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I In Scrape-Off Layer (SOL) of tokamaks, magnetic field
lines intersect the walls of the fusion device

I Heat and particles flow along magnetic field lines and
are exhausted to the vessel

The Global Braginskii Solver (GBS) code:
a 3D, two-fluid, flux-driven, global turbulence
code in limited geometry used to study plasma

turbulence in the SOL

Development and achievements of GBS

I Achivements:
I Non-linear turbulent regimes in the SOL
I SOL width scaling as a function of dimensionless /

engineering plasma parameters
I Origin and nature of intrinsic toroidal plasma

rotation in the SOL
I Mechanisms regulating the SOL equilibrium

electrostatic potential
I In the past: simulations in circular limited

configuration
I Described here: generalization of the GBS

magnetic geometry to include Shafranov
shift, plasma elongation, and non-zero
triangularity

The Global Braginskii Solver (GBS) code
I Two-fluid Drift-reduced Braginskii equations, d/dt � ωci :
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I Equations implemented in GBS, system closed by ω = ∇2
⊥φ [Ricci et al., PPCF 2012]

I System completed with a set of first-principles boundary conditions applicable at the magnetic
pre-sheath entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Note: L⊥→ ρs, L‖→ R0, t → R0/cs, ν = ne2R0/(miσ‖cs) normalization

GBS operators

I The magnetic geometry allows to compute GBS operators
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I Note: use of curvilinear coordinates and of Einstein summation, J is the Jacobian of the metric

The magnetic field geometry

I Toroic coordinate system (r , θ, ϕ), general axisymmetric magnetic field B = F (ψ)∇ϕ + ψ′∇r ×∇ϕ

I GBS uses the (θ∗, r , ϕ) coordinate system, where θ∗(r , θ) = 1
q(r )

∫ θ

0
dθ′
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B · ∇θ′

is the straight-field-line

angle
I The Grad-Shafranov equation is solved in the ε = r/R0→ 0 limit to obtain R(r , θ), Z (r , θ), and F (ψ) as

function of κ, δ, and q(r ) [J. P. Graves, PPCF 2013]
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Non-linear simulations
I Fully-turbulent non-linear simulations with same physical parameters, in different magnetic

geometries
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I Mitigation of turbulence by ∆′, κ, and negative δ; enhancement of turbulence by positive δ

Gradient removal saturation mechanism

I The radial gradient of the perturbed plasma pressure
comparable to the radial gradient of the background
plasma pressure

∂r p̃ ∼ ∂r p̄ ⇒ kr p̃ ∼ p̄/Lp

I Leading order term of the pressure equation gives the
perturbed potential

∂t p̃ ' ∂θφ̃∂r p̄ ⇒ φ̃ ∼ γp̃Lp/(p̄kθ)

I Balance between radial flux Γp = p̃∂θφ̃ and parallel
losses

∂r Γp ∼ ∇‖(p̄v‖)⇒ Γp/Lp ∼ p̄cs/(qR)

I Assuming kr =
√

kθ/Lp and choosing linear growth
rate γ and wavenumber kθ to maximize the transport Lp ∼
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Lp non-linear
simulations 31± 4 22± 4 13± 3 14± 2 19± 2 21± 3 27± 5

Lp Gradient
Removal theory 35 27 18 18 21 27 34

I Good agreement between non-linear simulations and Gradient Removal theory
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I Linear scan over κ and δ confirms the trend observed
for the non-linear simulations

I Preliminary study indicates the curvature as the most
important operator in setting Lp

Non-linear turbulent regimes

I Investigation of the turbulent regimes to understand the mitigation of turbulence by κ and negative δ
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I Resistive ballooning
modes mitigated by κ
and negative δ

I Resistive drift waves
slightly affected by
shaping effects

I Non-linear simulations
confirm that turbulence
is dominated by drift
waves for negative δ

I Why are κ and negative δ mitigating ballooning modes?
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I Shafranov shift, elongation and negative triangularity stretch magnetic field lines near the outer
midplane

I Positive triangularity compress magnetic field lines near the outer midplane
I Curvature less effective with Shafranov shift, elongation and negative triangularity, and more effective

for positive triangularity
I Ballooning modes strongly mitigated by Shafranov shift, elongation and negative triangularity,

enhanced by positive triangularity

Conclusion

I Simulations of SOL turbulence in shaped plasmas
I Scan of Lp and γ over κ and δ, showing how ballooning modes and drift waves are affected by

different magnetic configurations
I Qualitative understanding of the mechanism mitigating/enhancing the ballooning character of

turbulence
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