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Abstract—This paper describes scalable convex optimization methods
for phase retrieval. The main characteristics of these methods are the
cheap per-iteration complexity and the low-memory footprint. With a
variant of the original PhaseLift formulation, we first illustrate how
to leverage the scalable Frank-Wolfe (FW) method (also known as the
conditional gradient algorithm), which requires a tuning parameter. We
demonstrate that we can estimate the tuning parameter of the FW
algorithm directly from the measurements, with rigorous theoretical
guarantees. We then illustrate numerically that recent advances in
universal primal-dual convex optimization methods offer significant
scalability improvements over the FW method, by recovering full HD
resolution color images from their quadratic measurements.

I. INTRODUCTION

The problem of retrieving the phase of a signal from its intensity-
only measurements has regained significant attention recently. For-
mally, the phase retrieval problem aims to recover a signal x\ ∈ Cp
from n noisy quadratic measurements

bi = |〈ai,x\〉|2 + wi, i = 1, 2, ..., n, (1)

where ai ∈ Cp are given vectors, and wi model the unknown
noise. This problem arises in many applications, including X-ray
crystallography, diffraction imaging, astronomical imaging and many
others [1]–[5]. As an estimation problem, the nonlinear observation
model (1) poses significant difficulties, since the standard maximum
likelihood estimators yield in non-convex optimization problems.

Convex relaxations can be used in this setting as follows. We
can equivalently express the quadratic measurements (1) as bi =

Tr(aiaHi x\x\
H

) +wi. This leads to the following linear observation
model in the lifted dimensions of the variable X\ = x\x\

H ∈ Sp×p+ :

b = A(X\) + w, (2)

where A : Sp×p+ → Rn is a linear operator, denoting the positive
semidefinite (PSD) cone by Sp×p+ . As a result, data fidelity costs can
be measured using convex functions, albeit in terms of the matrix
variables.

Since the lifted variable X\ is a rank-one positive semidefinite
matrix, a naive approach for solving the phase retrieval problem is
given by

min
X∈Sp×p

+

{rank(X) : ||A(X)− b|| ≤ ε},

where ‖·‖ denotes the standard Euclidean norm, and ε is a parameter
that depends on the noise model. The objective function of this
problem is non-convex, and the problem is NP-hard. However,
the standard convex relaxation of the rank function results in the
following convex problem:

min
X∈Sp×p

+

{||X||∗ : ||A(X)− b|| ≤ ε}, (3)

where ||·||∗ denotes the nuclear norm. This approach, which combines
the semidefinite relaxation into the linear model and the convex
relaxation of the rank function, is known as the PhaseLift [6], [7].

The statistical guarantees for the PhaseLift formulation are desir-
able. For example, for the noiseless case with ai complex Gaussian,
it is proved that n ≥ c0p for some constant c0 suffices to recover X\

reliably [6], [7]. When ai and wi are Gaussian, the sample complexity
n ≥ c0p is minimax optimal, and hence, essentially it can not be
improved [8]. Moreover, the recovery is robust to noise [6].

Despite of its statistical appeals, PhaseLift and its variants have
not found much practical use, since two critical bottlenecks severely
restrict their scalability. The first bottleneck is the obvious curse-of-
dimensionality of the lifting procedure. Given that the original signal
dimension p can be large, the lifted formulation operates in d = p×p
dimensions and imposes a major burden on the working memory in
addition to the increased computation.

The second bottleneck revolves around the PSD cone constraint,
which often times requires full eigendecompositions of p×p matrices
requiring O(p3) computational effort. As a result, practitioners prefer
the non-convex optimization algorithms that directly operate on (1),
in order to avoid these two bottlenecks [9]–[12].

However, it appears that the convex optimization algorithms did not
reach yet the limits of their performance in phase retrieval. In this
paper, we show that even some classical convex optimization algo-
rithms can provide scalable solutions for the phase retrieval problem,
with careful engineering, after the following simple reformulation:

min
X∈Sp×p

+

{
1

2
||A(X)− b||2 : ‖X‖∗ ≤ κ

}
, (4)

where we should ideally set κ = ‖X\‖∗, which may not be
practically feasible. Yet, as we show in Section II, we can estimate
‖X\‖∗ in a precise fashion given the assumptions that certify the
validity of the convex relaxation.

The objective function of (4) has Lipschitz continuous gradients.
Given the trace-norm constraint, under which the proximal operator is
computationally demanding, one of the most convenient algorithmic
choices is the FW method (cf., [13] for a review). To the best of our
knowledge, this paper presents the first approach that numerically
solves a PhaseLift variant with a Frank-Wolfe-type method.

The paper is organized as follows. We first demonstrate that we
can estimate ‖X\‖∗ with theoretical guarantees in Section II. We then
illustrate how to set up the FW method, in Section III, and show that
the scalability of (4) can be improved beyond FW method using
the recent advances in universal primal-dual convex optimization
algorithms [14]. Section IV is devoted to showing how to tame
the memory growth and preserve cheap per-iteration costs with
careful engineering. Finally, Section V presents numerical evidence to
assess the scalability of the formulation (4) along with the proposed
algorithms.



II. THEORY

In this section, we show that b̄ = 1
n

∑n
i=1 bi is a precise estimate

of ‖X\‖∗ = ‖x\x\H‖∗ = ‖x\‖2, provided that some minor
requirements are satisfied. Before stating our main result, we need a
classical notion of the restricted isometry property (RIP) [15]:

Definition 1. A linear operator A is said to be s-RIP if there exists a
δ > 0 such that (1− δ)||x|| ≤ ||Ax|| ≤ (1 + δ)||x|| for all s-sparse
x (a signal with at most s non-zero entries).

Theorem 1. Let A be the matrix with rows ai in (1). Assume that
A satisfies RIP with probability 1−p1. Assume also that the noise in
(1) are iid sub-Gaussian with sub-Gaussian norm σ. Suppose that the
minimizer of (3) achieves estimation error E||X̂−X\||F ≤ C ||x

\||√
n

with probability 1 − p2. Then the minimizer of the program (4)
achieves estimation error E||X̂ −X\||F ≤ C(1 + δ + t) ||x

\||√
n

with

probability 1− p1 − p2 − exp(− nt2

2σ2 ) for any t > 0.

The proof involves the application of the concentration of sub-
Gaussian random variables around its mean, followed by the standard
triangle inequality and the union bound arguments. We omit the
details due to the space restriction.

As a consequence of Theorem 1, we can use the formulation (4),
which allows us to use scalable convex optimization procedures,
while we can achieve essentially the same statistical performance
as (3). For illustration, let us first consider standard Gaussian mea-
surements and sub-Gaussian noise model with zero mean and sub-
Gaussian norm σ. In this setting, typical results for the PhaseLift (or
its variants) are of the following form: for n > c0p, the minimizer of
(3) satisfies E||X̂−X\||F ≤ C ||x

\||√
n

with probability 1−exp(−c′n)

for some constants C, c0, and c′. In other settings, the requirement for
sample complexity might be more stringent, such as n > c0p log p.

When n > Cδs log p, Gaussian measurements satisfy s-RIP with
probability 1 − exp(−c1n) [15]. Here Cδ and c1 are constants
depending only on δ. In the sparse regime where s log p < p, this
requirement is automatically satisfied by n > c0p, the sample com-
plexity of phase retrieval problem. In the dense regime, we require
n > Cδp log p, so that an additional log p amount of samples must
be included, as a minor requirement. With the sample requirement
above, we can apply Theorem 1 to conclude that our program (4)
achieves estimation error E||X̂ −X\||F ≤ C(1 + δ + t) ||x

\||√
n

with

probability 1− exp(−c′n)− exp(−c1n)− exp(−nt
2

2σ
).

III. ALGORITHMS

In this section, we illustrate how to set up the FW [13] and the
accelerated universal primal-dual gradient methods [14] for solving
the problem (4). For both algorithms, the key scalability workhorses
are the following Fenchel-type operators (as opposed to the usual
proximal-type operators), which we dub as sharp-operators:

[x]]ψ := arg min
s∈domψ

{ψ(s)− 〈x, s〉}, (5)

where ψ is a convex function. As a special case, ψ = IX corresponds
to the so-called linear minimization oracle, where IX represents the
indicator function of the set X .

Algorithm 1 presents the FW method. The main computational
bottleneck is in computing X∗k. For the specific constraint set
X = Sp×p+ ∩ {X : ||X||∗ ≤ κ}, it can be easily verified that
X∗k is a scaled rank-one approximation of ∇f(Xk). More precisely,
X∗k = κx∗kx

∗H
k , where x∗k is the unit norm eigenvector of ∇f(Xk)

that corresponds to the least eigenvalue, which can be computed
efficiently by the (inverse) power method or the Lanczos algorithm,

resulting in a cheap per-iteration complexity [13]. Note that, we do
not need to form the gradient explicitly to find x∗k, and this saves a
significant amount of memory space.

Algorithm 1 The Frank-Wolfe Algorithm (FW)
Template: minX {f(X) : X ∈ X}
Initialization: Choose an initial point X0 ∈ X .
for k = 0 to kmax do

1. Compute X∗k ∈ arg min
X∈X
〈X,∇f(Xk)〉 ≡ [−∇f(Xk)]]IX

2. Update Xk+1 = (1− γk)Xk + γkX
∗
k, where γk = 2

k+2
.

end for

Another convenient convex optimization framework for solving
(4) is our recently introduced universal primal-dual gradient method
(UniPDGrad), and its accelerated variant (AccUniPDGrad) [14],
which apply to the general constrained convex minimization template
that includes (3). These algorithms leverage the Fenchel-type oracles
(5), by exploiting the smoothness structure in the dual space with
a special line-search strategy. Compared to the FW, our algorithms
apply to a broader set of problems, and exhibit better numerical
performance for some important real-world problems.

In this paper, we study the performance of the AccUniPDGrad
and the FW methods in solving the problem (4). In order to apply
AccUniPDGrad, we first reformulate (4) by introducing a slack
variable r = A(X)− b:

min
X∈Sp×p

+ ,r∈Rn

{
1

2
||r||2 : A(X)− b− r = 0, ‖X‖∗ ≤ κ

}
.

Then, the Lagrangian corresponding to the equality constraint is

L(λ,X, r) =
1

2
‖r‖2 + 〈λ,A(X)− b− r〉,

where λ is the dual variable. Denoting X∗(λ) ∈ [−AH(λ)]]IX ≡
arg minX∈X 〈AH(λ),X〉, we can write the negation of the Lagrange
dual function as:

g(λ) = − min
X∈X
r∈Rn

L(λ,X, r) =
1

2
‖λ‖2 + 〈λ,b−A(X?(λ))〉.

We present the AccUniPDGrad method for the problem (4) in
Algorithm 2.

IV. IMPLEMENTATION

This section shows that with careful engineering, we can often
tame the memory growth and preserve cheap per-iteration costs with
the convex methods above.

We start by writing the linear operator A(·) and its Hermitian
AH(·), in the following form:

A(X) = diag(AXAH), and AH(λ) = AHD(λ)A, (6)

where A is the matrix with ith row ai, D(λ) is the diagonal matrix
with ith diagonal entry λi, and diag(·) is the operator that takes a
square matrix as an input, and returns its diagonal entries in a vector.

Note that, we use the Hermitian operator AH(·) only inside the
sharp operator, i.e., to compute the eigenvector x∗k. Therefore, we do
not need to formAH(λ̂k) explicitly (or∇f(Xk) = AH(A(Xk)−b)
for FW), which would require the multiplication of large matrices. In-
stead, we can compute x∗k using the well known iterative approaches,
such as the Lanczos method, which will require few matrix vector
multiplications over AHD(λ)A.

The second issue that we address in this section is the application
of the linear operator A(·), in order to form the gradient (∇f for FW



Algorithm 2 AccUniPDGrad for Phase Retrieval

Initialization: Choose an initial variable λ(0) = λ̂(0) ∈ Rn and
an accuracy term ε > 0. Estimate M0 the smoothness parameter.
Set S−1 = 0, t0 = 1 and X0 = 0p.
for k = 0 to kmax do

1. Compute κx∗kx
∗H
k = X∗k ∈ [−AH(λ̂k)]]IX .

2. Form ∇g(λ̂k) = λ̂k + b−A(X∗k)
3. Line-search Set Mk,0 = Mk−1. For i = 0 to imax

3.a. λk,i = λ̂k −M−1
k,i∇g(λ̂k).

3.b. If the following condition holds:

g(λk,i) ≤ g(λ̂k)− 1

2Mk,i
‖∇g(λ̂k)‖2 +

ε

tk
,

set ik = i and terminate the line-search. Otherwise, set
Mk,i+1 = 2Mk,i.
End of line-search
4. Set and λk+1 = λk,ik and Mk = Mk,ik .
5. Compute ωk = tk/Mk, Sk = Sk−1 + ωk and γk = ωk/Sk.
6. Set tk+1 = 1

2
[1 +

√
1 + 4t2k].

7. Update λ̂k+1 = λk+1 + tk−1
tk+1

(λk+1 − λk).
8. Update Xk+1 = (1− γk)Xk + γkX

∗
k.

end for

and∇g for AccUniPDGrad). Fortunately, we need to apply A(·) only
to X∗k in both algorithms, which is known to be the rank-one matrix
κx∗kx

∗
k
H . As a result, we can equivalently apply the cheap nonlinear

operator (1), since (A(X∗k))i = κ|〈ai,x∗k〉|2.
Finally, in the weighting step of the algorithms, we adapt the

efficient thin singular value decomposition (SVD) approach of [16],
which we describe briefly as follows: Denote the thin singular value
decomposition of the estimate Xk at iteration k as UkSkV

H
k , then

the SVD of Xk+1 is given by

Uk+1Sk+1V
H
k+1 = ([Uk p̂] U) S ([Vk q̂] V)H,

where p = x∗k −UkU
H
k x∗k, q = x∗k −VkV

H
k x∗k, p̂ and q̂ are the

unit vectors along the directions of p and q, and U S VH is the
SVD of K:

K = (1− γk)

[
Sk 0
0 0

]
+ γkκ

[
UH
k x∗k
‖p‖

] [
VH
k x∗k
‖q‖

]H
.

While this methods is not theoretically guaranteed to alleviate the
expansion of the rank, as we will demonstrate numerically below, it
often keeps a low memory footprint. Note that, we do not need to
form any variable in the ambient lifted dimension p2, throughout the
algorithms. Instead, we directly update the SVD of Xk, by using the
p dimensional vector

√
κx∗k.

V. NUMERICAL RESULTS

In this section, we present numerical evidence to assess the
scalability of the formulation (4) along with the proposed algorithms.
Our numerical experiments are based on the coded diffraction pattern
measurements with octonary modulation, which is also considered
in [12], [17]. We consider the random design of the modulating
waveforms from [12]. A similar setup is also considered in [17].

In our first two experiments, we consider the random Gaussian
signal model: x\ ∈ Cp is a random Gaussian vectors with i.i.d.
entries, where the real and the imaginary parts of the each entry
entry of x\ and sampled from the standard Gaussian distribution.

In the first experiment, we show the estimation accuracy of the
constraint parameter. For each data size p, we generate 100 random

Gaussian signals, and we take the samples by modulating each signal
with L = 20 random waveforms. For each signal, we compute the
normalized error (|b̄ − ‖x\‖2|

/
‖x\‖2) in the parameter estimation.

The solid line in the first plot of Figure 1 presents the average error
over 100 trials, and the shaded area shows the distribution of the
errors.

In the second experiment, we compare our framework against the
original PhaseLift formulation. For this purpose, we measure the com-
putational time to reach 10−2 reconstruction error (‖x\ − x‖/‖x\‖)
using the Frank-Wolfe, the AccUniPDGrad, and the solver provided
in [17], which is based on the MATLAB package TFOCS [18], and
solves the formulation (3) by using the Auslender and Teboulle’s
method [19]. The second plot in Figure 1 shows the average per-
formance over 10 random trials for each data size p. We set the
constraint parameter κ = ‖x\‖2, since the estimate b̄ is not accurate
when p is small.

We test our framework on some images of different sizes, in the
third experiment. The first image is an EPFL campus image of size
1280 × 720, and the second one is the Milky Way galaxy of size
1920 × 1080 from [12]. Each image consists of 3 color channels,
and we take the samples by modulating each channel with L = 20
random waveforms as in [12]. We start both algorithms from the zero
vector, and we set the constraint parameter κ = b̄. We keep track of
the reconstruction error as the performance measure.

The last two plots of Figure 1 present the performance of the Frank-
Wolfe and the AccUniPDGrad methods, by showing the reconstruc-
tion error (‖x\ − x‖F /‖x\‖F ) with respect to the iteration counter
and the computational time. The plots correspond to the averaged
performance over the three color channels, and the solid and the
dashed lines correspond to the Milky Way and the EPFL campus
images respectively.

Finally, Figure 2 and 3 show the reconstructed images of EPFL
campus and the Milky Way respectively, with the AccUniPDGrad
algorithm. Figure 2 corresponds to the estimate xk after 41 iterations
of the AccUniPDGrad. The PSNR of the reconstructed image is
45.54 dB. Similarly, Figure 3 corresponds to the estimate xk after
40 iterations, and the PSNR is 54.44 dB.

We implement all three experiments in MATLAB and use the
built-in eigs function (which is based on the Lanczos algorithm)
to evaluate the sharp operator, with 10−3 relative error tolerance.
We time our experiments on a computer cluster, and restricting the
computational resource to 8 CPU of 2.40 GHz and 32 GB of memory
space per simulation.

VI. CONCLUSIONS

Despite of its statistical appeal, PhaseLift has been thought to
result in computationally difficult convex optimization problems with
limited practical use. In this paper, we show that the phase retrieval
problem can be solved efficiently, even in extremely high dimensions,
using a variant of PhaseLift formulation and appropriate convex
optimization algorithms. While non-convex approaches are useful
in solving phase retrieval, they typically apply to specific problem
formulations. Convex approaches, on the other side, can handle more
general objectives scalably. Although our main focus in this paper
was the formulation (4), AccUniPDGrad method also applies to
the original PhaseLift formulation (3), and even the Poisson phase
retrieval can have scalable convex solutions [20].
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Fig. 1. The first plot shows the normalized error in the constraint parameter estimation, and the second one presents the time required by each algorithm to
reach 10−2 reconstruction error, with respect to the data size p. The last two plots illustrate the convergence behavior of the algorithms in the test with real
images. The solid lines correspond to the Milky Way, and the dashed lines correspond to the EPFL image.

Fig. 2. EPFL image of size 1280× 720, reconstructed in 20 minutes by 41
iterations of the AccUniPDGrad: PSNR = 45.54 dB

Fig. 3. Milky Way image of size 1920× 1080, reconstructed in 42 minutes
by 40 iterations of the AccUniPDGrad: PSNR = 54.44 dB
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