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Abstract

is thesis presents results of a research on applications of Brillouin dynamic gratings –
distributed reflectors that can be dynamically created in an optical fibre by two optical
waves. A basic theory of stimulated Brillouin scattering (SBS) is introduced, on a level
enough for understanding the processes that govern SBS.

Amajor part of this thesis is dedicated to studies of distributedBrillouin sensors based
on phase correlation. First, the concept of correlation-based sensors is introduced; it is
described how the Brillouin interaction between two waves can be localised, creating a
permanent reflector confined to a millimetre-scale section of the fibre. is allows creat-
ing a distributed sensing system with very a high spatial resolution.

A detailed theoretical model for the phase-correlation technique is presented, show-
ing how the gain response of a system can be calculated and how the system’s resolution
can be determined. For an ideal case an analytical solution is derived, while for real exper-
imental conditions the expected behaviour is found via numerical simulation. Results of
numerical modelling are compared with experimentally obtained data, showing a good
agreement. A spatial resolution of 1 cm is demonstrated over a 200m distance, represent-
ing 20 000 separate points.

e concept of time gating is introduced, extending the measurement distance from
200m to 17.5 km while retaining a sub-centimetre spatial resolution. is technique al-
lows for a two order ofmagnitude increase in the number of points that a system is capable
to resolve. An absolute record for distributed fibre sensors is achieved, demonstrating a
system capable to resolve 2 100 000 separate points.

Limitations for a further increase in number of points are discussed as well as possible
ways to overcome them. An issue related to the temperature dependency of the refractive
index is discussed in details, since it can lead to significant errors in spatial accuracy. An
algorithm is presented, capable of using the measured temperature to account for the
change in the refractive index and correctly determine the positioning of measured data.

In the last chapter potential applications of Bragg dynamic gratings in signal process-
ing are investigated. A theoretical model of BDG’s in polarisation-maintaining fibres is
presented capable of calculating reflection of a probe wave – continuous or pulsed. e
model includes the case of non-uniform birefringence along the fibre.
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Dynamic gratings are applied to create a flip-flop – an all-optical memory, turned
on and off by a light pulse. A working system is demonstrated in a 1m long fibre, corre-
sponding to a 10 ns storage time. Using the theoretical model the birefringence variation
is measured along the fibre. A preliminary study of spectral properties of dynamic grat-
ings is presented, along with a model predicting the spectrum of a uniform BDG. It is
demonstrated that the spectral properties of a BDG can be manipulated by changing the
spectra of optical waves used in the generation process.

iswork is concluded by a discussion, summing up the above-mentioned theoretical
the experimental work. Potential applications of the presented research are proposed
along with the most promising direction of further research activities.

Keywords: fibre optics, nonlinear fibre optics, Brillouin scattering, Brillouin dynamic
grating, optical fibre sensors, optical signal processing.
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Version abrégée

Ces travaux de thèse présentent les résultats obtenus sur l’utilisation des réseaux Bril-
louin dynamiques, des réflecteurs qui peuvent être créés de façon distribuée sur toute la
longueur d’une fibre optique. La théorie de base sur la diffusion Brillouin stimulée (SBS)
est présentée pour une bonne compréhension des processus régissant ce phénomène.

Une partiemajeure de ces travaux de recherches est dédiée à l’étude des capteurs répar-
tis utilisant la diffusion Brillouin basés sur la corrélation de phase. En premier lieu, nous
présentons le concept des capteurs avec des systèmes d’interrogation dans le domaine de
corrélation – la technique de corrélation de phase.

Un modèle théorique détaillé pour la technique de corrélation de phase est présentée
et nous montrons comment la réponse en gain et la résolution du système peuvent être
déterminées. Pour le cas idéal, une solution analytique est déduite alors que pour les cas
expérimentaux nous utilisons une simulation numérique pour prédire fidèlement le com-
portement du système: des valeurs mesurées expérimentalement sont en parfait accord
avec celles déduites en partant du modèle numérique. De plus, une résolution spatiale
de 1 cm sur une distance plus de 200m – représentant ainsi 20 000 points différents – est
démontrée.

Le concept de mesure à déclenchement périodique est présenté, étendant la mesure
de 200m à 17,5 km tout en gardant une résolution spatiale inférieure au centimètre. Cette
technique permet d’augmenter de deux ordres de grandeurs le nombre de points que le
système peut résoudre. Un système résolvant 2 100 000 diffèrent points a ainsi été démon-
tré; un record absolu dans le domaine des capteurs à fibre répartis.

Dans un chapitre séparé, nous discutons des limitations pour augmenter le nombre
de points ainsi que des solutions possibles pour les contourner. Nous voyons aussi com-
ment mitiger la dépendance de l’indice de réfraction de la fibre à la température via un
algorithme capable de compenser cet effet.

Dans le dernier chapitre, les applications possibles du réseau Brillouin dynamique
sont étudiées. Un modèle théorique du BDG dans des fibres à maintien de polarisation,
capable de calculer la réflexion de l’impulsion sonde, est présenté Le modèle prend aussi
en compte le cas d’une biréfringence non-uniforme le long de la fibre.

Les réseaux dynamiques sont utilisés pour crée un flip-flop –- une mémoire tout-
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optique commutable avec une impulsion lumineuse. L’effet est démontré sur une fibre
de 1 mètre de long, correspondant à un temps de stockage de 10 ns. Le modèle théorique
permet lamesure de la variation de la biréfringence le long d’une fibre optique. Une étude
préliminaire des propriétés spectrales des réseaux dynamiques est effectuée, ainsi qu’un
modèle permettant de prédire la réponse spectrale d’un BDG uniforme. Nous montrons
que nous pouvons modifier les propriétés spectrales d’un BDG en changeant les spectres
des ondes optiques utilisées pour sa génération.

Nous allons conclure par une discussion, résumant tout le travail théorique et expéri-
mental effectué durant cette thèse. Des applications possibles des travaux de résultats
présentés sont proposées ainsi que les perspectives pour des activités de recherches fu-
tures.

Mots-clés: fibre optique, effets non linéaires dans les fibres optiques, diffusion Brillouin,
réseau Brillouin dynamique, capteurs à fibre optiques, traitement du signal optique

vi



Contents

List of Figures ix

Introduction 1

1 Brillouin scattering 5
1.1 Spontaneous Brillouin scattering . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Stimulated Brillouin scattering . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Acoustic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Optical waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Small gain approximation . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Temperature/strain dependence of the SBS . . . . . . . . . . . . . . . . . . 15

2 Phase-correlated sensing 17
2.1 Localising the Brillouin interaction by phase modulation . . . . . . . . . 17

2.1.1 Scanning the position of the correlation peak . . . . . . . . . . . 20
2.2 Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Correlation peak shape . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Correlation peak response . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Spatial resolution and sampling interval . . . . . . . . . . . . . . 25

2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Spectral filtering of phase-modulated signal . . . . . . . . . . . . 31

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Time-gated phase-correlation technique 35
3.1 Time gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Time-domain traces . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



C

3.2 Optimal pump pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Pump pulse duration and the system’s response . . . . . . . . . . 40
3.2.2 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Measurement along a 17.5 km long fibre . . . . . . . . . . . . . . 44
3.3.2 Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Brillouin scattering in tapered fibres . . . . . . . . . . . . . . . . . 47

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Addressing the limits 53
4.1 Power limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Number of points and measurement time . . . . . . . . . . . . . . . . . . 54

4.2.1 Spatial resolution improvement . . . . . . . . . . . . . . . . . . . 55
4.2.2 Distance improvement . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Finding an optimal bit duration . . . . . . . . . . . . . . . . . . . 57

4.3 Temperature-dependent position of correlation peaks . . . . . . . . . . . 58
4.3.1 Uniform temperature shi . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Arbitrary temperature distribution . . . . . . . . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Brillouin dynamic gratings in polarisation-maintaining fibres 65
5.1 Brillouin dynamic gratings theory . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 BDG generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Reflection from a dynamic grating . . . . . . . . . . . . . . . . . . 68

5.2 Flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Reflection of two pulses . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Spectral properties of dynamic Brillouin gratings . . . . . . . . . . . . . . 82
5.3.1 Reflection spectrum of a BDG . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Dynamic grating with multiple spectral lines . . . . . . . . . . . . 83
5.3.3 Dynamic gratings in multiple fibres . . . . . . . . . . . . . . . . . 86

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Conclusions and perspectives 89

A Correlation peak shape derivation 93

B Solving the differential equation for dynamic grating reflection 97

Bibliography 101

viii



List of Figures

1.1 Change of photon’s momentum in a scattering process for two scattering angles 7
1.2 Spontaneous Brillouin scattering: a) anti-Stokes and b) Stokes processes . . . 7
1.3 Spectrum of the back-scattered light. . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Self-sustained loop of the stimulated Brillouin scattering . . . . . . . . . . . . 9
1.5 Brillouin gain shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 a) Counterpropagating phase-coded pump and signal waves; b) Resulting
acoustic wave amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 a) Rectangular function; b) PRBS based function fPRBS (t) . . . . . . . . . . 19
2.3 Acoustic wave amplitude in the vicinity of the correlation peak . . . . . . . . 22
2.4 Phase patterns to concern when calculating the shape of the correlation peak. 22
2.5 a) e shape of the correlation peak; b) Weak gratings caused by imperfect

phase modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 eoretically calculated spectrum for light modulated with a PRBS . . . . . . 24
2.7 Simulated longitudinal Brillouin gain response around hotspots of different

lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Calculating the gain response of a phase-correlation sensor for a triangular

hotspot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Minimum sampling interval required to obtain a given spatial resolution for

a bit suration of 90 ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Experimental setup for phase-coding sensing . . . . . . . . . . . . . . . . . . 28
2.11 Brillouin gain spectrum along the 200m fibre . . . . . . . . . . . . . . . . . . 29
2.12 Brillouin frequency measured along a 200m fibre . . . . . . . . . . . . . . . . 29
2.13 Brillouin gain spectrum measurement for a 10mm long hotspot positioned

at the end of a 200m long fibre and the extracted Brillouin frequency shi . 30
2.14 Measured and theoretically predicted Brillouin gain along the hotspot . . . . 31
2.15 Overlapping spectra of phase-modulated pump and signal . . . . . . . . . . . 32
2.16 Effect of phase to intensity conversion aer filtering the signal wave on a FBG 33

ix



L  F

3.1 Combining phase modulation with time-gating of the pump wave . . . . . . 36
3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Gain along the fibre for long and short PRBS . . . . . . . . . . . . . . . . . . . 38
3.4 Spectrum of light modulated with the PRBS of 127 bits and bit rate of 7GHz

(line separation 55MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Cross-interaction between multiple spectral lines of phase-modulated pump

and signal waves for long and short PRBS . . . . . . . . . . . . . . . . . . . . . 39
3.6 Time-domain response for several pump pulse durations . . . . . . . . . . . 42
3.7 Signal-to-noise ratio and measurement time dependence on the pump pulse

duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Brillouin frequency distribution along a 17.5 km long fibre and respective

frequency uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 e shape of the correlation peak for 140 ps bit duration and weak gratings

caused by imperfect phase modulation . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Minimum sampling interval required to obtain a given spatial resolution for

the bit duration of 140 ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.11 Brillouin gain spectrum measured in the vicinity of a hotspot positioned at

the end of the 17.5 km long fibre . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12 Brillouin gain spectrum measurement and theoretically predicted Brilloiun

gain for two connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.13 Brillouin gain measurement along the silica taper . . . . . . . . . . . . . . . . 49
3.14 Brillouin gain measurement along the chalcogenide taper . . . . . . . . . . . 50
3.15 Polarisation dependence of Brillouin gain inside the chalcogenide taper . . . 51

4.1 Spectral distortion of phase-modulated signal due to a combination of four-
wave mixing and self-phase modulation. . . . . . . . . . . . . . . . . . . . . . 54

4.2 System’s reaction to a twofold change in the spatial resolution . . . . . . . . . 55
4.3 Measurement time change for a twofold increase in the sensing distance. . . 56
4.4 Measurement time for a given bit duration for a fixed spatial resolution. . . . 58
4.5 Measured Brillouin frequency shi along the fibre for several ambient tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Compensation of positioning for the temperature varying along the fibre . . 63

5.1 Panda fibre profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Frequencies of waves participating in generation and read-out of a BDG . . 67
5.3 Reflections from a probe pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Pulse reflection from a distributed reflector . . . . . . . . . . . . . . . . . . . 72
5.5 Experimental setup for the flip-flop experiment . . . . . . . . . . . . . . . . . 73
5.6 Measured spectrum of optical waves participating in the BDG experiment . 74

x



List of Figures

5.7 Reflection for two 350 ps pulses separated by 3 ns for direct and reversed fibre
connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 Measuring birefringence variation along the 20m fibre . . . . . . . . . . . . . 77
5.9 Generation of probe pulses with opposite phases . . . . . . . . . . . . . . . . 78
5.10 Flip-flop and integrator operation in a 1m patchcord . . . . . . . . . . . . . . 78
5.11 Intensity of the interference between two reflections depending on frequency

detuning from the BDG peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.12 Measured and theoretically predicted reflection intensity depending on the

probe’s detuning from the peak of the BDG and the time separation between
two pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.13 Generating two pulses with an optical delay line . . . . . . . . . . . . . . . . . 80
5.14 Reflection intensity for two pulses generated via an optical delay line depend-

ing on pulse separation and frequency detuning . . . . . . . . . . . . . . . . . 81
5.15 Reflection spectrum of a BDG generated in a 1m long fibre: measured and

theoretically predicted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.16 Reflection spectrum of a BDG created with pumps consisting of 1, 3, and 5

spectral lines with 224MHz spacing . . . . . . . . . . . . . . . . . . . . . . . . 84
5.17 Reflection spectrum of a BDG created with pumps consisting of three lines

with spacing of a) 112MHz; b) 108MHz . . . . . . . . . . . . . . . . . . . . . 85
5.18 Reflection spectrum of a BDG created with pumps consisting of seven lines

with spacing of a) 110MHz; b) 109MHz . . . . . . . . . . . . . . . . . . . . . 85
5.19 Fibre configuration used in the experiment . . . . . . . . . . . . . . . . . . . . 86
5.20 Reflection spectrum of BDG’s generated in two consecutive fibres . . . . . . 87
5.21 Reflection spectra for BDG generated in normal fibre and a fibre spliced with

a 90° rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.1 Growth of the number of points measured by distributed Brillouin fibre sen-

sors. Highlighted are the results obtained during this thesis. . . . . . . . . . . 89

A.1 Subtraction of two rectangular functions . . . . . . . . . . . . . . . . . . . . . 95
A.2 Force driving an acoustic wave within a correlation peak . . . . . . . . . . . . 96
A.3 Averaged force depending on distance from the correlation peak centre . . . 96

xi





Introduction

Fibre Bragg gratings have a very broad range of applications, including spectral filtering,
dispersion compensation, reflectors for fibre lasers, optical sensing. While there is some
potential of tuning properties of an FBG aer it has been manufactured (via strain [1, 2]
or temperature [3]), the capability of all the methods is quite limited. Brillouin dynamic
gratings (BDG’s) offer a much broader versatility; being generated by two optical waves,
they can be created and destroyed within some tens of nanoseconds. eir length can
vary from several millimetres up to tens or even hundreds of metres – while the length
of traditional FBG’s is so far limited to about ten centimetres. Both short and long BDG’s
can be used for distributed sensing [4, 5] and signal processing [6–8]; multiple gratings
can be generated within a single fibre for more complex applications [6, 9].

Exploiting the same process, Brillouin fibre sensing became a mature technology –
the result of more than two decades of intense research and development. One of the
techniques that offers the highest performance, and thus provides the largest number of
resolved points, is called Brillouin optical time-domain analysis (BOTDA) [10]. It has
shown clear advantages with respect to systems based on discrete sensing elements, e.g.
fibre Bragg gratings – a single distributed system is able to interrogate a large number
of independent points (given by the quotient between the sensing range and the spatial
resolution) along an optical fibre. is feature gives unique opportunities to monitor, for
instance, large civil structures or very long pipelines in the oil & gas industry, where a
large number of resolved points is typically required.

Using an optimised conventional BOTDA scheme the sensing range can reach 50 km
with the limitation given by fibre losses of 0.2 dB km−1. Several techniques are used to
extend the measurement distance. Raman amplification can be used to compensate for
fibre losses by introducing distributed amplification along the sensing fibre [11–14]. Op-
tical pulse coding techniques use multiple pump pulses to bypass power limitations given
by nonlinear effects [15–20]. Mathematical algorithms are further used to process mul-
tiple measurements, combining them into a single one with an improved signal-to-noise
ratio (SNR). Using either of these techniques or a combination of them [15, 21, 22] the
measurement range was expended beyond 100 km. However, since optical losses scale
exponentially with fibre length it is not the best way to significantly improve the number
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I

of measured points. For example an increase in measurement distance from 100 km to
125 km introduces the same decrease in SNR as a change from 25 km to 50 km. Yet, the
relative change in the number of measured points is four times less (25% against 100%).

As for the spatial resolution, for a BOTDA system is ultimately limited down to 1m
by the acoustic-wave response time [23]. Such methods as correlation-domain [4, 24,
25], acoustic pre-activation [26, 27], or differential pulses [28, 29], have allowed the spa-
tial resolution to be improved down to the order of centimetres or millimetres, but only
along restricted fibre lengths (less than 5 km-long). Brillouin optical correlation-domain
analysis (BOCDA) so far has shown the best spatial resolution of 1.6mm [30]. Yet, this
technique has an intrinsic correlation between the spatial resolution and the sensing dis-
tance. Attempts have been made to overcome this limitation, but so far the number of
resolved points in these sensors has not exceeded 24 000 [31].

In general, until recently the number of points achievable by distributed Brillouin
sensors was limited to about 100 000 [32], e.g. sensing with 1m spatial resolution over a
120 km distance [15], or 5 cm resolution over 5 km [29].

A new approach is required to increase the number of points by either expanding the
sensing distance or improving the spatial resolution. Both directions have their own dif-
ficulties and limitations that have to be addressed separately, especially when one tries to
combine high spatial resolution with long sensing distance. A technique based on phase
correlation was introduced for sensing with high spatial resolution over short distances
and immediately showed 20 000 measured points [4], a more than three times improve-
ment over BOCDA. A further development, though, was impeded by a linear relation
between the noise and the measurement distance.

is work shows how introduction of time-gating [33] and time-domain measure-
ment [34] allowed for a two order of magnitude improvement in the number of measured
points, leading to a sensor capable of resolving more than 2 000 000 separate points – ex-
ceeding a symbolic milestone of 1 000 000 points and outperforming any existing system
in number of resolved points.

As it was said before, application of Brillouin dynamic gratings is by no means lim-
ited to distributed sensing. Brillouin dynamic gratings can be generated in polarisation-
maintaining (PM) fibres, showing multiple application in optical and microwave signal
processing. Optical signal integration and differentiation [7, 35] has been demonstrated
along with the true time-reversal of an optical signal [8]. Delay lines for optical signals
were shown [36, 37] and true time delay ofmicrowave signals has been demonstrated [36].

For a long time research activities have been carried out to create all-optical logic
circuits and other components which will potentially enable creation of an all-optical
computer. One of the required elements is a flip-flop – a memory switch, that can be
turned on and off by optical means. Solutions were proposed based, for example, on mi-
crodisk lasers [38] and ring lasers [39]. We propose amethod based on Brillouin dynamic
gratings to create an all-optical flip-flop which is potentially scalable for storage times of
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hundreds of nanoseconds.
As it was said before, classic fibre Bragg gratings have a limited tunability; the peak

wavelength can be tuned by a mechanical strain or a temperature change but neither of
the two methods offers the possibility to manipulate the spectral properties of the grating.
e spectral characteristics of Brillouin dynamic gratings directly depend on the spectra
of optical waves that generate them. Not only it allows for a fast tuning of the grating’s
frequency, but it can also be used to create gratingswith complex spectra. iswork shows
the generation of Brillouin dynamic gratings with multiple spectra lines and combining
closely positioned lines to create an optical band-pass filter. ese results are preliminary
but they already show what can be done easily and which problems arise for other, not so
easily implemented applications.

It is important to have a mathematical model to support research activities. ey
allow careful planning of experimental work and predicting the problems that may arise.
In this work for every experiment there will be a sufficient theoretical model designed for
a specific application of BDG’s. e ambition of this work is to be helpful for researchers
who prepare to carry out research on Brillouin dynamic gratings to plan their work.
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Chapter 1

Brillouin scattering

e origin of any scattering process is the inhomogeneity of the medium, i.e. fluctuations
of some of its characteristics. For Rayleigh scattering, for example, these are the stationary
fluctuations of the refractive index which scatter the light without changing its spectrum.
Léon Brillouin considered the scattering of an optical wave on an acoustic wave – a mov-
ing oscillation of medium density. Results of his calculations became a part of a paper he
published in 1922 [40]. Brillouin showed how reflection angle will depend on the acous-
tic wave frequency; he also demonstrated that the reflected light will be shied spectrally
due to the Doppler effect1:

“La formule (27) nous montre d’ailleurs que l’onde lumineuse réfléchie a une
fréquence (n + N) différente de la fréquence n de l’onde incidente; ceci
s’explique, et provient de l’effet Döppler pendant la réflexion sur des miroirs
MM (fig. 1) en mouvement avec une vitesse Vl.”

Observation of Brillouin scattering in the stimulated regime requires a high-intensity
coherent source of light, unavailable before the invention of lasers in 1960’s. us, it was
only in 1964 when Chiao et al. [42] were able to observe SBS in quartz and sapphire
crystals. With development of fibre optics it was recognised to be a major factor, limiting
the power that can be successfully used to send data. Yet, as it will be shown later, it has
multiple useful applications.

1While there are reasons to believe that Soviet physicist Leonid Mandelstam has predicted the same
effect in 1918, he has not published his results until 1926 [41].
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. B 

While nonlinear optics covers multiple effects such as modulation instability, four-
wave mixing, higher harmonic generation, etc., they are outside of the scope of this work
and will only be mentioned briefly. All the theoretical models derived throughout this
work consider only stimulated Brillouin scattering; if needed, a detailed information on
nonlinear effects can be found in literature [43, 44].

1.1 Spontaneous Brillouin scattering
Spontaneous Brillouin scattering occurs on thermally activated acoustic waves inside the
material. On the quantum level it is an interaction between a photon and an acoustic
phonon. Let’s consider a photon with frequency ν, energy Ephot = hν, and wave vec-
tor k = hnν/c, where h is the Planck’s constant, n is the refractive index and c is the light
velocity. e phonon has frequency f , energy Ephon = hf , and wave vector q = hf/Va,
where Va is the acoustic velocity in the material. Since the frequency of the phonon is
negligible in comparison with the frequency of the phonon (10GHz versus 200 THz),
the energy of the phonon is also negligible in comparison to the one of the photon. us,
during the interaction between the photon and the phonon one can consider the pho-
ton’s energy and frequency to remain constant (∆Ephot ≪ Ephot, ∆ν ≪ ν). From this
also follows that the absolute value of the photon’s wave vector doesn’t change either; its
direction, though, may change significantly.

Figure 1.1 depicts the scattering of a photon with the initial wave vector ki and the
wave vector aer the scatteringks, with θ being the angle between those twowave vectors.
e absolute value of the difference between the twowave vectors ∣∆k∣ = ∣ks−ki∣ increases
with the scattering angle. e value of this wave vector change can be calculated easily:

∆k = 2k sin(θ/2) , (1.1)

ranging from 0 to 2k for the scattering angle varying from 0 to π.
e change in the wave vector during the scattering process can be caused by two

configurations in which the photon is interacting with a phonon having the wave vector
equal to ∆k given by equation (1.1):

q = 2k sin(θ/2) . (1.2)

e first configuration is the interaction with a phonon propagating towards the photon
(kiq < 0), as depicted on figure 1.2a. During this process the phonon is annihilated
transferring its energy and momentum to the photon. In the second configuration the
photon interacts with a phonon moving away from the photon (kiq > 0) as depicted
on figure 1.2b. In this process a copy of the initial phonon is created, thus, the photon
loses a part of its energy. ese two processes are called anti-Stokes and Stokes scattering.
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1.1. Spontaneous Brillouin scattering

ki ki

ks
ks

∆k
∆k

θ
θ

a b

Figure 1.1: Change of photon’s momentum in a scattering process for two scattering angles
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q

θ θ

q 2q
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Figure 1.2: Spontaneous Brillouin scattering: a) anti-Stokes and b) Stokes processes

As a result of the scattering process the energy of the photon is changed by a value
equal to the phonon’s energy ∆E = qVa = 2k sin(θ/2)Va which leads to a change in the
frequency:

∆ν = 2νnVa sin(θ/2)/c . (1.3)

In the Stokes process a phonon is created, thus the photon’s energy is decreased, while
during the anti-Stokes scattering the energy transfer goes the opposite direction. Since in
an optical fibre the light can propagate just in two directions, only the light scattered at
angles 0 and π gets captured. From equation (1.3) follows that the light scattered forward
(θ = 0) experiences no frequency shi. In fact in can be seen from equation (1.2) that
for θ = 0 the phonon’s wave vector and, therefore, frequency are equal to zero. is
corresponds to the whole medium moving as a whole, creating no inhomogeneities. For
the backscattered light the phonon’s wave vector can be easily found to be equal to 2k;
giving the following change in photon’s frequency

∆ν = 2νnVa/c , (1.4)

which can be rewritten in terms of the wavelength to obtain the classic formula for the
so-called Brillouin frequency shi:

νB = 2nVa/λ . (1.5)
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Frequency

ν0 ν0 + νBν0 − νB

Rayleigh

Brillouin
stokes

Brillouin
anti-stokes

Figure 1.3: Spectrum of the back-scattered light.

It can also be rewritten in a commonly used form for the angular frequency:

ΩB = 2nVaω/c . (1.6)

In a standard single-mode optical fibre (SMF) with refractive index n = 1.44 and
acoustic velocity Va = 5.9kms−1 the typical value of the Brillouin frequency shi is about
10.8GHz at a wavelength of 1.5 μm. e typical spectrum of the backscattered light can
be seen on figure 1.3 showing the light scattered via Rayleigh (without a change in the
frequency) and the Brillouin Stokes and anti-Stokes waves positioned at either side of it.

1.2 Stimulated Brillouin scattering
For small incident powers the intensity of the backscattered light is the same for Stokes
and anti-Stokes waves. However, as the incident power grows, the Stokes wave becomes
strong enough to affect the scattering process – the scattering changes from the sponta-
neous to the stimulated regime.

Stimulated Brillouin scattering (SBS) involves two counterpropagating optical waves
with a small frequency shi. ese waves are called throughout the text the pump and
the signal; their respective angular frequencies are ωp and ωs; and the frequency differ-
ence between them is Ω = ωp − ωs. Figure 1.4 shows how two waves interact with each
other and the medium they propagate in. e pump and the probe interfere creating an
optical intensity wave, which, due to a frequency difference between the pump and the
signal, moves along the fibre. Electrostriction – material compression in the presence of
the electric field – copies the optical intensity wave as a wave of compression, that leads
to a change in the material density – an acoustic wave. A change in the material’s den-
sity naturally leads to a change in the refractive index, and this periodic modulation of
the refractive index works as a moving fibre Bragg grating resonant at the frequency of
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electrostrictiondi�raction
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Figure 1.4: Self-sustained loop of the stimulated Brillouin scattering

the pump wave. Due to the Doppler effect the reflected light has a lower frequency that
matches the one of the signal wave. us, the signal wave gets amplified enhancing the
intensity wave and therefore the whole SBS process.

Let’s derive equations that govern SBS. For simplicity we will neglect the transversal
distribution of all the waves since normally it is of a small importance. e electrical field
inside the fibre is given by the sum of the fields of the pump and the signal waves:

E(z, t) = Ep(z, t) +Es(z, t) . (1.7)

Electrical fields of the optical wavesEp(z, t) andEs(z, t) can bewritten in the traditional
form for electromagnetic waves, separating the oscillations at the optical frequency from
the slowly varying complex amplitude:

Ep(z, t) = Ap(z, t)ej(kpz−ωpt) + c.c. , (1.8)

Es(z, t) = As(z, t)ej(−ksz−ωst) + c.c. , (1.9)

where Ap and As are the complex amplitudes of the two waves and kp,s are the wave
vectors of the pump and the signal. A similar equation can be written for the material
density:

ρtot(z, t) = ρ0 +∆ρ(z, t) = ρ0 + [Q(z, t)ej(qz−Ωt) + c.c.] , (1.10)

where Ω is the above-mentioned frequency difference between the pump and the signal,
ρ0 is the mean density of the medium, and Q is the complex amplitude of the acoustic
wave.
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1.2.1 Acoustic wave

In order to derive equations that govern the evolution of the acoustic wave during the SBS
process, we start with thewave equation (see, for example, Section 9.3 of Boyd’s Nonlinear
Optics [43]):

∂2ρtot(z, t)
∂t2

− Γ′∇2∂ρtot(z, t)
∂t

− V 2
a ∇2ρtot(z, t) = ∇ ⋅ f(z, t) , (1.11)

whereΓ′ is the damping parameter, responsible for the decay of the acoustic wave, and f is
the force per unit volume, which in this case comes from the electrostriction. Note that
in this equation we do not consider Langevin’s terms which give the thermal excitation of
phonons [45], assuming them to be much smaller than∇⋅ f . Let’s rewrite the three terms
on the le side using equation (1.10) and remembering that we consider only longitudinal
changes, thus∇Q = ∂Q/∂z (here and further, arguments z and t are omitted for a better
readability):

∂2ρtot

∂t2
= (∂

2Q

∂t2
− 2jΩ∂Q

∂t
−Ω2Q ) ej(qz−Ωt) + c.c. , (1.12)

Γ′∇2∂ρtot
∂t
= Γ′∇2 (∂Q

∂t
− jΩQ) ej(qz−Ωt) + c.c. =

Γ′ ( ∂2

∂z2
∂Q

∂t
+ 2jq ∂

∂z

∂Q

∂t
− q2∂Q

∂t
− jΩ∂2Q

∂z2
+ 2Ωq∂Q

∂z
+ jΩq2Q) ej(qz−Ωt) + c.c. ,

(1.13)

V 2
a ∇2ρtot = V 2

a (
∂2Q

∂z2
+ 2jq ∂Q

∂z
− q2Q)ej(qz−Ωt) + c.c. (1.14)

Assuming that the acoustic wave amplitude varies slowly in space and time, we can omit
higher order derivatives, significantly simplifying equations (1.12)–(1.14):

∂2ρtot

∂t2
≈ (−2jΩ∂Q

∂t
−Ω2Q ) ej(qz−Ωt) + c.c. , (1.15)

Γ′∇2∂ρtot
∂t
≈ Γ′ (−q2∂Q

∂t
+ 2Ωq∂Q

∂z
+ jΩq2Q) ej(qz−Ωt) + c.c. , (1.16)

V 2
a ∇2ρtot ≈ V 2

a (2jq
∂Q

∂z
− q2Q) ej(qz−Ωt) + c.c. (1.17)

e right term of equation (1.11) – the divergence of the force per unit volume –
can be calculated knowing that the force per unit volume is given by the gradient of the
strictive pressure pst:

f = ∇pst =
∂pst
∂z

. (1.18)
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1.2. Stimulated Brillouin scattering

e strictive pressure comes from the electrostrictive effect due to the presence of two
optical waves:

pst = −
1

2
ϵ0γe ⟨E2⟩ . (1.19)

Using equations (1.8) and (1.9) and considering the amplitudes of the pump and the signal
waves to be constant the force per unit volume can be derived

f = −1
2
ϵ0γe

∂

∂z
(2ApA

∗
s e

j(qz−Ωt) + c.c.)z

= −jqϵ0γe (ApA
∗
s e

j(qz−Ωt) + c.c.)z ,
(1.20)

where z is the unit vector along z axis. Calculating the divergence of this term is straight-
forward:

∇f = q2ϵ0γeApA
∗
s e

j(qz−Ωt) + c.c. . (1.21)

Nowwe can insert the results of equations (1.15)–(1.17) and (1.21) into equation (1.11).
Since the multiplier ej(qz−Ωt) and the complex conjugate are present in each term, both
can be omitted in calculations:

∂Q

∂t
(−2jΩ + Γ′q2) − ∂Q

∂z
(2ΩΓ′q + 2jV 2

a q)

+Q(−Ω2 − jΩΓ′q2 + V 2
a q

2) = q2ϵ0γeApA
∗
s .

(1.22)

is equation can be simplified even further. First, we introduceΓB = Γ′q2 – the damping
coefficient of the acoustic wave (ΓB ≪ ΩB,Ω). Next, we remember that q = 2k and
therefore Vaq is equal to the angular Brillouin frequency given by equation (1.6)

Vaq = 2Vak =
2nVaω

c
= ΩB . (1.23)

Keeping this in mind the le part of equation (1.22) can be rewritten

∂Q

∂t
(−2jΩ + Γ′q2) − ∂Q

∂z
(2ΩΓ′q + 2jV 2

a q) +Q(−Ω2 − jΩΓ′q2 + V 2
a q

2)

= −2jΩ∂Q

∂t
− 2jV 2

a q
∂Q

∂z
+ (Ω2

B −Ω2 − jΩΓB)Q. (1.24)

In the first term Γ′q2 = ΓB ≪ 2Ω. e second term can be fully ignored as the acoustic
wave propagates only several micrometres before fully decaying:

− 2jΩ∂Q

∂t
+ (Ω2

B −Ω2 − jΩΓB)Q = ϵ0γeq2ApA
∗
s . (1.25)
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Let’s introduce frequency detuning parameter

ΓA = j
Ω2
B −Ω2 − jΩΓB

2Ω
, (1.26)

and electrostrictive coupling coefficient

g1 =
ϵ0γeq

2

2Ω
. (1.27)

Using these two and reintroducing arguments z and twe obtain the final equation for the
acoustic wave amplitude:

∂Q(z, t)
∂t

+ ΓAQ(z, t) = jg1Ap(z, t)A∗s (z, t) . (1.28)

e termAp(z, t)A∗s (z, t) can be rewritten:

Ap(z, t)A∗s (z, t) = ∣Ap(z, t)∣∣As(z, t)∣ej∆ϕ , (1.29)

where ∆ϕ is the phase difference between the pump and the signal waves.

1.2.2 Optical waves

e optical waves have to fulfil the wave equation as well:

∂2E(z, t)
∂z2

− 1

v2g

∂2E(z, t)
∂t2

= 1

ϵ0c
2

∂2P (z, t)
∂t2

, (1.30)

where vg is the optical group velocity and P is the total nonlinear polarization:

P = ϵ0∆χE(z, t) = ϵ0∆ϵE(z, t) = ϵ0ρ−10 γe∆ρE(z, t) , (1.31)

where ϵ0 is the dielectric permittivity of free space and γe is the electrostrictive coefficient
of the material. e two terms of P that are phase-matched with the pump and the signal
waves are2:

Pp = ϵ0γeρ−10 QAse
j(kpz−ωpt) + c.c., (1.32)

Ps = ϵ0γeρ−10 Q∗Ape
j(−ksz−ωst) + c.c. (1.33)

2As before, arguments z and t are le out until the final equations are obtained
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1.2. Stimulated Brillouin scattering

Inserting these into equation (1.30) and assuming slowly varying amplitudes, equations
can be written for amplitudes of the pump and the signal:

∂Ap

∂z
+ 1

vg

∂Ap

∂t
= jωγe
4ncρ0

AsQ, (1.34)

−∂As

∂z
+ 1

vg

∂As

∂t
= jωγe
4ncρ0

ApQ
∗ . (1.35)

Let’s introduce the elasto-optic coefficient

g2 =
ωγe
2ncρ0

, (1.36)

and write the equations in the final form:

∂Ap(z, t)
∂z

+ 1

vg

∂Ap(z, t)
∂t

= j g2
2
As(z, t)Q(z, t) , (1.37)

∂As(z, t)
∂z

− 1

vg

∂As(z, t)
∂t

= −j g2
2
Ap(z, t)Q∗(z, t) . (1.38)

1.2.3 Small gain approximation

In the general case equations (1.28), (1.37) and (1.38) describing the evolution of the
acoustic and optical waves cannot be solved analytically. However, when several reason-
able approximations are made a solution can be found. is subsection will consider the
simple case of small gain. First, let’s consider the system to be in a steady state, meaning
that the amplitudes of the optical and the acoustic waves do not change in time. Sec-
ond, let’s assume that the interaction between pump and signal is negligible, meaning
that i) the pump amplitude remains constant and ii) the change in signal amplitude is
very small ∆As ≪ As,0 (where As,0 is signal wave’s amplitude on the input of the fibre).
Under these conditions equations (1.28) and (1.38) can be rewritten:

ΓAQ(z) = jg1ApA
∗
s (z) , (1.39)

∂As(z)
∂z

= −j g2
2
ApQ

∗(z) . (1.40)

Equation (1.39) can be easily solved in the constant signal approximation, obtaining
the asymptotic acoustic wave amplitude:

Qas =
jg1ApA

∗
s,0

ΓA

. (1.41)
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Inserting this result into equation (1.40):

∂As(z)
∂z

= −j g2
2
ApQ

∗
as , (1.42)

which can be immediately solved to find the (small) change in the signal amplitude along
a fibre with length d:

∆As =
g1g2As,0 ∣Ap∣

2
d

2ΓA

. (1.43)

Normally the intensity of the signal is detected:

Is = AsA
∗
s = (As,0 +∆As)(As,0 +∆As)∗

≈ Is,0 + 2Re(As,0∆A∗s ) ,
(1.44)

where Is,0 = ∣As,0∣
2 is the initial signal intensity. e change in signal’s intensity can be

calculated using equation (1.43) and remembering equation (1.26) for ΓA:

∆Is = g1g2IpIs,0dRe(
2jΩ

Ω2
B −Ω2 − jΩΓB

) . (1.45)

Let’s calculate the last multiplier of this equation:

Re( 2jΩ

Ω2
B −Ω2 − jΩΓB

) = Re(2jΩ(Ω
2
B −Ω2 − jΩΓB)

(Ω2
B −Ω2)2 +Ω2Γ2

B

) = 2Ω2ΓB

(Ω2
B −Ω2)2 +Ω2Γ2

B

.

(1.46)
e frequency difference Ω between the pump and the probe is normally close to the
Brillouin frequency shi, therefore we can consider Ω ≈ ΩB and Ω + ΩB ≈ 2Ω. Using
Ω2
B −Ω2 = (ΩB +Ω)(ΩB −Ω) equation (1.46) can be rewritten and simplified:

2Ω2ΓB

(Ω2
B −Ω2)2 +Ω2Γ2

B

= 2Ω2ΓB

4Ω2(ΩB −Ω)2 +Ω2Γ2
B

= ΓB/2
(ΩB −Ω)2 + (ΓB/2)2

. (1.47)

Inserting this result in equation (1.45) it’s possible to obtain the final equation for the
detected change in the signal for the small gain approximation:

∆Is = g1g2IpIs,0d
ΓB/2

(ΩB −Ω)2 + (ΓB/2)2
. (1.48)

Equation (1.48) shows that the signal’s gain is linearly proportional to the interaction
length and has a Lorentzian spectrum, centred atΩB with the full width at half maximum
of ΓB. e shape of this spectrum is shown on figure 1.5.
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Figure 1.5: Brillouin gain shape.

1.3 Temperature/strain dependence of the SBS
Let’s see howBrillouin frequency shi depends on temperature and staring of themedium.
Starting with equation (1.5) for the Brillouin frequency shi let’s write corresponding
derivatives:

νB =
2nVa

λ
, (1.49)

∂νB
∂T
= 2

λ
(Va

∂n

∂T
+ n∂Va

∂T
) = νBCT , (1.50)

∂νB
∂ϵ
= 2

λ
(Va

∂n

∂ϵ
+ n∂Va

∂ϵ
) = νBCϵ , (1.51)

where CT and Cϵ are temperature and strain coefficients, respectively. ese coefficients
depend on the composition of the fibre (amount and type of dopant used), but the typical
values are 1.1MHz/K to 1.3MHz/K for temperature [46, 47] and 0.055MHz/μϵ for strain
dependence [46, 48]. us, if the fibre strain remains constant, a change in Brillouin fre-
quency can be directly translated into a change of the temperature; alternatively, for a
constant temperature, a change in the Brillouin frequency gives a change in the strain.
is opens a possibility for using Brillouin scattering to detect a change in temperature
or strain. Moreover, if Brillouin scattering is localised in one way or another, this mea-
surement can be done in a distributed way.
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Chapter 2

Phase-correlated sensing

In order to create a distributed Brillouin sensor the interaction between the two optical
waves has to be localised. In time-domain systems: Brillouin optical time-domain reflec-
tometry (BOTDR) and Brillouin optical time-domain analysis (BOTDA), it is achieved
by using a pulsed wave [10, 48, 49]. is localises the interaction to the section of the
fibre overlapping with the pulse at a given moment, not unlike in traditional optical time-
domain reflectometry setups, based on Rayleigh scattering.

In traditional correlation-based techniques (BOCDA, BOCDR) the interaction is lo-
calised through correlation between frequencies of the pump and the signal [24]. While
this technique has shown an impressive spatial resolution [30, 50], it has an intrinsic
limitation of the number of resolved points. is chapter introduces phase-correlation
technique that relies on modifying the phases of two interacting waves. As it was shown
in section 1.2.1, the Brillouin interaction depends on the phase difference between the
two interacting waves. is opens a possibility of using phase modulation of these waves
to localise the interaction between them.

2.1 Localising the Brillouin interaction by phase modulation

Let’s consider pump and signal waves with phases modulated by a pseudo-random bit
sequence (PRBS) that applies a phase shi of either 0 or π. Stimulated Brillouin scat-
tering is based on the interference between the pump and the signal and therefore it
depends on the phase difference between the two waves. Figure 2.1a shows phases of
phase-modulated pump and signal at three moments of time. We can see that in the
centre phases of two waves are perfectly correlated and always take the same value while
at other positions phases of the two waves are absolutely uncorrelated. is leads to the
acoustic wave being efficiently generated only at the correlation point, and outside of it the
acoustic wave amplitude changes randomly never reaching the steady state (figure 2.1b).
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Figure 2.1: a) Counterpropagating phase-coded pump and signal waves. Note that the phases of
two waves are always the same at the correlation peak (black letters) while outside they
change between the same and the opposite (grey letters); b) Resulting acoustic wave
amplitude: stable in the correlation peak and oscillating outside of it.

To find how acoustic wave changes in time and how it interacts with the optical waves
we start with defining Π (t) – the rectangular function (see figure 2.2a):

Π (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ∣t∣ > 1/2
1/2 ∣t∣ = 1/2
1 ∣t∣ < 1/2

, (2.1)

and through it we define function fPRBS (t) based on a pseudo-random bit sequence
(PRBS):

fPRBS (t) =∑
q

ξqΠ((t − qTbit)/Tbit) , (2.2)

where ξq is a pseudo-random sequence of zeroes and ones with the period of Nbits; thus,
ξq ≡ ξq+Nbits

. An example of fPRBS (t) can be seen on figure 2.2b.
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Figure 2.2: a) Rectangular function; b) PRBS based function fPRBS (t)

Let’s consider the pump and the signal – defined the same way as in section 1.2:

Ep(z, t) = Ap(z, t)ej(kpz−ωpt) + c.c. , (2.3)

Es(z, t) = As(z, t)ej(−ksz−ωst) + c.c. , (2.4)

and modulate their phases using fPRBS (t) applying a phase shi of 0 or π:

Ap,s [ej(kp,sz−ωp,s) + c.c.]Ð→ Ap,s [ej(kp,sz−ωp,s)ej∆ϕp,s + c.c.] , (2.5)

∆ϕp,s = π fPRBS (t − tp,s(z)) . (2.6)

where tp,s(z) is given by the propagation time for the pump and the signal. Let’s define
the length of the sensing fibre L and consider the signal wave to be additionally delayed
by tdelay. Setting the z-axis origin at the pumpendof the fibre one can obtain the following
equations for tp,s(z):

tp(z) =
kpz

ωp

≈ zneff

c
, (2.7)

ts(z) =
ks(L − z)

ωs

+ tdelay ≈
(L − z)neff

c
+ tdelay . (2.8)

In these equations group refractive index is used; however, throughout this work an ap-
proximation of non-dispersive medium will be used, unless specified otherwise. us,
the group and the phase refractive indices will be considered equal to each other.

As it was shown in section 1.2.1, the force affecting the acoustic wave (the right term
in equation (1.19)) depends on the time average of the square of the total electrical field
amplitude:

E(z, t) =Ap [ej(kpz−ωpt)ejπ fPRBS(t−tp(z)(z)) + c.c.]

+As [ej(−ksz−ωst)ejπ fPRBS(t−ts(z)(z)) + c.c.] .
(2.9)
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Taking the time average ⟨E2⟩ = ⟨EE∗⟩ of equation (2.9) and keeping only the terms with
the acoustic frequency one obtains the following result:

⟨E2⟩ = ApA
∗
s e

j(qz−Ωt) ⟨ejπ[fPRBS(t−tp(z))−fPRBS(t−ts(z))]⟩ . (2.10)

e complex exponential function to be averaged can take values of ±1 depending on
the difference between the phases of pump and signal, which takes values of 0 and π. It is
easy to see that for tp = ts the argument of the exponential function is equal to 0 at all the
times. Due to the periodicity of the PRBS it also holds for propagation times differing by
an integer number of PRBS periods:

tp = ts +mTbitNbits . (2.11)

At other positions the phases are absolutely uncorrelated, meaning that the force respon-
sible for the acoustic wave generation averages to zero. Combining equations (2.7), (2.8)
and (2.11) it is possible to find positions of correlation peaks:

zc,m =
c

2neff

(mNbitsTbit + tdelay) +
L

2
. (2.12)

As one can see, the separation between two correlation peaks zsep = zc,m+1−zc,m is given
by the product of the bit duration and the number of bits in the sequence:

zsep =
c

2neff

NbitsTbit . (2.13)

us, unlike BOCDA and BOCDR techniques, it is possible to increase the separation
between correlation peaks without changing the spatial resolution, by simply increasing
the number of bit in the PRBS.

2.1.1 Scanning the position of the correlation peak

From equation (2.12) it can be seen that the position of a correlation peak can be changed
by varying tdelay or Tbit. While the first method seems to be more logical and straightfor-
ward, it requires the use of either an optical delay or separate modulation systems for the
pump and the signal waves. Both of these changes increase the complexity of the exper-
imental setup; thus, the second method – varying Tbit – is the commonly used method
in correlation-based setups. ough the spatial resolution is directly related to the bit
duration, for high order correlation peaks (large values ofm) the change∆Tbit of the bit
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duration required to scan the whole fibre length is very small.

∆zc,m =(
c

2neff

(mNbits(Tbit +∆Tbit) + tdelay) +
L

2
)

−( c

2neff

(mNbitsTbit + tdelay) +
L

2
) = L ,

(2.14)

c

2neff

mNbits∆Tbit = L , (2.15)

∆Tbit =
2neffL

cmNbits

. (2.16)

Using equation (2.13) for the separation between the correlation peaks it can be rewritten:

∆Tbit =
L

mzsep
Tbit . (2.17)

Since for unambiguous sensing only a single correlation peak can appear in the fibre the
separation between the correlation peaks has to be longer than the sensing length zsep > L
which allows to rewrite the previous equation:

∆Tbit < Tbit/m, (2.18)
∆Tbit/Tbit < 1/m. (2.19)

is way, using a high-order correlation peak (m > 20) the spatial resolution will change
just by few percent during the scan of the whole fibre, negligibly affecting the spatial res-
olution of the system.

2.2 Spatial resolution

2.2.1 Correlation peak shape

In order to define the spatial resolution of a distributed sensor, its response to a temper-
ature or strain perturbation has to be found. And to do that, the shape of the correlation
peak (longitudinal distribution of the acoustic wave amplitude) has to be calculated. For
a perfectly rectangular phase modulation of the pump and the signal waves it can be done
analytically by solving equations (1.18) and (1.19) using equation (2.9) for the electrical
field. Detailed calculations can be found in appendix A; they show that the correlation
peak has a triangular shape with the bottom width given by the bit duration – 18mm
for the 90 ps bit duration used in the further experiment. is gives the value of the full
width at half maximum (FWHM) of 9mm, which is normally considered to be the spatial
resolution of such sensors.
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Figure 2.3: Acoustic wave amplitude in the vicinity of the correlation peak: average (dashed line)
and several instantaneous values (solid lines). e horizontal axis is normalised to the
correlation peak FWHM
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Figure 2.4: Phase patterns to concern when calculating the shape of the correlation peak.

It should bementioned here that while the average amplitude of the acoustic wave has
a triangular shape, the amplitude at a given time changes randomly, affecting the edges
of the correlation peak as well. Figure 2.3 shows that the amplitude of gratings generated
randomly outside of the correlation peak can easily reach one third of the correlation
peak’s amplitude.

In real life experiments the phasemodulation is never perfect due to the limited band-
width of the experimental setup components. For example, the PRBS generator used in
our experiment has the typical 20%–80% transition time of 23 ps, while the bandwidth
of the phase modulator is equal to 12GHz. In this case the shape of the correlation peak
has to be calculated numerically by simulating the counterpropagating waves. For sim-
plicity we can assume that the phase changes linearly from 0 to π with the transition time
of about 80 ps given by the phase modulator bandwidth. Note, that while for the case of
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Figure 2.5: a) e shape of the correlation peak for perfect square phase modulation (dashed line)
and imperfect modulation (solid line); b) Weak gratings caused by imperfect phase
modulation.

a perfect modulation the shape of the correlation peak is given by the convolution of two
rectangular functions, it is not enough to convolve two trapezoid phase pulses to find the
shape of the correlation peak for the imperfect case. is convolution corresponds only
to the case when phases of both waves switch at both sides of the bit. To find the real peak
shape the convolution of all the patterns (see figure 2.4) have to be considered and the
average of all the results taken as the final answer.

e result of this simulation is shown on figure 2.5a and are compared to the case of
the perfect rectangular modulation. ere is an obvious change in the correlation peak
shape, the FWHM is decreased from 9mm to 7.4mm while the bottom is broadened
from 18mm to 28mm. Another effect given by the non-instantaneous phase transition
is the generation of stable weak gratings along the fibre. Figure 2.5b shows three con-
nected consecutive gratings separated by 9mm being generated outside the correlation
peak (note that the vertical axis in figure 2.5b is normalised to the maximum amplitude
of the correlation peak shown in figure 2.5a). It can be seen that the amplitude of these
gratings varies from 5.5% to 11% of the correlation peak amplitude.

e reflectivity of each weak grating (given by the integral of the acoustic wave am-
plitude) is equal to ∼15% of the correlation peak reflectivity. Since the phases of pump
and signal are uncorrelated at the weak gratings’ positions, the direction of the energy
transfer between the optical waves is random, adding a significant noise to the system.
e accumulated noise from this effect is linearly proportional to the interaction length
between pump and signal waves given by the pump pulse duration.

e change in the correlation peak shape and the presence of weak permanent grat-
ings can be also explained by examining the spectrum of the phase-modulated light. Fig-
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Figure 2.6: eoretically calculated spectrum for light modulated with a PRBS with a 10GHz bi-
trate for perfectly rectangular modulation (grey line) and non-instantaneous transi-
tion between phases (black line).

ure 2.6 shows the predicted spectrum for both perfect and imperfectmodulation of phases.
First, it can be seen that non-instantaneous transition between two phase values sup-
presses higher-order components of the spectrum, effectively making it narrower. is
explains the broadening of the correlation peak. Additionally, strong lines appear at fre-
quencies equal to the integer number of the bitrate – where the spectrum of the perfectly-
modulated light goes down to zero. ese lines generate the weak gratings which are
separated by a distance proportional to the inverted bitrate.

2.2.2 Correlation peak response

Intuitively, the spatial resolution of the system is given by the smallest detectable pertur-
bation. Let’s consider a uniform fibre with a certain Brillouin frequency ν0 and a uniform
section of length d with a different, well-separated Brillouin frequency νh (referred here-
aer as hotspot). In this configuration the gain at a frequency offset ν0 sharply drops to
zero in the hotspot position, while the gain at the frequency νh goes from zero to its max-
imum value. However, the measured gain values behave differently due to a finite spatial
resolution of the system.

e gain response of the sensor is given by the convolution of the acoustic wave am-
plitude with a rectangular function given by the hotspot size. Figure 2.7 shows the simu-
lated gain trace along the fibre for three distinct hotspot sizes, for frequencies ν0 and νh.
e shaded area of the correlation peak represents its convolution with the hotspot. Let’s
consider a hotspot detectable if the measured gain at νh exceeds the gain at ν0 at some
section of the fibre. Based on this, the three cases on figure 2.7 represent the conditions
of undetectable, barely detectable, and well detected hotspots.
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Figure 2.7: Simulated longitudinal Brillouin gain response for ν0 (red line) and νH (blue line),
around hotspots of different lengths: (a) short undetected, (b) barely detected, and
(c) long well-detected hotspot.

2.2.3 Spatial resolution and sampling interval

It is important to remember that in a real system not only the spatial resolution is finite
but so is the sampling interval. In order to reliably detect a hotspot, the sampling inter-
val cannot be longer than the fibre section where the measured gain at νh exceeds the
gain at ν0, which is equivalent to gain at νh exceeding 0.5 (see s on figure 2.7c). If the
sampling interval is longer than s – the hotspot detection range – the hotspot will not be
reliably detected (the sampling can simply miss the hotspot detection region). Under this
consideration, the hotspot presented on figure 2.7b is only theoretically detectable with a
continuous sampling.

Having an analytical expression of the correlation peak shape allows us to derive an
analytical expression for the gain response and the maximum sampling interval required
by the system. In order to provide a general solution, independently of the specific band-
width limitation of our PRBS generator, a triangular correlation peak will be considered
in the following mathematical formulation.

Let’s consider a hotspot with a given length δ and a triangular correlation peak with
FWHM d that is offset from the hotspot centre by an arbitrary shi l (see top part of
figure 2.8a). e shape of a correlation peak with integral equal to unity is given by

ρ(z) = 1

d
(1 − ∣z + l

d
∣) , (2.20)

for −d ≤ z+ l ≤ d. e measured gain is given by the convolution between the correlation
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Figure 2.8: Calculating the gain response of a phase-correlation sensor for a triangular hotspot
for a) general case and b) correlation peak is shied from the hotspot by a half of the
sampling interval.

peak and the hotspot:
δ/2

∫
−δ/2

1

d
(1 − ∣z + l

d
∣)dz . (2.21)

e lower part of figure 2.8a shows the gain response calculated for several positions of
the correlation peak. As it was said before, to find the sampling interval s that ensures
detection of a hotspot with a given length δ, one has to find the point at which the gain
reaches half of its maximum value (see figure 2.8b), which leads to the following equation:

δ/2

∫
−δ/2

1

d
(1 − ∣z + s/2

d
∣)dz = 1

2
. (2.22)

e dark blue area on figure 2.8 represents the integral in the equation. Considering
that the integral of the whole correlation peak is equal to 1, the sumof surfaces outside the
correlation hotspot (light blue triangles in figure 2.8) has also to be equal to 1/2. ese
triangles have bases d − (s/2 + δ/2) and d − (−s/2 + δ/2) for the le and the right one,
respectively. us, their total surface can be easily found through triangle similarity, re-
placing the integral in equation (2.22):

1

d2
((d − δ/2 − s/2)2 + (d − δ/2 + s/2)2) = 1

2
. (2.23)
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Figure 2.9: Minimum sampling interval required to obtain a given spatial resolution for the per-
fect squaremodulation (dashed red line) and the non-instantaneous phasemodulation
(solid blue line). e dash-dotted black line represents the asymptotic case commonly
used in the state-of-the-art considering a sampling interval equal to the spatial resolu-
tion.

is equation can be easily solved for s:

s =
√
−2d2 + 4dδ + δ2 . (2.24)

Equation (2.24) gives the largest sampling interval s for a reliable detection of a hotspot
of length δ using a correlation peak FWHM equal to d. is expression is valid for a
hotspot size δ ranging from 2d(1− 1/

√
2), the smallest detectable hotspot size, up to the

FWHM of the correlation peak d, at which the dependence reaches the asymptote s = δ.
e dashed line on figure 2.9 shows the result of this calculation for d = 14mm. e best
possible spatial resolution (the case presented at figure 2.7b) is equal to 5.2mm.

For the case of nonistantaneous phase transition the relation between the sampling
interval and the spatial resolution has to be derived numerically by convolving the cor-
relation peak with the hotspot. e solid blue line in figure 2.9 shows the the result of
this calculation; the best possible spatial resolution in this case is equal to 5mm1. Gener-
ally, for a given spatial resolution a sensor with imperfect modulation requires a smaller
sampling interval than the one with the perfectly rectangular phase modulation.

1It may look strange that the spatial resolution is slightly better for the imperfect modulation, but one
needs to remember that the noise levels are higher for such a case, thus, the overall performance of the
imperfect system is worse.
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Figure 2.10: Experimental setup for phase-coding sensing

2.3 Experiment

2.3.1 Setup

e experimental implementation of the phase-correlated sensing technique is shown
on figure 2.10. e output of a distributed-feedback diode laser (DFB) passes through
a phase modulator driven by a PRBS generator. e clock of the generator was set to
11GHz which corresponds to the bit duration of 90 ps. e phase-modulated light is
split in two arms with a 50/50 fibre coupler. e bottom branch is used to generate the
pump wave; it starts with an EOM that applies a slow amplitude modulation, required for
further lock-in detection. Further, the light gets amplified by an EDFA and is launched
into the sensing fibre through a circulator.

e top branch is used to generate the signal wave; first, the light passes through an
electro-optic modulator (EOM) driven by an high-frequency (≈10.86GHz) signal, gener-
ating two side-bands equally separated from the carrier frequency. e two side-bands
pass through a polarisation switch, required to mitigate the polarisation dependence of
the Brillouin interaction [51]. Further, a delay fibre is used to position a high-order cor-
relation peak inside the sensing fibre (as it was described in section 2.1.1). Finally, the
side-bands are amplified in an erbium-doped fibre amplifier (EDFA) and launched inside
the 200m long sensing fibre through an optical isolator.

Aer interacting with the pump inside the sensing fibre the signal wave is filtered on
a fibre Bragg grating (FBG), leaving only one of the side-bands. e selected side-band is
detected by a photodetector connected to the input of a lock-in amplifier.
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Figure 2.11: Brillouin gain spectrum measured along the 200m fibre: a) raw measurement and
b) processed data with the background removed.
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Figure 2.12: Brillouin frequency measured along a 200m fibre

2.3.2 Measurement

By tuning the clock (and, therefore, the bit duration) of the PRBS generator, 300 positions
were addressed along the sensing fibre; for each, the Brillouin gain spectrum (BGS) was
measured. e result of this measurements can be seen on figure 2.11a. Due to the pres-
ence of random-gratings, to the phase shi not being perfectly equal to π, and to other
spurious effects, the measurement contains a strong background signal and no details
can be discerned. However, the shape of this background is given by the noise integrated
over the whole fibre length and therefore it is the same for all themeasurements. is way,
the measurements during which the correlation peak is positioned outside of the sensing
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Figure 2.13: Brillouin gain spectrum measurement for a 10mm long hotspot positioned at the
end of a 200m long fibre and the extracted Brillouin frequency shi (white dots)

fibre can be used as a reference to normalise other measurements, leaving only the gain
at a given point. e results of this normalisation are shown on figure 2.11b. Aer the
normalisation the Brillouin frequency shi was determined at each position using a stan-
dard fitting algorithm with the results shown on figure 2.12. It can be seen that the fibre
consists of two sections with Brillouin frequencies of 10.872GHz and 10.855GHz.

2.3.3 Spatial resolution

e spatial resolution that would normally be expected for the bit duration of 90 ps is
equal to 9mm – the FWHM of a triangular correlation peak. However, as it was shown
in section 2.2.3 not only the shape of the correlation peak deviates significantly for a per-
fect triangle, but also the spatial resolution of the systemdepends on the sampling interval.
In order to verify the theoretical model, a 10mm long hotspot was placed at the end of the
sensing fibre (where the SNR reaches theminimum value) and the BGS wasmeasured for
the positions around it. Figure 2.13 shows that the hotspot is clearly resolved with observ-
able shi of the Brillouin frequency from 10.852GHz to 10.888GHz, which corresponds
to a temperature change of 33 °C. e detection of a 1 cm hotspot at a 200m distance
means that the system is capable of resolving more than 20 000 separate points.

e gain along a 10mm long hotspotwas predicted using the theoreticalmodel for the
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Figure 2.14: Measured (solid line) and theoretically predicted (dashed line) Brillouin gain along
the hotspot for the Brillouin frequency of the unheated fibre (10.852GHz).

spatial resolution presented in section 2.2. e results of this modelling are shown on fig-
ure 2.14 (dashed line) along with the actually measured gain (solid line) at the frequency
shi of 10.852GHz which corresponds to the Brillouin frequency shi of the unheated
section of the fibre. It can be seen that the theoretically predicted drop of the Brilloiun
gain is the same as measured (within the noise range of the system). However, the mea-
sured “dip” in the gain is twice broader than the predicted one (26mm versus 12mm).
is can be explained by the transfer of the heat along the fibre which can be seen on
figure 2.13 – the transition from the hotspot’s Brillouin frequency to the frequency of un-
heated fibre is not instantaneous and follows the exponentially decaying behaviour. is
heat transfer effectively increases the size of the hotspot, making impossible the direct
application of the theoretical model.

2.3.4 Spectral filtering of phase-modulated signal

A set of problems that limit the performance of the system comes from the spectral broad-
ening caused by the high-frequency phase modulation. In the experiment the PRBS bit
rate was higher than the Brillouin frequency shi (11GHz vs 10.86GHz) meaning that
the Rayleigh scattering from the pump wave strongly overlaps with the signal wave (see
simulated spectra on figure 2.15), making it impossible to separate the two without intro-
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Figure 2.15: Overlapping spectra of phase-modulated pump (grey) and signal (black)

ducing any distortion. Moreover, in order to select a single signal side-band (and filter
out the Rayleigh scattering from the pump) an FBG has to be used. However, an FBG is a
highly dispersive element that can significantly change the phase distribution within the
light spectrum. For the phase-modulated light it leads to a phase-to-intensity conversion.

Figure 2.16 shows themeasurement of the dispersion-induced phase-to-intensity con-
version for the signal reflected on the FBG used in the experiment. It can be seen that the
amplitude of the oscillations exceeds 5% of the average intensity while the thermal noise
of the photodetector is one order of magnitude lower. Moreover, these oscillations are
periodic with the period given by the period of the PRBS. is can potentially lead to a
stroboscopic effect during the lock-in detection.

2.4 Discussion
Phase-correlation technique showed a capability of resolving more than 20 000 separate
points. A further improvement is limited by the noise and the background signal accu-
mulated over the whole fibre length. For the sensing length of 200m this background
accounts for 99% of the whole response. To some extent this problem can be solved by
replacing the PRBSwith theGolomb codewhichwas shown to suppress the acoustic wave
generation outside of correlation peaks [52, 53]. But for a significant improvement the
noise of the system has to be made independent from the measurement distance.
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Figure 2.16: Effect of phase to intensity conversion aer filtering the signal wave on a FBG
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Chapter 3

Time-gated phase-correlation
technique

e phase-correlation technique using continuous waves works well over short distances;
but as the fibre length increases, the noise from the randomly generated gratings andmod-
ulation imperfections increases as well. As it was observed, the randomly-generated weak
gratings and the imperfections in the phasemodulation are capable of producing a strong
background signal. In fact, in the experiment with a 200m long sensing fibre, shown in
the previous chapter, only 1% of the detected signal corresponds to the useful gain. Even
though the strong background signal can be subtracted from all the measurements, it’s
presence can significantly reduce the SNR of the measurement. is effect scales linearly
with the fibre length and effectively limits the system to a maximum of 100 000 points [4],
e.g. 1 km sensing range with 10mm spatial resolution. Additionally, only one correlation
peak is allowed within the fibre leading to a single point being measured at a time. Both
of these limitations can be overcome by gating the continuous pump wave intensity with
an pulse and detecting the signal wave in time domain.

3.1 Time gating

A simple explanation of this technique is shown on figure 3.1. A phase modulated pump
pulse and a continuous signal wave counterpropagate inside the fibre. Since the PRBS is
periodic, the phase pattern in the pump pulse is present multiple times in the signal wave,
leading to multiple correlation peaks being positioned inside the fibre (figure 3.1ab). e
pump-signal interaction is limited to the position of the pump pulse; when the pump
pulse overlaps with the position of a correlation peak, the acoustic wave starts to grow
and the signal wave gets amplified. As in the case of the continuous pump, randomly-
generated weak gratings appear outside of the correlation peaks; but the noise accumu-
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Figure 3.1: Combining phase modulation with time-gating of the pump wave: a) phase-
modulated pulsed pump and continuous signal; b) multiple correlation peaks gener-
ated along the fibre; c) Time-domain response from each correlation peak.

lated from them is limited by the pump pulse duration and, therefore, is independent of
the sensing fibre length. For a pump pulse shorter than the PRBS period, the responses
of the multiple correlation peaks along the fibre can be detected simultaneously within a
single temporal trace (figure 3.1c).

In purely time-domain high resolution sensors (DPP, etc.) the detection bandwidth
is given by the spatial resolution. For example, to achieve 1 cm spatial resolution a band-
width of 10GHz is needed. At the same time, for the time-gated phase-correlation sensor
the bandwidth is given by the duration of the pump pulse that can be on the scale of
tens of nanoseconds. erefore, a bandwidth below 100MHz can be used, significantly
reducing the noise in the detection system.

3.1.1 Experimental setup

e experimental setup that combines phase correlation with time-domain acquisition is
shown on figure 3.2. As before, the output of a distributed feedback laser diode is directed
into a phase-modulator driven by a pseudo-random bit sequence applying a phase shi of
either 0 or π. Two PRBS durations were used in the experiment: 32 767 bits (215 −1) and
1023 bits (210 − 1) which will be further referred to as long and short respectively. A bit
duration of 140 ps was used, corresponding to a 14mm FWHM of the correlation peak.

Aer the phase modulation the light is split by a coupler. e lower branch is used to
create the pump pulses; first, the light passes through an electro-optical modulator and
is modulated by a microwave signal, generating two spectral side-bands. One of the side-
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Figure 3.2: Experimental setup. EDFA: erbium-doped fibre amplifier; FBG: fibre Bragg grating;
PRBS: pseudo-random binary sequence; SOA: semiconductor optical amplifier.

bands is selected on a fibre Bragg grating connected via an optical circulator. Aer that,
the pulses are generated in a semiconductor optical amplifier that ensures the extinction
ratio of more than 50 dB. An erbium-doped fibre amplifier (EDFA) is used to boost the
pulse amplitude to achieve the best sensor response while avoiding the nonlinear effects.

e top branch on figure 3.2 is used to create the signal wave. e phase-modulated
signal wave passes through a polarisation switch used, as before, to address both of the
polarisation states to mitigate the polarisation dependence of the Brillouin interaction. A
50 km-long delay fibre is used to allocate the higher order correlation peaks inside the
sensing fibre. Further, the signal is amplified by an EDFA to compensate for the losses
inside the delay fibre and is launched into the sensing fibre.

e pump and the signal are counterpropagating in a 17.5 km-long sensing fibre (a
standard single-mode fibre); aer they interact the signal is sent into the detection part of
the setup. At the detection the signal is directed onto a 125MHz photodetector followed
by a 15MHz low-pass filter to reduce the electrical noise. e detected time trace is im-
mediately processed, saving the data corresponding to the gain on the correlation peaks
and discarding the rest.

In order to minimise the impact of the phase-to-intensity conversion noise men-
tioned in section 2.3.4, the side-band generation and the spectral filtering were done in
the pump branch. is change has two effects: the noise is naturally integrated within
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Figure 3.3: Gain along the fibre for a) long and b) short PRBS

the pump pulse; and, more importantly, only the low-frequency noise is transferred to
the signal wave [54, 55]. is change reduced the measurement time by 10 times due to
a smaller number of averages required in the detection system. e only effect that this
new implementation has is related to the Rayleigh scattering generated by the pump that
reaches the photo-detector. Although the relative contribution of the Rayleigh backscat-
tered signal can be reduced in relation to the correlation peaks response by optimising the
probe power, there will be always a small Rayleigh component present in the measured
traces. However, the spectral response of the Rayleigh scattering is naturally flat; there-
fore, this component has no real impact on the spectral measurements of the Brillouin
gain, and can be easily eliminated by a simple data processing.

3.1.2 Time-domain traces

Figure 3.3 shows measured Brillouin gain acquired at the peak Brillouin gain frequency
along the sensing fibre, for long (figure 3.3a) and short PRBS (figure 3.3b), using a pump
pulse of 70 ns. Note that the correlation peak amplitudes vary slightly along the fibre be-
cause of the variations of the Brillouin frequency. For the long PRBS, correlation peaks are
considerably separated (by 460m) and a relatively strong background signal is observed.
is background signal is caused by the spectral properties of the phase-modulated light
and will be explained later. For the short PRBS, the separation between correlation peaks
becomes small (14m), and the background signal almost disappears.

is background signal originates from the non-zero linewidth of the Brillouin gain
spectrum. e spectra of the two phase-modulated waves consist of multiple lines, sep-
arated spectrally by the PRBS repetition rate. Figure 3.4 shows the spectrum measured
for the light modulated with a 127 bit long PRBS. A zoom-in shown on figure 3.4 shows
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Figure 3.5: Cross-interaction between multiple spectral lines of phase-modulated pump and sig-
nal waves for a) long and b) short PRBS (the line separation is not to scale)

spectral lines with separation of 7GHz/127 = 55MHz. For the long and short PRBS
used in the experiment the line separation is equal to 215 kHz and 6.8MHz, respectively,
which is beyond the resolution of the available optical spectrum analyser.

Due to a small line separation and the 30MHz width of the Brillouin gain, each spec-
tral line in the pump wave can interact with more than one hundred lines in the probe for
the long PRBS case, whilst for the short PRBS, this number goes down to only five (see
figure 3.5). is explains the strong difference in the background level for two time traces
in figure 3.3. Te origin of this behaviour is the presence of slowly varying components in
the modulation signal – slow enough for the acoustic wave to follow them.
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3.2 Optimal pump pulse duration
One of the parameters of the system that needs to be optimised to achieve the best per-
formance is the duration of the pump pulse. e pulse duration has actually multiple
distinct effects on the measured traces. For pulses shorter than ∼30 ns, the acoustic wave
at each correlation peak does not have enough time to reach the steady state amplitude,
leading to a poor sensor response. In addition, short pulses require large detection band-
width, which increases the noise of the measurements. On the other hand, longer pulses
introduce more noise accumulated from randomly-generated gratings, weak permanent
gratings coming from the non-instantaneous phase change, and other spurious effects,
thus also leading to a decrease in SNR. e pump pulse duration also defines the min-
imum separation between consecutive correlation peaks so that their responses do not
overlap. An optimum pulse width has to be found to minimise the measurement time.

3.2.1 Pump pulse duration and the system’s response

In order to find the time evolution of the acoustic wave amplitude in the correlation peak,
equation (1.28) for the acoustic wave amplitude has to be solved:

∂Q(z, t)
∂t

+ ΓAQ(z, t) = jg1Ap(z, t)A∗s (z, t) . (3.1)

At the centre of the correlation peak the phases of the pump and the signal are perfectly
correlated, meaning that the term Ap(z = 0, t)A∗s (z = 0, t) does not change in time1. It
means that equation (3.1) can be simplified and solved to find the evolution of the acoustic
wave in time (setting the z-axis origin in the centre of the correlation peak and assuming
that the interaction between the optical waves starts at t = 0):

Q(z = 0, t) = jg1ApA
∗
s

t

∫
0

exp (−(t − t′)ΓA))dt′

=
jg1ApA

∗
s

ΓA

(1 − exp (−tΓA)) .

(3.2)

is equation gives the temporal response of the acousticwave at themaximumamplitude
of the correlation peak, while at other positions the interaction is weaker accordingly to
the shape of the correlation peak as it was discussed in section 2.2.1.

e evolution of the amplitude of the signal wave is given by equation (1.38):

∂As(z, t)
∂z

− 1

vg

∂As(z, t)
∂t

= −1
2
jg2Ap(z, t)Q∗(z, t) , (3.3)

1Since the gain is very low we can apply the small gain approximation and consider amplitudes of the
pump and the signal to be constant when calculating the amplitude of the acoustic wave
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where vg is the group velocity and g2 is elasto-optic coupling coefficient. Let’s define the
effective size deff of the correlation peak through the asymptotic shape of the correlation
peak:

deff =
1

Q(z = 0, t = +∞)

+∞

∫
−∞

Q(z, t = +∞)dz , (3.4)

which allows us to replace an arbitrarily shaped correlation peak with a rectangular one
with the width of deff and amplitude Q(z = 0, t) from equation (3.2). Since the bit dura-
tion is much shorter than the acoustic phonon lifetime, we can consider the hotspot as a
point source of gain, solving equation (3.3) at each point of time in a quasi-steady-state
condition:

∂As(z, t)
∂z

= −1
2
jg2Ap(z, t)Q∗(z, t) , (3.5)

∆As = −
1

2
jg2ApQ(z = 0, t)deff , (3.6)

∆As =
g1g2∣Ap∣2As

2ΓA

(1 − exp (−ΓAt)) . (3.7)

Here∆As represents the sensor response at the correlation peak. Since the measurement
is performed by a photodetector, the following signal intensity is detected:

Is = ∣As +∆As∣2 = A2
s + 2As∆As +∆A2

s . (3.8)

e third term is actually very small and can be safely neglected, giving the final equation
for the useful signal of the system:

∆Is(t) =
g1g2IsIpdeff

ΓA

(1 − exp (−ΓAt))

= gcpIs (1 − exp (−ΓAt)) ,
(3.9)

where Is, Ip are intensities of the signal and the pump wave and gcp = g1g2Ipdeff/ΓA

is the asymptotic gain on the correlation peak. is signal grows while the pump pulse
overlaps with the correlation peak and sharply goes to zero aer it has passed.

For the measurement bandwidth adjusted to the inverted pump pulse width tPW, the
measured signal can be considered to be given by the time average of equation (3.9), as:

∆Is,msr =
gcpIs

tPW

tPW

∫
0

(1 − exp (−tΓA))dt

= gcpIs (1 −
1 − exp (−ΓAtPW)

ΓAtPW
) .

(3.10)
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Figure 3.6: Time-domain response for pump pulse durations of 30, 60, 100, 200, 400, and 600 ns.

Knowing the gain gcp provided by the correlation peak and the standard deviation σN of
the measurement noise, equation (3.10) can be used to predict the signal-to-noise ratio
(SNR) of the system, as:

SNR =
∆Is,msr

σN
. (3.11)

3.2.2 Experimental verification

In order to determine the optimal pump pulse duration, the signal-to-noise ratio of the
measurements and the acquisition time have been evaluated for the pump pulse widths
ranging from 30 ns up to 200 ns, for the long PRBS.en the procedure has been repeated
for the short PRBS, but in this case a maximum pulse duration of 130 ns has been used
to avoid significant overlapping of the responses of consecutive correlation peaks. In this
experiment the electrical low-pass filter in the receiver has been removed to avoid signal
distortion for short pulse durations. e measured noise for all the traces was found to
be given by the thermal noise of the photodetector, meaning that the noise from the ran-
dom and weak gratings is negligible for these pump pulse durations. e measured time
response of one correlation peak is shown on figure 3.6. It can be seen that initially the
time response grows in amplitude, but eventually it reaches the steady state and aer that
simply gets longer. Also note the background signal that was mentioned in section 3.1.2,
it can be seen that it grows rapidly and distorts the measurement.
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Figure 3.7: a) Signal-to-noise ratio and b) measurement time dependence on the pump pulse du-
ration for short (squares) and long (circles) PRBS; dashed line shows theoretically pre-
dicted SNR.

Time traces were filtered digitally to match the bandwidth to the inverse of the pump
pulse duration and the SNRwasmeasured for each trace. Figure 3.7a shows results of this
measurement for both analysed cases as a function of the pulse duration; the theoretical
SNR predicted using the measured noise and equations (3.10) and (3.11) is shown as
well. Measurements are normalised to the SNR obtained with the pulse duration of 70 ns,
which was later used in the experiment. It should bementioned, though, that the absolute
SNR for the long PRBS is slightly lower due to the higher background component that
introduces some noise into the signal. As it was shown before, the SNR grows with the
pulse duration since i) the acoustic wave has more time to grow and, ii) longer pulses
require smaller detection bandwidth. e theoretical SNR shows a good agreement with
the measurements for the pump pulse duration below 90 ns (see figure 3.7a). Aer 90 ns
themeasured SNR reaches a plateau, for the short PRBS it is caused by the overlap between
responses of two consecutive peaks, while for the long PRBS this is caused by distortions
originating from the increased background signal.

e SNR and the pump pulse duration define the measurement time since they give
the required number of averages and the number of positions scanned, respectively. Fig-
ure 3.7b how the expected measurement time depends on the pump pulse duration. Am-
plitudes in both curves have been normalised to the case of 70 ns pulse duration for a bet-
ter comparison with our final experiment. e actual measurement time with the short
PRBS is 32 times smaller than the one for long PRBS due to the larger number of simulta-
neously addressed correlation peaks. Figure 3.7b shows that the minimum measurement
time is obtained for pulses ranging between 60 ns and 90 ns, which also corresponds to
the range showing the maximum SNR in figure 3.7a.
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Figure 3.8: a) Measured Brillouin frequency distribution along a 17.5 km long fibre and b) respec-
tive frequency uncertainty

3.3 Experiment

3.3.1 Measurement along a 17.5 km long fibre

Based on the previous pulse optimisation of the pump pulse duration, the pulse width
of 70 ns and the short PRBS of 210 − 1 bits (1023 bits) have been used in our experiment
to maximise the number of correlation peaks in the temporal traces and minimise the
measurement time. Moreover, pulses of 70 ns ensure the absence of temporal overlapping
between responses of consecutive correlation peaks. At the same time, the reached SNR
for this pulse duration corresponds to about 90%of themaximumSNR (reached at 90 ns),
representing a negligible penalty (less than 0.5 dB) with respect to the optimal SNR level.

A PRBS duration of 1023 bits with bit duration of 140 ps gives a correlation peak sep-
aration of 14.3m, allowing for a simultaneous measurement of about 1200 points along
the 17.5 km-long fibre in a single temporal trace. eBrillouin gain has beenmeasured us-
ing 512 times averaged temporal traces, while the Brillouin frequency has been retrieved
by fitting the spectrum at each position with a quadratic curve [56]. Results of this fitting
are shown in figure 3.8a. It can be seen that the Brillouin frequency shi is successfully
measured along the whole fibre. Note that the strong variation of measured Brillouin fre-
quency shi is beyond system’s uncertainty (as it will be shown in the next paragraph)
and is due to the actual variation of the Brillouin frequency shi along the fibre.

In order to estimate the uncertainty of the measurement, the standard deviation of
the retrieved Brillouin frequency has been evaluated along the whole fibre by repeating
the measurements multiple times. Figure 3.8b depicts the uncertainty of the estimated
Brillouin frequency as a function of distance, showing an expected exponential growth
along the fibre, which reaches the average value of 1.8MHz at the farthest fibre end.
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Figure 3.9: a) e shape of the correlation peak for 140 ps bit duration; b) Weak gratings caused
by imperfect phase modulation

3.3.2 Spatial resolution

e modelling of the correlation peak shape and the spatial resolution presented in sec-
tion 2.2 was repeated for the bit duration of 140 ps. e predicted shape of the correlation
peak and the weak gratings generated outside of it are shown on figure 3.9. Comparing
these results with the ones obtained for the bit duration of 90 ps (figure 2.5) we can see that
the correlation peak shape is closer to the perfect case and the weak gratings’ amplitude
is reduced significantly (reflectivity of 3.5% of the correlation peak’s vs. 15%).

e resulting relation between the sampling interval and the spatial resolution is
shown on figure 3.10. It can be seen that the best spatial resolution reaches 8.2mm for the
perfect rectangular modulation and 7.7mm for the noninstantaneous phase transition.2
Also, generally, the curve for the imperfect modulation is closer to the one correspond-
ing for the perfectly rectangular modulation than it was for the bit duration of 90 ps (fig-
ure 2.9). It can be easily explained – for a fixed transition time a lower-frequency phase
modulation is closer to a perfectly rectangular one.

In order to check the spatial resolution of the implemented system a hotspot of 14mm
was placed at the farthest end of the sensing fibre (i.e. at 17.5 km distance). e Brillouin
gain spectrum (BGS) was measured around the hotspot position and the Brillouin fre-
quency was extracted for each fibre position, as shown in figure 3.11. e sampling inter-
val within the hotspot has been set to 2.8mm, which, according to the results presented
on figure 3.10 gives an expected spatial resolution of 8mm. e hotspot is clearly resolved
with an observable heat transfer along the fibre. emeasured Brillouin frequency profile

2Once again, the spatial resolution is better for the imperfect modulation, but in this case it is even more
pronounced.

45



. T- - 

0 5 10 15 20
0

5

10

15

20

Spatial resolution, mm

Sa
m

pl
e 

si
ze

, m
m

Figure 3.10: Minimum sampling interval required to obtain a given spatial resolution for the per-
fect square modulation (dashed red line) and the non-instantaneous phase modula-
tion (solid blue line). e dash-dotted black line represents the asymptotic case of
sampling interval being equal to the spatial resolution.

suggests that the spatial resolution is indeed better than 14mm; however, it is difficult to
make a definitive claim in this case due to the observed longitudinal heat transfer along
the fibre.

For the verification of the spatial resolution, a sharp transition in the Brillouin fre-
quency would bemore appropriate. e strain-induced change in the Brillouin frequency
is a promising source of such transition; for example, inside a standard optical connector.
To fabricate fibre connectors (such as standard FC-PC or FC-APC connectors), the opti-
cal fibre is glued inside a ceramic ferrule which applies a strain to the fibre, resulting in a
sharp shi of the Brillouin frequency. e Brillouin gain spectrum was measured inside
the APC connectors at both ends of the sensing fibre (marked with red dots on figure 3.2).

e first measurement was carried out for connector 1, linking the farthest end of the
sensing fibre and the attached isolator. At this point the system shows the lowest SNR,
resulting in the most challenging condition to verify the high spatial resolution of the sys-
tem. Figure 3.12a shows themeasuredBrillouin gain spectrumand the retrievedBrillouin
frequency (white circles) at each fibre position. It can be seen that the 16mm-long section
under strain is clearly resolved with sharp transitions at both sides, demonstrating that
the system is capable of resolving even shorter perturbations in Brillouin frequency shi.
Figure 3.12b shows the gain response of the sensor at 10.86GHz – the average Brillouin
frequency shi outside the connectors. e drop of the Brillouin gain, as a consequence
of the strain inside the connectors, is clearly observed. In addition, the sensor response
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Figure 3.11: Brillouin gain spectrum measured in the vicinity of a 14mm long hotspot positioned
at the end of the 17.5 km long fibre. White circles show the extracted Brillouin fre-
quency shi.

has been theoretically estimated based on the model presented in section 2.2.2. is re-
sponse is also illustrated in the figure (red dashed line), showing a good agreement with
the experimental trace and validating the theoretical model.

e measurement was repeated for connector 2 linking the beginning of the sens-
ing fibre and the circulator. At this position the SNR of the measurements shows the
maximum value, so that it was possible to perform the measurement with the shortest
available bit duration of 80 ps. e modelling was repeated, predicting a spatial reso-
lution of 4.5mm for the sampling interval of 2mm. Figure 3.12c shows the measured
Brillouin spectrum and the retrieved BFS, while figure 3.12d compares the experimental
and theoretically-predicted gain response versus fibre location at the average peak gain
frequency of 10.87GHz. Once again, a good agreement is observed.

e agreement between the theory and the experiment in both measurements vali-
dates the theoretical model and the approach presented in section 2.2 for the spatial res-
olution of a phase-correlation Brillouin sensor. It means that the spatial resolution ob-
tained with a sampling interval of 4.7mm and bit duration of 140 ps is equal to 8.3mm,
as shown on figure 3.10. us, the system is capable of resolving 2 100 000 points along
the whole sensing fibre.

3.3.3 Brillouin scattering in tapered fibres

e high spatial resolution of phase-correlation Brillouin sensors can be used to measure
Brillouin gain in small devices, e.g. tapered fibres. A tapered fibre is produced by gently
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Figure 3.12: (a) Brillouin gain spectrum and extracted Brillouin frequency (white dots) inside the
connector 1 at the farthest end of the 17.5 km-long fibre using 140 ps bit duration;
(b) gain for the average Brillouin frequency of the fibre: measured (blue line) and
theoretically predicted (dashed red line); (c) and (d) the same information for the
measurement of connector 2 at the beginning of the fibre with the bit duration of
80 ps.

stretching an optical fibre while it is heated, e.g. over a flame, such that the glass becomes
so. is proceduremakes the fibre thinner over some length; normally, on a scale of sev-
eral millimetres or centimetres. Tapered fibres have a large number of optical properties
thatmake them attractive for both fundamental physics and photonic technologies. In ad-
dition to providing strong light confinement and enhanced nonlinear optical effects [57,
58], they also exhibit a large evanescent field, enabling applications not currently possible
with conventional optical fibres.

As the diameter of a fibre changes along the tapered region, so does the acousticmode
configuration; at small diameters surface acoustic modes appear which can significantly
increase Brillouin scattering efficiency. is effect was modelled [59] but not experimen-
tally studied. We decided to apply the phase-correlation sensing technique to measure
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Figure 3.13: a) Silica tapered fibre structure; b) Brillouin gainmeasurement along the taper. White
dots correspond to the fitting of Brillouin frequency shi for two modes.

Brillouin gain spectrum along two tapered fibre samples.
e first sample was manufactured from a standard single mode fibre, with the ta-

pered region length of 25mm and the diameter of 3.5 μm as shown on figure 3.13a. e
measured Brillouin gain spectrum is shown on figure 3.13b along with the extracted Bril-
louin frequency shi. As the diameter of the fibre decreases Brillouin gain spectrum splits
into two peaks: one close to 11.1GHz – Brillouin frequency of untapered fibre. e other
Brillouin gain peak starts 11.07GHz and quickly shis to 10.85GHz as diameter of the
fibre decreases. Inside the waist region Brillouin gain for the second peak is three times
larger than for the first which can be attributed to a better overlap between optical waves
and the acoustic wave mode responsible for this peak.

In the second experiment a chalcogenide (As2Se3) sample was used. is sample had
a 13 cm long tapered region with a diameter of 1.65 μm. Figure 3.14 shows the measured
Brillouin gain spectrum and the extracted Brillouin frequency shi, which is lower for
chalcogenide fibres. No fine structure was observed in this measurement, except for a
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Figure 3.14: Brillouin gain measurement along the chalcogenide taper. White dots correspond to
the fitting of Brillouin frequency shi.

minor variation of Brillouin frequency shi.
A more interesting picture appears when Brillouin gain spectrum is observed sepa-

rately for two polarisation states of the signal wave, as seen on figure 3.15. It can be seen
that for each polarisation Brillouin gain goes from the maximum value to the minimum
and back again. is behaviour is caused by the birefringence that rotates polarisations of
the pump and the signal making them either co-aligned (maximum gain) or orthogonal
(no gain). e observed beat length of 4 cm corresponds to a birefringence of approxi-
mately 3.9 × 10−5. It means that the tapered region may have a slightly elliptical shape
that is preserved along the whole waist region.

A detailed analysis of this data is outside of the scope of this work, but it clearly shows
that the phase-correlated sensing technique allows for a detailed measurement of Bril-
louin gain spectrum in compact devices, showing how fine structure affects Brillouin fre-
quency shi, and revealing the birefringence.

3.4 Discussion

As it was shown in this chapter, time gating significantly improves the performance of
a phase-correlated sensor, increasing the number of points by two orders of magnitude
(2 000 000 versus 20 000 points). For the first time in the history of distributed Brillouin
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Figure 3.15: Brillouin gain measurement along the chalcogenide taper measured separately for
two polarisation of signal wave. Oscillations between maxima and minima of gain
are a sign of birefringence.

sensing, measurements with centimetre scale resolution are demonstrated at a distance
of tens of kilometres.

e theoretical model introduced in the previous chapter is expanded to calculate the
signal-to-noise ratio depending on the duration of the pump pulse. Once again, a good
agreement is observed between the modelling and the experimental results, proving that
the spatial resolution of the system is better than the full width at half maximum of the
correlation peak.

Measurements of theBrillouin gain spectrumalong taperedfibres show that the phase-
correlation technique can be a powerful tool in studying such optical elements. It can
show how the modal configuration (optical and acoustic) depends on the geometrical
structure and reveal its irregularities.
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Chapter 4

Addressing the limits

Time gating allowed increasing the number of points resolved by a phase-correlated sen-
sor by two orders of magnitude. However, as any other technique, this one has its own
limitations. Combining high spatial resolution with long measurement distance brings
together limiting factors of both domains: fibre losses, nonlinear effects, long measure-
ment time due to a point-by-point measurement. is chapter addresses the limitations
and proposes solutions that can be used to minimise their effect or overcome them com-
pletely.

4.1 Power limitations

emeasured Brillouin gain is proportional to the power of the pumpwave, whichmakes
raising the power the most straight-forward way of increasing the signal-to-noise ratio.
However, nonlinear effects set a limit to pumppower, especially for long sensing distances.
For standard single mode fibres (SMF) this limit is given by the modulation instability
(MI), which, for fibres longer than 15 km limits the peak power of the pump wave to
some 100mW [46]. Modulation instability occurs only in systems exhibiting anomalous
dispersion, which is the case for the SMF at the commonly used wavelengths. Specifically
designed dispersion-shied fibres (DSF) exhibit normal dispersion making modulation
instability impossible. Using such fibres it is possible to extend the limit for the pump
power to about 400mW [46] at which the stimulated Raman scattering starts to occur.

However, using DSF in phase-correlated setups proves to be impossible due to the
spectral characteristics of the interacting waves. As it was shown in the previous chapter
the spectrum of a light wavemodulated with a PRBS consists of multiple equidistant lines
with the separation equal to the period of the PRBS 1/NbitsTbit (see figure 3.4). Optical
waves with such spectrum are very prone to another nonlinear effect called four-wave
mixing (FWM),which in this case leads to an energy transfer between the spectral compo-
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Figure 4.1: Spectral distortion of phase-modulated signal due to a combination of four-wave mix-
ing and self-phase modulation.

nents. In DSF this effect is especially pronounced due to the zero dispersion wavelength
being close to the interacting waves. It makes application of DSF in phase-correlation
sensors impossible. Figure 4.1 shows how nonlinear effects distort the spectrum of phase-
modulated light.

Pulse coding has been proved to be an efficient technique to overcome limitations
of the pump power. In this method a single pump pulse is replaced by a set of pulses
with the same peak power. Responses of each pulse sum up together creating a trace with
a bigger response, which though cannot be used directly. e measurement has to be
repeated with several configurations of pulses producing, aer post-processing, a final
measurement with an improved signal-to-noise ratio.

All the pulse-coding techniques used in classic time-domain sensors [16, 17, 19] can
be directly applied to the time-gated phase-correlation technique. Moreover, London et
al. [60] showed due to specifics of the correlation-based technique, other coding schemes
can be applied.

4.2 Number of points and measurement time
e number of points that a sensor is capable of resolving is given by the quotient of
the measurement distance and the spatial resolution. us, it can be increased by both
improving the spatial resolution and extending the sensing distance. However, it can be
shown that the measurement time increases highly nonlinearly for both ways.
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Figure 4.2: System’s reaction to a twofold change in the spatial resolution: a) correlation peak
size is halved; b) signal intensity change drops twice; c) number of correlation peak
positions doubles.

4.2.1 Spatial resolution improvement

Let’s see how themeasurement time changes when the spatial resolution changes twofold,
e.g. from 2 cm to 1 cm. First, as it can be seen from figure 4.2ab the size of the correlation
peak decreases twice leading to a twofold drop in the measured change in the signal wave
intensity (see equation (3.9)). In order to compensate the following change in the SNR,
the number of averages has to be increased four times. Additionally, the number of corre-
lation peak positions that have to be scanned to address the whole fibre increases twofold
as seen on figure 4.2c, leading to an additional increase in the measurement time.

Overall it leads to a cubic dependence of the measurement time on the spatial resolu-
tion, e.g. for a given distance a sensor capable of resolving 1 000 000 points would be 1000
times slower than a sensor with just 100 000 points.

ere is also a direct limitation for the spatial resolution given by the spectral shape of
the phase-modulated light (already discussed in section 2.3.4). e spectral width of the
modulated waves is given by the bit rate of the PRBS which defines the spatial resolution.
A higher spatial resolution requires a faster phase modulation, which makes spectra of
interacting waves overlap heavily, introducing a strong noise during the filtering process.
It means that while achieving a higher spatial resolution is possible (e.g. using amplified
stimulated emission of an EDFA as a light source [61]) it will certainly lead to a decrease
in the SNR and, therefore, in measurement distance.
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Figure 4.3: Measurement time change for a twofold increase in the sensing distance.

4.2.2 Distance improvement

Derivation of the measurement time impact to a twofold increase in the sensing distance
is not as straightforward. First, the time of flight through the fibre linearly depends on its
length; thus, the time needed to acquire a single time trace will grow twice. e change
in the signal wave intensity will drop down for two reasons: first, the losses in the fibre
scale exponentially with the distance; second, the limit for the pump power depends on
the nonlinear effects which makes it inversely proportional to the effective length of the
fibre Leff = (1 − exp(−αL))/α, where α is the loss coefficient with the typical value
of 0.05 km−1 in SMF for the wavelength of 1.5 μm. e required number of averages for
each acquired time trace is inversely proportional to the square of the signal-to-noise ratio,
that depends linearly on the pump power. Overall it gives the following dependence of
the measurement time on the sensing distance:

tmsr ∝
(1 − e−αL)2

e−2αL
L (4.1)

where the numerator of the fraction corresponds to the decrease in pump power due to
the nonlinearity limit, the denominator corresponds to the increasing loss (a factor 2 is
due to the back-and-forth propagation), andmultiplierL is the linear increase of the time
of flight. Figure 4.3 shows how much the measurement time increases when the sensing
length is doubled, depending on the original fibre length. It can be seen that it starts
with 8 – the same as for the twofold improvement of the spatial resolution – but it quickly
grows up, reaching more than 25 for a 20 km long fibre.
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us, improving the spatial resolution is always preferable to an equivalent improve-
ment in the sensing distance. Yet, as it was mentioned before, the spatial resolution can-
not be improved indefinitely due to the spectral reasons. Once the limit is reached, the
only way to further increase the number of points would be extending the measurement
distance.

One way to do that is to directly compensate fibre losses by a distributed amplification
of the pump and the signal waves. Using Raman amplificationmeasurement distances up
to 100 km were achieved [11–14]. Since the spectrum of Raman amplification is much
broader than spectra of phase-modulated pump and signal it should not introduce any
distortion and, thus, can be directly applied in phase-correlation sensing.

4.2.3 Finding an optimal bit duration

In fact, themeasurement time can vary even for a fixed number of points. As it was shown
in section 2.2 the same spatial resolution can be achieved with multiple combinations of
bit duration and sampling interval. Even though these combinations provide the same
spatial resolution, the performance of the system (and, thus, the measurement time) are
not the same. As it was shown in section 3.3.2 the imperfection of the phase modulation
does not have a significant effect for a bit duration of 140 ps. us, it is possible to use the
analytical expressions obtained for the perfectly rectangular modulation in order to find
the values that give the shortest measurement time.

e measurement time tmsr is inversely proportional to the sampling interval, since a
shorter sampling interval leads to more points being simultaneously addressed along the
fibre. It is also inversely proportional to the square of the bit duration – the change in the
signal intensity is linearly proportional to the bit duration, thus the required number of
averages is reduced quadratically. Overall tmsr ∝ 1/sd2; in order to find its minimum we
rewrite the denominator using equation (2.24) for the sampling interval:

sd2 = d2
√
−2d2 + 4dδ − δ2 . (4.2)

Now we need to take its derivative in order to find the maximum position:

(sd2)′ = 2d
√
−2d2 + 4dδ − δ2 + d2

2
√
−2d2 + 4dδ − δ2

(−4d + 4δ), (4.3)

d = (5 ±
√
13)

6
δ . (4.4)

e maximum is achieved for the plus sign, giving d = (5 +
√
13)/6δ ≈ 1.43δ with

the corresponding sampling interval s ≈ 0.79δ. figure 4.4 shows how for a given spatial
resolution the measurement time depends on the correlation peak size. We can see that
for the derived d ≈ 1.43δ the measurement time is 40% shorter than for the straight-
forward solution of d = δ.
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Figure 4.4: Measurement time for a given bit duration for a fixed spatial resolution.

4.3 Temperature-dependent position of correlation peaks

Every distributed fibre sensor uses the speed of light and the refractive index of the fibre1
to determine the physical position of the interaction. For the phase-correlated technique
this dependence is observed in equation (2.12):

zc,m =
c

2neff

(mNbitsTbit + tdelay) +
L

2
. (4.5)

Refractive index defines the separation between correlation peaks and a shi of their posi-
tions due to a relative delay between the pump and the signal waves. As the temperature of
the fibre changes so does the refractive index, affecting the correlation peak positioning.
ermal expansion also affects the propagation time, but it’s effect on the propagation
time is one order of magnitude smaller [62] and for simplicity it will not be considered
in calculations. e change of the refractive index with the temperature is known to be
ξ = 10−5K−1 [62]. For a small number of points this change is too small to affect the
system in a significant way. However, as the number reaches hundreds of thousands of
points, it can affect the longitudinal accuracy of the sensor which to be accounted for.

1Once again, a non-dispersive medium approximation is used, i.e. the group refractive index is consid-
ered to be equal to the phase refractive index.
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4.3. Temperature-dependent position of correlation peaks

4.3.1 Uniform temperature shi

Let’s start with a simple case of a uniform temperature change along the fibre, leading to
a change in the effective refractive index of ∆neff . In this case the equation (4.5) can be
applied directly to find the new position of the correlation peak:

z′c,m =
c

2(neff +∆neff)
(mNbitsTbit + tdelay) +

L

2

≈ c

2neff

(mNbitsTbit + tdelay)(1 −
∆neff

neff

) + L

2
.

(4.6)

e difference between equations (4.5) and (4.6) gives the amount by which the correla-
tion peak position shis due to the temperature change:

∆zc,m = −
∆neff

neff

c

2neff

(mNbitsTbit + tdelay)

= −∆neff

neff

(zc,m −
L

2
) .

(4.7)

e change in the position of the correlation peak is proportional to its initial distance
from the centre of the fibre, thus, affecting the most the measurements at the beginning
and at the end of the fibre.

To check this dependence theBrillouin frequency shiwasmeasured around ahotspot
positioned at the end of a 17.5 km long fibre for three values of the ambient temperature,
results of this measurements are shown on figure 4.5. It can be seen that the measured
position of the correlation peak increases with the temperature, changing by 27 cm when
the temperature grows by 5K which is in a good agreement with equation (4.7):

∆neff

neff

(zc,m −
L

2
) = 5 × 10−5

1.44
(17.5km − 17.5km

2
) = 30 cm . (4.8)

4.3.2 Arbitrary temperature distribution

In order to find how the correlation peak positioning changes for an arbitrary distribution
of refractive index (given by the temperature) we have to rewrite equations (2.7) and (2.8)
for the propagation times of the pump and the signal waves and then use equation (2.11)
to find positions of the correlation peaks. Equations for the propagation times are:

tp(z) =
1

c

z

∫
0

neff(z)dz , (4.9)

ts(z) =
1

c

L

∫
z

neff(z)dz + tdelay . (4.10)
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Figure 4.5: Measured Brillouin frequency shi along the fibre for several ambient temperatures

Combining them together it is possible to write the equation for the position of the cor-
relation peaks:

1

c

zc,m

∫
0

neff(z)dz =
1

c

L

∫
zc,m

neff(z)dz + tdelay +mTbitNbits . (4.11)

During ameasurementmultiple points are acquired, let’s define t = tdelay+mTbitNbits

– the position of a measurement point in time domain, which is known since all the ele-
ments that define it are known. For each point the temperature Tt(t) (that can be con-
verted to a refractive index n̄eff,t(t)) is measured.2 e goal is to find the dependence
z(t) which allows to position all the measured points at correct locations. Let’s define
two limiting time points t0 and tend so that z(t0) = 0 and z(tend) = L. Rewriting equa-
tion (4.11) using newly defined variables we can get a shorter form3

1

c

z(t)

∫
0

neff(x)dx =
1

c

L

∫
z(t)

neff(x)dx + t , (4.12)

z(t)

∫
0

neff(x)dx −
L

∫
z(t)

neff(x)dx = ct . (4.13)

2e subscript t is used to distinguish between the measured distribution in time domain and the dis-
tribution in distance that we want to find.

3Variable x will be used for the longitudinal coordinate under the integral, while z will be used for the
integral range.
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We also rewrite neff(z) as a sum of its average and a small variation ∆neff(z):

neff(z) = n̄eff +∆neff(z) . (4.14)

e average refractive index n̄eff can be found knowing the average of longitudinal tem-
perature distribution T (z), which in first approximation is equal the average of the mea-
sured Tt(t). Similarly we can rewrite z(t) as the sum of the zero order approximation
and a variation:

z(t) = L

2
+ ct

2n̄eff

+∆z(t) . (4.15)

Let’s also note that by the definition of average:

1

L

L

∫
0

neff(z)dz ≡ n̄eff , (4.16)

therefore:
L

∫
0

∆neff(z)dz ≡ 0 . (4.17)

Using this, we can rewrite the le term of equation (4.13):

z(t)

∫
0

neff(x)dx −
L

∫
z(t)

neff(x)dx =
z(t)

∫
0

neff(x)dx −
⎛
⎜
⎝

L

∫
0

neff(x)dx −
z(t)

∫
0

neff(x)dx
⎞
⎟
⎠

= 2
z(t)

∫
0

neff(x)dx − n̄effL ,

(4.18)

and thus rewrite the integral equation (4.13) in an even simpler form

2

z(t)

∫
0

neff(x)dx = ct + n̄effL . (4.19)

By using t0 as the argument for this equation and remembering that z(t0) = 0 we can
obtain a simple equation for n̄eff

n̄eff = −
ct0
L

. (4.20)
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e integral term of this equation can be rewritten in terms of time-domain coordi-
nate:

2

z(t)

∫
0

neff(x)dx = 2
t

∫
t0

n̄eff,t(τ)d(
L

2
+ cτ

2n̄eff

+∆x(τ))

= 2
t

∫
t0

(n̄eff +∆n̄eff,t(τ))(
c

2n̄eff

+∆x′(τ))dτ

≈
t

∫
t0

(c +
∆n̄eff,t(τ)c

n̄eff

+ 2n̄eff∆x′(τ))dτ

= c(t − t0) +
c

n̄eff

t

∫
t0

∆n̄eff,t(τ)dτ + 2n̄eff

t

∫
t0

∆x′(τ)dτ

= c(t − t0) +
c

n̄eff

t

∫
t0

∆n̄eff,t(τ)dτ + 2n̄eff(∆z(t) −∆z(t0)) .

(4.21)

Remembering that n̄L = −ct0 (equation (4.20)) and ∆z(t0) = 0 (since z(t0) is equal to
zero by the definition of t0) let’s return to equation (4.21):

c(t − t0) +
t

∫
t0

∆n̄eff,t(τ)dτ + 2n̄eff∆z(t) = −ct0 + ct , (4.22)

∆z(t) = − c

2n̄2
eff

t

∫
t0

∆n̄eff,t(τ)dτ . (4.23)

Or, in terms of the temperature (as before, ξ = 10−5K−1 is the refractive index change
with the temperature):

∆z(t) = − cξ

2n̄2
eff

t

∫
t0

∆T (τ)dτ . (4.24)

Figure 4.6 shows how this algorithm can be applied. e measured temperature dis-
tribution gets integrated and ∆z(t) is calculated from it. Aer that, this displacement is
added to the zero order approximation (equation (4.15)) leading to the final equation for
the dependence of longitudinal position on the position in time domain:

z(t) = L

2
+ ct

2n̄eff

− cξ

2n̄2
eff

t

∫
t0

∆T (τ)dτ . (4.25)
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4.3. Temperature-dependent position of correlation peaks
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Figure 4.6: Compensation of positioning for the temperature varying along the fibre: a) integrat-
ing themeasured temperature distribution; b) calculating displacement for each point;
c) adding displacement to the zero order approximation of the uniform temperature.

Using this equation it’s possible to correctly determine longitudinal position of measured
data points, accounting for the temperature-dependent refractive index variation.
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4.4 Discussion
Summing things up we can see that while there aremultiple problems standing in the way
of further improving the number of points resolved using phase-correlation technique,
there exist techniques that to some extent allowovercoming them. emeasurement time
of a sensor can be improved – without changing the experimental setup – by choosing the
optimal combination of correlation peak size and sampling interval. It means that clearly
there is a margin for increasing performance of the phase-correlation technique.

As the number of points will go up the issue of the temperature dependence of the
refractive index will become more pronounced. Still, the presented algorithm will be able
to compensate for it, unless extreme temperatures are used. However, since Brillouin fre-
quency shi depends not only on temperature but also on strain, the measurement has
to be organised in a way that prevents transversal load of the fibre. With minor modifica-
tions this algorithm can be applied to other distributed temperature sensors, e.g. BOTDA.

64



Chapter 5

Brillouin dynamic gratings in
polarisation-maintaining fibres

As it was shown in section 1.2, the acoustic wave generated during the SBS works as a dis-
tributed reflector, with the same working principle as fibre Bragg gratings (FBG’s). is
allows dynamically creating FBG’s with lengths of metres or tens of metres – length un-
achievable by the traditional methods of FBG creation: the interferometric method util-
ising an ultraviolet laser and the point-by-point writing by femtosecond pulses. Such
dynamically generated reflectors are called Brillouin dynamic gratings (BDG’s).

Due to the Doppler effect, a dynamic grating has two reflection peaks for two prop-
agation directions. e frequencies of these two peaks are equal to frequencies of two
pumps – the light waves used to create the BDG. us in a standard single-mode fibre
the spectrum of light reflected for a BDG will overlap with the spectrum of one of the
pump waves, making it problematic to isolate just the reflection. While it was shown to
be possible [63], a combination of very weak birefringence and temperature dependence
of the refractive index makes such a system unstable in time.

is issue can be circumvented by using highly birefringent optical fibres, also called
polarisation maintaining (PM) fibres. In such fibres the axial symmetry is broken, sep-
arating the two polarisation modes which significantly facilitates usage of BDG’s. is
technique has found many applications such as high-resolution temperature sensing [5],
microwave filter generation [6, 36], and optical signal processing [7, 35]. is chapter is
dedicated to finding new applications of BDG’s for optical signal processing and filtering.

5.1 Brillouin dynamic gratings theory

One of themost commonly used type of PMfibre ismade by drilling two holes in the fibre
preform and inserting rods of glass with different properties. Aer the fibre is drawn and
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x

y

core

stress rods

Figure 5.1: Panda fibre profile

starts cooling down these rods introduce transversal stress due to a difference between
thermal expansion coefficients. is transversal stress changes the refractive index along
one of the axes, inducing the birefringence. Due to the resulting fibre profile, depicted on
figure 5.1, this type of fibre is called Panda.

5.1.1 BDG generation

Let’s think of the BDG as a uniform fibre Bragg grating, generated by two counterprogat-
ing optical waves – pump 1 and pump 2 – polarised along the x-axis of a PM fibre, with
the frequency detuning between them corresponding to the Brillouin frequency shi:

νB,x =
2nxVa

λx

=
2nxVaνp

c
, (5.1)

where νp is the average frequency of two pumps1. e physical pitch of the dynamic
grating is given by the interference between the two waves:

Λ = c

2nxνp
. (5.2)

For the light polarised along the y axis the resonant frequency given by this pitch will be
different due to a different refractive index, giving the following equation for the resonant
frequency of the probe wave:

νpr =
c

2nyΛ
= nx

ny

νp . (5.3)

1Which for most practical applications can be replaced by the frequency of either of them.
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Figure 5.2: Frequencies of waves participating in generation and read-out of a BDG

us, the difference between pump 1 and the resonant probe wave is:

∆ν = νpr − νp =
nx − ny

ny

νp =
∆n

ny

νp . (5.4)

It can be easily seen that ∆ν also gives frequency difference between pump 2 and the
reflected wave (which is spectrally shied from the probe due to the Doppler effect). Fig-
ure 5.2 shows frequencies of all the waves participating in a BDG experiment. Since the
pump waves and the probe and its reflection are polarised along different axes and sep-
arated spectrally, it is quite easy to isolate the probe’s reflection. It opens possibilities of
applying the BDG’s to various sorts of signal processing.

Nowwe should derivemore strict equations thatwill allowus, for example, finding the
time dependence of a pulse reflection. Once again we consider two counterpropagating
continuous pump waves polarised along the x-axis. eir frequencies are ωp1 and ωp2,
and thewave vectors are kp1 = nxωp1/c and kp2 = nxωp2/c. e amplitude of the acoustic
wave generated by the two pump waves is given by equations (1.10) and (1.41)2:

Q =
g1Ap1A

∗
p2

ΓA

, (5.5)

where Ω = ωp1 − ωp2, while the total acoustic wave is

ρtot = ρ0 + [Qej(qz−Ωt) + c.c.] . (5.6)

where q = kp1 + kp2.
Let’s introduce a probe wave which is polarised along the y-axis and is copropagating

with pump 1:
Epr = Apre

j(kprz−ωprt) + c.c. (5.7)
2Assuming that amplitudes of both pumps remain constant, i.e. the Brillouin interaction between them

is weak.
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Using equation (1.31) we canwrite the nonlinear polarisation, keeping only the first order
frequency components:

P = ϵ0ρ−10 γe (Qej(qz−Ωt) + c.c.)(Apre
j(kprz−ωprt) + c.c.)

= ϵ0ρ−10 γe (Q∗Apre
j(−(q−kpr)z−(ωpr−Ω)t) + c.c.) .

(5.8)

is nonlinear polarisation will generate a reflected wave with frequency ωr = ωpr − Ω
and wave vector kr = nyωr/c. e highest reflection will occur when the nonlinear polar-
isation is phase-matched with the reflected wave, i.e. when q − kpr = kr. is allows for
calculating the central wavelength of the dynamic grating:

q − kpr = nyωr/c (5.9)
kp1 + kp2 − kpr = nyωr/c (5.10)

(nx(2ωp1 −Ω) − nyωpr)/c = ny(ωpr −Ω)/c (5.11)
nx(2ωp1 −Ω) = ny(2ωpr −Ω) . (5.12)

Since (nx − ny)Ω is a second-order term, it can be neglected simplifying the equation:

nxωp1 = nyωpr . (5.13)

or

ωpr =
nx

ny

ωp1 , (5.14)

∆ω = ωpr − ωp1 =
∆n

n
ωp1 , (5.15)

the same result as equation (5.4), obtained with the simple FBG model.

5.1.2 Reflection from a dynamic grating

Let’s see what happens when a rectangular probe pulse is sent onto the BDG in a general
case, when the birefringence may vary along the fibre. We start with rewriting the non-
linear polarisation obtained in equation (5.8) using ωr = ωpr − Ω, the frequency of the
reflected light, and K = q − kpr, the wave vector of the nonlinear polarisation wave (and,
therefore, of the BDG):

P = ϵ0ρ−10 γe (Q∗Apre
j(−Kz−ωrt) + c.c.) . (5.16)

e wave vector of the reflected light is

kr =
ωrny

c
. (5.17)
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5.1. Brillouin dynamic gratings theory

As it was mentioned before, the resonant case of probe being perfectly tuned to the grat-
ing’s reflection peak corresponds to the case ofK = kr. is condition does not necessar-
ily holds, but we can write kr =K+∆k, where∆k corresponds to the difference between
two wave vectors due to the probe’s detuning from the resonance and/or birefringence
variations.

Let’s look for a solution for the reflected wave in the form of:

Er = Ar(z, t)ej(−Kz−ωrt) + c.c. (5.18)

e wave equation for the electrical fields (equation (1.30)) will look this way3

−K2Ar − j2K
∂Ar

∂z
+
ω2
rny

2

c2
Ar + j

2ωrny
2

c2
∂Ar

∂t
= −ω

2
r γe

ρ0c
2
Q∗Apr . (5.19)

Using K = kr −∆k, remembering ωrny/c = kr, and keeping only the first order terms:

−(k2r − 2kr∆k +∆k2)Ar − j2K
∂Ar

∂z
+ k2rAr + j

krny

c

∂Ar

∂t
= −ω

2
r γe

ρ0c
2
Q∗Apr , (5.20)

+2kr∆kAr − j2K
∂Ar

∂z
+ j

krny

c

∂Ar

∂t
= −ω

2
r γe

ρ0c
2
Q∗Apr . (5.21)

is equation can be rewritten for a steady-state condition:

− 2kr∆kAr + j2K
∂Ar

∂z
= ω2

r γe

ρ0c
2
Q∗Apr . (5.22)

Remembering K ≈ kr, elasto-optic coefficient g2 = ωγe/2ncρ04, and reintroducing the
longitudinal dependence of variables:

j∆k(z)Ar +
∂Ar

∂z
= −j ωrγe

2ρ0cny

Q∗Apr(z) , (5.23)

j∆k(z)Ar +
∂Ar

∂z
= −jg2Q∗Apr exp

⎛
⎜
⎝
j

z

∫
z0

∆k(ζ)dζ
⎞
⎟
⎠
, (5.24)

where the phase term inApr appears due to propagation in a nonuniform fibre, assuming
the BDG with length L which starts at z0. is equation can be solved (details can be
found in appendix B):

Ar(z0) = jg2Q∗Apr

z0+L

∫
z0

exp
⎛
⎜
⎝
j

ξ

∫
z0

2∆k(ζ)dζ
⎞
⎟
⎠
dξ . (5.25)

3Assuming slowly varying amplitudes
4Here and further ω will be used instead of ωp1, ωp2, ωpr, and ωr when the difference between the four

frequencies is insignificant; same way n will be used instead of nx and ny .
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Figure 5.3: Reflections from a probe pulse. Note that reflections from positions farther than z0 +
cτ/2n did not reach z0 yet

is equation represents a sum of reflections from the whole fibre with each one having a
phase shi due to the refractive index variation along the fibre up to the point of reflection.

is solution can be applied to the case of a reflection from a pulse with duration τ .
Let’s consider an infinite BDG and see what happens at the moment at which the pulse
has just passed z0, as seen on figure 5.3. e reflected signal at position z0 is an integral
of reflections from z0 to z0 + cτ/2n, since reflections from farther regions did not reach
z0 yet. At this position in time for the section between z0 and z0 + cτ/2n the situation is
indistinguishable from the steady-state case with the BDG being generated solely within
this region. us, the reflection at z0 can be found using equation (5.25):

Ar(z = z0) = jg2Q∗Apr(z0)
z0+cτ/2n

∫
z0

exp
⎛
⎜
⎝
j

ξ

∫
z0

2∆k(ζ)dζ
⎞
⎟
⎠
dξ . (5.26)

Let’s set t = 0 to the moment when the back edge of the pulse enters the BDG. At a
moment t it will reach position z = ct/n:

Ar(z = ct/n, t) = jg2Q∗Apr(z = ct/n)
ct/n+cτ/2n

∫
ct/n

exp
⎛
⎜
⎝
j

ξ

∫
ct/n

2∆k(ζ)dζ
⎞
⎟
⎠
dξ , (5.27)

and at the moment 2t the reflection from this point will come back to the beginning of
the BDG. e probe amplitude Apr(z = ct/n, t) is given by the probe amplitude at the
entrance of BDGwith an additional phase shi due to the variation of the refractive index:

Apr(z = ct/n) = Apr(z = 0) exp
⎛
⎜⎜
⎝

ct
2n

∫
0

∆k(ξ)dξ
⎞
⎟⎟
⎠
. (5.28)
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During the backpropagation the reflected signal will accumulate the same phase shi. We
can now write the equation for the reflected signal at the entrance of the BDG at a given
time:

Ar(z = 0, t) = jg2Q∗Apre
jϕ(t)

c(t+τ)
2n

∫
ct
2n

exp

⎛
⎜⎜
⎝
j

ξ

∫
ct
2n

2∆k(ζ)dζ
⎞
⎟⎟
⎠
dξ , (5.29)

ϕ(t) = 2

ct
2n

∫
0

∆k(ξ)dξ . (5.30)

For a short pulse we can consider∆k to be constant within the distance cτ/2n, and equa-
tion (5.29) can be simplified:

Ar(z = 0, t) = jg2Q∗Apre
jϕ(t)

c(t+τ)
2n

∫
ct
2n

exp

⎛
⎜⎜
⎝
j

ξ

∫
ct
2n

2∆k ( ct
2n
)dζ
⎞
⎟⎟
⎠
dξ

= jg2Q∗Apre
jϕ(t)

c(t+τ)
2n

∫
ct
2n

exp(j2∆k ( ct
2n
)(ξ − ct

2n
))dξ

= jg2Q∗Apre
jϕ(t) exp (j2∆k ( ct2n)

cτ
2n
) − 1

j2∆k ( ct2n)

≈ jg2Q∗Apre
jϕ(t) cτ

2n
.

(5.31)

5.2 Flip-flop
A classical flip-flop is and electronic circuit that has two stable states which are associated
with logical 0 and 1. A flip-flop can be switched from one state to another using an electri-
cal signal, enabling the usage flip-flops as storage elements. ismakes them fundamental
building blocks in digital electronics systems, including computers and communication
devices. For a long time research activities have been carried out to create all-optical logic
circuits which would ultimately lead to creation of a photonic computer, where informa-
tion is stored and processed by optical means. is chapter demonstrates that an ideal
distributed reflector can be used to create a all-optical flip-flop.

e reflection of a short pulse on a distributed reflector is a rectangular pulse (fig-
ure 5.4a). If two consecutive in-phase pulses are sent on the reflector their reflections
will overlap, creating a reflection with amplitude twice as large (figure 5.4b). If the phase

71



. B    - 

probe

re�ection

a

probe

re�ection

b

probe

probe

probe

probe

re�ection

c

Figure 5.4: Pulse reflection from a distributed reflector. a) Single pulse produces rectangular re-
flection; b) Reflections from two consecutive pulses sum up intro a reflection with
double amplitude; c) Reflections from two pulses with opposite phases cancel each
other.

of the second pulse is shied by π, two reflections will be out of phase, cancelling each
other (figure 5.4c). us, a flip-flop can be created: one short pulse is used to switch it on,
while turning off is achieved with another pulse with an opposite phase. e maximum
storage time is given by the length of the reflector, while the switching time is given by
the duration of the control pulses. is makes BDG’s very attractive for this application
as their length can potentially reach tens or even hundreds of metres.

5.2.1 Experimental setup

An experimental setup for the demonstration of an all-optical flip-flop is shown on fig-
ure 5.5 and it consists of two main parts. e first one is used to generate the BDG along
a PM fibre. e output of a DFB laser, polarised along x-axis, is split into two branches
with a coupler5. e light in the top branch corresponds to pump 2; it gets amplified by
an EDFA to a power level of ∼25 dB and is launched into a 20m long PM fibre.

5All of the components of the setup are polarisation-maintaining unless specified otherwise
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Figure 5.5: Experimental setup for the flip-flop experiment

In the bottom branch the light passes through an electro-optic modulator (EOM)
driven by an RF generator with frequency corresponding to the Brillouin frequency of
the PM fibre; thus, a two side-band pump 1 is generated. e side-bands are amplified by
an EDFA to reach a power similar to pump 2 (the powers were tuned during the exper-
iment to avoid nonlinearities, depletion, and other detrimental effects) and is launched
into the PM fibre through a polarisation-dependent splitter. Note, that since pump 1 con-
tains two spectral components, two gratings are generated inside the fibre, their resonant
frequencies are separated by the double of the Brillouin frequency shi of the fibre, and
either of the gratings can be used in the experiment.

In the second part of the experimental setup the probe wave is generated. e fre-
quency of anotherDFB laser is tuned tomatch the resonant frequency of one of the BDG’s
in y-polarisation. Its output passes through an EOM driven by a pulse generator, ampli-
fied by an EDFA, and sent into the PM fibre through the polarisation splitter that aligns
the polarisation of the probe along the y-axis. e signal reflected from the BDG is fil-
tered on a fibre Bragg grating and is sent on a photodetector with a 5GHz bandwidth
connected to an oscilloscope.

Figure 5.6 shows the spectrum measured at the entrance of the FBG filter in the de-
tection system. We can see a strong component of pump 2 which leaks into detection due
to a cross-talk between two polarisations. e Rayleigh scattering is observed for two
side-lobes of pump 1 and the probe. Yet, the probe and the reflection are well separated
spectrally from pump waves which makes it easy to use an FBG to filter out everything
but the reflection.
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Figure 5.6: Measured spectrum of optical waves participating in the BDG experiment

5.2.2 Reflection of two pulses

Since two pulses are required to create a flip-flop it is necessary to calculate the signal that
would be given by the interference of two pulses separated by ∆tp. Let’s consider both
pulses belonging to the same optical wave: Apr,1 = Apr,2 = Apr. We will also assume the
pulses to be short enough to ignore the birefringence variation within their size – this way
we can apply equation (5.31) to find the sum of two reflections:

Ar,sum(t) = Ar(z = 0, t) +Ar(z = 0, t −∆tp)

= −jg2Q∗Apr
cτ

2n
(ejϕ(t) + ejϕ(t−∆tp)) .

(5.32)

Using a simple formula for the sum of two complex exponents:

eja + ejb = 2ej
a+b
2 cos(a − b

2
) , (5.33)

it can be rewritten:

Ar,sum = −jg2Q∗Apr
cτ

2n
exp(j

ϕ(t) + ϕ(t −∆tp)
2

) cos(
ϕ(t) − ϕ(t −∆tp)

2
)

= −jg2Q∗Apr
cτ

2n
exp(j

ϕ(t) + ϕ(t −∆tp)
2

) cos(
∆ϕ(t,∆tp)

2
) ,

(5.34)
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where ∆ϕ(t,∆tp) is the phase mismatch accumulated between the two points of reflec-
tion, which can be found using equation (5.30):

∆ϕ(t,∆tp) = 2

ct
2n

∫
0

∆k(ξ)dξ − 2

c(t−∆tp)
2n

∫
0

∆k(ξ)dξ = 2

ct
2n

∫
c(t−∆tp)

2n

∆k(ξ)dξ . (5.35)

In a uniform fibre without variations in birefringence the wave vector mismatch ∆k
is constant along the fibre; thus, this phase mismatch can be significantly simplified:

∆ϕ(t,∆tp) =
c∆tp

n
∆k , (5.36)

or, in terms of ∆ω, the frequency mismatch between the probe and the BDG peak:

∆ϕ(t) =∆ω∆tp . (5.37)

Which gives the equation for the intensity of the reflection:

Ir,sum = g22 ∣Q∣2Ipr
c2τ2

4n2
cos2(∆ω∆tp) , (5.38)

using equation (5.5) for the acoustic wave amplitude, it can be rewritten:

Ir,sum =
g21g

2
2

∣ΓA∣2
Ip1Ip2Ipr

c2τ2

4n2
cos2(∆ω∆tp) . (5.39)

In order to check the birefringence uniformity of the 20m PM fibre, two consecutive
pulses were used to probe the BDG. e pulses were separated by 3 ns and their dura-
tion was set to the minimum available value of 350 ps. Figure 5.7a shows the measured
reflection – the interference between reflections of two pulses. e signal shows strong
oscillations, meaning that a phase shi of π can be accumulated within a back-and-forth
propagation through a 30 cm section of fibre (given by the 3 ns separation between two
pulses). e drop in the reflection intensity along the fibre can be explained by the deple-
tion of pump 1 due to it’s Brillouin interaction with pump 2.

To verify that the oscillations are indeed given by the variations of the birefringence,
the experiment was repeated with the two ends of the PM fibre swapped (the beginning
became the end and vice versa). emeasured reflection intensity is shown on figure 5.7b,
with the time inversed for an easier comparison with the first measurement. Two inter-
ference pattens match each other well, proving that the reason behind them is indeed the
variations within the fibre.
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Figure 5.7: Reflection for two 350 ps pulses separated by 3 ns for direct (top) and reversed (bottom)
fibre connection. e signal for the reversed fibre connection was reflected horizon-
tally for a better comparison.

In fact, this interference pattern of the two pulse reflection can be used to determine
the birefringence variation along the fibre. To do that the reflections was measured while
varying the probe wave frequency for the minimum available pulse separation of 2 ns.
e results of the measurement are shown on figure 5.8a, where each row corresponds to
a trace similar to those on figure 5.7.

It can be seen that as the frequency of the probe changes, the reflection intensity at a
given point goes from themaximum value to theminimum and back again. is happens
because frequency detuning δω introduces a change in wave vector mismatch:

δk = δωc

n
, (5.40)

which according to equation (5.35) introduces an additional phase mismatch between
two reflections:

δϕ(t,∆tp) = δω∆tp . (5.41)
If one tracks the change in δω along the interference maxima (or minima) it would be
equivalent to solving equation ∆ϕ(t,∆tp) + δϕ = const or finding the frequency detun-
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Figure 5.8: Measuring birefringence variation along the 20m fibre. a) Dependence of reflected
signal on frequency change; b) Extracted frequency detuning along the fibre and the
corresponding birefringence variation.

ing that compensates for the birefringence variation:

δω(t) = − 2

∆tp

ct
2n

∫
c(t−∆tp)

2n

∆k(ξ)dξ + 2πm, (5.42)

wherem is an integer number. It can be easily seen that the integral term corresponds to
the average wave vector mismatch within the pulse separation. e change in the wave
vector mismatch can be linked to the change of fibre’s birefringence, allowing us to know
how it varies along the fibre.

Fitting all the observable maxima/minima and combining the results it was possi-
ble to extract the δω required to compensate for the birefringence variation along the
fibre. It is shown on figure 5.8b along with the corresponding variation of birefringence
(nx−ny)/nx. e birefringence change of ±2 × 10−6 corresponds to a 1% variation over
the average birefringence of 2 × 10−4. An estimation shows that for an acceptable perfor-
mance the birefringence uniformity has to be improved tenfold, reducing the variations
in the interference intensity down to 1%.

Due to this strong nonuniformity of the fibre, further experiments were done using a
1m long fibre – the pigtail of the polarisation combiner – which was found to be uniform
enough. A phase modulator was added into the setup in order to change the phase of the
second probe pulse by π as shown on figure 5.9. Measurements were done varying the
separation between two pulses with and without the phase modulation. With the phase
modulation turned off, two reflections arrive in phase showing positive interference (grey
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Figure 5.9: Generation of probe pulses with opposite phases
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Figure 5.10: Flip-flop (black) and integrator (grey) operation in a 1m patchcord for a pulse sepa-
ration of: a) 3.5 ns; b) 5 ns; c) 6.5 ns. e first section of the signal corresponds to the
reflection of the first pulse, the second to the destructive or constructive interference
of two reflections.

lines onfigure 5.10a-c); when the phase of the secondpulse is changed byπ two reflections
arrive with opposite phases and cancel each other, showing the desired flip-flop operation
(black lines on figure 5.10a-c)6.

e previously observed change in phase shi between two reflections due to fre-
quency tuning can be used to switch the system from integrator to flip-flop regime with-
out using the phase modulator. In order to verify it the interference between the two
reflections was measured depending on the frequency detuning and the pulse separation;
the measurement results for the pulse separation of 2 ns, 4 ns and 7 ns are shown on fig-
ure 5.11. Aerwards, the intensity was predicted using equation (5.39). Figure 5.12 shows
all the measured data (each row corresponds to a measurement similar to the measure-
ments shown on figure 5.11) as well as the theoretically predicted response. A goodmatch
can be seen between themeasurement and themodelling, with some discrepancies due to

6edrop in the flip-flop signal on figure 5.10c was caused by the frequency instability of the used lasers,
leading to a change of experimental conditions between the two measurements.
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Figure 5.11: Intensity of the interference between two reflections depending on frequency detun-
ing from the BDG peak for pulse separation of 2 ns, 4 ns and 7 ns.
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Figure 5.12: a) Measured and b) theoretically predicted reflection intensity depending on the
probe’s detuning from the peak of the BDG and the time separation between two
pulses

the frequency instability of the lasers used in the experiment. It can be clearly seen that the
system goes from integrator to the flip-flop operation and back again by simple detuning
with the condition of flip-flop operation given by hyperbolas∆ϕ =∆ω∆tp = (2m+1)π.

Another way of generating two optical pulses would be splitting the pulse, delaying
one copy, and recombining the two – as shown on figure 5.13. During the preliminary
experiments it was found that the optical delay line rotates the light polarisation despite
having a PM input-output fibre. To compensate for it an SMF optical circulator had to be
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Figure 5.13: Generating two pulses with an optical delay line. e area in the grey rectangular
contains a non-PM circulator and two polarisation controllers (PC).

used along with two polarisation controllers.
For this way of generating a double pulse the second probe pulse doesn’t have the

same complex amplitude as the first one – it contains a phase term given by the temporal
delay:

Apr,2 = Apre
jωpr∆tp . (5.43)

To find the amplitude of the reflected wave we can write the equivalent of equation (5.32):

Ar,sum = jg2Q∗Aprτ (ejϕ(t) + ejϕ(t−∆tp)ejωpr∆tp) . (5.44)

us, the cosine term in equation (5.34) will be changed to:

cos(
ϕ(t) − ϕ(t −∆tp) − ωpr∆tp

2
) = cos(

(ωpr − ωgr)∆tp − ωpr∆tp

2
)

= cos(
ωgr∆tp

2
) .

(5.45)

e sum of the pulses reflections becomes independent on the probe’s frequency; at the
same time it becomes highly dependent on the pulse separation.

ere is an intuitive explanation for the difference in system’s behaviour for twometh-
ods of double pulse generation. e frequency dependent phase shi between reflections
of two pulses originates from time delay between two reflections ωpr∆tp. When two
pulses are generated with a delay line the second pulse gets delayed by ∆tp and, there-
fore, accumulates exactly the same phase shi ωpr∆tp. ese two phase shis cancel
each other making the system (theoretically) independent of the probe’s frequency.

Using a tunable optical delay line, the intensity of the double pulse reflection was
measured while varying the pulse separation with a 1 fs step; the results of this measure-
ment are shown on figure 5.14a. Oscillations with an average period of approximately
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Figure 5.14: Reflection intensity for two pulses generated via an optical delay line depending on
a) pulse separation and b) frequency detuning (dashed grey line is the reflection of
two electrically generated pulses under the same conditions)

5 fs can be clearly observed, matching the expected value of 1/193THz = 5.2 fs for the
wavelength of 1555 nm. e irregularities in the oscillation shape can be explained by the
properties of the delay line, which has the accuracy and the repeatability of 10 fs both.

e frequency of the probe wave was varied to check whether the reflection intensity
depends on it. e results are shown on figure 5.14b along with the results obtained for a
pair of pulses generated using the double pulse generator. It can be seen the dependence
is still observable, though less than for the previous measurement. A possible explana-
tion for this dependence would be a frequency dependency of the pulse separation. e
fibre dispersion is not high enough to introduce such a strong dependence – a 2 ns pulse
separation corresponds to a 0.4m difference in optical path; in an optical fibre with the
dispersion of 17 ps km−1 nm−1 with frequency tuning over 500MHz it provides a delay
of:

δ∆tp = 17pskm−1 nm−1 × 0.4m × 1555nm
500MHz

193THz
≈ 0.03 fs , (5.46)

while a delay of 2.5 fs is required to go from the maximum reflection to zero. However,
as it was mentioned before, the optical delay line rotates the polarisation, meaning that a
combination of x- and y-polarised light can propagate in its PM pigtail. is can poten-
tially lead to the part of the pulse being delayed affecting the reflection.

Overall, generation of two pulses directly in an intensity modulator is more attractive
– the pulse separation can be changed easily in broad range, without being limited to the
delay line range, while the system remains in the flip-flop mode (as long as the probe is
tuned to the peak of the BDG).
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5.3 Spectral properties of dynamic Brillouin gratings
Brillouin dynamic gratings can be used not only to process signals in time domain but
in the spectral domain as well. By changing the wavelength of the pumps it is possible
to tune the wavelength of the BDG, same can be done with the spectral shape. is sec-
tion is dedicated to researching the spectral characteristics of BDG’s and finding possible
applications for them; for simplicity we are going to consider only uniform gratings.

5.3.1 Reflection spectrum of a BDG

To begin with we need to find the expected reflection spectrum of a uniform grating, the
starting point for it is equation (5.25) rewritten for z0 = 0:

Ar(0) = jg2Q∗Apr

L

∫
0

exp
⎛
⎜
⎝
j

ξ

∫
0

2∆k(ζ)dζ
⎞
⎟
⎠
dξ . (5.47)

For a uniform grating it is easy to solve:

Ar(0) = jg2Q∗Apr

L

∫
0

exp(j2∆kξ)dξ

= jg2Q∗Apr
exp(j2∆kL) − 1

j2∆k

= jg2Q∗Apre
j∆kL e

j∆kL − e−j∆kL

j2∆k

= jg2Q∗Apre
j∆kL sinc(∆kL)L .

(5.48)

It can be rewritten for the intensity, using equation (5.5) for the acoustic wave amplitude:

Ir =
g21g

2
2

∣ΓA∣2
Ip1Ip2Ipr sinc

2(∆kL)L2 . (5.49)

Reflection from a BDG was measured while varying the probe frequency. e result-
ing reflection spectrum is shown on figure 5.15a along with the predicted sinc2 depen-
dence. e first zero of the sinc function is positioned at 112MHz which is equivalent to
the wave vector mismatch:

∆k = 2πn

c
112MHz = 3.38m−1 . (5.50)

Given that for the first zero of sinc function ∆kL = π, the expected length of the fibre is
equal to 0.93m which is in a good agreement with the approximately known fibre length
of 1m.
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Figure 5.15: Reflection spectrum of a BDG generated in a 1m long fibre: measured (blue line) and
theoretically predicted (grey line)

Figure 5.15b shows a more detailed comparison between the measured and the theo-
retically predicted reflection spectrum; it is evident on this scale that the predicted spec-
trum does not match well with the measurement. is distortion can be easily attributed
to the nonuniformity of the fibre’s birefringence.

5.3.2 Dynamic grating with multiple spectral lines

e next step was to generate a BDG with multiple spectral lines by altering the pump
waves. A modulator was positioned right aer the laser used to create two pump waves
and it was driven by an arbitrary waveform generator (AWG). During the experiment the
AWG was set to produce one or several tones, generating side bands in the pump waves
spectra.

e first experiment was performed to observe a BDG with well-separated spectral
lines; a line separation of 224MHz was chosen, corresponding to the second zero of the
sinc-shaped reflection spectrum. ree measurements were performed: without modu-
lating the pump, modulating it with a single 224MHz tone (three spectral lines, including
the carrier), and with a double-tone modulation with 224MHz and 448MHz (five spec-
tral lines). Measured reflection spectra are shown on figure 5.16a–c. e multiple reflec-
tion lines are separated well enough not to interact with each other and their intensities
are fairly uniform (less than 5% variation).

One thing to be noted is that the reflection of each line decreases quadratically with
the number of lines, it can be seen that in comparison to a single line (figure 5.16a) the
reflection of each line is approximately 9 times lower for three lines (figure 5.16b) and
25 times for five (figure 5.16a–b). is can be easily explained: first, the EDFA’s used to
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Figure 5.16: Reflection spectrum of a BDG created with pumps consisting of a) single spectral
line; b) three lines with 224MHz spacing; c) five lines with 224MHz spacing

amplify pump waves work in saturation, i.e. their output power is constant. is power
is spread over multiple spectral lines, meaning that the power of each is inversely pro-
portional to the number of lines. Second, by looking at equation (5.49) for the reflection
intensity we can see that it is proportional to the product of intensities of pump waves,
therefore reflection intensity from each spectral line of the grating is inversely propor-
tional to the square of the number of lines.

e next step was to decrease the separation between the spectral lines, combining
them into a rectangular filter. e first experiment was done modulating the pumps with
a single 112MHz tone, corresponding to the first zero of the sinc-shaped spectrum of
each grating. Figure 5.17a shows the resulting reflection spectrum; it is far from being
uniform and symmetric. e central part consists of three overlapping lines which sepa-
ration does not correspond to 112MHz due to the manner the sinc-shaped spectra inter-
fere with each other; the same interference produces strong side-lobes. e asymmetry
of the spectrum originates from the asymmetry of each line’s sinc-spectrum. It should
be noted that the shape of the reflection spectrum highly depends on the separation be-
tween spectral lines; for example, for the separation of 108MHz a fairly good reflection
spectrum was observed, with a relatively flat top and suppressed side-lobes.

e experiment was repeated for pumps containing seven spectral lines; reflection
spectrum was observed while varying the separation between spectral lines, and for the
value of 110MHz a fairly rectangular reflection with a single pair of side-bands was ob-
served (figure 5.18a). Once again, the reflection spectrum strongly depended on the
spectral separation – a change of 1MHz in line separation completely distorted the spec-
trum (figure 5.18b). Note that four equidistant spectral lines are observed despite an odd
(seven) number of spectral lines in the pump spectra. is further signifies the fact that
combiningmultiple lines together is not an easy task and a further research has to be done
to find a reliable way of getting a good reflection spectrum.
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Figure 5.17: Reflection spectrum of a BDG created with pumps consisting of three lines with spac-
ing of a) 112MHz; b) 108MHz
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Figure 5.18: Reflection spectrumof a BDG createdwith pumps consisting of seven lines with spac-
ing of a) 110MHz; b) 109MHz
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Figure 5.19: Fibre configuration used in the experiment

5.3.3 Dynamic gratings in multiple fibres

A potential problemmay arise while conducting experiments with an experimental setup
consisting of several fibre types. In all the previous experiments the output pigtail of the
polarisation combiner was used as a 1m longmedium for BDG.However, it is followed by
the pigtail of an optical isolator which can potentially be made of a different fibre. ese
fibres will be called fibre 1 and fibre 2 as shown on figure 5.19.

Indeed, once the frequency tuning range was expanded we could observe a second
BDG, generated in fibre 2, as seen on figure 5.20a. e difference between resonant fre-
quencies of two BDG’s is equal to 2GHz, which corresponds to a 5% difference in bire-
fringence between the two fibres. When pump waves with broad spectra are used, the
spectra of two BDG can get even closer as on figure 5.20b where pump waves consist of
three lines separated by 400MHz. For a smaller difference in birefringence, or broader
pump spectra, the two gratings may start overlapping making reflections from them in-
terfere.

A fairly simple solution to this problem has been proposed – to rotate the fibre used
as a BDG medium by 90°, swapping the x- and the y-axes. is transformation changes
the sign of the birefringence, positioning the resonant frequency of the BDG on the other
side of the pump line. A section of a PM fibre was spliced rotated by 90° and the reflec-
tion spectrum was measured for the BDG’s generated inside this fibre. Figure 5.21 shows
the obtained spectrum (black line) and the previously obtained spectrum from the po-
larisation combiner’s pigtail (grey line). We can see that the reflection peak of the BDG
in the rotated fibre is positioned on the other side of the pump line isolating it from the
influence of BDG’s generated in other, normally aligned fibres. We can also see that the
frequency separation between the pump and the BDG is different for two fibres due to
different birefringence values.
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5.3. Spectral properties of dynamic Brillouin gratings
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Figure 5.20: Reflection spectrum of BDG’s generated in two consecutive fibres with pumps con-
sisting of a) single spectral line; b) three lines with 400MHz spacing
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5.4 Discussion
e theoretical model of Brillouin dynamic gratings presented in section 5.1 and ex-
panded in following sections is experimentally verified. It means that the simplification
of non-dispersive medium (leading to equality between the phase and group refractive
index) holds under the experimental conditions. e presented model can be used to
predict properties of Brillouin dynamic gratings and behaviour of systems that utilise
them, making it easier to design further experiments.

Section 5.2 presents an all-optical flip-flop based on a 1m long BDG, which corre-
sponds to a maximum storage time of 10 ns showing that the application BDG’s in this
area is promising. e 1m limitation is given by the birefringence uniformity in available
PM fibres; and with a tenfold improvement in uniformity the distance can be extended
to tens or even hundreds of metres. is will open a possibility to flip-flop operation over
hundreds of nanoseconds or even several microseconds.

Section 5.3 dedicated to the spectral properties of BDG’s shows that the spectrum
of a dynamic grating can be manipulated by changing the spectra of pump waves. It is
experimentally demonstrated that dynamic gratings with multiple spectral lines can be
created by simply modulating pump waves with single or multiple tones. is allows
for creation of dynamically tuned optical filters (or microwave filters, since a microwave
signal can be carried by an optical wave). At the same time, creating a BDG with a broad
flat spectrum proves to be a more difficult task due to the interference between spectra
of each grating. e presented results are merely a preliminary work; further research
activities are required to study the spectral properties of BDG’s in detail, create a model
that allows for designing of optical filters, and to apply this knowledge in practice to create
arbitrarily shaped filters.
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Conclusions and perspectives

Looking back at years of research it is possible to see which activities were fruitful and
which became a dead end, even if attracting a lot of attention at early stages. Without
having the power of hindsight, looking forward and trying to determine which directions
should be taken in future is a risky task. Still, I am going to make an attempt in it and
show my view on the future of Brillouin dynamic gratings research by extrapolating my
personal experience. I will begin with sensing applications.

Observations show that since 2008 the number of points in state-of-the-are Brillouin
sensors has doubled on average every 1.5 years, figure C.1 shows this evolution. High-
lighted points correspond to the results obtained during this thesis – phase-correlation
technique quickly overcame other techniques in term on the number of resolved points,
setting one record aer another.
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Figure C.1: Growth of the number of pointsmeasured by distributed Brillouin fibre sensors. High-
lighted are the results obtained during this thesis.
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A further increase in the number of resolved points is going to be difficult. When it
comes to the distance, a two-fold increase from 17.5 km to 35 kmwould reduce the signal-
to-noise ratio (SNR) by 7 dB which has to be somehow compensated for. On a bright
side, any technique applicable to classic BOTDA setups can be readily applied to time-
gated phase-correlation technique: e.g. Raman amplification and intensity pulse coding.
e latter was already shown to be effective [60] – a 1112 bits long code allowed for a
measurement over a 2.2 km long fibre with 2 cm resolution with the measurement time
of 25 s (assuming zero latency of equipment).

Improving the spatial resolution is not an easier task. High spatial resolution requires
pump and signal waves to have broad spectra whichmakes it impossible to separate them
in detection without introducing significant distortion and, thus, decreasing the signal-
to-noise ratio. It means that while improving the spatial resolution is possible [61] it will
be hardly possible to improve the number of points this way.

At this stage a more desirable direction of improvement would be the measurement
time. In its current state the demonstrated setup would require 14 hours to address all
the 2 100 000 points (assuming zero latency of equipment). Even though for a given dis-
tance the measurement time scales cubically with the number of resolved points, a mea-
surement of “just” 1 000 000 points would still require 1.5 hours. However, unlike sensing
distance, measurement time scales quadratically with SNR. e above-mentioned 7 dB
(5 times) improvement in SNR, required to double the sensing distance, can be used in-
stead to speed up the measurement by a factor 25.

Even with a short measurement time, presently there is not much potential applica-
tion for high spatial resolution sensing at these distances outside of the lab environment.
ere is a demand in oil industry for sensors with sensing range of 5–10 km with the
spatial resolution of 10–20 cm. Yet, even at short distances this technique would be too
expensive and complicated to be economically feasible, meaning that it will not leave
the lab in near future, if ever. Meanwhile it will remain a very useful tool for a detailed
measurement of Brillouin scattering properties of new devices, e.g. tapered fibres or mi-
crowires.

As for BDG’s in polarisation maintaining fibres, one of the limiting factors for their
application is the non-uniformity of fibres’ birefringence. For most of the applications of
PM fibres this uniformity is not important (as long as the linear polarisation is preserved
along the fibre), that’s why it is not necessary for fibre manufacturers to control this pa-
rameter. Improving the birefringence uniformity by one order of magnitude would make
it possible to use BDG’s of tens of metres long to create all optical flip-flops with storage
time of hundreds of nanoseconds. Achieving this level of uniformity would require mod-
elling of processes involved during the fibre cooling and a strong cooperation with fibre
manufacturers. Objectively, I have to admit that creation of a bulk flip-flop system will
not justify this amount of work; especially since it can be potentially replaced by a minia-
ture silicon-on-chip device.
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Conclusions and perspectives

On the other hand, manipulating the spectrum of a dynamic grating is something
that should be researched deeper as this application does not require long fibres. BDG’s
with arbitrary spectra can be used for filtering of optical signals, microwave photonics ap-
plications, or dispersion compensation (since the properties of dynamic gratings depend
on the phases of the waves that generate them).

Lately, very impressive results were obtained, showing how Brillouin scattering effi-
ciency is drastically increased in nanoscale silicon wires [64–67] (once can also read two
overviews of the work done in this field [68, 69]). ese results show an at least three
order of magnitude improvement in linear Brillouin gain in comparison with optical fi-
bres. It means that several metres of an optical fibre can be potentially replaced with an
optical nanowire with a length of several millimetres. Brillouin dynamic gratings have
been already demonstrated in a photonic chip with a 4 μm width [70], opening the door
for further work.

In conclusion, there is a lot of research to be done in Brillouin dynamic gratings field.
is technique is 7 years old with only a handful of research groups working on it. As
it was shown in this work, generation and read-out of BDG’s can be modelled match-
ing experimentally obtained results, meaning that feasibility of new ideas can be checked
numerically before proceeding with experimental work.
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Appendix A

Correlation peak shape derivation

In order to find the force driving the acoustic wave in phase-correlated sensing technique
one has to find the time average term in the right part of equation (2.10):

pst ∝ ⟨ejπ[fPRBS(t+tp(z))−fPRBS(t+ts(z))]⟩ . (A.1)

In order to do that it is necessary to find the behaviour of the differential term of the
exponent’s argument:

fPRBS (t + tp(z)) − fPRBS (t + ts(z)) , (A.2)

or, making a substitution t + tp(z)Ð→ t and ts(z) − tp(z)Ð→∆t:

fPRBS (t) − fPRBS (t +∆t) . (A.3)

Let’s remember definitions of Π (t) and fPRBS (t) given by equations (2.1) and (2.2)

Π (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ∣t∣ > 1/2
1/2 ∣t∣ = 1/2
1 ∣t∣ < 1/2

, (A.4)

fPRBS (t) =∑
q

ξqΠ ((t − qTbit)/Tbit) , (A.5)

Let’s rewrite equation (A.2) using the definition of fPRBS:

fPRBS (t) − fPRBS (t +∆t) =∑
q

ξq Π ((t − qTbit)/Tbit)

−∑
q

ξq Π ((t − qTbit +∆t)/Tbit) .
(A.6)
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We can separate ∆t into an integer number of Tbit and the remainder:

∆t = (k + α)Tbit , (A.7)

where k is an integer number and α ∈ [0,1). Using this definition and making a substi-
tution τ = t/Tbit one can rewrite equation (A.6):

fPRBS (t) − fPRBS (t +∆t) =∑
q

ξq Π (τ − q) −∑
q

ξq Π (τ − q + k + α) . (A.8)

It is easy to see that∑q ξq Π (τ − q + k + α) = ∑q ξq+kΠ (τ − q + α), thus we can write:

∑
q

ξq Π (τ − q) −∑
q

ξq Π (τ − q + k + α)

=∑
q

ξq Π (τ − q) −∑
q

ξq+kΠ (τ − q + α) .
(A.9)

Using equation (A.4) – the definition of the rectangular function – one can calculate
ξq Π (τ − q) − ξq+kΠ (τ − q + α) (see figure A.1 for the explanation):

ξq Π (τ − q) − ξq+kΠ (τ − q + α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 τ < q + 1/2 − α, τ > q + 1/2
−ξq+k τ ∈ (q − 1/2 − α, q − 1/2)
ξq − ξq+k τ ∈ (q − α, q + 1/2 − α)
ξq τ ∈ (q + 1/2 − α, q + 1/2)

. (A.10)

Note that 1/2 values of rectangular function at its edges are ignored as they will not matter
once the final answer is integrated to find the average value. ree nonzero terms can be
written in form of rectangular functions:

ξq Π (τ − q) − ξq+kΠ (τ − q + α) = (ξq − ξq+k)Π(
τ − q − α/2

1 − α
)

+ξq Π(
τ − q + α/2 − 1/2

α
) − ξq+kΠ(

τ − q + α/2 + 1/2
α

) .
(A.11)

Note that in special case of α = 0 two last terms disappear, as they would represent rect-
angular functions with zero width. For nonzero α they can be combined together:

ξq Π(
τ − q + α/2 − 1/2

α
) − ξq+kΠ(

τ − q + α/2 + 1/2
α

)

= ξq−1Π(
τ − q + α/2 + 1/2

α
) − ξq+kΠ(

τ − q + α/2 + 1/2
α

)

= (ξq−1 − ξq+k)Π(
τ − q + α/2 + 1/2

α
) . (A.12)
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Figure A.1: Subtraction of two rectangular functions positioned at q and q−αwith amplitudes ξq
and ξq+k respectively. a) Two rectangular functions; b) Resulting difference as three
rectangular functions.

Leading to to the final equation for the phase difference:

fPRBS (t) − fPRBS (t + (k + α)Tbit)

=∑
q

(ξq − ξq+k)Π(
τ − q − α/2

1 − α
) +∑

q

(ξq−1 − ξq+k)Π(
τ − q + α/2 + 1/2

α
) . (A.13)

Two sums represent two sets of rectangular functions interleaved with each other as
shown on figure A.2. Since ξq is a pseudo-random sequence, two items ξq and ξq+k are
completely uncorrelated with each other unless k = mNbits, an integer number of PRBS
lengths:

ξq − ξq+k =
⎧⎪⎪⎨⎪⎪⎩

0 k =mNbits,m ∈ Z
rand{0,±1} otherwise

, (A.14)

or, once used as an argument of a complex exponential function:

ejπ(ξq−ξq+k) =
⎧⎪⎪⎨⎪⎪⎩

1 k =mNbits,m ∈ Z
rand{−1,1} otherwise

. (A.15)

It means that outside of the correlation peak, forces that drive the acoustic wave av-
erage out to zero. Let’s find how they behave within the correlation peak. Note, that two
cases in equation (A.13) correspond to the correlation peak: k =mNbits for the first sum
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Figure A.2: Force driving an acoustic wave within a correlation peak for two values of α. Note
that the average value of the force decreases
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Figure A.3: Averaged force depending on distance from the correlation peak centre

and k = mNbits − 1 for the second. e two represent two sides of the correlation peak,
thus we can consider only the first one, knowing that the second onewill give a symmetric
solution.

Let’s rewrite the term to be averaged in equation (A.1) using equations (A.13) and (A.15):

ejπ[fPRBS(t+tp(z))−fPRBS(t+ts(z))]

= exp
⎛
⎝
jπ
⎡⎢⎢⎢⎣
∑
q

(ξq − ξq+k)Π(
τ − q − α/2

1 − α
)

+∑
q

(ξq−1 − ξq+k)Π(
τ − q + α/2 + 1/2

α
)
⎤⎥⎥⎥⎦

⎞
⎠
. (A.16)

Figure A.2 shows how it behaves in time for two values ofα, alongwith the averaged value.
We can see that the average value of this term is given the average of the rectangular pulse
train and it is equal to 1−α (see figure A.3) which gives a triangular shape of correlation
peak.
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Appendix B

Solving the differential equation for
dynamic grating reflection

Solving equation (5.24) for reflection from a Brillouin dynamic grating is pretty straight-
forward. Starting with the original equation:

j∆k(z)Ar(z) +
∂Ar(z)
∂z

= −jg2Q∗Apr exp
⎛
⎜
⎝
j

z

∫
z0

∆k(ξ)dξ
⎞
⎟
⎠
, (B.1)

using the following substitutions:

f(z) = j∆k(z) , (B.2)

g(z) = j
z

∫
z0

∆k(ξ)dξ , (B.3)

c = −jg2Q∗Apr , (B.4)

we can rewrite the original equation:

f(z)Ar(z) +
∂Ar(z)
∂z

= c exp(g(z)) . (B.5)

Let’s multiply both sides by exp (∫ f(z)dz):

[f(z) exp(∫ f(z)dz)]Ar(z) + exp(∫ f(z)dz) ∂Ar(z)
∂z

= c exp(g(z) + ∫ f(z)dz) . (B.6)
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Making a substitution:

f(z) exp(∫ f(z)dz) = d

dz
[exp(∫ f(z)dz)] , (B.7)

equation (B.6) will become:

d

dz
[exp(∫ f(z)dz)]Ar(z) + exp(∫ f(z)dz) ∂Ar(z)

∂z

= c exp(g(z) + ∫ f(z)dz) . (B.8)

Applying the reverse product rule αdβ
dz + β

dα
dz =

d
dz (αβ):

d

dz
[exp(∫ f(z)dz)Ar(z)] = c exp(g(z) + ∫ f(z)dz) . (B.9)

Let’s introduce the integral of f(z):

∫ f(z)dz = F(z) + k1 , (B.10)

and integrate equation (B.9) from z0 to z0 +L, where L is the length of the grating:

z0+L

∫
z0

d

dz
[eF(z)+k1Ar(z)]dz =

z0+L

∫
z0

ceg(z)+F(z)+k1 dz , (B.11)

eF(z0+L)+k1Ar(z0 +L) − eF(z0)+k1Ar(z0) =
z0+L

∫
z0

ceg(z)+F(z)+k1 dz . (B.12)

Considering that reflected signal is nonexistent at the end of the grating Ar(z0 +L) = 0:

eF(z0)+k1Ar(z0) = −
z0+L

∫
z0

ceg(z)+F(ξ)+k1 dz . (B.13)

We can rewrite equation (B.10) for F in form of a definite integral:

F(z) − F(z0) =
z

∫
z0

j∆k(z)dz . (B.14)
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Solving the differential equation for dynamic grating reflection

Function F(z) represents the phase shi accumulated while propagating along the grat-
ing. Since at the beginning of the grating phase shi F(z0) is equal to zero:

F(z) =
z

∫
z0

j∆k(ξ)dξ , (B.15)

exactly the same as equation (B.3) for g. is allows for rewriting equation (B.13):

Ar(z0) = −
z0+L

∫
z0

ce2g(z) dz . (B.16)

Reverting back to original variables given by equations (B.2)–(B.4) the final solution
is obtained:

Ar(z0) = jg2Q∗Apr

z0+L

∫
z0

exp
⎛
⎜
⎝
j

z

∫
z0

2∆k(ξ)dξ
⎞
⎟
⎠
dz . (B.17)
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