim
e→∞

P(A′
1) = lim

e→∞
(P(A′

1 ∩A2) + P(A′
1 ∩ Ā2)) = 0,

which proves (2.33), and likewise, Points 1B, 2B and 3B yield (2.32).
For the ease of discussion, we define two constants

d1 = max
m ̸=j

Rmj < 0,

d2 = max
m,j

Cmj > 0.

(2.34)

(2.35)

Proof for point 1A and point 1B

We only show the proof for point 1A here. The proof for point 1B is identical if we replace K

with (1− δ)/(τf∗). Let l∗ be a BS that drains out of energy at time Nhef +1, i.e., e(Nhef+1)
l∗ < 0.

Let N ′ be the last time that BS l∗ is selected as the active BS (we set N ′ = 0 if BS l∗ is never
selected to be active), that is,

N ′ = sup{{0} ∪ {n | ∃l∗, v(n)l∗ = 1, n ≤ Nhef}}.
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We define the event A4 as
A4 = {Nhef −N ′ + 1 ≥ ϵ3e}.

Using (2.14), we see that

h
(Nhef+1)
l∗ − h

(N ′)
l∗ = e

(Nhef+1)
l∗ − e

(N ′)
l∗ + τ

Nhef+1∑
n=N ′+1

(Rv(n))l∗

< d1τ(Nhef −N ′ + 1), (2.36)

where the inequality holds because e
(Nhef+1)
l∗ < 0 ≤ e

(N ′)
l∗ , because BS l∗ is not selected as the

active BS from time N ′ + 1 to Nhef + 1 and because of (2.34).
Using Corollary 2.1, we see that

P
(
h
(Nhef+1)
l∗ − h

(N ′)
l∗ < d1τ(Nhef −N ′ + 1)

)
≤ exp

(
−(Nhef −N ′ + 1)d21

2S2

)
. (2.37)

Using the union bound, we have

P(A′
1 ∩A4)

≤
Ke∑

N ′=1

Ke∑
Nhef=1

P
(
h
(Nhef+1)
l∗ − h

(N ′)
l∗ < d1τ(Nhef −N ′ + 1)

)
≤ (Ke)2 exp

(
− (Nhef −N ′ + 1)d21

2S2

)
≤ (Ke)2 exp

(
−ϵ3ed

2
1

2S2

)
, (2.38)

where the second inequality follows from N ′, Nhef ≤ Ke and (2.37), and the third inequality
follows from Nhef −N ′ + 1 ≥ ϵ3e in the definition of A4.

Taking e→∞ on both sides of (2.38), we see that lime→∞ P(A′
1 ∩A4) = 0.

In the following, we will show that Ā4 ⊆ A2. If Ā4 is true, Nhef − N ′ + 1 < ϵ3e. Then,
by summing up (2.3) from time N ′ to Nhef + 1, we derive the following upper-bound for the
available energy e

(N ′)
l∗

e
(N ′)
l∗ = e

(Nhef+1)
l∗ −

Nhef+1∑
n=N ′+1

s
(n)
l∗ +

Nhef+1∑
n=N ′+1

(Cv(n))l∗ ,

<

Nhef+1∑
n=N ′+1

(Cv(n))l∗

< d2ϵ3e, (2.39)

where the first inequality holds because e
(Nhef+1)
l∗ < 0 and because s

(n)
l∗ > 0 for all n, and the

second inequality holds because Nhef −N ′ + 1 < ϵ3e, because l∗ is not selected as the active BS
between time N ′ + 1 to time Nhef + 1 and because of (2.35).
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Because BS l∗ is selected by HEF at time N ′, it has the highest available energy among all
BSs. Therefore, we have e

(N ′)
m < d2ϵ3e for all m ∈ Vb. This leads to the following upper-bound

for the available energy of all BSs at time Nhef + 1,

e(Nhef+1)
m = e(N

′)
m +

Nhef+1∑
n=N ′+1

s(n)m −
Nhef+1∑
n=N ′+1

(Cv(n))m

< d2ϵ3e+ (Nhef −N ′ + 1)S

< d2ϵ3e+ ϵ3eS = ϵ1e. (2.40)

where in the first inequality we use 0 ≤ s
(n)
m ≤ S and in the second inequality we use Nhef −N ′+

1 < ϵ3e and set ϵ1 = (d2 + S)ϵ3.
Therefore, if Ā4 holds, so does A2. Hence, Ā4 ⊆ A2 which follows that Ā2 ⊆ A4. Conse-

quently, A′
1 ∩ Ā2 ⊆ A′

1 ∩A4. It follows that lime→∞ P(A′
1 ∩ Ā2) ≤ lime→∞ P(A′

1 ∩A4) = 0.

Proof for point 2A and point 2B

We consider the following two scenarios when showing both points 2A and 2B: (i) neither
R−1u ≥ 0 nor R−1u ≤ 0 is satisfied; (ii) either R−1u ≥ 0 or R−1u ≤ 0 is satisfied.

(i) In the first scenario, the vector R−1u/u⊤R−1u contains at least one negative element.
Let d3 be the maximum value among all the negative elements of R−1u/u⊤R−1u. Noticing
that

∑Nhef+1
n=1 v(n)/(Nhef + 1) ≥ 0, we see that if we select ϵ2 < −d3, event A3 is always false.

Therefore, by selecting a small enough ϵ2, we have both

lim
e→∞

P(A1 ∩A3) ≤ lim
e→∞

P(A3) = 0, (2.41)

lim
e→∞

P(A′
1 ∩A3) ≤ lim

e→∞
P(A3) = 0. (2.42)

(ii) We are left with the second scenario where either R−1u ≥ 0 or R−1u ≤ 0. In this
scenario, we compute in Lemma 2.2 the optimal solution of problem (2.7) analytically.

Lemma 2.2
Under the conditions that: (i) either R−1u ≥ 0 or R−1u ≤ 0, and (ii) (C⊤)−1u ≥ 0, the
optimal solution of problem (2.7) is{

v̄∗ = R−1u/u⊤R−1u,

f∗ = 1/u⊤R−1u.

(2.43)
(2.44)

Proof.
The general idea of the proof is to use the duality properties of linear programmings. When
either R−1u ≥ 0 or R−1u ≤ 0, v̄ = R−1u/u⊤R−1u is a feasible solution of problem (2.7),
whose corresponding objective value is 1/u⊤R−1u. Because f∗ is the optimal objective value of
(2.7), we have 1/u⊤R−1u ≥ f∗. In the following, we will show f∗ ≥ 1/u⊤R−1u.
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The dual problem of (2.7) is written as:

max
w,λ

w

s.t. u⊤λ = 1,

R⊤λ ≥ wu,

λ ≥ 0.

(2.45)

Because of the Sherman-Woodbury-Morrison formula and because R = C− s̄ ·u⊤, we have that

(R⊤)−1u = (C⊤)−1u/(1− u⊤C−1s̄).

Because (C⊤)−1u ≥ 0, we either have (R⊤)−1u ≥ 0 or (R⊤)−1u ≤ 0, depending on the
difference between u⊤C−1s̄ and 1. In both cases, we have a feasible solution of the dual problem

λ =
(R⊤)−1u

u⊤(R⊤)−1u
,

w =
1

u⊤(R⊤)−1u
.

Consequently, the objective value 1/
(
u⊤(R⊤)−1u

)
reached by this feasible solution of the dual

problem provides a lower bound of the objective value for the original problem (2.7), that is,
f∗ ≥ 1/u⊤(R⊤)−1u. By noticing that

1/u⊤ · (R⊤)−1 · u = 1/u⊤ · (R)−1 · u,

we see that f∗ = 1/u⊤R−1u. The solution that attains this optimal objective value is v̄∗ =

R−1u/u⊤R−1u.

When event A3 is true, Using (2.14), we see that

h
(Nhef+1)
l∗ − h

(0)
l∗

= e
(Nhef+1)
l∗ − e+ τ

Nhef+1∑
n=1

(Rv(n))l∗

< −e+ τ

Nhef+1∑
n=1

(R(v(n) − v̄∗))l∗ + τ

Nhef+1∑
n=1

(Rv̄∗)l∗

< −e+ τ(Nhef + 1) · |Vb|ϵ2∥R∥∞ + τ(Nhef + 1) · f∗, (2.46)

where the inequality on the third line is because e
(Nhef+1)
l∗ < 0, and the inequality on the fourth

line follows from (2.30) and Rv̄∗ ≤ f∗u. We will use (2.46) in both the proof for points 2A and
2B.

1) We first look at point 2A and consider the event A′
1 ∩A3.

We denote by
d4 = −f∗ − |Vb|ϵ2∥R∥∞,

which is positive when we select ϵ2 < −f∗/|Vb|∥R∥∞.
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Plugging the definition of d4 into (2.46) and using Corollary 2.1, we have

P(h(Nhef+1)
l∗ − h

(0)
l∗ < −e− τd4(Nhef + 1))

≤ exp
(
−(Nhef + 1)d24

2S2

)
exp

(
− ed4
τS2

)
≤ exp

(
− ed4
τS2

)
.

Using the union bound and using Nhef ≤ Ke, we have

P(A′
1 ∩A3)

≤
Ke∑

Nhef=1

P
(
h
(Nhef+1)
l∗ − h

(0)
l∗ < −e− τd4(Nhef + 1)

)
≤ Ke exp

(
− ed4
τS2

)
.

Taking e→∞, we see that lime→∞ P(A′
1 ∩A3) = 0.

2) Then, we show point 2B by considering the event A1 ∩A3. Through (2.46), we have

h
(Nhef+1)
l∗ − h

(0)
l∗

< −e+ (|Vb|ϵ2∥R∥∞ + f∗)τ(Nhef + 1)

≤ −e+ (|Vb|ϵ2∥R∥∞ + f∗)((1− δ)e/f∗ + τ) (2.47)

= −
(
δ − |Vb|ϵ2(1− δ)∥R∥∞

f∗

)
e+ τ(|Vb|ϵ2∥R∥∞ + f∗),

where the inequality on the third line is because Nhef ≤ (1 − δ)e/(τf∗). We define a small
constant ζ > 0 and see that τ(|Vb|ϵ2∥R∥∞ + f∗) ≤ ζe when e is large. Define

d5 = δ − |Vb|ϵ2(1− δ)∥R∥∞/f∗ − ζ,

which is positive when we set ϵ2 < (δ − ζ)f∗/|Vb|(1− δ)∥R∥∞.
Plugging d5 into (2.47) and using Corollary 2.1,

P(h(Nhef+1)
l∗ − h

(0)
l∗ < −d5e) ≤ exp

(
− d25e

2

2τ2S2

)
.

Using the union bound and using Nhef ≤ (1− δ)e/(τf∗), we have

P(A1 ∩A3)

≤
(1−δ)e/(τf∗)∑

Nhef=1

P
(
h
(Nhef+1)
l∗ − h

(0)
l∗ < −d5e

)
≤ (1− δ)e

τf∗ exp
(
− d25e

2

2τ2S2

)
.

Taking e→∞, we see that lime→∞ P(A1 ∩A3) = 0.
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Proof for point 3A and point 3B

The proofs for 3A and point 3B are identical. Therefore, we only show the proof for 3A here.
We define the event A5 as

A5 =

{
1

Nhef + 1

∥∥∥∥∥
Nhef+1∑
n=1

s(n) − s̄

∥∥∥∥∥
∞

< ϵ4

}
, (2.48)

where ϵ4 is a small constant.
We first show that event A′

1 ∩ A2 ∩ A5 ⊆ A′
1 ∩ A3. Using (2.4) and (2.6), we calculate the

difference between the available energy of all BSs at time 0 and that at time Nhef + 1:

e(Nhef+1) = e(0) −
Nhef+1∑
n=1

Rv(n) +

Nhef+1∑
n=1

(
s(n) − s̄

)
,

which is equivalent to

1

Nhef + 1

Nhef+1∑
n=1

v(n) − 1

Nhef + 1
R−1(e(0) − e(Nhef+1))

= (R)−1

∑Nhef+1
n=1

(
s(n) − s̄

)
Nhef + 1

. (2.49)

Multiplying u⊤ on both sides and using u⊤ ·
∑Nhef+1

n=1 v(n) = Nhef+1 + 1, we see that

1− u⊤R−1 e
(0) − e(Nhef+1)

Nhef + 1
= u⊤R−1

∑Nhef+1
n=1

(
s(n) − s̄

)
Nhef + 1

. (2.50)

Taking the infinite norm on both sides and knowing that event A5 (2.48) holds true, we transform
(2.50) into ∣∣∣∣1− u⊤R−1(e(0) − e(Nhef+1))

Nhef + 1

∣∣∣∣ < |Vb|∥u⊤R−1∥∞ϵ4. (2.51)

Then, since e(0) = eu, (2.51) becomes∣∣∣∣1− eu⊤R−1u

Nhef + 1

∣∣∣∣ < |Vb|∥u⊤R−1∥∞ϵ4 +

∣∣∣∣u⊤R−1e(Nhef+1)

Nhef + 1

∣∣∣∣
< |Vb|∥u⊤R−1∥∞

(
ϵ4 +

∥e(Nhef+1)∥∞
Nhef + 1

)
< |Vb|∥u⊤R−1∥∞ (ϵ4 + ϵ1d2)

= ϵ5, (2.52)

where the third inequality holds because Nhef + 1 ≥ e/d2 and event A2 holding true gives
∥e(Nhef+1)∥∞ ≤ ϵ1e, and the fourth inequality comes from the definition

ϵ5 = |Vb|∥u⊤R−1∥∞ · (ϵ4 + ϵ1d2) .

We recast (2.52) as
1− ϵ5
u⊤R−1u

<
e

Nhef + 1
<

1 + ϵ5
u⊤R−1u

. (2.53)
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We transform (2.49) into∥∥∥∥∥ 1

Nhef + 1

Nhef+1∑
n=1

v(n) − R
−1e(0)

Nhef + 1

∥∥∥∥∥
∞

≤ ∥R−1∥∞ ·

∥∥∥∥∥−e(Nhef+1) +
∑Nhef+1

n=1 (s(n) − s̄)
Nhef + 1

∥∥∥∥∥
∞

≤ ∥R−1∥∞

∥∥∥∥e(Nhef+1)

Nhef + 1

∥∥∥∥
∞

+

Nhef+1∑
n=1

∥s(n) − s̄∥∞
Nhef + 1


≤ ∥R−1∥∞

(
ϵ1e

e/d2
+ ϵ4

)
≤ ∥R−1∥∞(ϵ4 + ϵ1d2), (2.54)

where the third inequality is because ∥e(Nhef+1)∥∞ < ϵ1e, because Nhef + 1 ≥ e/d2 and because
of (2.48). Plugging (2.53) into (2.54), we have∣∣∣∣∣ 1

Nhef + 1

Nhef+1∑
n=1

v(n) − R−1u

u⊤R−1u

∣∣∣∣∣ < ϵ2u, (2.55)

where we set
ϵ2 =

∥∥R−1
∥∥
∞ (ϵ4 + ϵ1d2) +

ϵ5∥R−1u∥∞
u⊤R−1u

.

Then, (2.55) shows that A3 occurs, and therefore A′
1∩A2∩A5 ⊆ A′

1∩A3 if we choose ϵ1, ϵ2, ϵ4, ϵ5
properly. Hence, if lime→∞ P(A′

1 ∩A3) = 0,

lim
e→∞

P(A′
1 ∩A2 ∩A5) = 0.

Moreover, because of the rule of additions of probabilities,

P(A′
1 ∩A2) + P(A5) = P(A′

1 ∩A2 ∩A5) + P((A′
1 ∩A2) ∪A5)

≤ P(A′
1 ∩A2 ∩A5) + 1. (2.56)

Because lime→∞ P(A5) = 1 holds true using the weak law of large numbers with (2.1) and (2.2),
we have lime→∞ P(A′

1 ∩A2) = 0.
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Chapter 3

Joint Selection of Base Stations and
Routing

First, there is a mountain, then there is no
mountain, then there is.

Traditional Buddhist saying

In the previous chapter, we discussed the scheme of virtually moving one BS. In this chapter,
we discuss the general problem of virtually moving multiple BSs, where we adaptively select
both the active BSs and routing. Due to the general formulation of this problem, the proposed
algorithms in this chapter have merits beyond the WSNs. We envision that they can be used
in many other networked systems including super-node selection in peer-to-peer networks and
cooperative beam-forming in cellular networks.

3.1 Introduction
By virtually moving one BS, the available energy of all BSs is efficiently utlitized. However,

in a large-scale WSN, having only one active BS is not energy efficient because the average hop-
distance from RSNs to the only active BS is large. The energy consumption of RSNs quickly
accumulates along the communication paths from RSNs to that BS. Consequently, the overall
energy consumption of the WSN is high.

Therefore, for a high energy-efficiency in large-scale WSNs, we have to enable multiple BSs
to be simultaneously active, or in other words, we have to “virtually move multiple BSs”. In
this scheme, we have to consider the overall energy efficiency of both BSs and RSNs. There is
a tradeoff between the energy consumption of the long-range communication and that of short-

43
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i

BSs

RSNs

j

Short-range communication

Long-range communication 

y i

xi j

z i

ci

r

Remote server

Figure 3.1: An example of the considered WSN where |Vr| = 4 and |Vb| = 4. The data rate on
any short-range communication link (i, j) from i to j is denoted by xij , and the data rate on any
long-range communication link from BS i ∈ Vb to the remote server is denoted by yi. The data
generating rate of every RSN is r. The binary variable zi = 1 if BS i ∈ Vb is active and zi = 0

otherwise. The energy-consumption rate of any RSN i ∈ Vb ∪ Vr is denoted by ci.

range communication. The more the BSs are activated, the higher the energy consumption of
long-range communication, and the lower the energy consumption of short-range communication.

To efficiently use the available energy of all BSs and RSNs, we have to address the following
problems: i) When, how many and which active BSs should we use at each time? and ii) how
should we adapt the routing among RSNs when different subsets of BSs are active? Therefore,
we need to adaptively select both the active BSs and routing for RSNs.

This general problem of virtually moving BSs is much harder than the traditional maximum-
lifetime routing problem (e.g., [16]), because active BSs consume a large and fixed amount of
energy for using long-range communications as shown in Figure 1.2b. This fixed energy consump-
tion makes the problem combinatorial. The traditional Garg-Konemann typed algorithms [27]
cannot be directly applied here, as they only deal with linear-packing problems.

In this chapter, we propose a novel scheme that transforms the problem into a sequence of
uncapacitated facility-location (UFL) problems [35] by using the constrained gradient method [24].
Under very mild conditions, the obtained UFL problems have approximate solutions with an
approximation ratio of 1.61 [35]. By adaptively solving the sequence of UFL problems, our
proposed algorithm yields a lifetime at least 62% of the optimum. The proposed algorithm is
adaptive, has low computational complexity and uses only easily available information as input.
It is therefore a perfect fit for the WSN paradigm.

Through extensive simulations, we show that virtually moving multiple BSs is more energy
efficient compared to other existing schemes for organizing WSNs. We also show that the achieved
lifetime of the proposed scheduling algorithm is always close to the optimum.
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3.2 System Model
As shown in Figure 3.1, we model the WSN as a directed graph whose vertices are a set

of BSs Vb, a set of RSNs Vr, and a remote server S. The edges in the directed graph consist
of (i) short-range communication links among all BSs and RSNs Vb ∪ Vr, and (ii) long-range
communication links from BSs Vb to the remote server S. We now introduce the definitions for
data communication and energy consumption in the considered WSN.

3.2.1 Data Communication
Each RSN i ∈ Vr generates data with a constant rate r ∈ R+, whereas BSs do not generate

data. All data have to be transmitted to active BSs by short-range and multi-hop communica-
tions. Active BSs forward the collected data to a remote server S via long-range communication.
Although active BSs are adaptively changed, RSNs always actively sense and upload data to the
remote server via active BSs. Let xij ∈ R+

0 be the data rate sent on the short-range commu-
nication link from i to j (i, j ∈ Vb ∪ Vr). Let yi ∈ R+

0 be the data rate sent on the long-range
communication link from BS i ∈ Vb to the remote server S. Because the rate of data inflow and
outflow should be balanced both on RSNs and on BSs, we have

∑
j∈Vb∪Vr

xij =
∑

j∈Vb∪Vr

xji + r, ∀i ∈ Vr,∑
j∈Vb∪Vr

xij + yi =
∑

j∈Vb∪Vr

xji, ∀i ∈ Vb,

xij ≥ 0, i, j ∈ Vb ∪ Vr,

yi ≥ 0, i ∈ Vb.

(3.1)

Let zi (i ∈ Vb) be a binary variable indicating the state of BS i : if BS i is active, zi = 1, and
otherwise zi = 0. When BS i is passive, its data rate of long-range communication yi should be
0. Therefore,

yi ≤ |Vr|rzi, (3.2)

where |Vr|r is the total data rate transmitted in the whole WSN. If BS i is active, (3.2) poses no
constraint on yi.

3.2.2 Energy Consumption
We denote the energy-consumption rate of either a RSN or a BS i ∈ Vb ∪ Vr by ci (ci ∈ R+).

(i) On the one hand, for a RSN,

ci = cc + cst
∑

j∈Vb∪Vr

xij + csr
∑

j∈Vb∪Vr

xji, ∀i ∈ Vr, (3.3)

where cc denotes the constant energy-consumption rate for sensing and initiating the short-
range communication, and cst, csr denote the energy-consumption rates for transmitting
and receiving unit data via short-range communication, respectively.
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(ii) On the other hand, for a BS,

ci = cc + cst
∑

j∈Vb∪Vr

xij + csr
∑

j∈Vb∪Vr

xji + clczi + cltyi, ∀i ∈ Vb, (3.4)

where clc denotes the fixed energy-consumption rate for initiating and closing long-range
communication and clt denotes the energy-consumption rate for actually transmitting unit
data via long-range communication.

Let the initially available energy of each RSN or BS i (i ∈ Vb ∪ Vr) be denoted by ei.
For simplicity of discussion, we group {xij}i,j∈Vb∪Vr into a vector x, group {yi}i∈Vb

into a
vector y, group {zi}i∈Vb

into a vector z, group {ci}i∈Vb∪Vr into a vector c and group {ei}i∈Vb∪Vr

into a vector e.
Notice that the state of a WSN is characterized by the data rates of short-range communi-

cation x, the data rates of long-range communication y, the selection of active BSs z and the
energy-consumption rates c. We call the four-tuple (x,y, z, c) a configuration of the network.

3.3 Problem Formulations
Scheduling the virtual movement of BSs is equivalent to finding a set of configurations and

finding the time durations. In this section, we first describe the optimization space for selecting
the configurations. Then, we formally formulate the scheduling problem, namely, the virtually-
moving BSs problem. At the end of this section, we show why our proposed scheme is more
energy-efficient than the previously proposed schemes [4, 7, 29, 59, 69].

3.3.1 The Optimization Space
We denote the set of all candidate configurations by

L = {(x,y, z, c) | (3.1), (3.2), (3.3) and (3.4) hold}.

Because z is a binary vector taking 2|Vb| − 1 possible values (there should be at least one active
BS, therefore we cannot have z = 0), we can separate L into 2|Vb| − 1 subsets based on different
values of z. We denote the possible values of z by z[1], z[2], · · · , z[2|Vb|−1] with a non-decreasing
order of the number of active BSs. In particular, the first |Vb| elements, z[1], z[2], · · ·z[|Vb|] denote
the BSs selections where only one BS is active. For any 1 ≤ k ≤ 2|Vb| − 1, we denote by L[k] the
subset of L satisfying z = z[k]:

L[k] = {(x,y, z[k], c) | (3.1), (3.2), (3.3), (3.4) hold},

which is a simplex because constraints (3.1), (3.2), (3.3), (3.4) are linear after fixing z = z[k].
Decomposing L =

∪2|Vb|−1
k=1 L[k] enables us to simplify the optimization problem, as will be

explained in the following section.

3.3.2 The Virtually-Moving BSs Problem
Because L[k] is a simplex for all 1 ≤ k ≤ 2|Vb| − 1, the convex combination of any two

configurations in L[k] is still in L[k]. Let (x[1], y[1], z[k], c[1]) ∈ L[k] and (x[2], y[2], z[k], c[2]) ∈ L[k]
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be used for time durations t[1] and t[2]. Using these two configurations is equivalent to using their
convex combination(

t[1]x[1] + t[2]x[2]

t[1] + t[2]
,
t[1]y[1] + t[2]y[2]

t[1] + t[2]
, z[k],

t[1]c[1] + t[2]c[2]

t[1] + t[2]

)
,

which is still in L[k], for a time duration t[1] + t[2]. This further implies that any number of
configurations in the same set L[k] can be substituted by only one configuration—their convex
combination.

Therefore, in the virtually-moving BSs problem, we seek at most 2|Vb|−1 configurations: For
each 1 ≤ k ≤ 2|Vb| − 1, we select a configuration (x[k], y[k], z[k], c[k]) ∈ L[k] and a time duration
t[k], such that the total lifetime

∑2|Vb|−1
k=1 t[k] is maximized given the initially available energy e:

max
{x[k],y[k],z[k],c[k],t[k]}2|Vb|−1

k=1

2|Vb|−1∑
k=1

t[k]

s.t.
2|Vb|−1∑
k=1

t[k]c[k] ≤ e, (3.5)(
x[k],y[k], z[k], c[k]

)
∈ L[k], ∀1 ≤ k ≤ 2|Vb| − 1,

t[k] ≥ 0, ∀1 ≤ k ≤ 2|Vb| − 1.

We denote the optimal lifetime of (3.5) by T ∗. To differentiate with other schemes that will
be mentioned below, we call this scheme MultiMove, which schedules the virtual movement of
multiple BSs by solving problem (3.5).

3.3.3 Comparisons to Other Schemes

In the following, we compare MultiMove with some other existing schemes.
MultiFixed [7, 29, 59]: This scheme selects a subset of BSs to be always active and selects

the routes of short-range communications. This boils down to selecting only one configuration
(x,y, z, c) ∈ L, so that the lifetime of the WSN is maximized:

max
x,y,z,c,t

t

s.t. (x,y,z, c) ∈ L,
tc ≤ e,

(3.6)

where t denotes the lifetime of the network, and tc denotes the total energy consumption that
should be no larger than the initially available energy e.

OneMove [4, 69]: In this scheme, we schedule the virtual movement of one BS on a finite
set of candidate locations for maximizing lifetime. This is equivalent to selecting at most |Vb|
configurations: for each 1 ≤ k ≤ |Vb| (in contrast to 1 ≤ k ≤ 2|Vb| − 1 as in the MultiMove
scheme), we select one configuration (x[k], y[k], z[k], c[k]) ∈ L[k] in each set L[k] with the time



48 Joint Selection of Base Stations and Routing

Figure 3.2: Optimization spaces of different schemes when the WSN has three BSs. The whole
space for candidate configurations L is the union of simplexes L[1], L[2], · · · , L[7] which are
denoted by the grey polygons. The optimization spaces of MultiFixed is L. The optimization
space of OneMove is illustrated by the space Φ1 = conv(

∪3
k=1 L[k]), whose edges are denoted by

the dotted lines. The optimization space of MultiMove is illustrated by the space Φ2 = conv(L),
whose edges are denoted by the dashed lines. The common edges of Φ1 and Φ2 are denoted by
dash-dot lines. We see that MultiMove has an optimization space larger than both MultiFixed
and OneMove.

duration t[k], such that the total lifetime
∑|Vb|

k=1 t
[k] is maximized:

max
{x[k],y[k],z[k],c[k],t[k]}|Vb|

k=1

|Vb|∑
k=1

t[k]

s.t.
|Vb|∑
k=1

t[k]c[k] ≤ e, (3.7)(
x[k],y[k], z[k], c[k]

)
∈ L[k], ∀1 ≤ k ≤ |Vb|,

t[k] ≥ 0, ∀1 ≤ k ≤ |Vb|.

MultiMove is more energy-efficient than the other schemes mentioned above. In the Mul-
tiFixed scheme, we select one configuration in the optimization space L. In the MultiMove
scheme, we select one configuration (x[k],y[k], z[k], c[k]) ∈ L[k] and a time duration t[k] for any
1 ≤ k ≤ 2|Vb| − 1. This virtually creates a new configuration whose average energy-consumption
rates are

∑2|Vb|−1
k=1 c[k]t[k]/

∑2|Vb|−1
k=1 t[k], a convex combination of c[1], c[2], · · · , c[2|Vb|−1]. There-

fore, the optimization space of MultiMove for selecting configurations is expanded from L to its
convex hull conv(L). Similarly, in the OneMove scheme, the optimization space is expanded
from

∪|Vb|
k=1 L[k] (the subset of configurations where only one BS is active) to conv(

∪|Vb|
k=1 L[k]).

We illustrate the optimization spaces of these different schemes in Figure 3.2 with an example
of a WSN with three BSs.

3.4 Complexity Analysis
In this section, we will analyze the complexity of the virtually-moving BSs problem.
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Unsurprisngly, the problem is “very hard” because (i) there is an exponential number of
candidate subsets of active BSs, and (ii) active BSs have the fixed energy-consumption rate
clc for using long-range communication, which makes the problem non-convex. To formally
evaluate the hardness of the problem, we define the decision version of the virtually-moving
BSs problem as follows: Given the topology of the WSN, the constant parameters cc, cst,
csr, clc, clt, the data generating rate r, the initially available energy e, the sets of possible
configurations {L[k]}2

|Vb|−1
k=1 defined by (3.1), (3.2), (3.3) and (3.4), and a number T , does there

exist a configuration in each simplex (x[k],y[k], z[k], c[k]) ∈ L[k] and a time duration t[k] for each
1 ≤ k ≤ 2|Vb| − 1, such that the lifetime of the network

∑2|Vb|−1
k=1 t[k] ≥ T under the energy

constraint
∑2|Vb|−1

k=1 t[k]c[k] ≤ e?
Theorem 3.1

The virtually-moving base-stations problem is NP-complete.

Proof.

First of all, the decision version of the problem is NP because we can verify a valid instance in
polynomial time. Now we show that the problem is NP-hard. We reduce the 3-SAT problem [9]
to the virtually-moving BSs problem. Consider a 3-SAT instance with l variables a1, a2, · · · , al
and m clauses b1, b2, . . . , bm (Notice that each clause is a 3-element subset of {ai, āi}1≤i≤l). We
define an 2l + 1-th variable w other than {ai, āi}1≤i≤l and define a few sets:

— Pi = {ai, āi} ∪ {bj |bj contains ai}, ∀1 ≤ i ≤ l,
— Qi = {ai, āi} ∪ {bj |bj contains āi}, ∀1 ≤ i ≤ l,
— W1 = {w} ∪ {a1, a2, · · · al} ∪ {b1, b2, · · · bm},
— W2 = {w} ∪ {ā1, ā2, · · · āl}.

We construct an instance of the virtually-moving BSs problem as follows. Let P1, P2, · · · , Pl,
Q1, Q2, · · · , Ql, W1, W2 be associated with a BS each, and let a1, a2, · · · , al, b1, b2, . . . , bm,
w be associated with a RSN each. Let each BS have a long-range communication link to the
remote server S. Excluding the remote server S, the graph of the WSN is bipartite where every
edge connects a BS to a RSN, and this edge only exists when the set associated with the BS
contains the variable associated with the RSN. Let the initially available energy of each BS be
1 and let that of each RSN be 2. Let the constants for energy consumption be cc = 0, cst = 1,
csr = 0, clc = 1, clt = 0, and let the data generating rate r = 1. Then, we set the tentative
lifetime T = 2.

Because the data generating rate r = 1, cst = 1 and because of (3.3), the energy-consumption
rate of any RSN is at least 1. Remember that the initially available energy of any RSN is 2,
the lifetime of the considered virtually-moving BSs problem is at most T = 2. In the following,
we will show that if the constructed virtually-moving BSs problem achieves the lifetime T = 2,
the original 3-SAT problem is satisfiable. We start with four deductions, given that the lifetime
T = 2 is achievable:

(i) To be active, BSs W1 and W2 alternate, and each for a time duration 1. First, because
of (3.4) and because clt = 1, the energy-consumption rate of any BS is at least 1, therefore
any BS has an active time duration at most 1 given the initially available energy 1. Then,
because BSs W1 and W2 are the only neighbours of RSN w and because they have to serve
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w for a whole lifetime 2, both BSs W1 and W2 have to be active for a time duration 1 and
they cannot be simultaneously active.

(ii) The energy-consumption rate of every RSN is 1 at any time. On the one hand, it is
at least 1, as shown above. On the other hand, it cannot exceed 1, because every RSN has
to sustain a lifetime 2 with an initially available energy 2.
(iii) Passive BSs do not forward data for other RSNs at any time, otherwise, at least one

RSN would receive data from passive BSs. Using (3.3), we see that this would result in an
energy-consumption rate exceeding 1, which would contradict (ii).
(iv) In the configuration where BS W2 is active (BS W1 is passive because of (i)), one

and only one BS between BS Pi and BS Qi is active for any 1 ≤ i ≤ l. First, at least
one of them has to be active in order to forward data from RSN ai because they are the
only neighbours of ai. Then, they cannot be simultaneously active, because they have to
forward data for RSN ai for a lifetime 2 with the total available energy 2 and because
clt = 1.

Because of deduction (i), we have a configuration in which BS W2 is active and BS W1

is passive. We use this configuration to construct a valid assignment for the original 3-SAT
problem. Because of deduction (iv), one and only one BS between BSs Pi and Qi is active for
any 1 ≤ i ≤ l in that configuration. This enables us to construct an assignment for the 3-SAT
problem by setting the variable ai = 1 if BS Pi is active and setting ai = 0 if BS Qi is active.
Then, because of deduction (iii), each RSN in b1, b2, · · · bm connects to at least one active BS
because passive BSs do not forward data from RSNs. Therefore, every clause bj (1 ≤ j ≤ m)
in the 3-SAT problem is satisfied: If RSN bj connects to the active BS Pi, clause bj is satisfied
because it contains variable ai and ai = 1; if RSN bj connects to the active BS Qi, clause bj is also
satisfied because it contains variable āi and ai = 0. In summary, if we can solve the constructed
virtually-moving BSs problem, we can also solve the original 3-SAT problem. Therefore, the
virtually-moving BSs problem is NP-hard as 3-SAT is known to be NP-hard.

3.5 Scheduling Algorithm
In this section, we will propose a scheme for adaptively scheduling the virtual movement of

multiple BSs. The proposed algorithm is computationally light, only requires easily available
information as input, and guarantees, under mild conditions, a network lifetime at least 62% of
the optimal one.

The adaptive scheduling scheme works as follows. Time is discretized into slots of length
τ , during which we use only one configuration. Before the start of each time slot, the remote
server collects the information about the current available energy of all BSs and all RSNs. Using
only this information as input, the remote server selects the configuration to be used in the next
time slot and notifies all BSs. As τ is usually much larger than the sampling interval of RSNs,
this scheme has negligible overhead for collecting the required information and distributing the
configuration determined by the server.

We denote the available energy of all RSNs and BSs at time n (n ∈ N) by e(n). In particular,
the initially available energy e(0) = e. Denote the configuration selected for time slot n by
(x(n),y(n), z(n), c(n)) ∈ L. The available energy evolves according to

e(n) = e(n−1) − τc(n). (3.8)
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If we sum up the iterative equation (3.8) from time 0 to time n and use e(0) = e, we have

e(n) = e− τ
n∑

t=1

c(t). (3.9)

Denote by N∗ the maximum number of time slots before the first RSN depletes its energy,

N∗ = max{n|e(n) ≥ 0}, (3.10)

and the lifetime of the WSN is τN∗.
In the following, to find the optimal configurations, we first propose to use the constrained

gradient method [24] and to separate the virtually-moving BSs problem into a sequence of sub-
problem called the min-weight configuration problems. Then, we will discuss how to solve the
min-weight configuration problems.

3.5.1 The Constrained Gradient Method
First of all, we define auxiliary variables

p[k] = t[k]
/ 2|Vb|−1∑

k=1

t[k], (3.11)

θ =
2|Vb|−1∑
k=1

p[k]c[k]. (3.12)

Here p[k] denotes the fraction of time for using configuration (x[k],y[k], z[k], c[k]) for all 1 ≤ k ≤
2|Vb| − 1 and θ denotes the average energy decrease rates for all RSNs and BSs. Next, we recast
problem (3.5) as the auxiliary problem

min
{x[k],y[k],z[k],c[k],p[k]}2|Vb|−1

k=1 ,θ

F (θ) = max
i∈Vb∪Vr

θi/ei

s.t. θ =
2|Vb|−1∑
k=1

p[k]c[k], (3.13)(
x[k],y[k],z[k], c[k]

)
∈ L[k], ∀1 ≤ k ≤ 2|Vb| − 1,

2|Vb|−1∑
k=1

p[k] = 1,

p[k] ≥ 0,∀1 ≤ k ≤ 2|Vb| − 1,

where θi is the i-th element of θ. Note that the objective value of (3.13) is the inverse of the
objective value in (3.5).

We relax the objective function F (θ) in problem (3.13) into a differentiable function

f(θ) =
1

α
log
( ∑

i∈Vb∪Vr

exp
(
αθi
ei

))
(3.14)
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Algorithm 3.1: The constrained gradient method for selecting configurations
Input: The parameters cc, cst, csr, clc, clt, r, the initially available energy e, and a

β-approximate algorithm for solving the min-weight configuration problem (3.18).
Output: N∗, {(x(n),y(n),z(n), c(n))}1≤n≤N∗ .

1 Initialize θ(0) ←− 0, e(0) ←− e, n←− 1.
2 while e(n−1) ≥ 0 do
3 Calculate θ(n−1) from e(n−1) and (3.16).
4 Calculate the gradient ∇⊤f(θ(n−1)) using (3.17).
5 Select configuration (x(n),y(n), z(n), c(n)) by using a β-approximate algorithm to solve

the min-weight configuration problem (3.18) where λ = ∇⊤f(θ(n−1)).
6 Update e(n) ←− e(n−1) − c(n).
7 Update n←− n+ 1.
8 Set N∗ = n− 1.

by introducing a real parameter α > 0. We can check that

f(θ)− 1

α
log |Vb ∪ Vr| ≤ F (θ) ≤ f(θ). (3.15)

Therefore, using f(θ) as an approximation of F (θ) incurs an arbitrarily small loss of precision
when α is large.

We define θ(n) as the average energy decrease rates during the first n time slots

θ(n) =
1

n

n∑
t=1

c(t) =
e− e(n)

nτ
, (3.16)

where the second equality follows from (3.9). The purpose is to adaptively select the configu-
rations of the WSN such that the sequence {θ(n)}n∈N+ gradually approaches the desired θ in
(3.13). Note that θ(n−1) is known at time slot n because e(n−1) is already known and because
of (3.16).

As shown in Algorithm 3.1, we iteratively take the following steps in each time slot n ∈ N+

as long as e(n−1) ≥ 0:
(i) First, we calculate the energy decrease rates in the first n− 1 time slots θ(n−1) using

e(n−1) and using (3.16), and we calculate the gradient of the relaxed objective function
∇⊤f(θ(n−1)) whose i-th element (i ∈ Vb ∪ Vr) is

∇⊤
i f
(
θ(n−1)

)
=

exp
(
αθ

(n−1)
i /ei

)
ei
∑

i∈Vb∪Vr
exp

(
αθ

(n−1)
i /ei

) . (3.17)

Here, ei in (3.17) is the initially available energy of node i.
(ii) Then, we define a weight vector λ = ∇⊤f(θ(n−1)) and select a configuration to be

used (x(n),y(n), z(n), c(n)) by solving

min
x,y,z,c

λ⊤c

s.t. (x,y,z, c) ∈ L,
(3.18)
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which is termed as the min-weight configuration problem.

When the algorithm terminates, the lifetime of the network is τN∗, as defined in (3.10). Because
N∗ is dependent on τ and α, we use N∗(τ, α) for N∗ to show explicitly the dependencies in the
following.

The min-weight configuration problem is still combinatorial because there could be an expo-
nential number of candidate configurations in L. Nontheless, in Theorem 3.2, we will show that if
the min-weight configuration problem has a β-approximate algorithm (β can be either a constant
or a big-O function of |Vb ∪ Vr|), the virtually-moving BSs problem also has a β-approximate
algorithm.

Theorem 3.2

Using Algorithm 3.1 for selecting the configurations {(x(n),y(n), z(n), c(n))}n∈N+ with a
β-approximation algorithm for solving the min-weight configuration problem (3.18), the
achieved lifetime τN∗(τ, α) satisfies

τN∗(τ, α) + τ

T ∗ >
1

β + γ1(α) + γ2(τ, α)
,

where

γ1(α) =
βT ∗ ln |Vb ∪ Vr|

α
,

γ2(τ, α) =
ατ |Vb ∪ Vr|2c3maxT

∗(ln emin

τcmax
+ 1)

2e3min

,

with emin denoting the minimum element of e and cmax denoting an upper-bound on the
energy-consumption rate of any BS or any RSN

cmax = cc + clc + (cst + csr + clt)|Vb ∪ Vr|r.

If we set τ → 0 and then set α→∞, we have

lim
α→∞

lim
τ→0

τN∗(τ, α)

T ∗ ≥ 1

β
.

Details of the proof can be found in Appendix 3.A.1.

3.5.2 The Min-Weight Configuration Problem

We propose an algorithm for solving the min-weight problem with a guaranteed approximation
ratio β = 1.61 by building on previous results in the uncapacitated facility-location (UFL)
problems [35].

The UFL problem can be stated as follows. Let F be a set of facilities and let C be a set of
customers. Let hu > 0 be the fixed cost for opening the facility u ∈ F and let guv > 0 be the
service cost for each u ∈ F and v ∈ C. We seek a subset of open facilities Fo ⊆ F , such that all
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Table 3.1: Mapping from the min-weight configuration problem into an UFL problem

Facility set F BSs Vb

Open facility set Fo Active BSs {u ∈ Vb|zu = 1}
Customer set C RSNs Vr

Facility cost hu (u ∈ F) λuclc, u ∈ Vb

Service cost guv (u ∈ F , v ∈ C) Luv + λvcc, where Luv is the length of the
shortest path from RSN v ∈ Vr to S via BS
u ∈ Vb with the distance assignment (3.22).

customers are served and the sum of facility costs and service costs∑
u∈Fo

hu +
∑
v∈C

min
u∈Fo

guv (3.19)

is minimized. A special type of UFL problems is called metric uncapacitated facility-location
(metric-UFL) problems where the service costs are metric, that is,

guv + gu′v + gu′v′ ≥ guv′ , ∀u, u′ ∈ F , and v, v′ ∈ C. (3.20)

In [35], Metric-UFL problems are solved by using an approximation algorithm with an approxi-
mation ratio 1.61.

We will convert the min-weight configuration problem (3.18) into an UFL problem with the
mappings shown in Table 3.1:

(i) We set F = Vb and C = Vr. The open facility set we are looking for is the set of
active BSs

Fo = {u : zu = 1, u ∈ Vb}. (3.21)

(ii) We assign a length dij for each edge of the WSN,

dij =


λicstr + λjcsrr, i, j ∈ Vb ∪ Vr,

λicltr, i ∈ Vb, j = S,

∞, othewise,
(3.22)

where λi is the i-th element of the weight vector λ.
(iii) For each RSN v ∈ Vr and each BS u ∈ Vb, we calculate the shortest path from RSN
v to the remote server S via BS u, which we denote by Luv. We let the service cost guv for
BS u forward the data packets from RSN v ∈ Vr be

guv = Luv + λvcc, (3.23)

and we let the facility cost hu for activating BS u ∈ Vb be

hu = λuclc. (3.24)
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The UFL problem constructed from the mappings in Table 3.1 is not metric in general,
because the length of a path under the distance assignment (3.22) is not symmetric: the length
of the shortest path from RSN v to BS u is not equal to the reverse path from BS u to RSN v.
In the following theorem, we show the conditions that ensure the UFL to be metric.
Theorem 3.3

Given the parameters cc, cst, csr, clc, clt, r, and a weight vector λ, by using the mappings
shown in Table 3.1, we construct an instance of the UFL problem from the min-configuration
problem (3.18). The constructed UFL problem

— has the same optimal objective value as that of the min-weight configuration problem
(3.18), and

— is metric (3.20) under the condition that csr ≤ cst ≤ 2clt + csr.

Details of the proof can be found in Appendix 3.A.2.
We then use the 1.61-approximation algorithm proposed in [35] to solve the constructed UFL

problem. For simplicity of discussion, we define the set of unconnected customers as Cu. Let the
two-tuple (i, C) denote a star that is composed of a facility i ∈ F and a set of customers D ⊆ C
connected to facility i. The cost of the star (i,D) is defined as the total cost divided by the
number of unconnected customers in D:

cost(i,D) =


hi +

∑
j∈D qij

|Cu ∩ D|
, i /∈ Fo,∑

j∈D qij

|Cu ∩ D|
, i ∈ Fo,

(3.25)

where

qij =

{
gij , j ∈ Cu,
min(0, gij − min

k∈Fo

gkj), j /∈ Cu.

The procedure of the algorithm is as follows:
(i) At the beginning, we set Fo = ∅ and Cu = C.
(ii) As long as the set of unconnected customers Cu ̸= ∅, find the most cost-efficient star (i,D)

for all i ∈ F and D ⊆ C. Connect all customers in D to i and set Cu = Cu\D. If BS i /∈ Fo,
activate BS i and Fo = Fo ∪ {i}.

We note that in step (ii), although the number of stars is exponential with the number of
customers, it is easy to find the most cost-effective one star. It is sufficient to consider stars
(i,Di

k) for i ∈ F and k ∈ {1, · · · , |Cu|}, where Di
k denotes the set containing all connected

customers j ∈ C\Cu whose qij < 0 and containing k unconnected customers j ∈ Cu with the
smallest positive qij . Clearly, other stars cannot be more cost-effective (More details can be
found in [35]).

We summarize the whole procedure for finding the approximate min-weight configuration as
in Algorithm 3.2.
Theorem 3.4

Algorithm 3.2 guarantees to find a configuration (x,y, z, c) ∈ L, such that the weight λ⊤c is
at most β = 1.61 times the optimal objective value of the min-weight configuration problem
(3.18) under the condition that csr ≤ cst ≤ 2clt + csr.
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Algorithm 3.2: Approximation algorithm for solving the min-weight configuration problem
Input: The parameters cc, cst, csr, clc, clt, r, and a weight vector λ.
Output: A configuration (x,y, z, c) ∈ L.

1 Assign the lengths of edges in the WSN as shown in (3.22).
2 Set F ←− Vb and set C ←− Vr.
3 Calculate the shortest path Luv from each RSN v ∈ C to the remote server S via each BS
u ∈ F .

4 Assign the service costs guv (u ∈ F , v ∈ C) and the facility costs hu (u ∈ F) as shown in
(3.23) and (3.24), respectively.

5 Set Fo ←− ∅ and set Cu ←− C.
6 while Cu ̸= ∅ do
7 Find the most cost-effective star (i,D) where i ∈ F and D ⊆ C with the cost of the

stars defined in (3.25).
8 Connect all RSNs in D to BS i along the shortest paths with edge lengths defined in

(3.22). Set Cu ←− Cu\D.
9 Enable BS i to be active and set Fo ←− Fo ∪ {i}.

In summary, the results in both Theorems 3.2 and 3.4 yield that our proposed algorithm
achieves, under mild conditions, a lifetime at least 62% of the optimal one.

3.6 Simulations
In this section, we will evaluate the proposed scheme through extensive simulations.
We consider a 150m × 150m sensing field where we randomly generate a connected WSN

with |Vr| = 40 and |Vb| = 5 (The default network size is small so that problem (3.5) can be
solved without approximation). All RSNs generate data with a rate of r = 1 and BSs do not
generate data. Data generated by RSNs are transmitted to active BSs by using short-range
communication whose per-hop transmitting range is 40m. Time is partitioned into slots with
the length of a time slot τ = 1. Let the constants of energy-consumption rates be csc = 1, cst = 1,
csr = 1, clc = 10 and clt = 1 (We select these parameters to reflect the real energy consumptions
of BSs and RSNs. More details can be found in our recent paper [69]). Let the initially available
energy of all BSs be ei = 5000, ∀i ∈ Vb and let that of all RSNs be ei = 3000,∀i ∈ Vr. Let the
parameter α = 10000 in (3.14).

Here, we simulate five schemes: (i)OneFixed, the traditional scheme that uses one always-
active BS, (ii) MultiFixed that uses multiple always-active BSs, where the locations of active
BSs are optimized through (3.6), (iii) OneMove that schedules the virtual movement of one BS
through (3.7), (iv) MultiMove that schedules the virtual movement of multiple BSs by solving
(3.5) without approximation (considered as the optimum in the following), and (v) MultiMove-
A that schedules the virtual movement of multiple BSs by using our proposed Algorithm 3.1
and Algorithm 3.2 to approximately solve (3.5). The details of MultiFixed, OneMove, and
MultiMove are discussed in Section 3.3.3. Without the fixed energy-consumption of long-range
communication, both MultiFixed and MultiMove are optimal; they will always activate all BSs
and use the maximum lifetime routing [16]. Because problem (3.5) is computationally hard,
MultiMove is only applicable when the network is small.
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Figure 3.3: The ratio between the lifetime of MultiMove-A and that of MultiMove τN∗(τ, α)/T ∗

versus the length of time slot τ . We see that the ratio decreases as τ increases. If τ is set small
(τ < 10), MultiMove-A yields a lifetime very close to the optimum achieved by MultiMove.
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Figure 3.4: The ratio between the lifetime of MultiMove-A and that of MultiMove τN∗(τ, α)/T ∗

versus the relaxation parameter α. We see that when α is sufficiently large (α > 1000) , Multi-
Move yields a lifetime very close to the optimum.

3.6.1 Parameter Selection
As shown in Theorem 3.2, the performance of MultiMove-A depends on the parameters

including the length of a time slot τ and the relaxation parameter α. We show how these param-
eters influence the ratio between the lifetime achieved by MultiMove-A and that by MultiMove
τN∗(τ, α)/T ∗.

In Figure 3.3, we show the ratio τN∗(τ, α)/T ∗ versus the length of a time slot τ . When τ is
small, MultiMove-A yields a lifetime very close to the optimum achieved by MultiMove, as the
algorithm exploits the fine granularity of the time slot.

In Figure 3.4, we show the ratio τN∗(τ, α)/T ∗ versus the relaxation parameter α in (3.14).
When α is large, the relaxation of the objective function is precise, and MultiMove-A yields a
lifetime very close to the optimum.
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Figure 3.5: The network lifetime τN∗(τ, α) versus the initially available energy of BSs when
running different schemes..

3.6.2 Performance Comparison
To simulate different scenarios, we vary five parameters of the network: (i) the initially

available energy of BSs, (ii) the number of BSs |Vb|, (iii) the number of RSNs |Vr|, (iv) the fixed
energy-consumption rate of using long-range communication clc, and (v) the data rate of RSNs
r. We summarize the simulation results as follows:

(i) In some scenarios, BSs cause bottlenecks in the network lifetime, e.g., when the
initially available energy of BSs is low, when |Vb| is small, when |Vr| is large, when clc is
large and when r is small. In these scenarios, OneMove outperforms MultiFixed, because
OneMove improves the energy efficiency of BSs by rotating one active BS among multiple
BSs.

(ii) In other scenarios, RSNs cause bottlenecks in the network lifetime, for example, when
the initially available energy of BSs is high, when |Vb| is large, when |Vr| is small, when clc
is small and when r is large. In these scenarios, MultiFixed outperforms OneMove, because
MultiFixed reduces the energy consumption of RSNs by reducing the hop-distance from
RSNs to BSs.
(iii) In all scenarios, the lifetime achieved by MultiMove-A is always very close to the

optimum achieved by MultiMove and is always longer than those achieved by both OneMove
and MultiFixed.

Lifetime versus the initially available energy of BSs: In Figure 3.5, we show the
lifetime of the WSN τN∗(τ, α) versus the initially available energy of BSs. We fix the initially
available energy of RSNs ei = 3000,∀i ∈ Vr, and we vary the initially available energy of BSs
(all BSs have the same amount though). When the initially available energy of BSs is small,
OneMove is very close to the optimum achieved by MultiMove and MultiMove-A. Therefore,
in this scenario, virtually moving multiple BSs degrades into the scheme of virtually moving
one BS as in [69]. When the initially available energy of BSs increases, the increase of lifetime
of OneMove diminishes and Multi-Fixed outperforms OneMove, because the bottleneck in the
network lifetime is shifted from BSs to RSNs.

Lifetime versus the number of BSs: In Figure 3.6, we show the lifetime of the WSN
τN∗(τ, α) versus the number of BSs |Vb|. We see similar results as that in Figure 3.5. When |Vb|
is small, OneMove outperforms MultiFixed and performs close to the optimum as MultiMove-A
does. This is because when BSs cause bottlenecks in the network lifetime, rotating one active BS
is the optimal solution. When |Vb| is large, RSNs cause bottlenecks in the lifetime of the WSN,
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Figure 3.6: The network lifetime τN∗(τ, α) versus the number of BSs |Vb| when running different
schemes..
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Figure 3.7: The network lifetime τN∗(τ, α) versus the number of RSNs |Vr| when running dif-
ferent schemes.

and MultiFixed outperforms OneMove.
Lifetime versus number of RSNs: In Figure 3.7, we show the lifetime of the WSN

τN∗(τ, α) versus the number of RSNs |Vr|. There is a clear trend that when |Vr| increases, the
lifetime of the network decreases. When |Vr| is small, RSNs limit the lifetime of the WSN, and
therefore OneMove performs poorly. When |Vr| is large, BSs cause bottlenecks in the network
lifetime, and OneMove performs close to the optimum achieved by MultiMove and MultiMove-A.

Lifetime versus the fixed energy-consumption of long-range communication: In
Figure 3.8, we show the lifetime of the WSN τN∗(τ, α) versus the fixed energy-consumption rate
of long-range communication clc. There is a trend that when clc increases, the lifetime of the
network decreases. Still, MultiMove-A and MultiMove only decrease mildly because they can
evenly distribute the high energy-consumption load among the whole WSN. Meanwhile, we see
that the lifetime curve of OneMove is flat when clc is small, because the bottleneck in lifetime is
due to the RSNs rather than BSs in these scenarios.

Lifetime versus the data rate of RSNs: In Figure 3.9, we show the achieved lifetime
τN∗(τ, α) versus the data rate r using different schemes. For a better illustration, we set ei =

5000, ∀i ∈ Vb and ei = 1000,∀i ∈ Vr. We see results similar to that in Figure 3.8. When r is low,
BSs cause bottlenecks in the lifetime, and OneMove outperforms MultiFixed. When r becomes
high, RSNs cause the bottleneck in the network lifetime, and the lifetime achieved by MultiFixed
is very close to the optimum.
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Figure 3.8: The network lifetime τN∗(τ, α) versus the fixed energy-consumption of long-range
communication clc when running different schemes.
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3.7 Conclusion

In this chapter, we presented and evaluated the scheme of virtually moving multiple BSs in
WSNs, where we adaptively re-elect an active subset of BSs. This scheme not only achieves a
high energy-efficiency but also avoids the difficulty of physically moving the BSs. We showed
that the general problem of virtually moving BSs is in fact NP-hard. We proposed an adaptive
algorithm for scheduling the virtual movement by using the constrained gradient method and
using previous results in uncapacitated facility-location problems. Under mild conditions, this al-
gorithm guarantees to yield a lifetime at least 62% of the optimum. The idea of load balancing by
virtually moving devices can be used in other networked systems, including super-node selection
in peer-to-peer networks and cooperative beamforming in cellular networks. As a consequence,
the proposed scheduling algorithm has merits beyond the WSNs.

3.A Appendix

3.A.1 Proof of Theorem 3.2

Consider problem (3.13) with its objective function f(·) relaxed as in (3.14). Let {(x∗[k],
y∗[k], z∗[k], c∗[k])}2

|Vb|−1
k=1 be the optimal selection of configurations and let {p∗[k]}2

|Vb|−1
k=1 be the

optimal fractions of time for using these configurations. Let θ∗ be the optimal energy decrease
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rates

θ∗ =
2|Vb|−1∑
k=1

p∗[k]c∗[k]. (3.26)

Let {(x(n),y(n), z(n), c(n))}N∗

n=1 be the selected sequence of configurations by using Algorithm 3.1
with a β-approximation algorithm for solving the min-weight configuration problem.

In the following, we will first derive an upper-bound of the objective value f(θ(n)) for any
n ∈ N+. Then, we will use that to derive a lower-bound of the lifetime.

The upper-bound of the objective value

First of all, we derive an upper-bound on the incremental change of the objective value
f(θ(n))− f(θ(n−1)). We take its Taylor expansion around θ(n−1) up to the second order,

f
(
θ(n)

)
− f

(
θ(n−1)

)
≤∇⊤f

(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
+

1

2
|Vb ∪ Vr|2 ·

∥∥∥∆f
(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞

, (3.27)

where ∆f(θ(n−1)) is the Hessian matrix of f(·) at the point θ(n−1).
The second term on the right-hand side of (3.27) can be easily upper-bounded. A little

calculations give us an upper-bound of the infinite norm of ∆f(θ(n−1)),∥∥∥∆f
(
θ(n−1)

)∥∥∥
∞
≤ α

e2min

. (3.28)

From (3.16), we have
θ(n) − θ(n−1) =

1

n

(
c(n) − θ(n−1)

)
. (3.29)

And we have
∥c(n) − θ(n−1)∥∞ ≤ cmax (3.30)

because: (i) 0 ≤ ∥c(n)∥∞ < cmax as cmax is the maximum energy-consumption rate of any BS
or any RSN; (ii) ∥θ(n−1)∥∞ < cmax since θ(n−1) =

∑n−1
t=1 c

(t)/(n − 1) and 0 ≤ ∥c(n)∥∞ < cmax.
Combining (3.28), (3.29) and (3.30),

1

2
|Vb ∪ Vr|2 ·

∥∥∥∆f
(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞
≤ α|Vb ∪ Vr|2c2max

2n2e2min

. (3.31)

It only remains to derive an upper-bound for the first term of the right-hand side of (3.27).
Using (3.29),

∇⊤f
(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
=

1

n
∇⊤f

(
θ(n−1)

)
· c(n) − 1

n
∇⊤f

(
θ(n−1)

)
· θ(n−1), (3.32)

where ∇⊤f(θ(n−1)) ·θ(n−1) is independent of the selection of configuration at time n. It suffices
to give an upper-bound for the term ∇⊤f(θ(n−1)) ·c(n). Remember that for any 1 ≤ n ≤ N∗, we
use a β-approximation algorithm for solving the min-weight configuration problem (3.18) with
λ = ∇⊤f(θ(n−1)), we guarantee

∇⊤f
(
θ(n−1)

)
· c(n) ≤ βf∗(n)

s , (3.33)
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where f∗(n)
s denotes the optimal objective value of (3.18). Then, because for any 1 ≤ k ≤ 2|Vb|−1,

(x∗[k], y∗[k], z∗[k], c∗[k]) ∈ L[k] is a feasible solution of the min-weight configuration problem
(3.18),

f∗(n)
s ≤∇⊤f

(
θ(n−1)

)
· c∗[k], ∀1 ≤ k ≤ 2|Vb| − 1. (3.34)

Combining (3.33) and (3.34), we have ∀1 ≤ k ≤ 2|Vb| − 1,

∇⊤f
(
θ(n−1)

)
· c(n) ≤ β∇⊤f

(
θ(n−1)

)
· c∗[k]. (3.35)

Multiplying (3.35) by p∗[k] and summing it together for all 1 ≤ k ≤ 2|Vb| − 1, we have

∇⊤f
(
θ(n−1)

)
· c(n) ≤ β∇⊤f

(
θ(n−1)

)
· θ∗, (3.36)

where we use
∑2|Vb|−1

k=1 p∗[k] = 1 and (3.26).
Plugging (3.31), (3.32) and (3.36) into (3.27),

f
(
θ(n)

)
− f
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θ(n−1)

)
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n
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·
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(
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α|Vb ∪ Vr|2c2max

2n2e2min

, (3.37)

where the second inequality is because of the convexity of the objective function f(·).
Then, by multiplying n on both sides of (3.37) and by resorting,

n
(
f
(
θ(n)

)
− βf(θ∗)

)
≤ (n− 1)

(
f
(
θ(n−1)

)
− βf(θ∗)

)
+

α|Vb ∪ Vr|2c2max

2ne2min

. (3.38)

Summing it up from n = 1 to N (N ∈ N+), dividing it by N and using
∑N

n=1 1/n < lnN + 1,
we have an upper-bound for f(θ(N)),

f
(
θ(N)

)
− βf(θ∗) <

α|Vb ∪ Vr|2c2max(lnN + 1)

2e2minN
. (3.39)

The lower-bound of the lifetime

In the following, we will use (3.39) to derive a lower-bound of the lifetime τN∗. Let F ∗ denote
the optimal objective value of problem (3.13) without approximations.

Using (3.15), one can easily check that f(θ(N)) ≥ F (θ(N)) and that f(θ∗) ≤ F ∗+ 1
α ln |Vb∪Vr|.

Plugging them into (3.39), we see that

F
(
θ(N)

)
− βF ∗ <

α|Vb ∪ Vr|2c2max(lnN + 1)

2e2minN
+

β

α
ln |Vb ∪ Vr|. (3.40)

Remember from (3.10) that N = N∗ is the maximum number of time slots that satisfies
e(N) ≥ 0. Therefore, e(N∗+1) ≥ 0 does not hold true, which implies from (3.16) that θ(N∗+1) ≤
e/(τ(N∗+1)) does not hold true. Moreover, because F (θ) = maxi∈Vb

θi/ei, this is equivalent to

τ(N∗ + 1)F
(
θ(N

∗+1)
)
> 1. (3.41)
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We will then use (3.40) and (3.41) to derive a lower-bound for τN∗.
Because e(N∗) ≥ 0, because 0 ≤ ∥c(n)∥∞ < cmax for any 1 ≤ n ≤ N∗ and because of (3.9),

we have N∗ ≥ emin/(τcmax), which in turn implies that N∗ + 1 > emin/(τcmax). Then, because
the term (lnN + 1)/N decreases,

ln(N∗ + 1) + 1

N∗ + 1
<

τcmax

emin

(
ln emin

τcmax
+ 1

)
. (3.42)

Setting N = N∗ + 1 in (3.40) and plugging in (3.42),

F
(
θ(N

∗+1)
)
< βF ∗ +

β

α
ln |Vb ∪ Vr|+

ατ |Vb ∪ Vr|2c3max

2e3min

(
ln emin

τcmax
+ 1

)
. (3.43)

Using (3.41) and (3.43) together,

N∗ + 1 >
1

βτF ∗ + βτ ln |Vb∪Vr|
α +

ατ2|Vb∪Vr|2c3max

2e3min
ln( emin

τcmax
+ 1)

.

Multiplying τ/T ∗ on both sides,

τN∗ + τ

T ∗ >
1

β + βT∗ ln |Vb∪Vr|
α +

ατ |Vb∪Vr|2c3maxT
∗(ln emin

τcmax
+1)

2e3min

, (3.44)

where we use T ∗F ∗ = 1.
Taking τ → 0 and then taking α→∞ in (3.44), we have

lim
α→∞

lim
τ→0

τN∗(τ, α)

T ∗ ≥ 1

β
.

3.A.2 Proof of Theorem 3.3
First, we will show that by using the mappings in Table 3.1, the constructed UFL has the

same optimal objective value as that of the min-weight configuration problem (3.18).
We derive the equality from the side of the min-weight configuration problem (3.18). By

plugging in (3.3) and (3.4), we transform the objective value of (3.18) into

λ⊤c =
∑

i∈Vb∪Vr

λi

cc +
∑

(i,j)∈Es

cstxij +
∑

(j,i)∈Es

csrxji


+
∑
i∈Vb

λi (cltyi + clczi)

=
∑

i∈Vb∪Vr

λicc +
∑

(i,j)∈Es

xij(λicst + λjcsr)

+
∑
i∈Vb

λicltyi +
∑
i∈Vb

λiclczi, (3.45)

where the equality is due to the switch of terms.
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We analyze the right hand side of the second equality of (3.45). The first term
∑

i∈Vr∪Vb
λicc

is fixed and the last term
∑

i∈Vb
λiclczi maps into the facility cost for selecting the active BSs

∑
i∈Vb

λiclczi =
∑
u∈Fo

hu (3.46)

due to (3.21) and (3.24). Once the selection of active BSs z is fixed, problem (3.18) degrades
into minimizing the second and third terms of (3.45) under constraints (3.1) and (3.2),

min
∑

(i,j)∈Es

xij(λicst + λjcsr) +
∑
i∈Vb

λicltyi

s.t. (3.1), (3.2). (3.47)

This problem boils down to routing a flow of rate r from every RSN v ∈ Vr to the remote
server S via the active BSs Fo = {u : zu = 1, u ∈ Vb}, such that the total length of routing
paths is minimized given the distance assignments (3.22). Notice that Luv denotes the length
of the shortest path from v ∈ Vr to S via active BS u ∈ Vb, and notice that active BSs are
restricted by Fo = {u : zu = 1, u ∈ Vb}. Therefore, for any v ∈ Vr, its shortest path to S

has a length minu∈Fo
Luv. Hence, the optimal objective value of problem (3.47) is equal to∑

v∈Vr
minu∈Fo Luv. Using (3.23), (3.45) and (3.46), we see that the optimal objective value of

(3.18) is equivalent to that of the constructed UFL problem.

Then, we will show that the service cost is metric. We denote the set of edges and the set of
nodes along the shortest path from v ∈ Vr to u ∈ Vb by P (u, v) and N(u, v) (u, v are excluded
from N(u, v)), respectively. We have

Luv =
∑

(i,j)∈P (u,v)

(λicst + λjcsr)r + λucltr (3.48)

=
∑

i∈N(u,v)

(cst + csr)λir + (clt + csr)λur + λvcstr,

where we only change the costs on the path into the costs on nodes along that path.
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Plugging (3.48) into the term Luv + Lu′v + Lu′v′ , we have

Luv + Lu′v + Lu′v′

=
∑

i∈N(u,v)

(cst + csr)λir + (clt + csr)λur + λvcstr

+
∑

i∈N(u′,v)

(cst + csr)λir + (clt + csr)λu′r + λvcstr

+
∑

i∈N(u′,v′)

(cst + csr)λir + (clt + csr)λu′r + λv′cstr

=
∑

i∈N(u,v)
∪N(u′,v)
∪N(u′,v′)

(cst + csr)λir + 2λvcstr + 2(clt + csr)λu′r + (clt + csr)λur + λv′cstr

≥
∑

i∈N(u,v)
∪N(u′,v)
∪N(u′,v′)

(cst + csr)λir + (cst + csr)λvr + (cst + csr)λu′r + (clt + csr)λur + λv′cstr

=
∑

i∈N(u,v)
∪{v}∪N(u′,v)
∪{u′}∪N(u′,v′)

(cst + csr)λir + (clt + csr)λur + λv′cstr, (3.49)

where the inequality is because csr ≤ cst ≤ 2clt + csr.
Moreover, from (3.48), we have

Luv′ =
∑

i∈N(u,v′)

(cst + csr)λir + (clt + csr)λur + λv′cstr.

Remembering that Luv′ is the length of the shortest path from v′ to u, it is not longer than the
path through v′ →N(u′, v′)→ u′→ N(u′, v)→ v→ N(u, v)→ u. Therefore Luv+Lu′v+Lu′v′ ≥
Luv′ .

Using (3.23), we have

guv + gu′v + gu′v′ − guv′

= Luv + Lu′v + Lu′v′ − Luv′

+ λvcc + λvcc + λv′cc − λv′cc

= (Luv + Lu′v + Lu′v′ − Luv′) + 2λvcc

≥ 0.
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Chapter 4

Sparse Sensor-Selection by
Exploiting Temporal Correlations

The scientist is not a person who gives the
right answers, he’s one who asks the right
questions.

Claude Lévi-Strauss

In the last two chapters, we studied the problem of adaptively selecting BSs in order to
enhance the energy efficiency in WSNs. In this chapter, we will study a similar problem, that
is, adaptively selecting the sparse sensing-samples for enhancing the energy efficiency in both
WSNs and participatory sensing systems.

4.1 Introduction
Traditionally, in either a WSN or a participatory sensing system, the communication costs

are assumed to dominate the overall energy-consumption of a node, whereas the sensing costs
are considered negligible. This leads the research community of WSNs to optimize the commu-
nication costs alone. However, the gap between the energy costs for communication and that for
sensing might not be as large as we thought. We measure these two parts of energy consumption
on Tmote-sky, a low-power sensor node widely used in WSNs [64]; we program this sensor node
to sample the ambient light intensity and transmit the samples through short-range radios. The
measurement results are shown in Figure 4.1. The ratio between the energy consumption for
taking one sample of the light intensity and that for transmitting one sample is 0.26. This ratio
could be even larger in the following two scenarios:
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Figure 4.1: Energy consumptions of a Tmote-sky sensor: (a) while the node measures one sample
of light intensity (two-bytes), Esensor = 7.5× 10−6J; (b) while the node transmits a packet with
24 samples of payload, 24 · Eradio = 6.9× 10−4J. The ratio between Esensor and Eradio is 0.26.

— Sensors with high energy-consumption: for example, an air pollution sensor consumes
30 ∼ 50 mW instead of the 3 mW of a Tmote-sky’s light sensor.

— Sensors with long sampling times: for example, the anemometer, a sensor that measures
the direction and strength of the wind, requires 1 ∼ 3 seconds of continuous measurement
per sample instead of the 4 ms of the Tmote-sky’s light sensor.

Therefore, optimizing the energy consumption for communication alone is not optimal. It is also
desirable to reduce the energy consumption for sensing, or in other words, to reduce the number
of sensing samples.

Sensing samples are usually temporally correlated. Therefore, researchers propose to use
sparse patterns for sampling, so that the energy consumption for sensing is reduced while a
certain sensing precision is maintained. For example, they use fixed or randomly generated
patterns for scheduling the sparse sampling [48, 66]. However, these works are not well adapted
to signal variations.

We propose a novel sparse-sensing scheme, that we call “distributed adaptive sparse sensing”
(DASS). In this scheme, we learn the signal statistics on-the-fly from the captured measurements.
Then, using the signal statistics, we find the optimized and generally irregular sparse-sampling
pattern, which captures the most information of the original signal.

The key novelty of DASS is to find the optimal sampling pattern, that is, to decide when
to measure for collecting as much information as possible. It deviates from the recent sparse-
sensing schemes [48] [66] that have fixed or random sampling-patterns, in the sense that DASS
dynamically adjusts the sampling pattern through online learning of signal statistics.

It is worth mentioning that DASS does not impose on-sensor computation or inter-node com-
munication. Each sensor node simply takes measurements according to a designated sampling-
schedule and transmits the data to a common server. The server collects all the data from one
or multiple sensor nodes and performs signal reconstruction.
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4.2 Related Works
Consider a continuous-time signal. Denote by x ∈ RN the discretization of such a signal with

a sufficiently large number of discretized data points N . The target of the WSN is to sample x
and then recover it with the maximum precision.

A traditional WSN collects data as frequent as possible, which is subsequently compressed
and transmitted with the lowest possible rate. In other words, it collects a vector of samples y0
that is equal to the discretized physical signal x with some additive noise,

y0 = Ix+ ω, (4.1)

where I is the identity matrix of size N and ω represents the noise; see Figure 4.2a for an
example.

Ignoring the energy cost for sensing is sub-optimal, if sensing consumes a comparable amount
of energy to communication and data processing. In fact, new sampling paradigms optimizing the
overall energy-consumption have been proposed and show that further reductions of the energy
consumption are possible. The basic idea involves a reduction of the number of collected samples
and a reconstruction of the missing data by using algorithms that exploit the temporal structure
available in the measured data. The reduction of the collected samples is done by designing a
sampling operator Φ ∈ RM×N (M ≪ N) instead of the identity matrix,

y = Φx+ ω. (4.2)

Note that y is significantly shorter than x and the reconstruction algorithm must estimate a
significant amount of information from a limited amount of data. Therefore, regularization and
constraints are added to the problem so that a stable solution can be obtained. Moreover,
the reconstruction algorithm must be jointly designed with the sampling matrix Φ for precise
estimation of x.

Pioneering work on sparse sampling used compressive sensing (CS) as a reconstruction scheme.
CS attempts to recover x by solving a convex optimization problem, under the assumption that
x is sparse in a known dictionary Π. However, the solution is only approximate and it is exact if
Π and Φ satisfy certain requirements that are generally hard to check [12]. Initially, [21, 43, 62]
proposed the use of a sampling matrix Φ composed of random i.i.d. Gaussian entries. Note
from Figure 4.2b that such Φ has very few zero elements. Therefore, the number of sensing
operations is not actually reduced, because we need to know all the values of x to compute y.
Moreover, if we adopt a distributed algorithm, a dense Φ requires the sensor nodes to transmit
their local samples to the other nodes, which would cause an excessive energy-consumption for
communications.

To overcome such limitations, researchers proposed to use a sparse matrix Φ which contains
very few non-zero elements [48, 66] . More precisely, Φ has only one non-zero element per row
and the locations of such elements determine the temporal sampling pattern, see Figure 4.2c.
However, the sampling patterns in these schemes are either fixed or randomly generated and
thus not well adapted to the measured signal. Moreover, it is hard to guarantee the recovery
of a faithful representation of x, because the sparsity of dictionary Π usually changes over time
and it might not satisfy the theoretical requirements of CS [10].
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(a) Traditional Sensing (b) CS - Dense Matrix (c) CS - Sparse Matrix (d) Sparsity Dictionary

Figure 4.2: Comparison of various sensing schemes proposed in the literature (the noise term ω

is omitted for simplicity). We consider a discretized version of the sampled physical signal that
is contained into a vector x. In (a) we depict the traditional approach where we measure the
signal in every time spot, thus the sampling operator is an identity matrix I. In (b), we reduce
the number of samples by taking random projections of the measurements. Note that we need to
measure all the elements of x and we just reduce the number of stored samples. Whereas, in (c)
we reduce the number of measured samples by using a sparse-sampling matrix Φ. Note that the
methods in (b) and (c) require a set of conditions regarding x and Φ to be satisfied [10]. Among
these conditions, we note that, x must be sparse under a certain known dictionary Π, see (d).

Figure 4.3: Graphical representation of the mathematical model of the proposed sensing scheme.
The signal is modeled by an unknown time-varying linear K-dimensional model Ψt that is learned
from the collected measurements. The sampling pattern Φt is optimized at run-time according
to the signal model and measures only M values out of the N available ones.

As the statistics of x are often unknown and varying over time, it may be advantageous to
consider the decomposition

x = Ψtα, (4.3)

where Ψt is the time-varying model and α ∈ RK is a low-dimensional representation of x with
K ≪ N . The temporal model Ψt is non-stationary and has to be adaptively learned from the
samples collected in the past. Using this model Ψt, we adaptively change the sampling pattern
Φt. The non-stationarity of Φt is a feature diversifying our approach from the CS algorithms,
where the sensing patterns are typically fixed as shown in Figure 4.2.

This new problem statement raises new challenges. While the model Ψt can be learned
from the incomplete measurements y by using an online version of the principal component
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Figure 4.4: Upper plot: optimized temporal sampling pattern of DASS. Lower plot: traditional
sensing scheme, where samples are collected regularly in time. The subsampling factor is γ = 1/3,
since we collect 4 samples instead of 12 in each block.

analysis (PCA), selecting the sampling pattern Φt for minimizing the reconstruction error is
a combinatorial problem. In this chapter, we propose a generalized version of FrameSense, an
algorithm that generates a near-optimal sensor placement for inverse problems [51]. Specifically,
instead of optimizing the sensor placement, we optimize the temporal sampling pattern of the
WSN. The obtained sampling pattern is generally irregular, time-varying and optimized to gather
the maximum amount of information. See Figure 4.3 for a graphical illustration of the low-
dimensional model and of the irregular sampling patterns.

Our method derives from and extends the sparse-sensing framework proposed by Quer et
al. [48]: the signal is first approximated by a linear model Ψt, and the sampling scheduling
is defined in space and time by a sampling matrix Φt. Our major contribution is that we
improve the way in which the temporal correlation is exploited, such that the sampling pattern
is dynamically adapted to the low-dimensional model of the signal.

4.3 Problem Formulation
In this section, we first state the sampling-schedule problem for a single sensor. At the end of

this section, we consider the general sampling-schedule problem for multiple sensors. We consider
a block-based sensing strategy, meaning that the sensor takes sensing samples for a certain time
T and at the end we reconstruct the signal in this block from the collected samples. Note that
the block length is known and defined a-priori.

For each temporal block, let the discrete-time signal x be composed of N samples, and let
τ be the temporal resolution (its inverse is the sampling frequency, f = 1/τ). The temporal
duration of a block is T = Nτ . See Figure 4.4 for a graphical representation of the signal to be
sensed and its time-discretized version x.

The objective is to select just a subset of samples of x and then reconstruct it using the
captured samples. We denote the reconstructed signal by x̃. Let the number of sensing samples
to be taken in each time-block be M (M < N). In each time block t ∈ N, we denote by
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χt = {χt
i}Mi=1 the set of indices of these M samples and it is adaptively chosen according to the

previous measurements. The sampling pattern χt determines the sampling matrix Φt ∈ RM×N

in the t-th time block, where the (i, j)-th element of χt is

Φt
i,j =

{
1 if j = χt

i

0 otherwise
.

The sensing matrix Φt has exactly one non-zero element per row, and usually a maximum of one
non-zero element per column. Here either Φt

i,j or χt
i can be interpreted as a temporal selector

that decides when the sensor i should take a sample – the index j indicates the time index within
a block. It is important to underline that Φt and χt are time-varying and potentially changing at
every block to adapt to the signal model Ψt. Figure 4.4 shows an example of sampling patterns
where χt changes for each block.

We define fs = M
N · f = γf to be the average sampling frequency of the sensor node 4. The

subsampling rate γ = fs/f < 1 is an important figure of merit for a sparse-sampling algorithm—
the lower the γ, the lower the energy consumed for sensing.

The measured signal y ∈ RM is defined as

y = Φtx+ ω, (4.4)

where ω represents the measurement noise that is modelled as an additive white Gaussian noise
(AWGN), because the thermal effects [37] or/and quantization [65] are often the dominating
terms 5. Throughout this chapter, we mainly discuss the simple case of i.i.d. noises; later, we
will discuss the extension to the generic case where the noises have a correlation matrix Σω. We
define the signal-to-noise ratio (SNR) of the measurement as following, which will be used in the
evaluations:

SNR (dB) = 10 log10
(
∥x∥22
∥ω∥22

)
. (4.5)

The target of DASS is to optimize the sampling pattern Φt at the t-th block according to
Ψt such that we collect a small number of samples M and are still able to recover precisely the
original signal. As we model the noise as a AWGN, we assess the quality of the recovered signal
by using root-mean-square error (RMSE):

ϵ =
1√
N
∥x− x̃∥2.

Multiple-node scenario: Although the above problem statement focuses on a single-sensor
scenario for simplicity of notation, it is simple to generalize the statement to a WSN with more
than one sensor node. We assume that the nodes are synchronized 6, so that we can concatenate
all the measured blocks at different locations in a unique signal block x. Figure 4.5 shows

4. Note that we denote fs as an average sampling frequency given the irregular and time-varying sampling
pattern.

5. Other noise models may be of interest for specific sensors; for example the noise term of a Geiger counter is
usually modeled as a Poisson process.

6. Note that the proposed method does not require a precise synchronization. In fact, variations of the model
due to the lack of synchronization are handled by the proposed method thanks to the adaptive learning of the
model.
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Figure 4.5: Signals of multiple distributed sensor nodes can be concatenated into a single signal
stream at the server for recovery.

an example. xA,xB ,xC are signal blocks from three different locations; Φt
A,Φ

t
B,Φ

t
C are the

respective sampling matrices for each location, and yA,yB ,yC are the respective measurements.
We can write  yA

yB
yC

 = Φt

 xA

xB

xC

+ ω, where Φt =

 Φt
A 0 0

0 Φt
B 0

0 0 Φt
C

 . (4.6)

Here different sensors can take different number of samples, and Φt
A,Φ

t
B,Φ

t
C can have different

sizes. Thus, Φt can be interpreted as a general spatio-temporal selector to choose when and
where to sample such that we collect the maximum amount of information. Moreover, it is worth
mentioning that Φt is optimized for each block to adapt to the time-varying model of the signal.

4.4 Building Blocks
The proposed method is graphically represented in Figure 4.6 and is based on three building

blocks:

— The desired signal x̃ is reconstructed using the collected measurements y, the signal model
Ψt and the estimated mean x (Section 4.4.1).

— We use the measurements y to update the approximation model Ψt,x (Section 4.4.2).
— The sampling pattern for the subsequent temporal block χt+1 is optimized according to

Ψt and is transmitted back to the sensor node(s) (Section 4.4.3).

The overhead of DASS on the sensor node is minimal in practice. First, the sampling pat-
tern χt has a sparse structure, hence it can be encoded efficiently with a few bytes per block.
Therefore, the extra communication cost for receiving χt is minimal. Second, all the algorithmic
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Figure 4.6: Representation of the operations of DASS in a WSN. The sensor node sends the
measured data to the processing server and receives the sampling pattern for the next temporal
block. The server uses the data to update the signal model Ψt, reconstructs the discretized signal
x̃ and optimizes the sampling pattern χt+1 for the sensor nodes. Note that χt+1 determines
Φt+1.

complexity of DASS is at the server side, and the sensor nodes only need to sample and transmit
the signal according to the sampling pattern received from the server. Therefore, the CPU and
memory requirements of the sensor node are minimal.

In the following, we analyze each block by explaining the challenges and the proposed solu-
tions.

4.4.1 Signal Approximation and Reconstruction
Due to the nature of most physical signals, a signal block is partially predictable by analyzing

past data. In many cases, this predictability can be expressed by assuming that the signal belongs
to a K-dimensional linear subspace Ψt ∈ RN×K . Such a subspace approximates x as

x̂ = Ψtα+ x, (4.7)

where x̂ is the approximated field, α ∈ RK is the vector of the projection coefficients and x is
the mean of x.

If the modeling subspace Ψt is well designed and K is sufficiently large compared to the com-
plexity of x, the signal realization x can be accurately expressed with just K << N coefficients
contained in α. To find such a subspace, we analyze all the past signal realizations and estimate
at the t-th block the K-dimensional subspace Ψt that minimizes the expected approximation
error

ϵa =
1√
N

E (∥x− x̂∥2) . (4.8)

This is a dimensionality-reduction problem that can be solved by the well-known technique of
principal component analysis (PCA) 7. It has an analytic solution but requires the covariance
matrix Cx.

Unfortunately, in our scenario it is hard to estimate Cx because we have access only to M

out of N elements of x. However, if the M sampled elements vary at each temporal block t, we

7. The CS-based sparse-sensing methods in [48] also used PCA for subspace learning.
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can collect enough information to have a sufficiently precise estimate of Cx. We present a set of
methods to estimate Cx in Section 4.4.2.

Note that the approximation through Ψt exploits the temporal correlation among the el-
ements of x. The higher the correlation available in x, the lower the dimensionality of the
subspace Ψt, the number of parameters K and the necessary measurements M . Hence, one of
the key aspects is the choice of the signal block length T . In fact, it should be chosen such
that the delay of the WSN respects the design specification while maximizing the correlation
among the blocks. For example, a sensor measuring the outdoor light intensity naturally shows
diurnal patterns. Therefore, if we choose a block length of one hour, the correlation within the
signal block is usually weak. Whereas, if we choose a block length of one day, the correlation is
stronger.

Once the approximation model Ψt is estimated, recovering the signal x̃ amounts to estimating
α from the measurements y when considering the approximated signal model,

y ≈ Φtx̂+ ω = Φt(Ψtα+ x) + ω. (4.9)

If ω is an i.i.d. Gaussian random noise, we can recover α by solving an ordinary least square
(OLS) problem [48]

α̃ = arg min
α
∥y −Φtx−ΦtΨtα∥22, (4.10)

which has the following analytic solution,

α̃ = (ΦtΨt)†(y −Φtx). (4.11)

Here (ΦtΨt)† is the Moore-Penrose pseudoinverse of ΦtΨt that is defined for a generic matrix
A as A† = (A∗A)−1A∗. We can slightly vary the reconstruction technique to account for more
complicated noise models. For example, if the noise is distributed according a known covariance
matrix Σω, we can estimate α as

α̃ = ((ΦtΨt)∗Σ−1
ω ΦtΨt)−1(ΦtΨt)∗Σ−1

ω (y −Φtx). (4.12)

We can generalize such an estimator to other additive noise models, see [39]. For the remainder
of the chapter we keep considering the i.i.d. Gaussian noise case. Nonetheless, we show in Ap-
pendix 4.A that if the noises are correlated, we could still use the proposed scheme by whitening
the measured data before the processing.

Once we have the estimator α̃, the reconstruction algorithm is straightforward and is de-
scribed in Algorithm 4.1. The following proposition states the necessary conditions to find a
unique solution and provides an upper bound for the reconstruction error, that is going to be
fundamental when optimizing the sampling pattern. Such a result is an adaption of two classic
results of linear algebra [28].
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Algorithm 4.1: Signal reconstruction
Input: Ψt, x, χt and Φt

Output: x̃
1 Measure the signal y according to χt. x̃ = Ψt(ΦtΨt)†(y −Φtx) + x.

Proposition 4.1
Consider a sensor measuring a temporal signal as in (4.9) where the M measurements are
corrupted by an i.i.d. Gaussian noise with variance σ2. If M ≥ K, Ψt ∈ RN×K is formed by
orthonormal columns and rank(ΦtΨt) = K, then x̃ can be determined using Algorithm 4.1.
The reconstruction error is bounded by

ϵ2 =
1

N
∥x− x̃∥22 ≤

1

λK
ϵ2a + σ2

K∑
i=1

1

λi
, (4.13)

where ϵa is the approximation error due to the signal model Ψt and λi (1 ≤ i ≤ K) is the
i-th largest eigenvalue of the matrix Ψt∗Φt∗ΦtΨt.

Proof.
Since the Gaussian noise is independent from the approximation error, we can treat it indepen-
dently. Moreover, it is sufficient to compute the error on the estimation of α, given the assumed
orthonormality of the columns of Ψt.

For reconstruction error due to the approximation error ϵa, we look at the worst-case scenario
with the following optimization problem,

max ∥(ΨtΨt)†(x− x̂)∥22

subject to 1

N
∥(x− x̂)∥22 = ϵa,

whose solution is proportional to the smallest eigenvalue of (ΨtΨt)†. More precisely, it is possible
to show that the approximation noise is upper bounded by 1

λK
ϵ2a, where ϵa is the norm of the

approximation error.
For the reconstruction error due to the white noise, we use a known result of frame theory,

see [23]. We merge the two results to conclude the proof.

The upper-bound of the total error ϵ is a function of both the approximation error ϵa and
the measurement noise ω. The former term depends on the number of parameters K: when
K = N , we have ϵa = 0 and it grows when we decrease K. However, the rate at which the error
increases depends on the spectrum of Cx. In fact, if x has elements that are highly correlated,
a small K could be sufficient to model x with a small approximation error. The latter term can
be controlled directly by optimizing the sampling pattern.

Note that the part involving ϵa depends only on the smallest eigenvalue, because we are not
guaranteed that the approximation error spreads over all the eigenvectors of ΦtΨt. In fact, the
worst-case scenario is represented by the approximation error that is in the same direction of the
eigenvector with the smallest eigenvalue and ϵa is consequently maximally amplified.



4.4 Building Blocks 77

Algorithm 4.2: Updating Ψt,x using a buffer
Input: y, L
Output: Ψt,x

1 Interpolate y → xintep. Insert xintep into a buffer storing the most recent L blocks.
Estimate Cx and x from the buffer. Ψt is formed by the eigenvectors corresponding to
the K largest eigenvalues of the matrix Cx.

Algorithm 4.3: Updating Ψt,x using incremental PCA
Input: y, L, Ψt−1, λt−1,xt−1

Output: Ψt,λt,xt

1 Interpolate y → xintep. a = Ψt−1∗(xintep−xt−1). b =
(
Ψt−1a + xt−1)

)
−xintep, and then

normalize b. c = b∗(xintep − xt−1). D = 1
L+1

[
diag(λt−1) 0

0∗ 0

]
+ L

(L+1)2

[
aa∗ ca
ca∗ c2

]
.

Solve the eigenproblem: D = R · diag(λ′) ·R−1, λ′ is sorted in decreasing order.
Ψ′ =

[
Ψt−1 b

]
·R. Update Ψt as the first K columns of Ψ′. Update λt as the first K

values of λ′. Update xt as
(
Lxt−1 + xintep

)
/(L+ 1).

Compared to the methods based on CS, our approach based on a low-dimensional model
and OLS has the following advantages: i) the solution is easy to compute and it requires a
single matrix inversion, ii) it enables an analysis of the reconstruction error and a consequent
optimization of the sampling pattern χt such that the upper-bound of ϵ is minimized.

4.4.2 Learning from Incomplete Data over Time
In Section 4.4.1, we highlighted some challenges regarding the estimation of the covariance

matrix Cx — a fundamental step for determining the approximation model Ψt. Most of the
challenges derived from the lack of a sufficiently large set of realizations of x, that are needed
to estimate Cx. First, there is virtually no past data for a newly installed WSN. Second, Cx

is likely to vary over time. Third, a high ratio of data points (1 − γ) are not available for the
estimation because we collect sparse measurements. Therefore, we need an on-line algorithm
that estimates and adaptively updates the covariance matrix Cx from incomplete data.

The main difficulty is the lack of complete realizations of x. Two strategies are generally
considered to overcome such a problem. The first strategy is to estimate from y an interpolation
xinterp by using classic methods such as linear, polynomial or spline interpolation. The second
strategy skips the estimation of Cx and attempts to perform directly the PCA on the data with
missing entries, see [49].

From our quantitative results, the second class of algorithms is less powerful for our purposes.
Therefore, we focus our attention on the interpolation methods. More precisely, we analyze two
different methods that implement an adaptive learning and updating of the approximation model
Ψt from the interpolated signal xintep.

The first method, whose pseudocode is given in Algorithm 4.2, uses a FIFO buffer to store
the most recent L blocks. Whenever a new block is added into the buffer, the oldest block in the
buffer is excluded. As the approximation model is estimated according to the signal realizations
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in the buffer, this scheme is able to capture over time the variation of signal statistics.
The second method, described in Algorithm 4.3, adaptively updates the approximation model

via a technique called incremental PCA [32]. It does not keep signal realizations in memory,
instead, it stores the largest K eigenvalues of Cx, λ = {λi}, for i = 1, · · · ,K. This method re-
quires significantly less memory (K versus N×L), and shows better performance when compared
to Algorithm 4.2. Note that in both algorithms, the choice of L depends on the variability of the
signal statistics for each specific application. In practice, we can cross-validate this parameter
to find a suitable value (e.g., L = 30). We discuss and compare the performance of these two
algorithms in the experimental results section

4.4.3 Sampling-Schedule Algorithm
According to Proposition 4.1, minimizing the overall error ϵ is equivalent to finding the opti-

mal sampling pattern χ that minimizes (4.13). We fix the values of K and M in the optimization
process, hence the approximation error ϵa is fixed. We assume that the model Ψt is sufficiently
precise and the dimensions K is large enough so that the term due to the white noise σ is domi-
nant. Note that if the approximation error decays exponentially fast with K, there exists always
a small K such that ϵa ≪ σ. We will show in the experimental part that meteorological data
exhibits such an exponential decay of the approximation error.

To optimize the scheduling pattern, we want to find the sampling pattern that minimizes the
following cost function,

Θ
(
Ψ̃

t
)
=

K∑
k=1

1

λk
, (4.14)

where λk are the eigenvalues of (Ψ̃
t
)∗Ψ̃

t
, and Ψ̃

t
= ΦtΨt. Note that this optimization is equiv-

alent to finding the M rows of Ψt that forms the submatrix Ψ̃
t

with the smallest Θ(Ψ̃
t
). How-

ever, it has been already shown that such optimization is NP-hard [19, 20] and has a complexity
O
((

N
M

))
, which is prohibitively high in practice.

Therefore, for solving the scheduling problem, we investigate approximate solutions that can
be implemented efficiently. These approximate solutions are usually hard to find because the cost
function Θ(Ψ̃

t
) has many local minima that are arbitrarily far away from the global minimum.

Therefore, proxies of Θ(Ψ̃) are usually chosen as a cost function for the approximated algorithm
with a twofold aim: (i) inducing an indirect minimization of Θ(Ψ̃

t
) and (ii) being efficiently

optimized by standard techniques, as convex optimization or greedy algorithms.
In order to solve the sampling scheduling problem, we extend the recent work [51] on near-

optimal sensor placement. In [51], a generic linear inverse problem

x = Ψα (4.15)

is considered, where x contains all the possible sensors locations, Ψ is a known linear model and
α a set of parameters that we want to estimate. Then, we are allowed to measure only a subset
of elements of x. These elements are selected based on the greedy minimization of a proxy: the
frame potential [15]. Such a proxy is defined as

FP(Ψt,S) =
∑
i,j∈S

|⟨ψi,ψj⟩|2, (4.16)
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where ψi is the i-th row of Ψt and S denotes the set of selected locations for sensing. Under some
mild solutions, we prove that such an algorithm is near-optimal with respect to the RMSE of
the solution. The detailed proof is available in [51], and here we provide an intuitive explanation
about why the frame potential is a good proxy: the frame potential favors the rows of Ψt that
are close to be orthogonal to each other. Therefore, the algorithm selects the sensor locations
containing a large amount of information about the sensing field.

In this work, we note that, the sensor-placement problem and the sampling scheduling prob-
lem are extremely similar: we have a linear inverse problem and we want to estimate a set of
parameters x using the least number of measurements y without compromising the RMSE of
the estimation. Nonetheless, there are a set of differences characterizing the latter:

— the signal model Ψt in our sparse-sensing scenario is generally not known a-priori and is
time-variant,

— the sensor placement is optimized according to the spatial correlation, whereas here we
select sparse sensing-samples according to the temporal correlation,

— the sensor placement is determined at design-time, whereas the sampling schedule is time-
varying and optimized at run-time.

The sampling-schedule algorithm proposed here is based on an equivalent greedy “worst-out”
procedure: as input we have the signal model Ψt and we initially consider the identity matrix
of size N as the sampling matrix Φt+1. At each iteration, we remove the row of Φt+1 that
maximizes the cost function (4.16). After N −M + 1 iterations we are left with an optimized
Φt+1 that has only M elements different from zero and has near-optimal performance when
reconstructing x from the measurements y. Note that if Ψt satisfies the conditions given in [51],
the obtained sampling matrix Φt+1 recovers x from the measurements y with a near-optimal
RMSE.

In most of the scenarios, the sampling schedule optimized according to the proposed greedy
minimization of the frame potential, gives state-of-the-art performance. However, there exists
scenarios where a uniform sampling-schedule could be better [66], such as when the temporal
measurements are characterized by a low-pass spectrum. Therefore, at the end of the greedy
optimization, we compare the RMSE obtained by the greedy and the uniform schedule and opt
for the one with the smaller reconstruction error. Note that the reconstruction error cannot be
computed exactly given the uncertainty on the approximation error and we use the expression
provided by Proposition 4.1, which bounds the RMSE for any given sampling matrix Φt.

A detailed description of the overall algorithm is given in Algorithm 4.4. Note that for the very
first block of data upon system startup, the uniform sampling-schedule is used for initialization.

4.5 Comparisons with Baseline Methods
In this section, we briefly summarize the state-of-the-art methods for the sparse-sensing

problem. They will serve as the baseline for comparisons in Section 4.6.
The first category of methods [48, 66] is based on compressive sensing (CS). With the nota-

tions introduced in Section 4.3, x is the unknown signal, y contains the incomplete measurements,
and Φ is a sparse-sampling matrix with only M elements different from zero. We assume x to
be sparse with respect to a dictionary Π. More precisely, we have x = Πs and s has just a few
coefficients different from zero, that is ∥s∥0 ≪ N (see [11] for more details). By approximating
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Algorithm 4.4: Greedy sampling-schedule
Input: Ψt, M

Output: χt+1 for the next temporal block
1 Initialize the set of removed sampling indices: L = ∅. Initialize the set of selected

sampling indices: S = {1, · · · , N}. Find the first two rows to eliminate,
L = arg maxi,j∈S | ⟨ψi,ψj⟩ |2. Update S = S\L. repeat

2 Find the optimal row, i∗ = arg maxi∈S FP(Ψt,S\i). Update the set of removed
indices, L = L ∪ i∗. Update the set of selected indices, S = S\i∗.

3 until |S| = M ;
4 χt+1 = arg minχ

{
ϵ2a
λK

+ σ2Θ(Ψ̃
t
),χ is uniform pattern or S

}
.

Table 4.1: Summary of methods used in experiments

Abbreviation Reconstruction
Algorithm

Sampling
Schedule

CS [48, 66] (4.17) uniform
CSN [12, 48] (4.18) uniform
OLS-random [48] Alg. 4.1 random
OLS-uniform [48] Alg. 4.1 uniform
DASS Alg. 4.1 Alg. 4.4

the ℓ0-norm with the ℓ1-norm [12], the reconstruction method for the noiseless case is

min
s∈RN

∥s∥1, s.t. y = ΦΠs, (4.17)

whereas the one for the noisy case is

min
s∈RN

∥s∥1, s.t. ∥y −ΦΠs∥2 ≤ ξ, (4.18)

where ξ measures the energy of the noise. Problem (4.17) and (4.18) are both convex and
can be solved [12] in polynomial time using various solvers, in general iterative or based on
convex optimization. In both methods, we use uniform sampling as the sampling scheduler —
χt
j = ⌊jN/M⌋.

The second category of baseline methods [48] are based on learning the K-dimensional time-
varying model Ψt and a reconstruction via an OLS as in Algorithm 4.1. We use two sampling
schedulers, namely, a uniform sampling, and a random sampling where χt

j is randomly selected
with a uniform distribution.

Table 4.1 lists all the methods (including DASS) that are evaluated in the experiments.
To obtain a fair comparison, Π in CS-based methods and Ψt in OLS-based methods are both
learned 8 by the incremental PCA described in Algorithm 4.3.

8. The experimental results show that K = M is the best choice for CS-based methods, and K < M is a
parameter that needs to be optimized for OLS-based methods, see Section 4.6.1.
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Table 4.2: Summary of experimental datasets

Dataset
name Physical quantity Number of

nodes
Number
of days

Payerne temperature, solar
radiation 1 1500

Valais temperature 20 125

4.6 Evaluations of DASS and Sparse-Sensing Methods
In this section, we evaluate the performance of DASS and compare it with the state-of-the-art

sparse-sensing methods. In addition to the experiments on the single-node case, we also verify
DASS in the multi-node case where nearby sensor nodes measure spatially correlated signals.
We use two real-world meteorological datasets as the ground truth, namely Payerne and Valais:

— Payerne is provided by MeteoSwiss [1]. This dataset contains 1500 days of continuous
measurements for two physical quantities (temperature and solar radiation) 9, which are
suitable for studying long-term performance of DASS. As MeteoSwiss only deployed a few
observation stations across the whole nation, we use Payerne for evaluating the single-node
case.

— Valais is provided by a microclimate-monitoring service provider [34]. A total of 20 stations
are deployed in a mountain valley. Figure 4.7 shows six of them, covering an area of around
18 km2. The deployments were started in March 2012 and collected 125 days of continuous
temperature measurements. We use Valais for evaluating the multi-node case.

The two datasets are summarized in Table 4.2. For both datasets, there are 144 uniformly
sampled data points for each day. We choose the day as the length of each block, that is,
N = 144.

One of the targets of this section is to evaluate DASS and compare it with other algorithms
when the sensing device induces measurement noise. As we do not know the groundtruth of the
signal, we assume that Payerne and Valais represent the real value of the field x. Then, we add
white Gaussian noise to simulate the effect of noisy measurements. We evaluate the algorithms
for the SNR of the measurement (as defined in (4.5)).

Note that the main merit figure considered in this section is the final reconstruction error
under a fixed subsampling rate γ. Since all sparse-sensing schemes directly transmit the sensing
samples without further data compression, two schemes with the same γ have the same amount
of energy consumed for sensing and communication 10, regardless of which sensing platform is
used.

4.6.1 Components of DASS
In this section, we evaluate the key components of DASS, including the optimal choice of K,

the cost function Θ(ΦtΨt) in the sampling-schedule algorithm, and the performance of adaptive
learning algorithms.

9. We denote by Payerne-temperature the dataset of temperature measurements. The notation is similar for
solar radiation.

10. The processing costs of the considered sparse sensing methods are negligible.
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Figure 4.7: Locations of the sensor nodes that collected the data-set Valais.
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Figure 4.8: Normalized approximation error for the two considered datasets as a function of the
model parameter K. Note how the error monotonically decreases with K given the optimality
of PCA. Moreover, we highlight how the approximation error shows an exponential decay with
K; thus confirming our assumption described in Section 4.4.3.

Optimal Choice of Dimension K: First, the larger the K, the smaller the approximation
error for any dataset; the only difference being the decay rate of such an error. Such an aspect
for the two considered dataset is depicted in Figure 4.8, where the data has been normalized for
K = 0. Note that for both datasets we have an exponential decay of the approximation error as
a function of K. Therefore, there exists a small K for which the approximation error is negligible
with respect to the Gaussian noise corrupting the measurements, as we previously assumed.

As stated in Proposition 4.1, the overall reconstruction error ϵ is a function of both the
approximation error ϵa (4.8) and the cost function Θ(ΦtΨt) (4.14). Generally, ϵa decreases with
K and Θ(ΦtΨt) increases with K, hence there is an optimal choice of K for minimizing the
overall error. The optimal K depends on the data statistics, the subsampling rate, and the SNR
of the measurement. By cross-validation, Figure 4.9 shows the optimal ratio K/M for Payerne-
temperature. We see that as DASS generally opts for a larger K when the SNR of measurement
increases. This is intuitive since with better measurements we can afford a more complicated
model with a weaker regularization.
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Figure 4.9: Optimal ratio K/M of DASS for a fixed subsampling rate with respect to the SNR
of the measurement (Payerne-temperature dataset). First, we note that K/M must be smaller
than 1 according to Proposition 4.1. Second, we note that for an increasing quality of the
measurements we can collect only M ≈ K samples, meaning that the reconstruction algorithm
is less influenced by the noise hence we need less samples. As a conclusion, we would expect the
plots to be monotonically increasing. However, this is not the case due to the random nature of
the noise model and to the near-optimality of scheduling algorithm.

Table 4.3: Average Θ(ΦtΨt) achieved by different sampling-schedule algorithms (γ = 10%, SNR
of the measurement=30dB)

PayerneMethod uniform random Alg. 4.4
Temperature 0.56 4.9×1015 0.54
Solar radiation 4.5×105 1.8×1015 0.97

Sampling Schedule: The greedy algorithm proposed in Section 4.4.3 (Algorithm 4.4) finds an
approximate solution of the sampling-schedule problem. By Proposition 4.1, Θ(ΦtΨt) determines
the reconstruction error. Table 4.3 shows the value of Θ(ΦtΨt) achieved by different sampling-
schedule algorithms for different datasets. Note that a high value indicates poor stability with
respect to noise. We can see that the greedy algorithm achieves the best result for the two
datasets. In particular, it is substantially better than uniform sampling for solar radiation data.
For temperature data, as Θ(ΦtΨt) of the uniform sampling strategy is already near the lower
bound 11, the greedy algorithm provides little improvement. In the next section, we demonstrate
how these improvements translate into an improved reconstruction performance of DASS.

Learning over Time: DASS is designed to learn the signal statistics from past data. In
practical scenarios, a long backlog of data is usually unavailable and hence DASS should be
designed to learn the model from scratch. We propose Algorithm 4.2 and Algorithm 4.3 for this
task. Figure 4.10 shows the learning curves of these two algorithms over three years of data. As
a benchmark, we consider an offline method that learns the model from the data of 600 days and
is represented by the red-dotted curve. The offline method derives the transform matrix once
and for all from the complete signal. However, using this matrix might provide poor results as
the signal can have substantial variations over different time blocks.

11. The lower bound of Θ(ΦtΨt) is γ = M/N if and only if ΦtΨt is a basis.
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Figure 4.10: Learning curves of DASS (Payerne-temperature, γ = 10%, SNR of the measure-
ment=30dB): Comparisons of two online learning algorithms and an one-time learning algorithm
with long backlog of past data. Note that Algorithm 4.3 achieves always the lowest error.

Note how Algorithm 4.2 and Algorithm 4.3 capture the signal statistics. In particular, even
if they use less data—the last 30 days—they are generally better than the offline method that
considers 600 days of data. It is clear that the non-stationary signal model Ψt is captured only
by the adaptive on-line algorithms. Moreover, Algorithm 4.3 with incremental PCA performs
better than the buffer-based Algorithm 4.2.

In the following experiments, we will consider only Algorithm 4.3 due to its good performance
and low memory requirements.

4.6.2 DASS versus Baseline Methods
We compare DASS with the baseline methods introduced in Table 4.1, namely, CS, CSN,

OLS-random, and OLS-uniform.

Known Noise Level: For DASS, we need to choose the optimal K according to the cross-
validation studied in Figure 4.9. A similar parameter tuning is necessary for CSN, where ξ in
equation (4.18) represents the noise level. Therefore, whenever we consider the case of noisy
measurements, an estimate of the SNR of the measurement is necessary to avoid degradations
of the reconstruction quality.

In the first experiment, we assume that the estimation of the SNR is exact. Figure 4.11 shows
the comparison results of DASS, OLS-uniform, OLS-random, CS and CSN, for both temperature
and solar radiation data. First, note that OLS-uniform generally performs better than the two
CS-based schemes, especially in a low SNR regime. In a high SNR regime (> 35dB), OLS-
uniform, CS and CSN tend to perform similarly. Second, the bad performance of OLS-random
indicates that random sampling is not a valid sampling strategy for either temperature or solar
radiation signals. Third, although DASS and OLS-uniform perform almost equivalently for
temperature data, we note that DASS is substantially better for solar radiation data. This
fact is in accordance with the analysis of Θ(ΦtΨt) given in Table 4.3: If Θ(ΦtΨt) is large due
to uniform sampling (see solar radiation data), then the sampling-schedule algorithm of DASS
(Algorithm 4.4) significantly improves the effectiveness of sensing and preserves the average
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Figure 4.11: Reconstruction error (RMSE) with respect to SNR of the measurement, of DASS,
OLS-uniform, OLS-random, CS and CSN, respectively (γ = 10%). The SNR is assumed to be
accurately estimated. (a) Payerne-temperature. (b) Payerne-solar radiation. DASS is either on
par with the best method, see (a), or significantly better, see (b). Note that in (b) OLS-random
is not visible in the plot because it is significantly worse than the other methods.

sampling rate.

Error in Noise Estimation: In practice, the estimation of the noise level might be inexact.
Here, we study the performance deviation of the considered algorithms when there is an error
in such estimates. More precisely, we fix all the parameters and we vary the estimation error of
the SNR and then measure the performance of the algorithms in terms of the RMSE.

Figure 4.12 shows the reconstruction error with respect to the estimation error of the SNR,
whereas the true SNR is 30dB. We can see that DASS performs the best, and generally DASS
and OLS-uniform are both stable with respect to errors in the SNR estimation. However, the
performance of CSN degrades severely when the SNR is underestimated. The reason behind
this large gap is that DASS and OLS-uniform both solve a least square problem (4.10), which
could automatically reveal the unknown noise variance after optimization. On the contrary, CSN
requires a known noise variance in the objective function, hence it can be affected severely if the
SNR is not correctly estimated a priori.

According to results given in Figure 4.11 and Figure 4.12, DASS is both more accurate and
robust when compared to the state-of-the-art sparse-sensing methods.

4.6.3 DASS on Multiple Sensor Nodes
As discussed in Section 4.3, the concept of DASS can be extended to multiple sensor nodes

by concatenating the collected samples into a single vector y and using the same strategy as for
the single-node case.
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Figure 4.12: Reconstruction error (RMSE) with respect to estimation error of the SNR of the
measurement, of OLS-uniform, DASS and CSN, respectively (Payerne-temperature, γ = 10%).
The true SNR is 30dB. Note that the proposed method is more robust to errors in the estimation
of the noise power, when compared to other methods.

Merging the data of all the spatial nodes possibly augments the correlation; DASS may ex-
ploits such a correlation in order to reduce the sampling rate. In fact, if all the measurements col-
lected by the sensors are linearly independent then DASS generates the same sampling-schedule
that would have been optimized for each sensor individually. However, if there exists some cor-
relation between the different sensor nodes, then DASS jointly optimizes the sensor scheduling
so that the total average sampling rate is reduced.

We denote by Joint-DASS the scheme that reconstructs the signals of all sensors together
(Figure 4.5), and Independent-DASS the scheme that independently reconstructs the signals of
each sensor. Note that in both schemes, sensor nodes are operating in a purely distributed
manner; the difference is that Joint-DASS aggregates the sensed data of all nodes and jointly
processes them.

Figure 4.13 shows the ratio between the subsampling rates of Joint-DASS and Independent-
DASS, using the data-set Valais. We only show up to six sensors because the benefit stabilized
at 30% with more than 4 sensors in the experiments. We can see that as the number of sensors
increases, the required sampling rate of Joint-DASS gradually decreases. In particular, with 4
sensors we can reduce the number of samples by 70% with Joint-DASS. Therefore, exploiting
the spatial correlation further enhances the energy reduction of DASS. On the other hand, the
benefit flattens out when we consider 5 or more sensors. The intuition behind this phenomenon
is that as the number of sensors increases, there are more sensors far apart from each other and
hence the spatial correlations reduce accordingly.

4.7 Energy Saving over Traditional Data Collection Schemes
In Section 4.6, we show that DASS achieves better sensing precision with respect to the state-

of-the-art sparse-sensing schemes. In this section, we study the overall energy saving of DASS
with respect to the traditional data collection schemes [52, 71]. The energy saving is particularly
significant on platforms where the energy consumed for sensing is more pronounced. This is
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Figure 4.13: Ratio of sampling rate between Joint-DASS and Independent-DASS, such that both
schemes have the same reconstruction error (Valais, SNR of the measurement=20dB). Note that
the joint scheme always reduces the number of samples required, this is due to the spatial
correlation available in the sampled data.

intuitive since DASS can substantially reduce the number of sensing samples. Nevertheless, our
analysis shows that this saving is also noticeable on platforms with small sensing cost, e.g. a
Tmote-sky node [64].

The traditional data collection schemes typically sample the signal at a high frequency f as
in (4.1) and then compress the samples to reduce the communication rate, see Figure 1.5a. In
contrast, DASS collects measurements by using an optimized sampling pattern and a reduced
average sensing frequency γ · f , where γ < 1. Then, each sensor node transmits the raw data
points without any compression, see Figure 1.5b. In both traditional schemes and DASS, we
aim at precisely reconstructing the signal x. Furthermore, we restrict the discussion to the
single-node scenario.

It is clear that DASS reduces the energy consumption for the sensing operations over the
traditional scheme. However, DASS might not necessarily consume less communication energy,
because the compression ratio rc 12 used in traditional sensing is generally better than 1/γ. In
fact, existing data-compression schemes can achieve a compression ratio rc of 1.5 ∼ 5 for lossless
coding [52], and 5 ∼ 50 for lossy coding [71], whereas a typical value of γ used in DASS is 0.1.
Hence, there is a tradeoff between the energy saved on sensing and communications.

Such a tradeoff between the different energy-consumption depends on platform-specific pa-
rameters. In particular, we denote the energy consumption for collecting and transmitting one
sample as Esensor and Eradio, respectively. An interesting figure is the ratio between the two
energy values, that we denote as rs = Esensor/Eradio. Intuitively, the larger rs, the larger the
energy savings obtained by DASS. For the traditional data collection schemes, we assume that
the compression step has a negligible energy cost. For DASS we use a subsampling rate of
γ = 0.1, which means that 10% of the original signal is sampled and transmitted.

Under these assumptions, we can quantitatively analyze the relative energy savings of DASS
with respect to the traditional sensing as a 2-D function of the platform parameter rs and the

12. rc equals uncompressed size / compressed size.
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Figure 4.14: Relative energy saving of DASS (γ = 10%) with respect to traditional data collection
schemes. The saving depends on the sensing platform (value of rs) and the compression ratio rc
in traditional sensing. The “star” and “circle” markers represent the energy saving on Tmote-sky,
when DASS achieves the same reconstruction error as traditional sensing using LTC and DCT-
LPF compression methods [71] (on dataset Payerne-temperature) . The dashed lines indicate
further savings when r increases, that is for sensors with higher energy costs.

compression ratio rc achieved by the compression stage of the traditional scheme. Such function
representing the energy saving is plotted in Figure 4.14. We see that there is a line, indicated by
the zero value, that defines where DASS is more energy-efficient than the traditional schemes.
Above the line, a WSN consumes less energy if it uses DASS and vice versa. Note that DASS is
only less efficient in the scenarios where the compression ratio rc is very high and the platform
parameter rs is very low.

As discussed in Section 4.1, we consider Tmote-sky, a low-power sensing platform widely used
in WSNs [64]; it has a photodiode sensor that measures the light intensity of the surroundings and
communicates with others through short-range radio. We measured the two energy consumptions
Esensor and Eradio of Tmote-sky in a set of experiments, and the measurements are given in
Figure 4.1. The experiments indicate that rs = 0.26. To evaluate the energy consumption of a
traditional scheme, we need to choose a specific compression algorithm and measure the achieved
rc. Zordan et al. [71] have recently compared various lossy compression algorithms and showed
that DCT-LPF [71] achieves the best performance in terms of compression ratio. However, it is
also a complex algorithm and has a significant energy-consumption on a resource-limited platform
such as Tmote-sky. Therefore, we also consider a lightweight algorithm, LTC [53], that achieves
the lowest energy-consumption on WSN nodes if the energy cost for compression is considered.

Here, we ignore the energy cost of compression and we compare both algorithms with DASS.
Note that, if we consider computational energy cost, the benefit of DASS will be even larger
since it requires minimal on-board computation. We implement and evaluate the two algorithms
on the dataset Payerne-temperature, and record the corresponding compression ratio rc when
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their reconstruction errors are the same as those achieved by DASS.
The “star” and “circle” markers in Figure 4.14 show the energy savings of DASS over a

Tmote-sky that compresses the data with LTC and DCT-LPF, respectively. The energy savings
for the two cases are equal to 50% and 35%. It is worth mentioning that the compression ratios
achieved in Figure 4.14 ( “star” and “circle” markers) are specific of the considered meteorological
datasets. There might be extreme cases where traditional compression schemes achieve a very
high compression ratio (e.g., rc = 100), and the respective saving falls below zero. However,
we observe in Figure 4.14 that the energy savings can still be obtained in such cases, if rs
increases due to a higher energy cost for sensing, as denoted by the dashed lines. This scenario
could be realistic for many scenarios, for example, when the sensors are air pollution sensors or
anemometers as discussed in Section 4.1.

4.8 Conclusions
In this chapter, we proposed DASS, a novel approach for sparse sampling that optimizes

sparse-sampling patterns for precisely recovering temporal signals. DASS is based on three main
blocks. First, it adaptively learns the signal statistics from past data. Second, it dynamically
adjusts the sampling pattern according to the time–varying signal statistics. Third, it recovers
the signal from the limited amount of collected samples and according to the learned signal
statistics.

We demonstrated the effectiveness of DASS through extensive experiments using two real-
world meteorological datasets. The results show significant improvements over the state-of-the-
art methods. These improvements are more pronounced in the presence of significant spatial
and/or temporal correlation in the sampled data by WSN.

We evaluated DASS on static WSNs; however, DASS is flexible and can be applied to other
sensing scenarios such as mobile WSNs. For instance, sensors are installed on top of buses for
collecting various environmental data along their trajectories [2]. The collected samples show
strong temporal-correlations due to the fixed routes periodically taken by the buses, and thus,
DASS is likely to be efficient in such a case as well.

4.A Appendix
In this appendix, we show how DASS deals with a the scenario where the sensing noises are

correlated.
We assume the noise ω to have zero mean and a correlation matrix Σω and recall that our

measurements are defined as x+ω, where x is the actual physical signal that we are measuring.
We define Ω = (Σω)

−0.5 and we whiten the measurements according as

Ω(x+ ω) = x′ + ω′,

where the noise ω′ is now i.i.d. Therefore, we note that, DASS can be easily applied to sensing
scenarios where the noise is not i.i.d. by whitening the measured data before the processing.
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Chapter 5

Sparse Sensor-Selection by
Exploiting Spatial Correlations

When I’m working on a problem, I never think
about beauty. I think only how to solve the
problem. But when I have finished, if the so-
lution is not beautiful, I know it is wrong.

R. Buckminster Fuller

In the previous chapter, we proposed a sparse-sensing scheme that exploits temporal correla-
tions. Although this scheme can be extended to exploit spatial correlations, it uses a block-based
selection algorithm and implicitly assumes that the spatio-temporal model of the signal is sta-
tionary in each time block. However, this assumption might not hold when the signal changes
rapidly or the sensors themselves move fast. In this chapter, we will discuss a general sparse-
sensing framework that exploits spatial correlations of the signal to be sensed.

5.1 Introduction
In both static WSNs or participatory sensing systems, sensors take samples of a sensing

field and transmit the captured samples to a remote server for reconstructing the original field.
Because taking each sample costs some resources on the sensors, e.g., energy or communication
bandwidth, it is desirable to take few of them (sparse sampling). We observe that the sensing
samples usually have a strong inter-node correlation, in other words, a high spatial correlation.
By exploiting this correlation, the number of sensing samples to be taken can be largely reduced,
whereas a certain level of reconstruction precision can be ensured.

91



92 Sparse Sensor-Selection by Exploiting Spatial Correlations

Most existing works that exploit spatial correlations aim at minimizing the number of sensing
samples at a single time instant. In these works, an application-specific utility function is defined
on the subset of the selected sensors. The utility function might be defined as the sensing
coverage [41], the mutual information [31], the frame potential [51], or the log determinant of a
confidence ellipsoid [38]. The objective is to minimize the number of selected sensors to ensure
a certain utility in that time instant. This problem is usually NP-hard [40, 46]. Fortunately, all
the aforementioned utility functions are submodular. Leveraging on this submodular property,
we can employ greedy algorithms to select the sensors and guarantee that the number of the
selected sensors is at most logM times the optimal number where M denotes the number of all
candidate sensors.

However, in most practical WSNs or participatory sensing systems, the objective is not to
select a minimal subset of sensors for sensing in a single time instant. Instead, the objective is
to adaptively select the subsets of sensors in a continuous sensing period, such that a certain
sensing utility is always satisfied and the length of this sensing period is maximized given a limited
amount of resources available to all sensors. The idea is shown as in Figure 5.1. Compared to
the traditional sparse-sensing problem in a single time instant, selecting the subsets of sensors
in a continuous sensing period is more complicated due to the increased size of the optimization
space. We have to adaptively decide when, how many, and which sensors need to be activated
for sensing.

In the rest of this chapter, we will propose a generic framework for adaptively re-selecting
a sparse subset of sensors that guarantee a certain utility. This framework is compatible with
different application-specific utility functions and is easy-to-implement in both static WSNs and
participatory sensing systems. In static WSN scenarios, we show that the proposed framework
guarantees a lifetime at least 1/ logM of the optimum (M denotes the number of all sensors).
In participatory sensing scenarios where sensors move in an uncoordinated manner, it is hard
to guarantee a certain approximation-ratio; still, we verify the effectiveness of the proposed
framework through extensive simulations.

5.2 Related Works
The problem of selecting sparse sensors by exploiting spatial correlations is studied in both

static WSNs and participatory sensing systems. We will review the related works in these two
types of systems separately.

In static WSN systems, most works on sparse sensor-selection aim at minimizing the number
of sensing samples in a single time instant [31, 38, 41, 51]. Other works that aim at maximizing
lifetime given limited amounts of resources [5, 8, 13, 14] only focus on the scenarios where the
utility function is the coverage. In contrast, we consider a general framework for sparse sensor-
selection where application-specific utility functions can be used. Moreover, the algorithms we
propose are adaptive, which perfectly fit the WSNs in dynamic environments.

In participatory sensing systems, sensors move in an uncoordinated manner. The sparse
sensor-selection problem becomes more complicated. In [57], an opportunistic algorithm is used,
where the probability for selecting each sensor is adaptively changed based on the number of
detected sensors in the same neighborhood. In [63], the authors propose a mechanism for auto-
mated mapping of urban areas that provide a virtual sensor abstraction to different applications.
Sensors are adaptively selected by using mobility predictions, so that both the spatial coverage



5.3 Problem Formulations 93

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Active sensing spotMoving trace Potential sensing spot

Sensor 1 Sensor 2 Sensor 4Sensor 3

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Figure 5.1: A participatory sensing system with 4 mobile sensors. We enhance its resource
efficiency by exploiting spatial correlations of the sensing field. We do not control the mobility
traces of sensors, but we adaptively decide when and which sensors should be activated for
sensing. In this example, every sensor has a limited amount of resources and can be chosen
at most three times for actively sensing, i.e., em = 3 (∀1 ≤ m ≤ 4). The set of all sensors is
M = {1, 2, 3, 4}. The set of selected sensors at time n is denoted by An. The objective is to
select a sequence of active subsets of sensors {An}n∈N to satisfy a given sensing-utility and to
maximize sensing lifetime. In this example, the selected sequence is {An}6n=1 and the sensing
lifetime is 6.

and the temporal coverage are maintained. In [54], researchers solve the problem in the special
case where the sensing field is one-dimensional on a straight road and where the mobility traces
of sensors are known in advance. The performance of the proposed algorithm is limited when
there exist scarce mobile sensors in the sensing field. In [67], the authors use an empirical method
for sensor selection by analyzing the previous data samples. The data samples are first parti-
tioned into segments which are assumed to be generated from different models. Then, within
each segment, the optimal sensing points are selected. However, this method is only useful when
both the mobility trajectories of sensors and the signal to be sensed are periodic.

5.3 Problem Formulations

We will use a generic formulation for sparse sensor-selection in both static WSNs and par-
ticipatory sensing systems. Let the set of sensors be M = {1, 2, · · · ,M} where M denotes the
number of sensors. In Figure 5.1, we show an example of a participatory sensing system with
M = 4 mobile sensors. We partition time into slots while n ∈ N+ denotes the slot index and τ

denotes the length of a time slot. For simplicity of discussion, we assume that the sensors do not
move within each time slot. We denote the selected subset of sensors by An ⊆M in time slot n

and we denote by gn(An) the utility function of this set of sensors. The function gn(·) might be
defined in various ways depending on different applications, e.g., sensing coverage [41], mutual
information [31], frame potential [51], or log determinant of a confidence ellipsoid [38]. Notice
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that these utility functions gn(·) enjoy the submodular property, that is,

gn(A ∪ {m})− gn(A) ≥ gn(B ∪ {m})− gn(B), ∀A ⊂ B ⊂M, ∀m ∈M\B.

Also, notice that gn(·) depends on the index of time slot n because the locations of the sensors
might change over time.

Let q be the desired utility level for the selected sensors. We define un(A) = min (gn(A), q)
for any A ⊆M. In each time slot n, the desired subset of selected sensors An has to satisfy

un (An) = un(M), (5.1)

which amounts to enforcing that: (i) if the utility of all sensors gn(M) < q, all sensors inM need
to be selected; (ii) otherwise, only a subset An ⊆M needs to be selected to ensure gn(An) ≥ q.
Notice that if gn(·) is submodular, so is un(·). Likewise, since gn(·) depends on n ∈ N+, so does
un(·).

Denote the initially available resource of each sensor node m ∈ M by em. Without loss of
generality, we assume that every sensor node has unit resource-consumption rate when activated
for sensing; and it does not have any resource consumptions when inactivated. The objective of
the sparse-sensing problem is to select a sequence of subsets of sensors {An}Nn=1, such that the
lifetime of the network τN is maximized, that is,

max
{An}N

n=1

τN

s.t. un (An) = un(M), ∀1 ≤ n ≤ N, (5.2)

τ ·
N∑

n=1

I(m ∈ An) ≤ em, ∀m ∈M,

where the second constraint states that the total resource consumptions should not exceed the
initially available resources. Let the optimal lifetime in problem (5.2) be τNopt. Because Nopt

depends on τ , we will also write Nopt(τ) for Nopt to show explicitly this dependency.
As far as we know, this problem is studied only in static WSN scenarios where the utility

function is the coverage [5, 8, 13, 14]. In the following, we will propose an unified framework
for solving problem (5.2) in both static WSN and participatory sensing systems where different
utility functions can be employed.

5.4 The Proposed Framework
The proposed framework is generic in both static WSNs and participatory sensing systems.

Before the start of each time slot, every sensor sends beacons to a server. These beacons contain
the information about the remaining resources, the GPS location of the sensor and the routing
path to the server. The server collects all beacons, uses all the available information to select a
subset of sensors and notifies the selected sensors to be active. Then, the selected sensors start
sensing and continue to upload the captured sensing samples during the whole time slot. Finally,
the server collects all the sensing samples and uses these samples for reconstructing the original
sensing field. This process is repeated in the next time slot. The overall process is shown in
Figure 5.2.
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Figure 5.2: An example of the spatial sparse-sensing framework. In step 1, all sensors periodically
send beacons to the server in order to signal their remaining resources and their GPS locations.
In step 2, the server collects all the beacons and decides which sensors should be activated in
the next time slot. In step 3, notifications are sent to the selected sensors. Then, the selected
sensors start sensing in step 4 and continue to upload the sensing samples to the server in step 5.
Finally, in step 6, the server collects all the sensing samples and reconstructs the original sensing
field. In this example, four sensors participate in the sensing task, but only sensors 2 and 4 are
activated for sensing in this time slot.

In the following, we will focus on the algorithm running on the server for selecting the sparse
sensors. To start with, we introduce a few notations. We denote the available resource of sensor
node m at time slot n ∈ N+ by e

(n)
m . In particular, the initially-available resource e

(0)
m = em.

Because the available resource at time n equals the initially available resource minus the resource
consumed in the first n time slots,

e(n)m = em − τ
n∑

t=1

I(m ∈ At). (5.3)

We define θ
(n)
m as the average resource-consumption rate of sensor node m ∈M during the first

n ∈ N+ time slots

θ(n)m =
1

n

n∑
t=1

I(m ∈ At) =
em − e

(n)
m

nτ
, (5.4)

where the second equality follows from (5.4).
The objective is to select a sequence of subset of sensors {An}n∈N+ that fulfils (5.1) in each

time slot n ∈ N+, such that in the long run, the resources of all sensors are efficiently utilized.
Our proposed method is to penalize the sensors that are frequently used, so that they get less
selected afterwards.

The proposed algorithm is shown as Algorithm 5.1. It iteratively does the following in each
time slot n ∈ N+ as long as the available resources e

(n−1)
m ≥ 0 for all m ∈M:

(i) First, the server collects the information about the available resource of all sensors
{e(n−1)

m }m∈M, and calculates the resource-consumption rates in the first n−1 time slots {θ(n−1)
m }m∈M

using (5.4). We define the penalty for selecting each sensor node m ∈M in time slot n as

λ(n−1)
m =

exp
(
αθ

(n−1)
m /em

)
em
∑

m∈M exp
(
αθ

(n−1)
m /em

) (5.5)
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Algorithm 5.1: The proposed method for selecting subsets of sensors
Input: The initially available resource {em}m∈M, and a logM -approximate algorithm for

solving the min-penalty set-cover problem (5.6).
Output: N∗, {An}1≤n≤N∗ .

1 Initialize n←− 1.
2 while e

(n)
m ≥ 0,∀m ∈M do

3 Measure the available resource e
(n)
m , ∀m ∈M.

4 Calculate the penalties {λ(n−1)
m }m∈M using (5.4) and (5.5).

5 Select the subset of sensors An by using a logM -approximate algorithm to solve the
min-penalty set-cover problem (5.6).

6 Update the available resource e
(n)
m , ∀m ∈M following (5.3).

7 Update n←− n+ 1.
8 Set N∗ = n− 1.

Algorithm 5.2: The logM -approximate algorithm for min-penalty set-cover problem
Input: The available resource of all sensors {e(n−1)

m }m∈M
Output: A set of selected sensors An ⊆M

1 Calculate the penalties {λ(n−1)
m }m∈M by using {e(n−1)

m }m∈M, (5.4) and (5.5)
2 Initialize An ← ∅
3 while un(An) ̸= un(M) do
4 Choose m ∈M\An minimizing the weight per utility λ(n−1)

m

un(An∪m)−un(An)
.

5 Set An ← An ∪m.

where α > 0 is a constant parameter. Notice that for any sensor m ∈M, the larger the average
resource-consumption rate θ

(n−1)
m is , the larger the penalty λ

(n−1)
m is. More details why we select

this penalty function will be discussed in Section 5.5.
(ii) Then, the server selects the subset of sensors An that minimizes the sum of all penalties

for the selected sensors

min
An

∑
m∈An

λ(n−1)
m

s.t. un(An) = un(M).

(5.6)

Problem (5.6) is a well-known min-penalty set-cover problem [18] and it can be solved by using
a logM -approximation algorithm, as repeated in Algorithm 5.2.

Denote by N∗ the maximum number of time slots before the first sensor depletes its resource,

N∗ = max{n|e(n)m ≥ 0,∀m ∈M}. (5.7)

Because N∗ depends on τ and α, we will also write N∗(τ, α) for N∗ to show explicitly this
dependency.
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5.5 Analyses in the Static WSN Scenarios
In this section, we will analyze the performance of the proposed sparse-sensing framework

only in static WSNs. The analysis of this framework in the participatory sensing systems is left
for future work.

We will derive a lower-bound for the lifetime achieved by using our proposed algorithms
in these scenarios. First of all, we will introduce an auxiliary problem that approximates the
problem (5.2) with arbitrarily high precision when τ is small.

Remember that in static WSN scenarios, the GPS locations of all sensors are fixed, and the
utility function un(·) does not change in different time slots n ∈ N+. Denote the constant utility
function by u(·) = un(·), ∀n ∈ N+. Denote by M(q) ⊆ 2M the set of all subsets of M that
satisfies (5.1),

M(q) = {A|u(A) = u(M),A ⊆M}.

For each subset of sensors A ∈M(q), denote by pA the fraction of time that A is used. Denote
the average resource-consumption rate of each sensor node m ∈M by

θm =
∑

A∈M(q)

pA · I(m ∈ A).

Notice that the lifetime of the WSN is minm∈M em/θm which is the inverse of maxm∈M θm/em,
and that maxm∈M θm/em can be approximated by

f(θ) =
1

α
log
( ∑

m∈M
exp

(
αθm
em

))
(5.8)

where θ denotes the vector which lists {θm}m∈M, and α is a constant parameter. The approxi-
mation is arbitrarily precise when α is large.

Therefore, we have the auxiliary problem

min
{pA}A∈M(q),θ

f(θ) =
1

α
log
( ∑

m∈M
exp

(
αθm
em

))
s.t. θm =

∑
A∈M(q)

pA · I(m ∈ A), ∀m ∈M (5.9)

∑
A∈M(q)

pA = 1,

pA ≥ 0, ∀A ∈M(q).

Denote the optimal objective value of (5.9) by fopt. The link between fopt and the optimal value
Nopt in problem (5.2) is given in the following lemma.
Lemma 5.1

The optimal objective value fopt of the auxiliary problem (5.9) is bounded by

1

τNopt + τ
≤ fopt ≤

1

τNopt
+

logM
α

,

where Nopt is the optimal objective value of problem (5.2).
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The proof can be found in Appendix 5.A.1.
Remember that in our proposed framework, we use Algorithm 5.1 for selecting the active

sensors. In each time slot n ∈ N+, the penalty λ
(n−1)
m of sensor node m ∈ M is indeed the

gradient of f(θ(n−1)), that is,

λ(n−1)
m =

∂f(θ(n−1))

∂θ
(n−1)
m

,

where θ(n−1) denotes the vector that lists {θ(n−1)
m }m∈M. Therefore, solving the min-penalty

set-cover problem in each time slot n is equivalent to updating the objective value f(θ(n−1)) in
the steepest descent direction. Remember also that we use the logM -approximate Algorthm 5.2
for solving this problem. Relying on the convexity of the function f(θ(n−1)), we derive an
upper-bound for f(θ(N)) after running Algorithm 5.1 and Algorithm 5.2 for N (N ∈ N+) time
slots.
Theorem 5.1

Using Algorithm 5.1 for selecting the subsets of sensors {An}n∈N+ with a β-approximation
algorithm for solving the min-penalty set-cover problem (5.6), the achieved objective value
f(θ(N)) in time slot N satisfies

f
(
θ(N)

)
− βfopt <

αM2(logN + 1)

2e2minN
. (5.10)

where β ≥ 1 denotes the guaranteed approximation ratio for solving the min-penalty set-
cover problem (5.6), fopt denotes the optimal objective value of (5.9) and emin denotes emin =

minm∈M{em}.

The proof can be found in Appendix 5.A.2.
Using the results in Theorem 5.1 and plugging in β = logM (the approximation ratio for

solving the min-penalty set-cover problem guaranteed by Algorithm 5.2), we derive a lower-bound
for the achieved lifetime by using our proposed framework.
Theorem 5.2

Using Algorithm 5.1 for selecting the subsets of sensors {An}n∈N+ with Algorithm 5.2 for
solving the min-penalty sensor-selection problem (5.6), the achieved number of time slots
N∗(τ, α) satisfies

lim
α→∞

lim
τ→0

N∗(τ, α)

Nopt(τ)
≥ 1

logM ,

where Nopt(τ) is the optimal number of time slots defined in problem (5.2).

The proof can be found in Appendix 5.A.3.

5.6 Performance Evaluation
In this section, we will evaluate the proposed framework that selects sparse sensors by ex-

ploiting spatial correlations. As discussed in Section 5.4, we partition time into slots and run
certain algorithms to select the sensors in each time slot. We compare the performance of the
following three algorithms for selecting the sparse sensors:
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— The first algorithm is a randomized algorithm. In each time slot, we iteratively select the
sensor nodes uniformly at random and add them to the set of active sensors, until the
coverage constraint is satisfied. We call this algorithm Random.

— The second algorithm is a greedy algorithm. In each time slot, we iteratively select the
sensors with the highest amount of remaining resources and add them to the set of active
sensors, until the coverage constraint is satisfied. We call this algorithm MaxRe.

— The third algorithm is our proposed algorithm, as discussed in Section 5.4. We adaptively
update a penalty for each sensor node and solve a min-penalty set-cover problem. We call
this algorithm MinPenalty.

First, we consider two ideal sensing scenarios where the sensors are either static or moving
according to a Manhattan mobility model (the details will be discussed shortly). Then, we
consider two practical sensing scenarios where the mobile sensors are installed on either taxis or
public transportation vehicles.

5.6.1 Ideal Scenarios
Consider a 10km× 10km sensing field. It is discretized into a 50× 50 grid where the size of

each cell is 200m× 200m. Assume that there are M = 100 sensor nodes. At the very beginning,
we position all sensor nodes uniformly at random in the sensing field. Time is discretized into
slots with length τ = 10min. Depending on two different mobility models of the sensor nodes,
we have the following two scenarios:

— The first ideal scenario is called “Static”. In this scenario, all the sensor nodes have fixed
locations and they do not move throughout the sensing lifetime.

— The second ideal scenario is called “Manhattan”. In this scenario, all the sensor nodes
move according to a Manhattan mobility model: in each time slot, each sensor node has
an equal probability 1/9 to move to the adjacent 8 cells, or to stay at its current location.

The sensing radius of each sensor node is assumed to be 1km. The utility function un(A)
(n ∈ N+, A ⊆ M) is defined to be the coverage, i.e., the number of cell centers that could
be sensed by the selected sensors A. Because there are 2500 cell centers, 0 ≤ un(A) ≤ 2500,
∀n ∈ N+, ∀A ⊆M. Let the desired sensing coverage to be q = 2000 cells. Notice that the utility
function could be defined in other ways, and our framework can easily adapt to those definitions.
Let the initially available resource on each sensor node be em = 400, ∀m ∈ M. Let the selected
sensors consume one unit resource per minute, whereas the unselected sensors do not consume
any resource.

In Figure 5.3, we show the performances of the three algorithms with the aforementioned
settings. In particular, in Figure 5.3a, we show the lifetime achieved by these algorithms. We
see that our proposed algorithm MinPenalty performs the best among the three. In the “Static”
scenario, it results in a lifetime 101% longer than that of Random and 43% longer than that of
MaxRe; in the “Manhattan” scenario, it results in a lifetime 86% longer than that of Random
and 35% longer than that of MaxRe. In Figure 5.3b, we show the average number of sensors
selected for satisfying the coverage constraint in each time slot. We see that MinPenalty selects
the smallest number of sensors on average, and therefore it is the most efficient.

In Figure 5.4, we run simulations in both the scenarios “Static” and “Manhattan”, and we
vary the number of participating sensors M . We see that when M increases, the lifetime of the



100 Sparse Sensor-Selection by Exploiting Spatial Correlations

Static Manhattan
0

1000

2000

3000
L

if
et

im
e/

m
in

 

 
Random
MaxRe
MinPenalty

(a)
Static Manhattan

0

20

40

60

A
vg

. n
um

be
r 

of
 s

en
so

rs
 s

el
ec

te
d

 

 
Random
MaxRe
MinPenalty

(b)

Figure 5.3: The performances of the three mentioned algorithms in both scenarios “Static” and
“Manhattan”. In Figure 5.3a, we show the lifetime incurred by these algorithms. In Figure 5.3b,
we show the average number of sensors selected for satisfying the coverage constraint in each
time slot. We see that MinPenalty is the most resource-efficient algorithm among the three.

sensing system increases because the total amount of available resources increases. Still, our
proposed algorithm MinPenalty always performs the best among the three simulated algorithms.
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Figure 5.4: The performances of the three mentioned algorithms when we vary the number of
sensors. In Figure 5.4a, we simulate the scenario “Static” and in Figure 5.4b, we simulate the
scenario “Manhattan”.

5.6.2 Practical Scenarios
We also consider two practical scenarios that are representative in participatory sensing sys-

tems.
— The first practical scenario is called “TaxiSense”. In this scenario, mobile sensors are

installed on top of taxis for sensing certain environmental parameters. We use a real
trajectory dataset of M = 423 taxis in San-Francisco in 3 weeks. The average speed of
these taxis are 22.6 km/h in this dataset. The sensing field covers an area of 6km× 6km.

— The second practical scenario is called “BusSense”. In this scenario, mobile sensors are
installed on top of public transportation vehicles in the city of Lausanne. We synthesize
the mobility trajectories of M = 327 public transportation vehicles by using their timetable
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and the GPS locations of the bus stops and metro stations. In this scenario, the sensing
field covers an area of 9.6km× 6km.

In both scenarios, we partition the sensing field into grid cells and partition time into slots.
Each sensor node has a sensing radius. The utility function of a selected subset of sensor nodes is
still defined as the coverage, or more precisely, the number of cell centers that could be covered.
We still assume that the selected sensors consume unit resource per minute and the unselected
sensors do not consume any resource. The detailed settings are specified in Table 5.1.

Table 5.1: Parameters of the two practical scenarios

Parameters TaxiSense BusSense
Area of the sensing field 6km× 6km 9.6km× 6km

Size of a cell 120m× 120m 240m× 240m

Total number of cells 50× 50 25× 40

Sensing radius 600m 720m

Length of a time slot 10min 10min

Initially available resource 400 400
Desired coverage 1600 600

In Figure 5.5, we run simulations in both scenario “TaxiSense” and “BusSense” where we
vary the desired coverage q. We see that when q increases, the lifetime of the sensing system
decreases because more sensors have to be activated for sensing in each time slot.
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Figure 5.5: The performances of the three mentioned algorithms when we vary the desired
coverage q. In Figure 5.5a, we simulate the scenario “TaxiSense” and in Figure 5.5b, we simulate
the scenario “BusSense”.

5.7 Conclusions
In this chapter, we addressed the sparse sensor-selection problem by exploiting spatial cor-

relations in both static WSNs and participatory sensing systems. In order to efficiently use
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the limited resources available to all sensor nodes, we proposed a generic framework that adap-
tively selects a subset of sensors for actively sensing. Using this framework, a certain level of
application-specific utility is guaranteed at all time and the lifetime of the sensing system is pro-
longed. In static WSN scenarios, we rigorously showed that the proposed algorithms guarantee
a lifetime at least 1/ logM (M is the number of sensors) of the optimal one. We ran extensive
simulations in both static WSNs and participatory sensing systems and the results show the
effectiveness of the proposed framework.

5.A Appendix
5.A.1 Proof of Lemma 5.1

Denote by Fopt the optimal objective value of problem (5.9) without the log-sum-exp approx-
imation, where the objective value is F (θ) = maxm∈M θm/em. We first use (5.8) to establish
the relation between fopt and Fopt

Fopt ≤ fopt ≤ Fopt +
logM
α

. (5.11)

Then, remember that Fopt is the inverse of the optimal lifetime, we have

τNopt ≤
1

Fopt
≤ τ(Nopt + 1). (5.12)

Plugging (5.12) into (5.11), we have 1
τNopt+τ ≤ fopt ≤ 1

τNopt
+ log M

α .

5.A.2 Proof of Theorem 5.1
First of all, we derive an upper-bound on the incremental change of the objective value

f(θ(n))− f(θ(n−1)). We take its Taylor expansion around θ(n−1) up to the second order,

f
(
θ(n)

)
− f

(
θ(n−1)

)
≤∇⊤f

(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
+

M2

2
·
∥∥∥∆f

(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞

, (5.13)

where ∇f(θ(n−1)) and ∆f(θ(n−1)) denote the gradient and the Hessian matrix of f(·) at the
point θ(n−1), respectively.

The second-order term of the right-hand side of (5.13) is easy to upper bound. From (5.4),
we deduce that 0 ≤ θ

(n−1)
m ≤ 1 and that

θ(n)m − θ(n−1)
m =

1

n

(
I(m ∈ An)− θ(n−1)

m

)
. (5.14)

It follows that −1/n ≤ θ
(n)
m − θ

(n−1)
m ≤ 1/n,∀m ∈M, which is equivalent to

∥∥θ(n) − θ(n−1)
∥∥
∞ ≤

1/n. Also, a little calculation gives us
∥∥∆f

(
θ(n−1)

)∥∥
∞ ≤ α/e2min. Therefore, the second-order

term
M2

2
·
∥∥∥∆f

(
θ(n−1)

)∥∥∥
∞
·
∥∥∥θ(n) − θ(n−1)

∥∥∥2
∞
≤ αM2

2n2e2min

. (5.15)
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It only remains to derive an upper-bound for the first-order term of the right-hand side of
(5.13). We check from (5.5) and (5.8) that∇mf

(
θ(n−1)

)
= λ

(n−1)
m , and plug it into the first-order

term

∇⊤f
(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
=
∑

m∈M

λ(n−1)
m ·

(
θ(n)m − θ(n−1)

m

)
=

1

n

∑
m∈M

λ(n−1)
m · I (m ∈ An)−

1

n

∑
m∈M

λ(n−1)
m · θ(n−1)

m

=
1

n

∑
m∈M

λ(n−1)
m · I(m ∈ An)−

1

n
∇⊤f

(
θ(n−1)

)
· θ(n−1),

(5.16)

where we use (5.14) on the second line. Remember that for any n ∈ N+, we use a β-approximation
algorithm for solving the min-penalty set-cover problem (5.6), we guarantee∑

m∈M

λ(n−1)
m · I(m ∈ An) =

∑
m∈An

λ(n−1)
m ≤ βf∗(n)

s , (5.17)

where f
∗(n)
s denotes the optimal objective value of (5.6). Because f

∗(n)
s is optimal, for any

A ∈M(q),
f∗(n)
s ≤

∑
m∈A

λ(n−1)
m =

∑
m∈M

λ(n−1)
m · I(m ∈ A). (5.18)

Let {p∗A}A∈M(q), θ∗ be the optimal solution of the problem (5.9) where f(θ∗) = fopt and the
m-th element of θ∗ is θ∗m =

∑
A∈M(q) p

∗
A · I(m ∈ A). Multiplying p∗A on both sides of (5.18),

summing it together for all A ∈M(q) and using
∑

A∈M(q) p
∗
A = 1,∑

A∈M(q)

p∗Af
∗(n)
s = f∗(n)

s ≤
∑

A∈M(q)

p∗A ·
∑

m∈M

λ(n−1)
m · I(m ∈ A)

=
∑

m∈M
λ(n−1)
m ·

∑
A∈M(q)

p∗A · I(m ∈ A)

=
∑

m∈M

λ(n−1)
m · θ∗m = ∇⊤f

(
θ(n−1)

)
· θ∗, (5.19)

where the first equality on the third line is because of the definition of θ∗m in problem (5.9).
Combining (5.16), (5.17) and (5.19), we have

∇⊤f
(
θ(n−1)

)
·
(
θ(n) − θ(n−1)

)
≤ 1

n
∇⊤f

(
θ(n−1)

)
·
(
βθ∗ − θ(n−1)

)
. (5.20)

Plugging the upper-bounds (5.15) and (5.20) into (5.13),

f
(
θ(n)
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(
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≤ 1
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·
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≤ 1

n

(
βf(θ∗)− f

(
θ(n−1)

))
+

αM2

2n2e2min

, (5.21)

where the second inequality is because of the convexity of the objective function f(·).
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Then, by multiplying n on both sides of (5.21) and by resorting,

n
(
f
(
θ(n)

)
− βf(θ∗)

)
≤ (n− 1)

(
f
(
θ(n−1)

)
− βf(θ∗)

)
+

αM2

2ne2min

.

Summing it up from n = 1 to N (N ∈ N+), dividing it by N and using
∑N

n=1 1/n < logN + 1,
we have an upper-bound for f(θ(N)),

f
(
θ(N)

)
− βf(θ∗) <

αM2(logN + 1)

2e2minN
. (5.22)

5.A.3 Proof of Theorem 5.2
Let the function F (θ) = maxm∈M θm/em, ∀θ ∈ RM . Remember from (5.7) that N = N∗

is the maximum number of time slots that satisfies e
(N)
m ≥ 0, ∀m ∈ M. This implies that

∃m ∈ M, e
(N∗+1)
m < 0. Using (5.4), we deduce that ∃m ∈ M, θ

(N∗+1)
m /em > 1/(N∗ + 1)τ .

Moreover, because F (θ(N
∗+1)) = maxm∈M θ

(N∗+1)
m /em,

F
(
θ(N

∗+1)
)
>

1

τ(N∗ + 1)
. (5.23)

We will then use (5.23) to derive a lower-bound for τN∗.
From (5.8), we have

F (θ) ≤ f(θ) ≤ F (θ) +
logM
α

,∀θ ∈ RM . (5.24)

Using (5.24), one can easily check that f(θ(N
∗+1)) ≥ F (θ(N

∗+1)) and that fopt ≤ Fopt +
log M

α

where Fopt denotes the optimal objective value of problem (5.9) where the objective function
f(·) is replaced by F (·). Plugging them into (5.10), we see that

F
(
θ(N

∗+1)
)
− βFopt <

αM2(log(N∗ + 1) + 1)

2e2min(N
∗ + 1)

+
β logM

α
. (5.25)

Because active sensors have unit resource-consumption rates, each sensor can sustain at least
N∗ ≥ emin/τ time slots, which implies that N∗ + 1 > emin/τ . Then, because (logN + 1)/N is a
diminishing term,

log(N∗ + 1) + 1

N∗ + 1
<

τ

emin

(
log emin

τ
+ 1
)
. (5.26)

Plugging (5.26) into (5.25),

F
(
θ(N

∗+1)
)
< βFopt +

β logM
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ατM2
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(
log emin

τ
+ 1
)
. (5.27)

Using (5.23) and (5.27) together,

τ(N∗ + 1) >
1

βFopt +
β log M

α + ατM2

2e3min

(
log emin

τ + 1
) . (5.28)
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Because Fopt is the inverse of the optimal lifetime, Fopt ≤ 1/(τNopt). Multiplying Fopt on both
sides of (5.28) and using Fopt ≤ 1/(τNopt),

N∗

Nopt
>

1

β + β log M
αFopt

+ ατM2

2e3minFopt

(
log emin

τ + 1
) − τFopt. (5.29)

To show explicitly the dependencies, we use N∗ = N∗(τ, α) and Nopt = Nopt(τ). Taking τ → 0

and then taking α→∞ in (5.29), we have

lim
α→∞

lim
τ→0

N∗(τ, α)

Nopt(τ)
≥ 1

β
.

Plugging in β = logM , we conclude the proof.
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Chapter 6

Conclusion and Future Work

We feel that even if all possible scientific ques-
tions be answered, the problems of life have
still not been touched at all.

Ludwig Wittgenstein

In this thesis, we discussed a set of adaptive selection problems in networked systems. Here,
we review the results and raise some open problems in future work.

1. Active Base-Station Selection: we introduced a novel scheme for organizing WSNs,
in which multiple BSs are deployed, but only one BS is adaptively selected to be active.
By using the proposed scheme, we efficiently utilize the temporally and spatially varying
energy resources available to all BSs. Therefore, the large batteries and energy harvesting
devices of individual BSs can be substantially reduced. To adaptively choose the active BS,
we proposed a simple yet powerful algorithm HEF. We proved its asymptotic optimality
under mild conditions.
In future work, we should consider the following problems:

— We assumed that the energy recharge-rates of sensor nodes from solar panels are con-
stant conditioned on the previous information. We might further relax this assumption
in the analyses of the HEF algorithm.

— We focused on the outdoor WSN scenarios where the energy recharged from solar
panels is continuous. However, in many indoor WSN scenarios, the energy recharged
from solar panels is intermittent. In these scenarios, our proposed scheme has to be
adapted, so as to make full use of unstable energy resources.

2. Joint Selection of Active Base-Stations and Routing: we discussed the scheme of
virtually moving multiple BSs in WSNs, where we adaptively re-elect an active subset of
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BSs. This scheme not only achieves a high energy-efficiency but also avoids the difficulty of
physically moving the BSs. We showed that the general problem of virtually moving BSs is
in fact NP-hard and proposed an adaptive algorithm for solving it. Under mild conditions,
the proposed algorithm guarantees to yield a lifetime at least 62% of the optimum.
In future work, we should consider the following problems:

— There might be some implementation issues when we apply the proposed scheme to a
large-scale WSN. We have to consider how to initiate the WSN, how to maintain the
network with multiple BSs, how to enrol new BSs, and how to deal with a BS failure.

— The idea of load balancing by virtually moving devices can be useful in other net-
worked systems, including super-node selection in peer-to-peer networks and cooper-
ative beamforming in cellular networks. We might adapt the proposed scheme and
use it in the aforementioned scenarios.

3. Sparse Sensor-Selection by Exploiting Temporal Correlations: we proposed DASS,
a novel scheme for sparse sampling that optimizes sparse-sampling patterns for precisely re-
covering temporal signals. This scheme adaptively learns the signal statistics, dynamically
adjusts the sampling pattern, and recovers the signal from the limited amount of collected
samples. We demonstrated the effectiveness of DASS through extensive experiments using
two real-world meteorological datasets. The results show significant improvements over the
state-of-the-art methods.
In future work, we should consider the following problems:

— We assumed that the signal to be sensed has a strong correlation among different
time blocks. However, in many practical sensing scenarios, it is usually not clear how
long each block is and whether there is a strong correlation across different blocks.
Therefore, we might consider other temporal models of the signal, for example, an
Auto Regressive�Moving-Average (ARMA) model. In this example, the signal model
has to be learnt in real time, rather than be learnt after a long time-block.

— We did not consider the multi-hop communication costs for transmitting the sensing
samples. In a real WSN, sensor nodes not only have to take the sensing samples, they
also have to forward the sensing samples using the multi-hop communications. The
problem will be more interesting if we incorporate the costs for routing the sensing
samples.

4. Sparse Sensor-Selection by Exploiting Spatial Correlations: we discussed the
sparse sensor-selection problem by exploiting the spatial correlation in both static WSNs
and participatory sensing systems. We proposed a generic framework to adaptively select a
subset of sensors for actively sensing. Using this framework, a certain level of application-
specific utility is always guaranteed and the lifetime of the sensing system is prolonged.
In future work, we should consider the following problems:

— We only analyzed the performance of the proposed algorithms in the static WSN
scenarios. We might also analyze it in participatory sensing systems, by assuming
certain mobility models of the mobile sensors, e.g., Markovian.

— We might also consider exploiting simultaneously both temporal correlations and spa-
tial correlations. In this scheme, we have to adaptively learn the spatio-temporal
model of the signal to be sensed and select sparse sensors both in space and time.
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Although we focused on the adaptive selection problems in WSNs and participatory sensing
systems, we believe that the proposed algorithms have merits beyond those systems. For example,
in smart grids, there is an increasing trend in integrating the intermittent renewable energy
sources into the current grid. This poses many adaptive selection problems to maintain the
stable operation and reliable control of the grid. We envisage that our proposed algorithms will
be adapted to solve those problems.
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