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Abstract 

Contamination of the environment by anthropogenic volatile organic compounds (VOC) 

became of major concern during the last decades. Present in gas streams of many industrial 

exhaust systems, they are harmful and detrimental for both human health and the environment 

even at low concentration. Several techniques have been developed and applied for VOC 

abatement, e.g.: absorption, condensation, bio-filtration, photo-, thermal or catalytic 

oxidation. Although good performances were reported, they suffer from different drawbacks 

such as low efficiency at diluted concentration, difficult handling or low throughput. In this 

sense adsorption appears to be the most efficient method for complete removal of VOC from 

diluted streams.  

Various adsorbents were developed for VOC abatement such as activated carbon (AC), 

zeolites, silica or polymers. Although their efficiencies for certain VOC was shown, their 

abatement capacities can be reduced due to the lack of specific interactions. The approach 

taken in this thesis is based on the development of specific adsorbents towards VOC. The 

surface of commercial adsorbents is functionalized depending on the VOC physical properties 

aiming to create specific interactions.  

Activated carbon is a widely used adsorbent and received great attention for VOC 

removal due to their low cost and versatility. Because of their well-developed microporosity 

AC show large abatement capacity for non-polar VOC such as benzene or toluene even at low 
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concentration. Generally used in the form of granules, powder or pellets, AC can present mass 

transfer limitations and flow mal-distribution (preferential gas passage or bypass through the 

adsorbent bed). To circumvent these drawbacks, activated carbon fibers (ACFs) consisting of 

arranged microfilaments are used in this work.  

First, the adsorption of toluene, as a model of non-polar high boiling point VOC, was 

studied over ACFs. The influence of the ACFs microporosity on the toluene adsorption 

capacity was addressed using two samples with different microporosity but similar surface 

chemistry. The influence of the pore size on the enthalpy of adsorption was evaluated through 

the modelling of adsorption isotherms measured experimentally. The adsorption enthalpy was 

also evaluated using simulation of toluene temperature-programmed desorption (TPD). The 

values obtained from isotherms and TPD methods were then compared. Besides morphology, 

surface chemistry is known to influence the VOC adsorption capacity of ACFs. The influence 

of the surface oxygen content on the toluene and the acetaldehyde removal capacity was then 

evaluated. The increased concentration of O-containing groups reduces toluene adsorption 

whereas it promotes the acetaldehyde removal. 

Specific functionalization of the ACFs surface was performed for the removal of polar 

VOC represented by formaldehyde and acetaldehyde. Taking advantage of their large specific 

surface area, ACFs were functionalized by diethylene triamine (DETA) via liquid layer 

deposition. ACFs with different DETA loading were synthesized and their adsorption 

capacity towards formaldehyde was evaluated. The influence of DETA loading on the 

adsorption capacity was measured and an adsorption mechanism was suggested.  

The deposition of nano-particles (NPs) of basic metal oxide on the ACFs surface was 

used for increased acetaldehyde abatement. By combining the high intrinsic adsorption 

capacities of metal oxide NPs and the large specific surface area of ACFs, an effective 
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acetaldehyde adsorbent was synthesized. The influence of the MgO loading was evaluated as 

well as the effect of CO2 in the adsorptive mixture. Finally, based on the TPD pattern, a 

mechanism of adsorption was suggested  

In the last step, zeolites were used as adsorbents for the removal of butadiene, a model 

of low boiling point non polar VOC. The surface of commercial zeolites was modified aiming 

at the creation of specific adsorption sites. The surface was characterized and specific sites for 

butadiene adsorption were suggested based on an in situ FTIR study. The thermodynamic 

parameters of adsorption were calculated through the modelling of experimentally measured 

adsorption isotherms. The butadiene adsorption enthalpy obtained was compared to the value 

obtained by TPD methods.  

 

Keywords: Adsorption, VOC, activated carbon fibers, zeolites, surface functionalization 
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Version Abrégée 

La pollution de l’environnement par des composés organiques volatiles (COV) de 

source anthropogénique est devenue une problématique récurrente au cours des dernières 

dizaines d’années. Présents dans les effluents gazeux de nombre d’industries, les COV sont 

nocifs pour la santé humaine et dangereux pour l’environnement même à basses 

concentrations. Plusieurs procédés ont été développés pour la réduction de leurs émissions : 

l’absorption, la condensation, l’oxydation thermique, catalytique ou par plasma. Bien que de 

bonnes performances aient été reportées pour ces procédés, certaines limitations subsistent 

comme leurs efficacités à basse concentration, l’utilisation à l’échelle industrielle ou le faible 

débit d’effluents gazeux traité par unité de temps. L’adsorption apparaît donc comme une 

méthode efficace pour l’élimination totale des COV dilués. De nombreux adsorbants comme 

le charbon actifs, les zéolites, la silice ou certains polymères ont été développés pour le 

contrôle des émissions de COV. Bien que leur efficacité ait été démontrée, leur capacité 

d’adsorption peut être considérablement réduite selon le type de COV notamment à cause du 

manque d’interactions spécifiques entre les COV et l’adsorbant. Cette thèse est donc portée 

sur le développement d’adsorbant spécifique pour COV. La surface d’adsorbants 

commerciaux a été modifiée en fonction des propriétés physique du COV avec pour objectif 

de créer des interactions spécifiques.  

Le charbon actif est un adsorbant largement utilisé dans le traitement des COV à cause 

de son bas coût de production et de sa polyvalence. Grâce à sa microporosité, le charbon actif 
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possède une grande capacité d’adsorption envers les COV apolaires comme le toluène ou le 

benzène même à basse concentration. Le charbon actif est généralement utilisé sous forme de 

granule ou de fine poudre pouvant ainsi créer des pertes de charge ou des phénomènes de 

transfert de masse menant à des limitations cinétique du procédés. Afin de palier à ces 

désavantages, des fibres de carbone activées sont utilisées dans cette thèse.  

Dans un premier temps, l’adsorption de toluène, un COV apolaire à haut point 

d’ébullition, sur les fibres de carbone activées a été étudiée. L’influence de la microporosité 

sur l’adsorption du toluène a été menée en utilisant deux fibres de carbone activée présentant 

une chimie de surface similaire mais une microporosité différente. L’influence de la taille 

moyenne des pores sur l’enthalpie d’adsorption a été évaluée par le biais d’isothermes 

d’adsorption ainsi que de leurs modélisations. L’enthalpie d’adsorption du toluène a aussi été 

calculée sur la base de mesures expérimentales de désorption avec rampe de température qui 

furent par la suite simulées. Les valeurs obtenues selon les deux méthodes ont été comparées. 

A part leur morphologie, la chimie de surface des adsorbants peut aussi influencer la capacité 

d’adsorption des COV. L’influence des groupes oxygène contenu à la surface des fibres de 

carbone activées sur la capacité d’adsorption du toluène et de l’acétaldéhyde a été mesurée en 

utilisant des fibres contenant un nombre variable de groupes oxygène. Alors qu’une influence 

positive de la concentration d’oxygène à la surface des fibres a été remarquée pour 

l’acétaldéhyde, une diminution de la capacité d’adsorption du toluène a été mesurée. 

L’introduction de fonctionnalités spécifiques à certain COV a été menée pour 

l’adsorption du formaldéhyde et de l’acétaldéhyde représentants les COV polaires. Les fibres 

de carbone activées ont été fonctionnalisées au moyen d’une déposition d’un film liquide de 

diéthylènetriamine (DETA). L’influence du DETA sur l’adsorption du formaldéhyde a été 

étudiée en variant la quantité de DETA déposé et un mécanisme d’adsorption est suggéré.  
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La déposition sur les fibres de carbone activées de nanoparticules (NPs) d’oxyde de 

métaux a été utilisée pour l’adsorption de l’acétaldéhyde. En combinant le haut potentiel 

d’adsorption des NPs d’oxyde de métaux à la grande surface spécifique des fibres de carbone 

activées, un adsorbant efficace envers l’acétaldéhyde a été synthétisé. L’influence de la 

quantité d’oxyde de magnésium ainsi que l’effet du CO2 dans le flux gazeux a été évalué. 

Finalement un mécanisme d’adsorption basé sur la désorption avec rampe de température a 

été suggéré.  

La dernière partie de ce travail de recherche est orientée sur le développement d’un 

adsorbant pour le butadiène. La surface de zéolites commerciales a été modifiée avec pour 

objectif la création de site d’interaction spécifique. La caractérisation de la surface de cet 

adsorbant a permis de suggérer des sites d’adsorption. Les paramètres thermodynamiques 

d’adsorption ont été calculés à partir des isothermes mesurées expérimentalement. Ces valeurs 

ont été comparées à celle obtenue par la méthode de désorption avec rampe de température.  

 

Mots-clés : Adsorption, COV, fibres de carbone activées, fonctionnalisation de surface 
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1 Introduction 

This introductory chapter presents a brief overview of the thesis. The subject is 

formulated underlying the main motivations and objectives of this research project. The 

structure of the thesis is also outlined.  
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1.1 Motivation and Objectives 

Volatile organic compounds (VOC) are pollutants often encountered in industrial gas 

emissions. They are defined by the European council as compounds having a vapor pressure 

of 0.01 kPa or more at 293 K. Their release is subjected to legal limits due to their toxicity 

and their impact on the environment [1].  

Although several VOC abatement strategies have been developed, adsorption is a 

widely used technique in industry, particularly for diluted streams [2]. In the last century the 

development of efficient adsorbent became of great importance and the first industrial 

companies producing activated carbon and zeolite were founded in 1911 and 1956 

respectively [3]. Nowadays, modern technologies allow controlling the morphology and the 

chemistry of activated carbon [4] and zeolites [5] improving their adsorption capacities.  

This thesis deals with the issues encountered during the adsorption of VOC. The 

efficiency of the adsorbent strongly depends on the VOC physical properties such as polarity 

and boiling point. Non-polar high boiling point VOC can be efficiently adsorbed on activated 

carbon due to its wide microporous structure. Different interactions are created in the 

micropores because of the identical chemical properties of non-polar VOC and activated 

carbon. However, much lower adsorption capacities are reported for lower boiling point VOC 

or polar ones due to the lack of interactions rendering the removal of such compounds 

particularly challenging.  

The removal of polar VOC is generally achieved by rendering the original hydrophobic 

activated carbon surface more hydrophilic. This surface tuning allows the creation of 

hydrogen bonding between the polar adsorbate and the hydrophilic surface groups. Although 

large increase of the adsorption capacity is usually reported with this type of surface 
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functionalization, it remains lower than for non-polar VOC. Moreover the hydrophilic 

surfaces create interactions with all type of polar compounds including water.  

The creation of specific adsorption sites is then required for the selective removal of 

polar or low boiling point VOC. Metal oxide nanoparticles have shown promising adsorption 

capacities with polar compounds such as ketones or aldehydes. However, it is very difficult to 

handle NPs as adsorbent in practical cases due to high pressure drop created during gas 

passage. Functionalization of activated carbon surface by nitrogen groups is another well-

known technique for increase of aldehyde removal. The efficiency of nitrogen groups has 

been established but limited adsorption capacities were reported due to their low density on 

the activated carbon surface. 

Besides activated carbon, zeolites represent valuable adsorbents due their well-

developed crystalline structure presenting large microporosity. Surface acid sites creation can 

be easily achieved by ion exchange providing potential adsorption specific sites. Another type 

of adsorption sites could be obtained by transition metal-exchanged zeolite.  

Hence the present work aims at developing efficient adsorbents with particular surface 

tuning for removal of VOC at low concentrations. The removal of different VOC such as 

toluene, acetaldehyde, formaldehyde and butadiene is studied over activated carbon fibers and 

zeolites. The ultimate goal is to maximize the adsorption capacity towards all these VOC. The 

strategy used for adsorbent development is focused on the creation of particular adsorbent-

adsorbate interactions by modification of the surface properties of a commercial adsorbent. 

The final adsorbents should present large adsorption capacity and avoid strong mass transfer 

limitations or pressure drop.  

 



Chapter 1: Introduction 

4 

 

1.2 Structure of the Work 

In Chapter 2, the current state of the art in the field of VOC adsorption is reviewed. 

Chapter 3 presents the procedure used for preparing the studied adsorbent as well as the 

characterization techniques employed throughout this work. The experimental setup 

developed for this project and the method used for calculating of the adsorption capacity are 

also presented in details.  

Effect of ACFs morphology and surface chemistry on toluene and acetaldehyde 

adsorption 

Chapter 4 presents the removal of toluene, chosen as a model of non-polar high boiling 

point VOC, on ACFs. Two different ACFs possessing different pore size and similar surface 

chemistry were tested. The effect of the ACFs morphology on toluene removal is studied via 

adsorption isotherms and temperature-programmed desorption (TPD). Based on the data 

obtained an adsorption mechanism is suggested and thermodynamic parameters calculated.  

The ACFs surface chemistry being another important parameter for VOC adsorption, its 

effect on the removal of two types of VOC, toluene and acetaldehyde, chosen as model for 

polar VOC, is studied in Chapter 5. The morphology remains constant whereas the surface 

chemistry is modified to different extents by oxidative treatment. The effect of the oxidative 

treatment on toluene and acetaldehyde is evaluated and explained by the surface oxygen 

content.  

Creation of specific sites on ACFs for formaldehyde and acetaldehyde adsorption 

The surface of ACFs can be modified with specific functional groups for the creation of 

specific adsorbent-adsorbate interactions. Chapter 6 presents the functionalization of ACFs 

surface by deposition of nitrogen containing groups. The removal of diluted formaldehyde, 
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representing polar low boiling point VOC, is studied over diethylene triamine (DETA) 

deposited on ACFs. The effect of the DETA amount on the formaldehyde adsorption capacity 

is studied as well as the adsorbent stability upon storage. Finally a mechanism of interactions 

between DETA and formaldehyde is suggested.  

Chapter 7 reports the development of metal oxide functionalized ACFs for 

acetaldehyde adsorption. Metal oxide NPs were deposited on ACFs in order to combine the 

intrinsic adsorption capacity of the metal oxide NPs and the favorable macro-structure of the 

ACFs. The adsorption capacity towards acetaldehyde was evaluated for several metal oxide 

NPs and compared to the performance of oxidized ACFs (Chapter 5). Competitive 

adsorption with CO2 was also carried out. Based on the TPD pattern different adsorption sites 

were identified.  

Zeolite as specific adsorbent for butadiene 

Butadiene is a non-polar low boiling point VOC. Because of its high volatility, 

butadiene adsorption in ACFs micropore is not efficient. Therefore, the use of zeolite as an 

adsorbent for butadiene is studied in Chapter 8. Specific adsorbate-adsorbent interactions 

involving the butadiene double bonds are presented. A detailed in situ FTIR study of 

butadiene adsorption is applied to gain insight on the adsorption mechanism. Butadiene 

adsorption isotherms and TPD experiments were carried out to obtain the thermodynamic 

parameters of adsorption.  

Finally Chapter 9 summarizes the results obtained throughout this study and presents 

the general conclusions and outlooks.  
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2 State of the Art 

This chapter presents the current state of research in the field of fluid-solid adsorption. 

The first part is focused on the principles of adsorption with the description of the different 

adsorption isotherms. The second part is devoted to the main methods used for VOC removal 

with particular focus on adsorption. The influence of activated carbon porosity and surface 

chemistry for selective VOC removal is discussed. Chemisorption of VOC on zeolite and 

metal oxide nano-particles is also presented.  
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2.1 Adsorption: General Definitions and Terminology 

Adsorption is a thermodynamically favorable phenomenon occurring at the interface of 

fluid and solid. It is defined as the enrichment of the solid surface by the fluid phase [6]. 

Adsorption depends on the size of the interfacial area. Therefore, the solid, called ‘adsorbent’, 

is usually highly porous with a large specific surface area. The counterpart of the adsorbent is 

the ‘adsorbate’. The adsorbate is defined as the material in the adsorbed state whereas the 

‘adsorptive’ is the adsorbable substance in the fluid phase. Depending on the nature of the 

adsorptive and the adsorbent, the temperature and the fluid phase composition, a considerable 

adsorbate concentration on the solid surface can be encountered. The term ‘desorption’ 

denotes the inverse of the adsorption process. Although solid-liquid [7] and solid-gas [8-10] 

interfaces are contained in the definition of adsorption only the solid-gas system is studied 

and presented in this thesis. 

2.1.1 Definitions 

The thermodynamic equilibrium between the amount adsorbed and its bulk phase 

concentration at constant temperature is defined as ‘adsorption isotherm’.  

The term ‘surface area’ is defined as the surface available for a certain adsorptive under 

specific conditions. It is generally referred on the mass of adsorbent and represents the 

specific area of the interface between gas and solid. Most of the solid adsorbents used in 

industrial applications have a large specific surface area. This is achieved through a complex 

porous structure consisting of pores of various shapes and width.  

The pores are usually classified by the IUPAC in three groups according to their width. 

Micropores are defined as pores width smaller than 2 nm, mesopores are pores of 2-50 nm 

width and macropores represent pores with a diameter larger than 50 nm. Recently the 
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micropores were subdivided in ultramicropores dp < 1 nm and supermicropores, dp 1-2 nm 

[11]. 

Adsorption phenomenon occurring by interactions between the solid and the adsorptive 

can result either from van der Waals interaction and are defined as ‘physisorption’ or it can 

have properties closer to chemical bonding and are called ‘chemisorption’. Physisorption can 

be compared to a condensation process of the adsorptive with a relatively low degree of 

adsorbent specificity. At high relative pressure, multilayer adsorption generally occurs. The 

identity of the adsorbed molecule is conserved and it returns to the fluid phase without 

transformation during desorption. The energy involved in a physisorption process is usually 

on the order of magnitude of the heat of condensation of the adsorptive although an 

appreciable enhancement can be observed during physisorption in micropores. Physisorption 

is always exothermic. On the opposite, chemisorption leads to monolayer coverage formed by 

interactions with specific adsorption sites. Chemisorbed molecules ‘react’ with the adsorbent 

and their desorption in the original form is usually not possible. 
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Table 2.1 Terms and definitions 

Term Definition 

Adsorption Enrichment of the solid surface by a fluid compound 

Adsorbate Substance adsorbed at the gas-solid interface 

Adsorptive Substance in the fluid phase 

Physisorption Adsorption without specific chemical bonding 

Chemisorption Adsorption with specific chemical bonding 

Surface area Extent of surface accessible to the probe molecule under given conditions 

Pore Cavity or channel in a solid 

Micropore Pore of internal width < 2 nm 

Mesopore Pore of internal width between 2 and 50 nm 

Macropore Pore of internal width > 50 nm 

Ultramicropore Pore of internal width < 1 nm 

Supermicropore Pore of internal width between 1 and 2 nm 

 

2.1.2 Adsorption Isotherms 

The amount of gas adsorbed on a solid surface depends on its pressure in the bulk 

phase, temperature and the nature of the gas-solid interaction with a dynamic equilibrium. The 

adsorption isotherm is defined as the relation between the amount adsorbed per unit of mass 

and the equilibrium pressure at given temperature:  

 0 ,adsorbentn m f p p T  (1.1)  
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Adsorption isotherms usually have characteristic shapes. These shapes are important 

since they provide information about the pore structure of the adsorbent. The IUPAC 

classification proposes 6 characteristic isotherm shapes (Figure 2.1) [12].  

 

 

Figure 2.1 Classification of vapor adsorption isotherms 

 

The type I isotherm is reversible and rises steeply at low relative pressure to reach a 

plateau signifying that the pores of the adsorbent are completely filled. Such isotherm is 

obtained with microporous adsorbent. Adsorbent-adsorbate interactions are enhanced in the 
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micropores due to the proximity of both pore walls. A decrease of the micropore width leads 

to a decrease of the relative pressure at which the micropore filling occurs. 

The type II isotherm is concave to the p/p0 axis. The amount adsorbed increases steeply 

at low partial pressure and then a moderate slope is observed until saturation. Such isotherm 

shape is obtained with a macroporous material where multilayer adsorption occurs. The knee 

of the isotherm, defined as the slope change at low partial pressure, represents the monolayer 

capacity. 

The type III isotherm represents an adsorbate-adsorbent system with weak interactions 

on a macroporous solid 

The type IV and V isotherms are obtained with mesoporous adsorbents. Type IV and 

type V isotherms have a shape related to type II and type III isotherms respectively although 

they exhibit a hysteresis loop. The lower branch of the isotherm is obtained during the 

adsorption (increase of the partial pressure) whereas the upper branch during desorption. The 

hysteresis loop is associated to the filling and emptying of the mesopores, called capillary 

condensation. 

The type VI isotherm is known as a stepwise isotherm. It is associated to a layer-by-

layer adsorption on a highly uniform surface. 

The IUPAC classification was determined for ideal porous structure. However, in many 

cases the adsorbent has a complex nature rendering the interpretation of the isotherm obtained 

experimentally more difficult. 
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2.2 Removal of VOC by Conventional Methods 

Volatile organic compounds (VOC) are common air pollutants encountered in industrial 

gas emissions [13]. They are toxic and environmentally detrimental even at low 

concentrations [1, 14, 15]. Because of the toxicity, their emission is subjected to legal limits 

[16]. Therefore, numerous VOC control strategies have been developed during the last 

century [2, 17]. 

Many different methods are available for VOC emission control [18]. Among them, 

thermal oxidation, catalytic and plasma oxidation [19-21], or bio-filtration [22, 23] are 

destructive ones whereas absorption [24], condensation, adsorption or membrane separation 

are considered as recovery ones. Thermal oxidation is carried out at high temperature (1100-

1300 K) for 200 to 5000 ppmv VOC concentration range [25]. It is therefore energetically 

costly and not efficient for diluted streams (< 100 ppmv). Catalytic oxidation systems burn 

VOC similarly to thermal oxidation. The catalyst allows decreasing the combustion 

temperature and the VOC concentration range [21, 26] but total destruction of VOC into CO2 

and H2O is generally not achieved [27]. Plasma oxidation systems have been also extensively 

studied for VOC removal [28-30]. However it is difficult to handle in practical cases and the 

formation of CO as a by-product renders this technology less environmental-friendly [31]. 

The use of bio-filtration for low concentration VOC abatement was also studied and high 

efficiency was reported at laboratory scale [32-34]. However, this technology is sensitive to 

concentration variation and high removal efficiencies cannot be achieved under variable VOC 

concentration [35]. Therefore the amount of bacteria in the bio-filter has to be constantly 

adjusted to the amount of VOC. Finally this technology requires a long residence time (1-3 

min) which is a major drawback for practical applications [36].  
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Unlike destructive VOC abatement techniques, the recovery ones allow possible re-use 

of the VOC thereby valorizing them. Condensation is one of the well-known industrial 

techniques. It is efficient for VOC with boiling point above 300 K at high concentration (5000 

ppmv). Although the recovered product is directly usable with this technology, the efficiency 

of this method is not greater than 80 % [25]. The recovery of more diluted or low-boiling 

VOC requires considerable cooling increasing drastically the operating costs.  

Absorption, consisting of VOC transfer from a gas phase to a liquid solvent, also known 

as scrubbing, is extensively used in industry [37-39]. The VOC transfer takes place in an 

absorber tower designed to enhance the mass transfer [40]. Such a process is governed by the 

vapor liquid equilibrium. Recently, novel ionic liquid solvents were developed for absorption 

purpose and larger VOC affinity towards ionic liquids was reported [41]. Despite interesting 

results obtained at laboratory scale, ionic liquids remain expensive and therefore VOC 

concentration above 500 ppmv is suggested for efficient recovery process [42].  

The recovery of VOC by membrane based separation such as gas permeation has been 

studied during the last decades [43, 44]. Various membranes were developed and their 

efficiency was mostly tested in a relatively high VOC concentration range (1000-10000 

ppmv) [45, 46]. Despite good results reported, this technology is considered as a slow process 

with high cost associated with the permeation membrane. Moreover, no results were reported 

for VOC concentration below 1000 ppmv.  

In summary, all recovery methods are efficient at VOC concentration larger than 1000 

ppmv except adsorption. This technology is efficient for low VOC concentration and was 

developed in the second part of the 20th century for exhaust gas cleaning [47] using novel 

microporous adsorbents (zeolites, activated carbons, alumina, silica gels, polymeric 

adsorbent) [48]. VOC abatement by adsorption is based on the affinity between the VOC and 
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the adsorbent surface [8] and requires high specific surface area. Hence adsorbents usually 

present a well-developed porosity [49].  

2.3 VOC Removal by Adsorption  

Due to an increasing demand on VOC control technologies, development of adsorbents 

for VOC removal has been an important research subject during the last decades and the 

interest to this topic is still very high. The increase of adsorbent capacity, the understanding of 

the adsorption mechanism and the synthesis of selective adsorbents are the main objectives in 

this research field. The key to a successful adsorbent design is to combine adsorption sites 

specific towards the targeted VOC while keeping a high microporosity necessary for large 

adsorption capacity.  

2.3.1 Role of Adsorbent Porosity  

Porosity Characterization  

Since adsorption is a surface phenomenon, the porosity of the adsorbent is a crucial 

parameter for high adsorption efficiency. Porous structures are present in different crystalline 

materials such alumino-silicate, zeolite or metal organic framework (MOFs) which are 

constituted of metal atoms connected by organic linkers [50, 51]. Amorphous porous 

structures are also of interest for gas adsorption, particularly activated carbons [52] and 

polymers [53, 54].  

An important parameter of porous materials is their specific surface area. It is 

commonly calculated from the Brunauer-Emmett-Teller (BET) equation [55]. This equation is 

applied to the experimental isotherm of nitrogen adsorption on the material at 77 K [56, 57]. 

Experimentally the N2 adsorption capacity is measured at different partial pressures until 

saturation. At a certain partial pressure depending on the porosity of the material, a N2 
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monolayer is assumed by the model. By knowing the area of a nitrogen molecule and the 

monolayer amount adsorbed by the material, the specific surface area is calculated.  

Although N2 as a probe molecule for specific surface area measurement is widely used 

[58], adsorption of other gases such as argon [59] or carbon dioxide [60, 61] was also carried 

out. The same surface area range is usually obtained despite that slightly different results were 

reported [62]. Further characterization of porous material includes the type of porosity and the 

pore size distribution. Different types of porous structure are identified for VOC adsorbents: 

mesoporous and microporous materials [63]. These two types of porosity are identified by 

different N2 isotherm shape [12].  

The pore size is determined by more complex calculations using the adsorptive 

isotherm. In the case of mesoporous solid, the pore size distribution is usually determined by 

computing the nitrogen isotherm adsorption data with the BJH [64] or the Dollimore and Heal 

model [65] assuming capillary condensation in the mesopores. The pore size distribution of 

microporous material could be determined using the Horvath and Kawazoe (H-K) method 

[66]. This model relates the amount adsorbed at a given partial pressure to a micropore radius 

using the Lennard-Jones potential. However, since the nature of the adsorbent-adsorbate 

interactions are not taken into account for the pore size estimation, the reliability of the H-K 

method is limited [67]. Developed recently, density functional theory (DFT) is a powerful tool 

for the estimation of the pore size distribution in microporous structure [68, 69] but requires 

consequent computational tools [70].  

Developed in the sixties, the αs-method is another technique applied for pore size 

distribution determination [71, 72]. The αs-plot is based on the comparison of the N2 

adsorption isotherms between a chemically similar non-porous reference adsorbent and the 

studied porous material [73]. Normalizing the N2 amount adsorbed onto the nonporous 
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reference at different partial pressure by the amount adsorbed at p/p0 = 0.4 gives the αs 

reference. The amount adsorbed onto the studied adsorbent is then plotted against αs at the 

corresponding relative pressure. Depending on the shape of the α-plot, the porosity of 

different samples can be compared [74]. In this way a semi-quantitative description of the 

pore structure is obtained [75]. This microporosity assessment technique was successfully 

applied for activated carbon [76, 77] and silica [78]. An example of an αs-plot coupled with 

adsorption data is shown in Figure 2.2.  

 

 

Figure 2.2 Example of αs-plot for a sample with ultramicropores (a) and supermicropores (b) 

 

The difference between material with ultramicropores (a) and supermicropores (b) is 

depicted in Figure 2.2 as an example. Ultramicroporous adsorbent shows a constant 

adsorption capacity at lower partial pressure than supermicroporous material signifying 

complete filling of the ultramicropore at lower partial pressure (left part). The right part of 

Figure 2.2 is the αs-plot. As can be seen, the difference between the two microporous material 

is more evident. The curve slope change appears at different αs values. Similarly to the 

adsorption graph a lower curve slope change is associated to narrower micropores.  
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Advantages of Microporosity 

The effect of pore size on the VOC removal capacity was studied extensively over 

different mesoporous and microporous adsorbents such as silica [79], zeolite [80], polymers 

[81] and activate carbon [82, 83]. At high VOC relative pressure, large adsorption capacities 

were reported for mesoporous material taking advantage of a considerable pore volume of the 

adsorbent [84]. However, at lower VOC partial pressure, an increased adsorption capacity 

along with a mean pore diameter decrease was reported while comparing different 

mesoporous silica for toluene and benzene removal [85]. Similar results were reported for n-

hexane on MCM-41 due to enhanced adsorbent-adsorbate interactions in the narrower pores 

at low n-hexane pressure [86]. Another study comparing the removal capacity of n-hexane 

and benzene over mesoporous (MCM-41) and microporous (activated carbon, Y zeolite and 

silicalite-1) showed a considerably higher adsorption capacity of the microporous adsorbent at 

low adsorptive partial pressure [87]. Since VOC are generally emitted at low partial pressure 

[85], efficient removal can only be achieved by microporous adsorbents such as zeolite or 

activated carbon [88].  

Activated carbon can be used as adsorbent in several forms like granules, pellets, 

powders or fibers [89, 90]. Among them, activated carbon fibers (ACFs) consisting of 

microfilaments with high specific surface area, present smaller mass transfer limitations and 

lower pressure drop as compared to the other types of activated carbon [91, 92]. 

2.3.2 Adsorption by Activated Carbon: Microporosity  

Numerous publications report microporous adsorbents as promising material for VOC 

removal at low concentration [93, 94]. The effect of the micropore size, the specific surface 

area and the total pore volume on the VOC removal capacity was studied for adsorbent 

optimization [95]. Activated carbon (AC) was extensively studied since it presents tunable 
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microporosity properties depending on the synthesis and the activation procedure [96-99]. 

Lillo-Ródenas et al. studied the effect of the micropore size for benzene and toluene 

adsorption on AC and activated carbon fibers (ACFs) [100, 101]. They noticed that the 

adsorption capacity for these two VOC was increasing with micropore volume and specific 

surface area. Moreover, a linear correlation between the VOC adsorption capacity and the 

narrow micropore volume (dp < 0.7 nm) obtained by CO2 adsorption at 273 K was reported. 

The authors concluded that the narrow micropores are effective for toluene and benzene 

removal at 200 ppmv.  

The porous structure of AC was also studied for ethanol removal at 250 ppmv by 

Silvestre-Albero et al. [102]. They reported an increased adsorption capacity with the 

micropore volume up to a maximum before a decrease. This result was explained by a 

widening of the micropores when increasing the microporosity during the activation of the 

AC. They concluded that the total micropore volume governs the adsorption capacity along 

with the mean micropore size.  

A comparative study of the adsorption capacity of ACFs with different microporosity 

towards n-butane at 50 ppmv revealed a larger abatement by the ACFs with the lower pore 

volume and the smaller micropore size [103]. At higher n-butane concentration (5000 ppmv), 

higher adsorption capacity of the ACFs with the larger micropore volume was reported. Such 

an inversion of the adsorption capacity for a given compound was referred to as a crossover 

regime. Similar results were obtained by Mangun et al. for the adsorption of light n-alkanes 

(methane to pentane) over ACFs with different pore size and micropore volume [104]. 

Depending on the VOC boiling point, the crossover regime is reached at different VOC partial 

pressure. For the lighter VOC, the crossover regime appears at high partial pressure, while for 

higher boiling point VOC, it takes place at extremely low partial pressure.  
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Finally Huang et al. tried to formalize and predict the adsorption capacity of a 

microporous adsorbent by developing an equation based on the pore size, the maximum 

adsorption capacity, the adsorbate partial pressure and a structural factor depending on the 

adsorbate properties [105]. However the structural factor is not clearly defined and is not 

predictable for a given adsorbate rendering this model difficult to use.  

2.3.3 Adsorption by Activated Carbon: Surface Chemistry 

Numerous publications reported the adsorption of a wide range of VOC over 

microporous adsorbents. However, depending on the VOC physical properties, the 

performance achieved by the adsorbent is extremely variable [106]. High adsorption capacity 

can be reached by activated carbon towards non-polar high boiling point VOC such as toluene 

[107], whereas much lower adsorption capacity was reported for acetone or acetaldehyde 

[108, 109]. In the case of activated carbon the hydrophobic properties of the micropore walls 

favor the interactions with chemically similar VOC such as benzene, toluene or long chain 

alkanes. The adsorption is governed by interactions of π-electron rich region of the graphene 

layers and the aromatic rings [110, 111]. 

The strategy commonly adopted for the removal of polar VOC is to modify the surface 

properties of AC in order to favor interactions with the adsorptive [112]. Commonly oxygen 

containing groups created by means of oxidative treatment in gas or liquid phase is performed 

[113]. A large number of functionalities present on the AC surface are schematically depicted 

in Figure 2.3. 
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Figure 2.3 Oxygen surface functional groups 

 

These oxygen functionalities were first characterized by titration methods [114]. 

Carboxylic, anhydride, lactones, lactol and phenol are considered as acidic groups whereas 

carbonyl and ether are neutral or slightly basic [115]. The identification of functional groups 

was also obtained qualitatively by infrared spectroscopy (IR) [116] whereas in situ X-Ray 

photoelectron spectroscopy (XPS) coupled with temperature-programmed desorption (TPD) 

[117, 118] can provide quantitative information on individual functional groups.  

Although oxidative treatment of AC leads to the formation of different surface oxygen 

groups, depending on the oxidative agent their proportion may vary. Nitric acid oxidation 

leads mainly to the formation of carboxylic groups [119] whereas oxidation under diluted 

oxygen favors the creation of anhydride and lactone groups [117]. Hydrogen peroxide was 

also reported as a carbon oxidative agent [120, 121] as well as ammonium persulfate [122]. 
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The removal of the oxygen functionalities can be achieved by heat treatment in an inert gas 

[123]. The effect of oxidative treatment on the carbon microporosity was studied showing 

both increase [117] and decrease [124, 125] of the specific surface area and the mean pore 

size. 

The presence of oxygen functional groups on the AC surface for polar VOC removal 

was studied by several research groups [121, 126, 127]. Adsorption of acetone and ammonia 

on H2SO4/HNO3 treated ACFs was reported with a significant increase upon oxidation 

whereas ACFs treated by H2O2 did not increase the acetone removal capacity [124]. Methanol 

removal efficiency over AC was increased upon oxidation by ammonium persulfate 

(NH4)2S2O8 for low methanol partial pressure, whereas at high partial pressure, the largest 

adsorption capacity was achieved by the ACs with the largest pore volume regardless of the 

surface chemistry [128]. Three different AC treated by nitric acid oxidation were studied for 

acetaldehyde removal [129]. In every case, the removal capacity was increased due to the 

hydrophilic surface obtained by the addition of oxygen functional groups. Variation of the 

adsorption enthalpy of acetaldehyde was also observed upon surface oxidation due to the 

creation of hydrogen bonding between oxygen containing groups and the aldehyde group. 

Finally a comparative study of polar and non-polar VOC removal over nitric acid treated ACF 

was reported by Dimotakis and co-workers [106]. An increase of acetone and acetaldehyde 

removal was noticed for oxidized fibers whereas lower adsorption was observed for benzene. 

Similarly to El-Sayed and Bandosz [129], the creation of specific chemical interactions was 

suggested to increase the adsorption capacity in the low pressure range for both acetone (25-

1000 ppmv) and acetaldehyde (50-500 ppmv). 

Besides O-containing groups, the presence of nitrogen functional groups on the carbon 

surface can create specific adsorption sites [130]. Several procedures were reported for the 

creation of such functional groups. The introduction of nitrogen functional groups on 
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activated carbon can be carried out by using an ACFs precursor composed partially by 

nitrogen [131]. The presence of pyrrolic and pyridinic nitrogen functional groups was 

reported using such precursor. The influence of N-functional groups on the adsorption of 

formaldehyde was addressed and a higher removal was observed for the N-functionalized 

ACFs.  

Another method developed for the introduction of nitrogen containing groups on carbon 

surface consists of the formation of nitro group by carbon oxidation followed by a reduction 

to the amino group [132]. The oxidation step is usually carried out with nitric acid whereas 

several methods exist for the reduction step such as treatment with sodium hydrosulfite 

(Na2S2O4) and ammonia [133], hydrochloric acid and iron mixture [134] or ammonia at high 

temperature [135]. The development of amine groups on the carbon surface was reported to 

increase the removal capacity of phenol, nitrous oxide and formaldehyde because of the 

strong adsorption potential of the amino groups.  

The direct addition of nitrogen functional groups on ACFs by heat treatment in 

ammonia was developed by Mangun et al. [136] and Economy et al. [137]. A significant 

increase of the ACFs basic properties and a higher removal of HCl were observed with the 

addition of amino groups. Boudou used similar method to functionalize ACFs for SO2 and 

H2S removal and reported higher adsorption capacity due to basic groups creation [138]. 

Although the ACFs microporosity was kept, both authors reported a small increase of the 

mean pore size upon high temperature ammonia treatment. Addition of functional nitrogen 

groups on AC by urea impregnation followed by heat treatment was reported to create 

additional adsorption centers for acetaldehyde and hydrogen sulfide removal [130, 139]. 

Lower adsorption enthalpies of acetaldehyde on N-functionalized ACFs as compared to 

original material confirmed the other type of adsorption sites. 
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Another strategy developed for carbon surface functionalization is the deposition of a 

liquid layer on the carbon surface [140]. Several studies report the efficiency of this type of 

adsorbent for formaldehyde [141] and acetaldehyde removal [142]. Acetaldehyde adsorption 

on aminobenzoic acid modified AC was addressed [142]. A larger adsorption capacity was 

reported and aldehyde condensation over the acid group to form crotonaldehyde followed by a 

reaction between the aldehyde and the amine group was suggested. Ma et al. deposited 

hexamethylene diamine via vapor condensation to functionalize activated carbon for 

formaldehyde removal at low concentration [141]. The authors reported a large increase of the 

modified AC capacities compared to the original one. However, at high hexamethylene 

diamine loading, the formaldehyde removal capacity was reported to decrease due to pore 

blocking.  

The functionalization of other supports with amine groups was also carried out for the 

removal of aldehyde [143]. Higher formaldehyde adsorption capacity was measured over 

functionalized silica supports (MCM-41 and SBA-15) as compared to their original 

counterparts using grafted 3-aminopropyltrimethoxysilane [144, 145]. 3-

aminopropylethoxysilanes was also used to functionalize graphite oxide [146]. The amine-

functionalized material showed a higher adsorption capacity as compared to non-

functionalized material [147]. The formation of a Schiff base between the amine and the 

aldehyde group was suggested.  

In conclusions, the addition of oxygen containing groups on the AC surface is an 

important strategy for increasing its hydrophilic character. Addition of oxygen functionalities 

by means of liquid or gaseous oxidative treatment increases the removal of polar VOC at low 

concentration demonstrating the importance of the adsorbent surface chemistry. The addition 

of nitrogen functionalities on the AC surface was achieved by several methods. The 

functionalities are either chemically bonded or supported on the surface. In both cases an 
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aldehyde removal enhancement is reported via the amine-aldehyde group interactions. The 

use of other nitrogen functionalized supports for aldehyde removal was also reported. 

2.3.4 Adsorption by Metal Oxides 

Unlike activated carbon where physisorption usually occurs, specific chemical bonds 

can be created between the VOC and the adsorbate for its removal [148]. Such specific 

interactions are generally achieved with metal oxides [149]. Adsorption of a wide range of 

VOC such as sulfur dioxide, hydrogen sulfide or ammonia was reported over metal oxides. 

The metal oxide can be used either as bulk [150] or supported [151] adsorbents. Enhanced 

adsorption capacity is reported for porous metal oxide nanocrystals with high specific surface 

[152, 153].  

Porous magnesium oxide (MgO) prepared from aerogels was reported as efficient 

adsorbent for a large number of VOC such as methanol, ethanol and butanol at low partial 

pressures [154] or sulfur dioxide [155]. They showed a well-developed porosity and a small 

particle size. A comparison of the sulfur dioxide surface occupancy between commercial 

MgO powder and aerogels nanocrystals showed a higher occupancy of the latter suggesting 

specific adsorption sites on the edges and the corners of the nano-crystals. The adsorption of 

other VOC such as acetaldehyde, acetone, propionaldehyde and benzaledehyde on the same 

MgO adsorbent was also studied [156]. Higher adsorption capacity as compared to 

commercial MgO and AC was systematically reported. A dissociative acetaldehyde 

adsorption mechanism through the interaction of the carbonyl group with the surface sites was 

suggested.  

Porous nanocrystals of CuO and NiO were synthesized for carbon tetrachloride and 

sulfur dioxide removal [157]. A destructive adsorption of carbon tetrachloride was reported 

on both CuO and NiO at high temperature. As compared to commercial particles, a larger 
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adsorption capacity was observed. Multilayer adsorption of SO2 was reported on porous 

nanocrystals whereas only a monolayer was observed on commercial nano-particles 

indicating a higher intrinsic activity of the porous particles.  

Jeevanandam et al. reported the selective removal of thiophenes from a hydrocarbon 

stream on Ag nano-particles supported on aluminum oxide [151]. The authors suggested the 

creation of Lewis acid sites through the silver nano-particles deposition. The comparison of 

the thiophene adsorption capacity revealed a 10-fold increase upon nano-particles deposition. 

Desulfurization of the hydrocarbon stream is suggested to occur via a π-complexation 

mechanism between the Ag
+
 ions and the thiophene aromatic ring. In such a complexation 

mechanism, the cation forms σ bonds with its empty s orbital and its d orbital back-donates 

electron density to the antibonding (π*) orbitals of the thiophene ring [158]. Similarly the 

dispersion of CuCl on Na-X zeolite was reported for separation of olefin and paraffin 

mixtures [159]. A π-complexation adsorption mechanism is also suggested between the olefin 

and the adsorbent whereas no specific interactions are created with the paraffin. 

The use of activated carbon fibers (ACFs) as a metal oxide support for ammonia and 

hydrogen sulfide adsorption was reported by Le Leuch et al. [160]. The deposition of Fe, Cu 

and Zn oxides, known for ammonia and hydrogen sulfide combustion, on ACFs was achieved 

and a comparative study of their removal capacity was carried out. Larger adsorption capacity 

towards hydrogen sulfide was reported for Cu oxide modified ACFs whereas Fe oxide 

modified ACFs was more efficient for ammonia removal. In both cases the adsorption 

capacity was found to be larger as compared to original ACFs.  

In conclusions, the use of metal oxide nano-particles is a valuable alternative to 

common adsorbents such as activated carbon, zeolite or silica for VOC removal. To be 

efficient the metal oxide should present a very small size and a large porosity since corner and 
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edge sites are generally reported as adsorption sites. Unlike activated carbon where a 

physisorption mechanism is observed, metal oxide based adsorbents present chemisorption 

mechanism. Supported metal oxide nano-particles were also reported and can be considered 

as valuable adsorbents.  

2.3.5 Zeolites as Adsorbents 

Zeolites are microporous crystalline aluminosilicate structures. They generally show 

lower adsorption capacity as compared to activated carbon due to a lower total pore volume 

and a smaller specific surface area. However, they possess a tunable surface chemistry 

because of a negatively charged framework and a positively charged counter ion. Cation 

exchange can lead to the creation of specific adsorption sites. The presence of Lewis or 

Brønsted acid sites can also enhance adsorption capacity towards specific VOC.  

The removal of sulfur containing compounds in petroleum refining streams such as 

aromatic thiophene or thiophene derivatives received great interest since new regulation 

appeared in several countries [158]. Their removal in liquid phase over metal exchanged 

zeolite was reported as very efficient and selective due to specific interactions with the 

exchanged metal [161]. Increased adsorption capacity was reported using Cu [162] and Ag-

exchanged [163] cations. A π-complexation mechanism was suggested. For comparison the 

performance of activated carbon was evaluated in similar conditions and a lower adsorption 

capacity was reported confirming the importance of specific interactions that can be created 

with metal exchanged zeolites [164]. Other transition metal exchanged zeolite such as Ni and 

Zn were synthesized for sulfur compounds removal and specific interactions involving π-

complexation were suggested [165, 166]. Velu et al. reported the efficiency of Ce-exchanged 

Y zeolite for thiophene removal without involving a π-complexation mechanism [167]. A 

higher adsorption capacity as compared to Ni exchanged zeolites was observed.  
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Separation of aromatic molecules from aliphatic ones by adsorption over zeolites was 

also investigated. Preferential interactions of aromatic molecules with the zeolite counter ion 

were reported for Na-Y and Ca-Y [168]. Stronger interactions were observed for divalent 

cations as compared to monovalent ones. An adsorption mechanism through interactions of 

benzene with both cation (Na
+
 or Ca

2+
) and oxygen atom of the framework was suggested 

[169]. The effect of the zeolite framework Al content on the removal capacity of aromatic 

compounds was studied and stronger interactions were reported for zeolite with low Si/Al 

ratio [169-171]. The selective removal of aromatic compounds via a π-complexation 

mechanism was proposed by Takahashi et al. [172]. A comparison of the adsorption potential 

of Ag-exchanged zeolites towards benzene and cyclohexane was carried out. Cyclohexane 

adsorption enthalpy over Na-Y and Ag-Y was identical whereas an increased adsorption 

enthalpy was reported for benzene on Ag-Y as compared to Na-Y indicating the importance 

of π-complexation in the removal of aromatic compounds.  

Ag-X exchanged zeolite was reported as a promising adsorbent for olefin removal 

[173]. A π-complexation mechanism is suggested to occur between the olefin and the 

adsorbent. Original Na-X zeolites was used by Da Silva and Rodriguez for an adsorptive 

separation of light olefins from paraffin [174]. A 10-fold larger selectivity towards propylene 

was reported despite the absence of a π-complexation adsorption mechanism. 

The removal of trichloroethylene over zeolites has created considerable interest over the 

last decade [175, 176]. The increase of the Si/Al ratio of the zeolite via dealumination was 

reported to increase its hydrophobicity due the formation of a hydrophobic siloxane surface 

[177, 178]. Guillemot et al. studied the influence of the dealumination level on the adsorption 

of trichloroethylene and concluded that medium dealumination (Si/Al ~17) was the most 

appropriate [179]. The influence of the counter ion at similar Si/Al ratio was analyzed by 
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Pires et al. and higher trichloroethylene adsorption capacity was reported for the acidic form 

of the zeolite (H
+
 form) [180].  

The separation of dienes from olefins has also found considerable interest in the 

petrochemical research. Similar to aromatic compounds, the electron density of the double 

bonds was considered to be involved in π-complexation mechanism. Ag and Cu(I) exchanged 

zeolites were reported as efficient adsorbents for butadiene removal due their ability for π-

complexation [181]. The Ag content did not influence the butadiene amount adsorbed [182]. 

Hence, two possible π-complexation forms for butadiene with either one Ag
+
 or two Ag

+
 were 

suggested. Butadiene from liquid phase was also adsorbed over zeolite exchanged with 

transition metal polycations consisting of 0.4 to 1.6 nm nanoparticles [183]. The use of Mn, 

Cu and Zn was reported also aiming at a π-complexation mechanism with butadiene [184]. A 

mixed transition metal polycation cluster of Cu and Mn was reported as the most efficient. A 

π-complexation followed by a polymerization on the Brønsted acid sites was suggested as an 

adsorption mechanism.  

In conclusions, zeolites are versatile adsorbents and were used towards a large number 

of compounds. Surface tuning can be carried out as:  

- Zeolite exchange with a transition metal for π-complexation 

- Dealumination for hydrophobic surface and Lewis site creation 

- Counter ion exchange with hydrogen  

- Transition metal polycations cluster 
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2.4 Conclusions 

Adsorption is one of the most efficient methods for VOC removal at low concentration 

without energy consumption. The choice of the adsorbent depends on the nature of the VOC. 

Microporosity and surface chemistry has been identified as the key parameters for efficient 

VOC removal.  

Activated carbon is therefore a valuable adsorbent because of its adjustable 

microporosity and versatility towards surface functionalization. For high boiling point VOC, 

microporous AC with a large pore volume is the most efficient. For lower boiling point VOC, 

AC with ultramicroporosity presents the highest capacity due to enhanced interaction with the 

pore walls. Efficient removal of polar VOC is usually achieved by the addition of oxygen or 

nitrogen functional groups on the AC surface.  

Besides AC, zeolite and metal oxide nano-particles are efficient adsorbents. Metal oxide 

nano-particles can create specific interactions with VOC particularly on the edge and the 

corner sites whereas in transition metal exchanged zeolites, aromatics, thiophenes, olefins and 

dienes can be chemisorbed via different mechanism.  
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3 Experimental  

In this chapter the raw materials used during the research project are listed and the 

syntheses of the adsorbents are presented in details. All the characterization techniques are 

also discussed. Finally, the experimental setup used for adsorption experiments is described 

including the calculations methods.  
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3.1 Materials 

3.1.1 Activated Carbon Fibers  

Original ACFs 

Activated carbon fibers (ACFs) were purchased from by Kynol Europa GmbH 

(Hamburg, Germany). They are produced from Kynol novoloid (phenolic) precursor fibers by 

a one-step process combining both carbonization and chemical activation by water and/or 

CO2. Two types of the fibers were used, namely: ACF-1 (SSA ~ 1000 m
2
 g

-1
) and ACF-2 

(SSA ~ 2000 m
2
 g

-1
). 

3.1.2 Modified ACFs 

Oxidized ACFs 

The oxidized ACFs were prepared by an immersion of original ACFs in a boiling 15% 

(v/v) aqueous solution of nitric acid (HNO3 65% vol., VWR chemicals, AnalaR 

NORMAPUR) for different times (1, 15, 30 and 75 min) followed by a rinsing with 

demineralized water and drying in ambient air. The abbreviations for the samples are as 

following: ACF-2/HNO3-30m means the ACF-2 sample treated by HNO3 for 30 minutes. 

Amines Functionalized ACFs 

The ACFs were modified by deposition of a diethylenetriamine (DETA) (99% Sigma-

Aldrich) via wetness impregnation. In a standard procedure, the fibers are dipped into a 

solution of DETA in ethanol (> 99.8% Fluka). The DETA concentrations were calculated 

using the ACFs wetness capacity to obtain several loadings. The impregnated fibers were then 

dried overnight in ambient air to remove ethanol. 
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Metal Oxide Deposition on ACFs 

The ACFs were modified by deposition of metal oxide nanoparticles (NPs) via wetness 

impregnation of a precursor by immersion followed by its thermal decomposition. The 

precursors that were used included: Mg(NO3)2∙6H2O, Ca(NO3)2∙4H2O, La(NO3)3∙6H2O, 

Zn(NO3)2∙6H2O Al(NO3)3∙9H2O and Ti(IV) bis(ammonium lactato)dihydroxide, were all 

provided by Sigma-Aldrich (> 98% purity). In a standard procedure the fibers were first 

dipped into a precursor solution of in ethanol (> 99.8%, Fluka) or water (Ti(IV) 

bis(ammonium lactato)dihydroxide). The precursor concentrations were calculated using the 

ACF wetness capacity to obtained the final metal loading of 5 wt.%. The wetness capacity is 

calculated by measuring the amount of solvent absorbed per unit mass of adsorbent. The 

impregnated fibers were then dried in air and thermally treated in a He (>99.99%, Carbagas, 

Switzerland) flow (50 ml min
-1

, 10 K min
-1

). The treatment temperature (673-773 K) was set 

higher than the decomposition temperature of the precursor. 

3.1.3 Zeolites  

The zeolites samples used in this study were prepared from commercial Na-X (Sigma-

Aldrich, 13X, pellets 1.6mm, Switzerland). The pellets were grinded in a Fritsch centrifugal 

ball mill (Germany) at low rotation speed for 2 minutes. Milled Na-X pellets were then sieved 

in Fritsch Analysette (Germany) to obtain a pellet size fraction of 350 to 600 µm. 

Na-X-H2O was prepared by treatment of 1 g of Na-X in 100 ml of deionized water 

during 120 min in a beaker placed in a bath at 373 K. The samples were filtered and dried to 

remove the excess water then placed in a horizontal quartz tube furnace heated to 573 K at 10 

K min
-1

 under 100 cm
3
 min

-1
 in N2 (>99.99%, Carbagas, Switzerland) and calcined at 573 K 

for 1h. 
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3.2 Characterization Techniques 

3.2.1 Brunauer-Emmett-Teller Surface Area 

The specific surface area (SSA) and pore volume were determined by physical 

adsorption of N2 at 77 K using a Sorptomatic 1990 (Carlo Erba Instruments). Prior to analysis, 

the samples of zeolites, original ACFs and ACFs with nanoparticles were outgassed at 523 K 

for 2h under vacuum (7·10
-2

 bar) whereas oxidized and amine functionalized ones were 

outgassed at 373 K for 3h under vacuum (7·10
-2

 bar). N2 adsorption/desorption isotherms 

were recorded at 77 K over the relative pressure range of 0.00005 ≤ p/p0 ≤ 0.98. The specific 

surface area was calculated using BET equation [55].  

 0 0

1 1

m m

p C p

V p p V C V C p


 


 

(3.1)  

Where p is the N2 partial pressure, p0 is the saturation pressure, V is the amount 

adsorbed in volume STP (cm
3
 g

-1
) and C is an empiric parameter indicating the energetics of 

the adsorption process. The N2 monolayer volume (Vm) is obtained by the linearization of 

equation 3.1. The pore volume was calculated with the N2 volume adsorbed at p/p0 = 0.98. 

3.2.2 Temperature-Programmed Desorption 

The characterization and quantification of oxygen-containing groups on the ACFs 

surface was performed via TPD experiments. An ACFs sample (~100 mg) loaded in a quartz 

reactor connected to a mass spectrometer was heated in a He flow (50 cm
3
 min

-1
) up to 1223 

K (10 K min
-1

). Prior to the experiment, the reactor was purged by He for 30 min at room 

temperature. The gases evolved from the ACFs sample (CO and CO2) due to decomposition 

of O-containing groups were analyzed via mass spectrometry. Calibrated mixtures 3% (v/v) 
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CO/He and 2% (v/v) CO2/He (Carbagas, Switzerland) were used for concentration profiles 

integration.  

Quantitative acid site characterization of zeolite was obtained by pyridine TPD 

monitored by a TCD on a Micromeritics Autochem 2920 II. The zeolite sample was dried 

under He flow at 773 K (10 K min
-1

) for 1 h. After cooling down to 373 K, a He flow with 0.1 

bar pyridine was passed through the sample using a vapor generator. Flow was switched back 

to N2 and a TPD was recorded.  

3.2.3 Scanning Electron Microscopy  

Scanning electron microscopy (SEM) was carried out using a Carl Zeiss MERLIN FE-

SEM equipped with two, annular and Everhart-Thornley secondary-electron, detectors 

operated at an accelerating voltage of 5-30 keV with a beam current of 1.0-3.0 nA and using 

ZeissSmartSEM software for data acquisition/manipulation. 

3.2.4 Transmission Electron Microscopy  

FEI Tecnai Osiris instrument was used for acquiring the scanning transmission electron 

microscopy (STEM) images. The high angle annular dark field (HAADF) and energy-

dispersive X-ray spectroscopy (EDX) detectors were employed. Measurements were carried 

out at the maximum accelerating voltage of 200 keV. Samples were prepared by embedding 

the ACFs in epoxy resin followed by ultramicrotomy (diamond grade) and eventual 

deposition on a holey carbon/Cu grid (300 Mesh). 

3.2.5 Atomic Absorption Spectroscopy  

The elemental composition of the zeolites were carried out by atomic adsorption 

spectroscopy (AAS) analysis using a Shimadzu AA-6650 spectrometer with a flame supplied 
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by an N2O-acetylene mixture (for Si or Al) or an air-acetylene mixture (for Na). The samples 

were prepared by zeolite dissolution in boiling aqua regia (1:3 v/v HNO3/HCl) under reflux 

followed by the addition of NH4F. 

3.2.6 Infrared Spectroscopy  

Infrared spectra of zeolites were recorded on a Perkin Elmer Spectrum II spectrometer 

equipped with a nitrogen cooled MT detector. Samples were placed into the Harrick Ultra 

High Vacuum DRIFT cell where they can be treated under gas flow or vacuum with 

temperature control. Typically, 24 scans were accumulated for each spectrum at a resolution 

of 4 cm
-1

. 

Zeolite acid sites were characterized by TPD of pyridine. The sample was placed in the 

DRIFT cell, treated at 373 K under N2 flow for 1 h, cooled down to room temperature and 

contacted with a N2 stream saturated with pyridine vapor pressure. Flow was switched back to 

N2 to remove physisorbed pyridine and DRIFT was recorded. Temperature was gradually 

increased and DRIFT spectra were recorded at different temperatures to characterize acid 

strength. 

3.2.7 Solid State Nuclear Magnetic Resonance  

Nuclear Magnetic Resonance (NMR) spectroscopy 1H magic angle spinning (MAS), 13C 

cross-polarization (CP)-MAS solid-state NMR spectra were recorded on Bruker 800 MHz 

spectrometers with a conventional double resonance 2.5 mm CP-MAS probe. In all 

experiments, the rotation frequency was set to 15 kHz unless otherwise noted. Chemical shifts 

are given with respect to tetramethylsilane as the external reference for both 1H and 13C NMR. 

The zeolite spectra were recorded at room temperature. 
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3.2.8 X-ray Diffraction  

Powder X-ray diffractograms were recorded on a Bruker/Siemens D500 incident X-ray 

diffractometer using Cu K radiation. The samples were scanned at a rate of 0.02º step
-1

 over 

the range 5-40º. Diffractograms were identified by direct comparison with the JCPDS-ICDD 

reference standards, i.e. Na-X (045-0946). 

3.3 Measurements Errors and Fittings 

Measurements errors are occurring during every scientific experiment. The sources of 

experimental errors result from the experimenter or analytical tools imprecisions. To evaluate 

the errors, the measurements were reproduced. The results reported in this thesis are the mean 

value of the different measurements and the error was estimated based on their variance.  

Besides errors on the measurements, linear or non-linear regression provides additional 

uncertainties. They are coming from the fitting of the models on the experimental data. The 

quality of the fitting of the statistical model on the experimental data is described by the 

coefficient of determination (R
2
). However this parameter does not give reliable information 

on the equation parameters. The determination of the equation parameters of linear or non-

linear model was performed with Matlab program using the “fittype” function. The errors 

obtained on the parameters are directly calculated by Matlab. The errors indicated on the 

values calculated from data fitting represent the 95% confidence bounds. 

3.4 Experimental Setup and Procedures 

3.4.1 Setup 

The setup used for adsorption study via a transient response method is shown in Figure 

3.1. It consists of a gas generator (FlexStream Base Permeation Unit, Kin-Tek), two 
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pneumatic actuators connected to a spool valve (Asco Numatics), a quartz tubular reactor 

(length – 25 cm, inner diameter – 3 mm) and a sensitive mass spectrometer (Hiden Analytical 

HPR 20 QIC). The reactor charged with an adsorbent is placed in a tubular oven (Carbolite 

MTF 10/25/130) for temperature control.  

Pressurized air (6 bar) was connected to a spool valve (solenoid air pilot operated - 

spring return) controlled with a numerical unit (National Instrument 6009) equipped by the 

LabView software. Depending on the spool valve position, pressurized air is directed to one 

of the two outlets and then to both pneumatic actuated three-way valves (Whitey, double 

acting mode, 180° actuation) via ¼ inches stainless steel tubing (Swagelok). The position of 

the pneumatic actuated three-way valves (i.e. reactor or by-pass line) depends on which 

pneumatic actuator inlet was under pressure. Due to the pressure, a piston in the actuator 

chamber moves from one position to another creating an inversion of the connected three-way 

valves. To insure simultaneous switch of both three-way valves, tubes length between the 

spool valve and both pneumatic actuators are identical. With the described valves system, the 

switch from the bypass to the reactor line or inversely was reproducible and sufficiently quick 

to avoid any disturbance of the gas flow.  

The gas generator providing a diluted toluene or acetaldehyde (ppm, ppb) flow was 

composed of a gas line with a mass flow controller connected to a permeation tube and an 

oven. A permeation tube with a calibrated permeation membrane filled with liquid toluene 

(99.9% VWR Chemicals, AnalaR NORMAPUR) or acetaldehyde (99.5% Sigma–Aldrich, 

Fluka Analytical) or with paraformaldehyde (Kin-Tek) was placed in the oven at desired 

temperature. Thus, the adsorbate permeation rate was controlled by the oven temperature 

(303-333 K ± 0.01 K). Its concentration (10-100 ppmv) was adjusted at a fixed flow rate 

(100-1000 cm
3
 min

-1
). For butadiene (1000 ppmv in He) and concentrated acetaldehyde (1300 

ppmv in He) gas bottles (Carbagas, Switzerland) were used instead of the gas generator.  



 

39 

The reactor outlet was continuously monitored by an online mass spectrometer with 

short sampling time (<500 ms), high sensitivity (500 ppb) and stability (< ± 0.5% variation 

over 24 h).  
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Figure 3.1 Experimental setup for adsorption experiment 

 

3.4.2 Transient Response Method 

The adsorption dynamics of the developed adsorbent were studied by a transient 

response method [185-187]. This methodology was originally developed for kinetic studies of 

catalytic reactions [188] but is easily adapted for adsorption. It is based on the monitoring of 

the response at the tubular reactor outlet to a quick change of concentration at the reactor inlet 

for example a step concentration change. “Dynamic column method” is used to measure the 

adsorption capacity. This method requires a constant VOC flow through a sorbent bed and a 
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continuous monitoring of the downstream concentration. In this way breakthrough curves are 

obtained. The adsorption capacity is calculated by numerical integration of the area defined 

between the breakthrough curve of an inert tracer (Ar) and the adsorbate [189]. 

3.4.3 Dynamic Adsorption Measurements 

Before measurements, the adsorbent samples placed in the central part of the quartz 

tubular reactor were outgassed at 298 K in a He (99.999% Carbagas Switzerland) flow (40 

cm
3
 min

-1
) unless otherwise noted. The adsorption experiments were carried out at 298 ± 1 K 

and with gas flow rate of 300 cm
3
 min

-1
 (linear velocity ~0.5 m s

-1
). The gaseous mixtures 

contained various concentrations of VOC in He. The inert tracer signal (Ar 2% (v/v) in He) 

was obtained in a separate experiment.  

The adsorption capacity measurements consist of the following steps: 

1. Stabilization of the gas mixture (VOC in He) flow through the bypass to measure the initial 

VOC concentration. 

2. After a switch to the reactor, the gas mixture flows through the adsorbent bed until the 

outlet VOC concentration attains the initial one measured during the stabilization step. In such 

a manner a breakthrough curve was obtained.  

 

The Ar (inert tracer) breakthrough curve was used to characterize the flow pattern and 

the residence time distribution in the reactor. The Ar-He mixture was injected through the 

reactor pre-purged by He using a switch from the bypass to the reactor line.  

The area defined between the Ar and the VOC breakthrough concentration curves was 

numerically integrated and the adsorption capacities (wt.%) were calculated as follow.  
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The adsorption points are numerically integrated by using the trapezoid rule. For two 

successive measurements ci, ci+1, the area ai (in counts) corresponding to the interval 

delimited by their corresponding time ti and ti+1 is given by: 

 
 1

1
2

i i

i i i

c c
a t t






 

 

(3.2)  

The total area under the breakthrough curve corresponds to the amount of non-adsorbed 

VOC during the experiment. For n measurements, it is given by: 

1

n

non ads i

i

a a




 

(3.3)  

Therefore the area related to the quantity of adsorbate retained by the adsorbent is: 

ads total non adsa a a  
 (3.4)  

The area corresponding to the total amount of VOC injected is given by: 

total VOC adsa c t 
 (3.5)  

Where cVOC is the response of the last measurement and corresponds therefore to the 

upper baseline value. 

Before obtaining the capacity from the total amount of VOC adsorbed, the volume of 

VOC injected during the adsorption, VVOC, is calculated with total flow rate n , the inlet VOC 

concentration (in ppmv) and the time of adsorption tads: 
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VOC VOC adsV n c t  
 (3.6)  

From the ideal gas law the number of VOC moles is obtained: 

VOC
VOC

p V
n

R T




  
(3.7)  

Where p and T are the standard temperature and pressure R is the gas constant. As the 

mass of adsorbent is considered for the calculation of capacity, the moles of VOC injected are 

converted to the corresponding mass mVOC,total with the molecular mass mVOC. 

,VOC total VOC VOCm n M 
 

(3.8)  

The mass of VOC adsorbed mVOC,ads can be calculated from the total area and the one 

related to adsorbed VOC. 

, ,
ads

VOC ads VOC total

total

a
m m

a
  (3.9)  

Eventually the capacity of the adsorbent toward a given VOC can be calculated by 

knowing the mass introduced in the reactor: 

,

%( / ) 100
VOC ads

w w

adsorbent

m
C

m
   (3.10)  

3.4.4 Temperature-Programmed Desorption 

TPD experiments were carried out in the same setup used for toluene adsorption. Prior 

to desorption experiment ACF samples were saturated by the VOC at 298 K before being 
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heated in a He flow (100 cm
3 

min
-1

) at different temperature ramps (3-30 K min
-1

). The outlet 

concentration of desorbed VOC was continuously monitored by a mass spectrometer (Hiden 

Analytical HPR 20 QIC) and plotted as a function of temperature. Numerical integration of 

the VOC desorption peak was carried out to calculate the adsorption-desorption mass balance.  

3.4.5 Characterization of Reactor Flow Pattern  

The characterization of the tubular reactor used for adsorption experiment is carried out 

using the dispersion model. The dimensionless group used to characterize the residence time 

distribution in the real tubular reactor is the vessel dispersion number: 

D

uL  
(3.11)  

where D is the dispersion coefficient, u is a linear velocity in the reactor and L is a 

length of the reactor.  

If this number tends to 0, the dispersion is negligible, hence a plug flow behavior can be 

assumed. A vessel dispersion number tending to infinite means a large dispersion or a 

complete back-mixing behavior. In practical cases 0.01 is the threshold value under which a 

tubular reactor can be treated as ideal plug flow.  

The vessel dispersion number was obtained using step-wise injection of an inert tracer 

(Argon) into He flow through the reactor. Different gas flow rates were applied. The Ar 

concentration at the reactor outlet was monitored by the mass spectrometer (Figure 3.2 A).  
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Figure 3.2 Reactor outlet response to a step-wise injection of Ar (inert tracer) at the reactor 

inlet as function of time (A) and dimensionless time (Θ) (B) at different flow rate: 25 cm
3
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The mean residence time, t , and the variance around the mean, 2 , are subsequently 

calculated: 
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(3.13)  

ΔFi was obtained by normalizing the tracer concentration: 

0

( ) ic
F t

c


 
(3.14)  

where co is an inlet Ar concentration and ci is a concentration at time t.  

The vessel dispersion number for small extents of dispersion was obtained by 

combining equation 3.12 and 3.13 [190]: 

2
2

2
2

D

uLt




 
   

   

(3.15)  

The obtained values are presented in Table 3.1. It can be seen that for all flow rates 10 

cm
3
 min

-1
 the vessel dispersion number is  0.01. A “piston type” flow pattern is therefore 

insured at all flow rates. The rector response to a stepwise injection normalized by its mean 

residence time is presented in Figure 3.2 B. It shows that an identical flow pattern is obtained 

for the different flow rate.  
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Table 3.1 Dispersion number as a function of gas flow rate 

Flow rate [cm
3 

min
-1

] Dispersion number (
𝑫𝒂𝒙

𝑳𝒕𝒖
) [-] 

7.5 0.0122 

10 0.0087 

25 0.0034 

50 0.0023 

100 0.0019 

200 0.0025 

400 0.0040 
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4 Effect of ACFs Morphology on Toluene Adsorption 

In this chapter the effect of the micropore structure of activated carbon fibers (ACFs) on 

the adsorption of toluene at low concentration (10-80 ppmv) was studied over two 

microporous types of ACFs. The ACFs present similar surface chemistry but different porous 

structure. Toluene adsorption isotherms were determined for both ACFs at different 

temperatures. Different adsorption model such as Langmuir, Dubinin-Radushkevich and 

Dubinin-Astakhov were fitted to the experimental data. The enthalpy of adsorption was 

subsequently calculated. The enthalpy of adsorption was also calculated from toluene 

desorption experiments. Both values were compared and the influence of the ACFs 

microporosity on the toluene adsorption enthalpy was studied.  
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4.1 Introduction 

As shown in Chapter 2, high boiling point VOC are efficiently removed from diluted 

gas streams using activated carbon due to their large microporous volume and their 

hydrophobic surface character. However as described in Chapter 2 at diluted VOC 

concentration the mean micropore size can influence the efficiency of the adsorbent.  

The removal of toluene was often reported over microporous AC [82, 100, 191-195] or 

ACFs [92, 101, 196-198] however, the influence of the microporosity on toluene adsorption is 

not clearly established. The influence of the adsorption temperature on the adsorption capacity 

and the adsorption thermodynamic data are often missing, limiting the understanding of the 

adsorbent-adsorbate interactions. The adsorption thermodynamic data are also crucial for the 

design of an efficient adsorbent bed. It allows forecasting its life time between regenerations.  

The present chapter investigates the effect of microporosity on toluene adsorption at low 

concentration (<100 ppmv) over two commercial ACFs. The adsorption isotherms were 

obtained at different temperatures (298-353 K) by varying toluene partial pressure (1-8 Pa). 

The experimental results were compared to Langmuir [199], Dubinin-Radushkevich (D-R) 

[200] and Dubinin-Astakhov (D-A) [201] adsorption models by varying model parameters to 

fit the experimental data. The Langmuir model assumes monolayer coverage of the adsorbent 

whereas the D-R and the D-A equations are semi-empirical models based on the ‘pore filling 

mechanism’ [202, 203]. This study analyses the differences in the adsorption thermodynamics 

for two microporous adsorbents in the low VOC concentration range. The enthalpy of 

adsorption has been determined from adsorption isotherms using D-R and D-A models. 

Temperature-programmed desorption (TPD) of toluene for both adsorbents was performed 

and simulated as another method for enthalpy of adsorption measurement. The enthalpies of 

adsorption values determined by both methods were then compared.  
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4.2 Experimental  

Materials 

All materials are presented in detail in Section 3.1.1. Prior to adsorption measurements 

the samples were heated at 673 K (He 40 cm
3
 min

-1
) during 30 minutes to remove the oxygen 

containing groups from the ACFs surface.  

Adsorbents Characterization  

The ACFs morphology was characterized by N2 adsorption at 77 K. The ACFs surface 

chemistry was assessed by TPD of the oxygen-containing groups of the oxidized ACFs 

monitoring CO and CO2. Detailed description of the apparatus used and the conditions 

applied can be found in Section 3.2. 

Adsorption-Desorption Measurements 

Toluene adsorption isotherms on the ACF-1 and ACF-2 (10 mg ± 0.1) were obtained by 

measuring the adsorption capacity at different temperatures (298-353 K) and toluene partial 

pressures (10-80 ppmv). The experimental setup used for adsorption experiments was 

presented in Section 3.4.1 and the calculation details in Section 3.4.2.  

The temperature-programmed desorption (TPD) experiments were carried out as 

described in Section 3.4.4. In all cases the adsorption-desorption mass balance was larger 

than 95 wt.%.  
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4.3 Results and Discussion 

4.3.1 Characterization of ACFs  

Morphology 

The ACFs materials consist of elementary filaments of ~10 µm diameter. The 

representative SEM image of the adsorbents is shown in Figure 4.1. Due to the small 

diameter of the fibers fast mass transfer within micropores is expected. Moreover a large void 

fraction of the filaments network results in permeability and low pressure drop during gas 

passage. The network of filament can be seen at the lowest magnification. More detailed 

pictures of elementary filament are obtained with increased magnification. White spots (500 

nm) become distinguishable on the filament surface (15000x magnification). They are 

probably residue of salt used at the activation stage of the ACFs synthesis. Such particles are 

probably not influencing the adsorption of VOC due to their large size compared to ACFs 

micropores (~2 nm). At the higher magnification some holes in the filament structure are 

visible. Similarly to the activation metal salts residue they are not supposed to influence the 

adsorption process because of their large size (300-400 nm).  
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Figure 4.1 SEM pictures of ACF-2 with different magnification 

  

Figure 4.2 presents typical N2 adsorption isotherms obtained over the samples used in 

this study and shows the larger nitrogen adsorption capacity of the ACF-2 as compared to 

ACF-1. Both isotherms exhibit a type I profile typical for microporous adsorbents according 

to the IUPAC classification [12].  

In order to evaluate more precisely the morphology of the ACF-1 and ACF-2, a pore 

size determination was carried out via comparative α-method (Section 2.3.1) [71, 72, 75, 77]. 

In this work, carbon black was chosen as a non-porous reference material. Its SSA obtained 

by the BET method within the N2 partial pressure range of 0.05-0.33 was ~9±1 m
2
 g

-1
. The α-

plots obtained for all ACFs samples (Figure 4.3) are almost linear and constant at αs > 1. This 

implies that the external surface area is relatively small as compared to the total surface area 

meaning that most of the surface is due to the pores [58]. It confirms that both adsorbents are 

microporous with a relatively narrow pore size distribution. The slope change of ACF-1 
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appears at αs ~ 0.6 whereas an extremely steep slope is seen at slightly higher αs values for 

ACF-2. The αs value difference at which the slope change occurs is interpreted as a 

microporosity difference between ACF-1 and ACF-2. A slope change at higher αs values 

(ACF-2) signifies relatively large micropores [204]. It is then suggested that ACF-2 contains 

mainly supermicropores (dp 1-2 nm) whereas ACF-1 is an ultramicroporous (dp < 1 nm) 

adsorbent. 
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Figure 4.2 N2 adsorption isotherms (77 K) of ACF-1 (■) and ACF-2 (○) 
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Figure 4.3 α-plot of ACF-1 (■) and ACF-2 (○) 

 

The specific surface area of all samples was calculated through the BET equation using 

N2 adsorption data [55]. The equation was linearized in the partial pressure range of 0.001-

0.07 for ACF-1 and 0.01-0.1 for ACF-2. ACF-1 shows a lower SSA (800 m
2
 g

-1
) compared to 

ACF-2 (2150 m
2
 g

-1
). As shown in Table 4.1, the C values obtained are  100 for all the 

samples confirming their microporous morphology. The C value of the BET equation which 

can qualitatively describe the pore size, is larger for ACF-1 as compared to ACF-2 indicating 

narrower microporosity and confirming the results obtained with the α-plot.  

Surface Functionalities  

The surface chemistry analysis was addressed via TPD with the outlet composition 

monitored by the mass spectrometer. Two major molecules desorbing from the ACFs surface 

are CO and CO2 revealing the presence of O-containing groups in low quantities on the 

surface of both ACFs. Figure 4.4 shows TPD profiles of both original samples. As can be 
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seen, no desorption of CO occurs at low temperature for both fibers whereas a CO2 desorption 

peaks appears between 400-650 K attributed to carboxylic groups [117].  
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Figure 4.4 TPD profiles of original ACF-1 (■) and ACF-2 (○) (10 K min
-1

, 50 cm
3
 min

-1
) 
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The integration of the CO and CO2 concentration curves gives the surface oxygen 

contents of the samples which are reported in Table 4.1. The total oxygen concentration in the 

ACFs was found to be quite low and comparable to previously published results [100, 101]. 

As shown in Figure 4.4, ACF-1 contains more O-containing groups decomposing in CO2 as 

compared to ACF-2. The amount of CO evolved is also slightly higher in the case of ACF-1. 

Therefore, the concentration of polar groups on the ACF-1 surface is larger.  

It was reported that O-containing groups reduce the carbon adsorption capacity of 

toluene at constant porosity [100]. Therefore, to compare only the effect of the microporosity 

on toluene adsorption capacity, the surface chemistry of both ACFs should be comparable. To 

obtain similar surface chemistry of both ACFs samples a heat treatment under inert (He) at 

673 K to remove part of the O-containing groups was performed. The TPD pattern of ACF-1 

and ACF-2 pretreated at 673 K is presented Figure 4.5. 
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Figure 4.5 TPD profiles of original ACF-1 (■), ACF-2 (○) ACF-1-673K () and ACF-2-

673K (▼) (10 K min
-1

, 50 cm
3
 min

-1
) 

 

The TPD pattern shows clearly a lower desorption of O-containing groups upon heat 

treatment. For both samples pretreated at 673 K the desorption of CO and CO2 is almost zero 

until 673 K. At this temperature the carboxylic groups characterized by the peak at 600 K are 

removed [117] however part of the lactones, lactol and anhydride group, characterized by the 

shoulder at 800 K remains. The O-containing groups desorbing in CO at higher temperature 

such as carbonyl and phenol are also remaining on the surface. In conclusion, the surface 

polarity of treated fibers is reduced, particularly for ACF-1.  

The characteristics of ACF-1 and ACF-2 pretreated at 673 K are presented in Table 4.1. 

The heat treatment increases slightly the specific surface area and the pore volume of both 

fibers due to oxygen group removal [205]. The oxygen content obtained by integration of CO 

and CO2 curves for ACF-1-673K and ACF-2-673K is low. The total oxygen content is 

obtained by the addition of the integral of the CO and 2 times the integral CO2 desorption 

curve. Further increase of the pretreatment temperature would have removed more O-
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containing groups and created a more hydrophobic surface, however it was noticed that the 

porosity started to collapse around 773 K particularly for ACF-1 (decrease of the micropore 

volume). Hence, 673 K was chosen as the optimum temperature avoiding a porosity 

modification and removing the maximum of O-containing groups. Since after pretreatment, 

the surface O-content was very low, it was assumed that the polarity was negligible and 

should not influence the toluene adsorption capacity. Thus, the microporosity is suggested to 

be the only difference between ACF-1-673K and ACF-2-673K and the influence of pore 

diameter on toluene adsorption can be studied.  

 

Table 4.1 Characteristics of ACFs 

Sample SSABET [m
2 
g

-1
] Pore volume [cm

3
 g

-1
] C BET equation 

Oxygen content 

[µmol g
-1

] 

ACF-1 800±50 0.38±0.02 6400 800±50 

ACF-1-673K 1030±50 0.40±0.02 6700 500±50 

ACF-2 2150±50 0.94±0.02 280 420±50 

ACF-2-673K 2220±50 0.95±0.02 310 370±50 

 

4.3.2 Toluene Adsorption Isotherms 

Typical toluene adsorption results are shown in Figure 4.6 as breakthrough curves. The 

adsorption capacity of the ACFs materials was determined by a numerical integration of the 

area between the toluene concentration curve and the argon curve as described in Section 

3.4.3. In all the adsorption experiments the outlet toluene concentration was zero indicating a 

total toluene removal before the breakthrough.  
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Figure 4.6 Toluene (80 ppmv) breakthrough curves for ACF-1-673K () and ACF-2-673K 

(▼) and 2% (v/v) Argon tracer (●).Total flow rate (STP) 300 cm
3
 min

-1
 (298 K) 

 

As can be seen in Figure 4.6, the adsorption capacity of ACF-2-673K is larger than 

ACF-1-673K. This result can be explained by a larger specific surface area and pore volume 

of ACF-2-673K (Table 4.1). By varying the toluene concentration (10-80 ppmv or 1-8 Pa) at 

different temperature (298- 353 K) a set of adsorption isotherms was obtained for both ACFs 

(Figure 4.7). Langmuir (equation 4.1) and van’t Hoff equations (equation 4.2) were first used 

to fit the experimental data.  

max,
1

tol
L

tol

Kp
q q

Kp



 (4.1)  

where 



 

59 

0

0 exp adsH
K K

RT

 
  

 
 

(4.2)  

The model variables were the total monolayer surface coverage as defined by the 

Langmuir model ( max,Lq ), the pre-exponential factor of the adsorption equilibrium constant (

0K ) and enthalpy of adsorption (
0

adsH ). 

Langmuir model assumes that the maximum adsorbed amount ( max,Lq ) is not a function 

of the adsorption temperature and the lateral interactions are negligible implying that the 

enthalpy of adsorption does not depend on the surface coverage. The fitted model parameters 

obtained for the studied adsorbents are presented in Table 4.2.  
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Figure 4.7 Toluene adsorption isotherms on ACF-1-673K (A) and ACF-2-673K (B) fitted 

with the Langmuir model at different temperature: 298 K (■), 308 K (●), 318 K (▲), 333K 

(▼), 353 K (♦) 

 

Table 4.2 Langmuir model parameters for toluene adsorption 

Adsorbent qmax,L [mol kg
-1

] K0 [Pa
-1

] ΔHads [kJ mol
-1

] 

ACF-1-673K 2.9±0.5 4.3±0.3·10
-4

 -24.4±4.2 

ACF-2-673K 4.6±2 1.3±0.1·10
-2

 -11.8±4.2 

 

As can be seen in Table 4.2 the supermicroporous ACF-2-673K has higher maximum 

toluene adsorption capacity (qmax,L) at 298 K as compared to ACF-1 due to the larger specific 

surface area and pore volume of the ACF-2-673K (Table 4.1). The error on the measurement 

of the maximum adsorption capacity is relatively large since these values were found to vary 

with the adsorption temperature which is in contradiction with the Langmuir model. Indeed a 

total occupation of the adsorption sites are assumed by the Langmuir model regardless of the 
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temperature at high partial pressure (4.1). Such variation indicates that the Langmuir model 

may not be correct for toluene adsorption on ACFs. 

Figure 4.7 shows the results of the adsorption isotherm fitted to the Langmuir model. 

The curve determination coefficients (R
2
) were found to be larger than 0.75 and 0.96 for ACF-

1 and ACF-2 respectively. Despite the apparent good fit, the enthalpies of adsorption obtained 

for both ACFs are smaller than the enthalpy of condensation (-38 kJ mol
-1

) [206] which is 

impossible. Since this result is meaningless, we concluded that Langmuir model is not 

suitable to describe the toluene adsorption on ACFs. The monolayer adsorption and the 

absence of lateral interactions are apparently not correct assumptions for microporous 

materials even at very low toluene partial pressure. Therefore, we assumed that multilayer 

adsorption and/or a pore filling occurs requiring another adsorption model. 

The Dubinin-Radushkevich (D-R) model (4.3) was originally developed for benzene 

adsorption on activated carbon [207]. This semi-empirical equation was developed for sub-

critical vapors in microporous solids where the adsorption process follows a pore filling 

mechanism. A liquid-like adsorbed phase is assumed in the micropores. Vapors adsorption on 

many microporous solids, such as activated carbon or zeolites, can be described by the D-R 

equation. A particular characteristic of the D-R model is the temperature independence of the 

characteristic adsorption energy (E0). It implies that adsorption data obtained at one 

temperature allow determining the characteristic adsorption energy.  

2

0

0

exp
A

W W
E

  
   
   

 
(4.3)  
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Where 0W  is the maximum adsorbed volume and 0E  the characteristic adsorption 

energy. The parameter β is a constant specific for the adsorbate. In the case of toluene β is 

1.28 [208].  

The parameter A represents the Polyani adsorption potential. The value of A is equal to 

the difference between the chemical potential of the adsorbate in the liquid state and in the 

adsorbed state at the same temperature.  

0ln
p

A RT
p

 
  

   

(4.4)  

p0 is the saturation pressure of the adsorbate, p is the adsorbate partial pressure and T is 

the temperature at which the adsorption experiment took place. In this model, the adsorbed 

phase is assumed to be liquid. Therefore, the saturation adsorption capacity corresponds to the 

maximum adsorbed liquid volume in the microporous network.  

max 0 / Mq W v
 

(4.5)  

Where 0W  is the maximum adsorbed volume and Mv  is the liquid molar volume 

(toluene = 106.3 cm
3
 mol

-1
). This is in opposition to the Langmuir model where the maximum 

adsorption capacity is equal to monolayer coverage of the adsorbent surface.  

The saturation capacity is temperature dependent since the liquid molar volume is a 

function of temperature. The integral form of the temperature dependence of the saturation 

adsorption capacity is: 

  max max,0 0expq q T T  
 

(4.6)  



 

63 

Where 
max,0q  is the saturation adsorption capacity at a reference temperature T0 (298 K) 

and δ is the thermal expansion coefficient of the saturation concentration. For toluene δ is 

0.001 K
-1

 [209].  

The enthalpy of adsorption of the D-R model can be calculated from the van’t Hoff 

equation  

0

2

lnads

q

H p

RT T

  
  

 
 

(4.7)  

The change in vapor pressure with respect to temperature is given by the Clausius-

Clapeyron equation 

0

2

0

1 vapHdp

p dT RT


  (4.8)  

By taking the total derivative of the D-R equation (4.3), the Clausius-Clapeyron 

equation (4.8) and substituting them in equation 4.7, the expression of the isosteric heat is 

obtained for a constant loading: 

 
2

00 0

0

ln

2 ln

ads vap

E Tp
H RT H

p p
RT

p

  
     

  
 
   

(4.9)  

where 
vapH  is the heat of condensation being -38 kJ mol

-1
 for toluene [210].  

The isosteric enthalpy of adsorption is the summation of three terms: the first represents 

the adsorption potential, the second is the heat of vaporization and the third expresses the 

variation of the maximum capacity with temperature. For the sake of clarity the isosteric 

adsorption enthalpy is expressed in terms of fractional loading: 
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1 2 1 2

0 0
0

1 1
ln ln

2
ads vap

E T
H H E

 


 



      
          

        

(4.10)  

with  

max

q

q
 

 

(4.11)  

Following equation 4.10, the enthalpy of adsorption is by definition larger than the heat 

of condensation and depends on the characteristic adsorption energy (E0) and on the adsorbent 

fractional loading (θ). The maximum adsorption capacity and the characteristic adsorption 

energy were obtained by fitting the experimental data to equation 4.3 for all the isotherms and 

both adsorbents (Figure 4.8). 

 

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

A
d

so
rp

ti
o

n
 c

ap
ac

it
y

 [
m

o
l 

k
g

-1
]

Toluene pressure [Pa]

A

 

  



 

65 

0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

A
d

so
rp

ti
o

n
 c

ap
ac

it
y

 [
m

o
l 

k
g

-1
]

Toluene pressure [Pa]

B

 

Figure 4.8 Toluene adsorption isotherms on ACF-1-673K (A) and ACF-2-673K (B) fitted 

with the D-R model at different temperature: 298 K (■), 308 K (●), 318 K (▲), 333K (▼), 

353 K (♦) 

 

The D-R model fits well the experimental data for ACF-2-673K with a determination 

coefficient (R
2
) of 0.98. For ACF-1-673K the R

2
 is slightly lower (0.85) but remains 

acceptable. The parameters (E0 and qmax,0) obtained are presented in Table 4.2. D-R model 

predicts a higher maximum toluene adsorption capacity (qmax) at 298 K of ACF-2-673K (9.6 

mol kg
-1

) as compared to ACF-1-673K (4 mol kg
-1

) according to its larger pore volume 

(Table 4.1). The thermodynamic adsorption parameter (E0) also indicates a difference in 

toluene adsorption mechanism on both ACF samples. The characteristic adsorption energy (

0E ) is 28±6 and 17±2 kJ mol
-1

 for the ACF-1-673K and ACF-2-673K, respectively. High 

characteristic adsorption energy suggests stronger adsorbate-adsorbent interactions. It is then 

concluded that adsorbent with ultramicropores have stronger interactions with the adsorbate. 

Pore filling mechanism suggested by the D-R model seems to be a suitable model for toluene 

adsorption on ACFs. All the parameter values calculated seem reliable with a relatively small 
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error. The fitting obtained by the D-R model in Figure 4.8 could be further improved using 

the Dubinin-Astakhov model (D-A) [207]. This model is also based on the Polyani adsorption 

potential and the characteristic adsorption energy and only differs from the D-R equation by 

the exponent (N):  

0

0

exp

N

A
W W

E

  
   
   

 
(4.12)  

In the D-R model the exponent is N=2 whereas it can take a random value in the D-A 

model. This exponent represents the adsorbent surface heterogeneity and is linked to the 

sharpness of the pore size distribution being specific for each particular adsorbent [211]. For 

non-homogeneous pore size distribution the typical values are found between 1 and 2, 

whereas it increases for narrower pore size distribution [207]. Molecular sieving carbon, for 

example, has a heterogeneity parameter of 3 and for crystalline zeolite this parameter can 

increase up to 6 [212].  

The D-A model was used herein to fit the experimental data of toluene adsorption on 

both ACFs. The characteristic adsorption energy (E0), the saturation capacity (qmax,0) and the 

surface heterogeneity (N) were adjusted. The results are presented in Figure 4.9.  
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Figure 4.9 Toluene adsorption isotherms on ACF-1-673K (A) and ACF-2-673K (B) fitted 

with the D-A model at different temperature: 298 K (■), 308 K (●), 318 K (▲), 333K (▼), 

353 K (♦) 
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Similarly to the D-R model, the D-A model shows also a good fitting of the 

experimental data. For ACF-2-673K the optimized parameters of the D-A model were 

extremely close to the D-R ones. The heterogeneity parameter was close to 2, the 

characteristic adsorption energy was 17±2.0 kJ mol
-1

 and the saturation capacity was 9.5±1.5 

mol kg
-1

, being in accordance to ones obtained with the D-R model. For ACF-1-673K the D-

A model gave a better fitting at N = 3. The curve determination coefficient was slightly 

increased with the D-A model, particularly for the isotherm at 353 K R
2
=0.91 instead of 0.85 

for the D-R model. However due to the degree of freedom during the linearization the error on 

the parameters is relatively important for the D-A model. It is then not possible to insure that 

the D-A model is more suitable for the ACF-1-673K despite the better fitting. Hence the 

parameter values found with the D-R model will be used. The parameter of the D-R and the 

D-A equation for toluene adsorption are summarized in Table 4.3. 

 

Table 4.3 Toluene adsorption parameters 

Adsorbent Dubinin-Radushkevich model Dubinin-Astakhov model 

 qmax,0 [mol kg
-1

] N E0 [kJ mol
-1

] qmax,0 [mol kg
-1

] N E0 [kJ mol
-1

] 

ACF-1-673K 4±0.4 2 28±6 3.6±0.3 3 27±7 

ACF-2-673K 9.6±1.5 2 17±2 9.5±1.5 1.9 17±2 

 

To further prove the validity of the D-R model, the isosteric adsorption enthalpy was 

evaluated with equation 4.9 for 298 K and is presented as a function of fractional loading in 

Figure 4.10. The dependency of the isosteric adsorption enthalpy on temperature was found 

to be negligible (0-3 kJ mol
-1

) in the studied temperature range (298-353 K). 
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Figure 4.10 Toluene adsorption enthalpy in function of the adsorbent fractional loading for 

ACF-1-673K (■) and ACF-2-673K (○) 

 

Figure 4.10 shows a decrease of the isosteric adsorption enthalpy with the micropore 

filling. The D-R model predicts a very high adsorption enthalpy for low loading, going to 

infinite at zero loading. The isosteric adsorption enthalpy decreases with the fractional loading 

until a minimum whereas at fractional loading > 0.95, it increases again (due to the thermal 

expansion coefficient of the saturation concentration in the third them of equation 4.10). So, 

the model has limitations and cannot be applied at a fractional loading of 0 and 1. Therefore, 

the toluene adsorption was studied in the fractional loading range of 0.1-0.9.  

The higher isosteric adsorption enthalpy calculated for ACF-1-673K (70-90 kJ mol
-1

) as 

compared to ACF-2-673K (55-75 kJ mol
-1

) is directly linked to their difference in 

characteristic adsorption energy (E0). Toluene is therefore more strongly adsorbed in the pores 

of ACF-1-673K.  
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The adsorption capacity at 298 K and 80 ppmv of toluene (8 Pa) were 31.6 and 57.0 

wt.% for ACF-1-673K and ACF-2-673K, respectively, whereas their specific surface area are 

1030 m
2
 g

-1
 and 2220 m

2
 g

-1
 (Table 4.1). The surface normalized adsorption capacity is then 

higher for ACF-1-673K (3.3·10
-6

 mol m
-2

) as compared to ACF-2-673K (2.8·10
-6

 mol m
-2

). 

Since the characterization revealed similar surface chemistry (O-containing groups), the larger 

normalized adsorption capacity for ACF-1-673K is explained by the porosity. Indeed, 

narrower pores were measured for ACF-1-673K. The higher adsorption efficiency of ACF-1-

673K is due to its ultramicroporosity (pore diameter < 1 nm) as compared to supermicropores 

(pore diameter 1-2 nm) of ACF-2-673K.  

The influence of the micropore size on the VOC adsorption capacity of ACFs has 

already been studied [103, 104]. For some adsorbates (ethane, propane, butane and pentane), a 

microporous adsorbent with a lower SSA can have a higher adsorption capacity due to 

narrower pores [104]. This phenomenon is referred to as the cross-over regime, meaning a 

higher adsorption capacity for a lower specific surface area. The pore filling in 

ultramicroporous adsorbents is enhanced and the available pore volume is used more 

efficiently as compared to supermicroporous adsorbents due to the higher interactions of the 

adsorbate with both pore walls. For supermicroporous adsorbent only single wall interactions 

is suggested. In the present study, this phenomenon is observed for toluene adsorption. In the 

range of concentrations (10-80 ppmv), the degree of filling of ACF-1-673K ultramicropores is 

larger than ACF-2-673K supermicropores. Their fractional loading at 298 K and 8 Pa is 0.86 

and 0.63, respectively. The lower specific surface area and smaller pore volume of ACF-1-

673K is compensated by a more favorable pore shape leading to a larger toluene adsorption 

capacity under certain conditions. Thus, the adsorbent pore size along with specific surface 

area plays a crucial role in toluene removal by adsorption from highly diluted streams.  
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The narrower pore size of ACF-1-673K explains its larger adsorption enthalpy because 

of the stronger interactions of the pore walls. Such phenomenon can lead to a larger 

adsorption capacity of ACF-1-673K, particularly at high temperature. For example at 353 K 

despite its lower specific surface area (Figure 4.8 A and B) the adsorption capacity of ACF-1-

673K is larger as compared to ACF-2-673K. A larger adsorption enthalpy is particularly 

interesting at high adsorption temperature. An adsorbent with a lower specific surface area but 

narrower micropores could be more efficient than an adsorbent with large pore volume and 

wider micropores. This phenomenon was already reported for low boiling point VOC [104]. 

4.3.3 Temperature-Programmed Desorption of Toluene 

Toluene desorption from the ACFs was carried using different temperature ramps. The 

TPD profiles recorded for the ACF-2-673K are plotted on Figure 4.11.  
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Figure 4.11 TPD profiles of toluene of ACF-2-673K  at different temperature ramps (100 cm
3
 

min
-1

) 
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As shown in Figure 4.11, the peak maximum shifts to higher temperatures with the 

temperature ramp. In order to determine the kinetic parameters of desorption (Ed, k), TPD 

curves were numerically simulated for five temperature ramps. By solving the mass balance 

and linear temperature variation simultaneously, TPD profiles can be simulated. The fitting of 

the experimental points is then adjusted by varying Ed and k. The mass balance is expressed as 

following: 

,0tol tol d adsorbentn n R m    (4.13)  

where 
toln  is the molar flow and Rd the desorption rate. Toluene desorption is then 

expressed as a function of the desorption rate constant (kd): 

m

tol d tol adsorbentn k Z m      (4.14)  

where Ztol is the concentration of adsorbed species and m the kinetic order of desorption. 

The rate constant of desorption can be expressed with the activation energy of desorption and 

supposing a 1
st
 order desorption kinetic: 

,0 exp d
tol d tol adsorbent

E
n k Z m

R T

 
   

 
 (4.15)  

The following differential equation was then obtained: 

,0 exptol d
d tol

dZ E
k Z

dt R T

 
  

 
 (4.16)  

The equation of the linear temperature increase is  
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0 ;
dT

T T t
dt

     
(4.17)  

where T is temperature, T0 the initial temperature, γ the temperature ramp and t the time. 

By combining equation 4.16 and 4.17: 

,0
exp

dtol d
tol

kdZ E
Z

dT R T

 
  

 
 (4.18)  

The surface concentration of adsorbed toluene as a function of temperature is obtained. 

By mass balance the gas phase concentration is calculated and can be fitted to the TPD 

experimental data. The toluene desorption rate depends on desorption rate and the activation 

energy of desorption. Supposing negligible activation energy of adsorption, the activation 

energy of desorption is approximated to the adsorption enthalpy [213]. Therefore, a 

comparison of this parameter obtained by the isotherm modelling and by TPD simulation 

could be performed. A simulation of a TPD pattern is presented in Figure 4.12. 
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Figure 4.12 TPD of toluene (experimental points and simulation line) over ACF-1-673K (3 K 

min
-1

, 100 cm
3
 min

-1
) 

 

As can be seen the simulation fits very well the experimental data suggesting that the 

toluene desorption from ACF-1-673K follows a 1
st
 order kinetic regime. An apparent 

activation energy of desorption is found at 25 kJ mol
-1

. This value is significantly lower than 

the adsorption enthalpy found with the D-R isotherm modelling. Moreover, the simulated 

value is lower than the heat of condensation (-38 kJ mol
-1

) which does not have any physical 

meaning. Since ACF-1-673K presents a narrow microporosity (Table 4.1), it is supposed that 

internal mass transfer may influence the desorption process explaining the low activation 

energy. It corresponds to a global kinetic constant that combines the adsorption enthalpy and a 

mass transfer coefficient.  

To overcome the effect of mass transfer and determine the adsorption enthalpy, only the 

lower temperature part of the TPD profile was used for simulations. It was supposed that the 

mass transfer influence on the desorption rate is negligible due to the low kinetic of 
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desorption at low temperature. However, for ACF-1-673K, the simulation did not give 

meaningful results suggesting that mass transfer limitations are not negligible even at low 

temperature.  

Unlike ACF-1-673K a nice fitting was obtained by simulating only the first part of the 

desorption curve for ACF-2-673K. As an example, a TPD profile with the ramp of 3 K min
-1

 

is presented in Figure 4.13. The influence of mass transfer on the rate of desorption 

encountered for ACF-1-673K does not appear with ACF-2-673K because of its wider 

micropores (Table 4.1). In the low temperature range, the desorption rate depends only on the 

kinetics and the adsorption enthalpy can then be obtained.  

 

 

Figure 4.13 Simulation of TPD profile of initial toluene desorption over ACF-2-673K (3 K 

min
-1

, 100 cm
3
 min

-1
) 
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The simulation of the TPD profiles was performed for different temperature ramps (3-

30 K min
-1

) for the toluene desorption up to 320 K. This corresponds to 10% desorbed and the 

micropore filling was supposed constant. With these assumptions, an enthalpy of adsorption 

of -53 kJ mol
-1

 was calculated. This value was identical for all the temperature ramps 

justifying the assumptions used. Moreover, as presented in Table 4.4, the adsorption enthalpy 

obtained for ACF-2-673K is very close the adsorption enthalpy calculated from the adsorption 

isotherms, also confirming a suitable isotherm modelling. The pore filling mechanism 

assumed in D-R and D-A model is therefore likely to occur.  

 

Table 4.4. Adsorption enthalpy determined by TPD and isotherm modelling  

Sample 
0

adsH [kJ mol
-1

] 

 Isotherms TPD 

ACF-1-673K -67±6 - 

ACF-2-673K -57±2 -53±3 

 

4.4 Conclusions 

Adsorption of toluene was studied over two different ACFs: ultramicroporous (dp < 1 

nm) and supermicroporous (dp ~ 1-2 nm) adsorbents with similar surface chemistry (O-

containing groups). The effect of the surface morphology on the toluene adsorption capacity 

was addressed by measuring the adsorption isotherms and temperature-programmed 

desorption (TPD) profiles. Dubinin-Radushkevich (D-R) and Dubinin-Astakhov (D-A) model 

based on a pore filling mechanism were consistent with the experimental adsorption 

isotherms. Based on this modelling the characteristic energy and the adsorption enthalpy were 
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calculated for both ACFs revealing that the toluene is more strongly adsorbed in 

ultramicroporous ACFs as compared to supermicroporous one. Therefore, for practical 

applications especially at high adsorption temperature the ultramicroporous ACF is the 

adsorbent of choice.  

Toluene TPD experiments were carried out over both samples and the TPD profiles 

were successfully simulated in the low temperature (300-320 K) range where effect of mass-

transfer on desorption kinetics is negligible. The calculated adsorption enthalpy was close to 

the values determined from the D-R and D-A isotherm model for ACF-2.  
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5 Effect of ACFs Surface Chemistry on Toluene and 

Acetaldehyde Adsorption 

The effect of oxygen surface functionalities of ACFs on the adsorption of toluene and 

acetaldehyde at low concentrations (~80 ppmv) is presented in this chapter. The oxygen 

surface containing groups were obtained by nitric acid oxidation and was characterized by 

monitoring the CO/CO2 evolved during temperature-programmed desorption. The effect of 

oxidation on the porosity was assessed by N2 physisorption. The adsorption capacities of 

original and oxidized ACFs were evaluated for toluene and acetaldehyde. These results were 

explained based on the oxygen content of the ACFs surface. 
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5.1 Introduction 

Oxygenated VOC contains an oxygen atom in their molecular structure. They are used 

as solvents or can be found as combustion by-products [214]. The presence of an oxygen 

atom creates a dipolar moment which drastically decreases the removal capacity of AC as 

compared to non-polar VOC due to the non-polar properties of the graphene layers [215].  

As shown in Chapter 4, ACFs are efficient adsorbents for high boiling point non-polar 

VOC such as toluene and the influence of their surface morphology on the adsorption 

capacity was established. The modification of the ACFs surface chemistry is suitable for the 

increase of the VOC removal capacity [106]. The addition of oxygen containing groups is a 

common method used to reduce the hydrophobicity of ACFs [117]. Depending on the 

oxidative treatments presented in Section 2.3.3, O-containing surface functionalities can be 

obtained in different proportions [216].  

The effect of the surface oxygen content of ACFs on the adsorption capacity towards 

oxygenated VOC was reported by Mangun et al. [124]. Due to their hydrophilic character AC 

with larger oxygen content showed increased adsorption capacity towards methanol [125, 

128], acetone [217] or butanol [218]. Specific interactions between the oxygenated VOC and 

the O-containing groups via hydrogen bonding were identified [106]. On the opposite, the 

presence of hydrophilic groups on the ACFs surface was reported to decrease the removal of 

non-polar VOC [100, 111]. Similar to non-polar VOC, the effect of the AC morphology was 

also reported to influence the adsorption capacity towards oxygenated VOC such as diethyl 

ether [219] and phenol [220].  

This chapter reports the effect of nitric acid oxidative treatment on the removal of 

acetaldehyde and toluene used as a model for polar and non-polar VOC, respectively. The 
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adsorption capacity from diluted streams (80 ppmv) is measured over ACFs oxidized to 

different extent. A systematic evaluation of the surface oxygen of the oxidized ACF was 

carried out by TPD. The effect of oxidation treatment on the pore volume, the specific surface 

area and the pore size was assessed by N2 adsorption. 

5.2 Experimental 

Materials 

Original ACFs are described in Section 3.1.1 and oxidized ACFs were prepared 

following the procedure presented in Section 3.1.2.  

ACFs Characterization  

The ACFs morphology was characterized by N2 adsorption at 77 K. The ACFs surface 

chemistry was assessed by TPD of the oxygen-containing groups of the oxidized ACFs. 

During TPD, apart from CO and CO2, water and NO were detected in negligible amounts 

below 673 and 473 K, respectively. The low amount of water was attributed to physisorbed 

molecules whereas traces of NO were probably coming from HNO3 remaining after rinsing. 

Detailed description of the apparatus used and the conditions applied can be found in Section 

3.2. 

Dynamic Adsorption Measurements 

Toluene and acetaldehyde adsorption capacity were obtained at 298 K and partial 

pressure of 8 Pa. 10±0.1 mg and 20±0.1 mg of original and oxidized ACF-2 were used for 

toluene and acetaldehyde respectively. The experimental setup used for adsorption 

experiments was presented in Section 3.4.1 and the calculation details in Section 3.4.2.  
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5.3 Results and Discussion 

5.3.1 Characterization of ACFs  

Morphology 

The morphology of the original ACFs materials consisting of elementary filaments of 

~10 µm diameter was presented in Figure 4.1. Their morphology was kept upon nitric acid 

treatment. Figure 5.1 presents typical N2 adsorption isotherms over the samples used in this 

study. All isotherms exhibit a type I profile typical for microporous adsorbents according to 

the IUPAC classification [12] indicating that the material remains microporous after oxidative 

treatment. A gradual decrease of the porosity is observed by increasing the nitric acid 

treatment time.  
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Figure 5.1 N2 adsorption isotherms (77 K) for ACF-2 (○), ACF-2/HNO3-1m (▲), ACF-

2/HNO3-15m () and ACF-2/HNO3-30m (♦) 
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In order to evaluate the morphology of ACF-2 without treatment and treated by HNO3 a 

pore size determination was carried out via comparative α-plot [71]. The non-porous 

reference material was described in Chapter 4.  
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Figure 5.2 α-plot of ACF-2 (○), ACF-2/HNO3-1m (▲), ACF-2/HNO3-15m () and ACF-

2/HNO3-30m (♦) 

 

The α-plots obtained for ACF-2 samples (Figure 5.2) are almost linear and constant at α 

> 1 hence no increase of the adsorption capacity occurs at high α > 1. This implies that the 

external surface area is relatively small as compared to the total surface area meaning that 

most of the surface is due to the pores [58]. It confirms that all adsorbents are microporous 

with a relatively narrow pore size distribution.  

The curve slope is changing in the range of 0.5  α  1 for original and nitric acid 

treated ACFs. As presented in Chapter 4.3.1, ACF-2 was found to be supermicroporous (dp 

~1-2 nm). Since the slope change of the α-plots for nitric acid treated ACF-2 occurred at the 
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same αs reference (0.7), it is concluded that the oxidative treatment does not affect the 

micropore diameter of the ACFs.  

The specific surface area of all samples was calculated through the BET equation using 

N2 adsorption data [55]. The equation was linearized in the partial pressure range of 0.01-0.1. 

As shown in Table 5.1, in all cases the C values obtained are  100. The C value of the BET 

equation which can qualitatively describe the pore size remained approximately constant for 

original and nitric acid treated ACF-2 signifying a constant micropore size and confirming the 

interpretation of the α-plot. Similar results were already obtained for oxidized activated 

carbon [106, 120, 121]. Therefore, HNO3 treatment reduces both the specific surface area and 

pore volume of ACF-2 but its pore structure remains in the micro-range (< 2 nm) (Figure 

5.1).  

 

Table 5.1 Characteristics of ACFs adsorbents 

Sample SSABET [m
2 
g

-1
] C BET equation Pore volume [cm

3
 g

-1
] 

ACF-2 2170±50 280 0.94±0.02 

ACF-2/HNO3-1m 2100±50 400 0.90±0.02 

ACF-2/HNO3-15m 1670±50 370 0.74±0.02 

ACF-2/HNO3-30m 1530±50 420 0.67±0.02 

 

Surface Functionalities 

O-containing groups on the ACF-2 surface were characterized by TPD with the outlet 

composition monitored by the mass spectrometer. Two major molecules desorbing from the 

ACFs surface are CO and CO2 although traces of H2O and NO were also detected. CO2 is 
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assumed to originate from decomposition of carboxylic (373-673 K), lactone (463-923 K) and 

anhydride groups (623-900 K), whereas CO is a product of decomposition of anhydride (623-

900 K) phenolic (873-973 K), carbonyl (973-1173 K) and quinone groups (973-1173 K) 

[117].  
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Figure 5.3 TPD profiles of ACF-2 (○), ACF-2/HNO3-1m (▲), ACF-2/HNO3-15m () and 

ACF-2/HNO3-30m (♦) (10 K min
-1

, 50 cm
3
 min

-1
) 
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Figure 5.3 shows TPD profiles of original and oxidized samples. As can be seen, 

treatment of ACF-2 by nitric acid drastically increases the surface oxygen content. Even a 

short treatment time (1 min) in boiling nitric acid leads to a large increase in surface oxygen 

content. All type of surface O-containing groups is created by such treatment. Anhydride 

groups are identified by the broad shoulder at 800 K on both CO and CO2 desorption pattern. 

As compared to the other desorption peaks, the quantity of anhydride groups is relatively low. 

Particularly visible on the ACF-2/HNO3-1m pattern, the CO desorption peaks at 1000 K and 

1150 K indicate the creation by the oxidative treatment of phenolic and carbonyl or quinone 

groups, respectively. For longer treatment time, due to the higher amount of groups created, 

the two decomposition peaks are not distinguishable. The CO2 decomposition pattern of all 

oxidized samples revealed that carboxylic groups are created in a large amount although a 

small amount was already present on both original samples (550 K). Decomposing at higher 

temperature (700 K), lactone groups are created by the oxidative process in a smaller extent. 

The integration of the CO and CO2 concentration curves gives the surface oxygen 

contents of the samples which are reported in Table 5.2. For original and nitric acid treated 

samples the amount of evolved CO is comparable to the amount of CO2 confirming that all 

type of O-containing groups are present on the ACFs surface. Nitric acid treatment increased 

considerably the oxygen content in ACF-2. Indeed, ACF-2/HNO3-30m has 20 times more 

surface O-containing groups as compared to the original ACF-2. 
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Table 5.2 Quantitative characterization of ACFs surface oxygen groups 

Sample CO2 [µmol g
-1

] CO [µmol g
-1

] 
Total oxygen content 

[µmol g
-1

] 

ACF-2 240 180 420±50 

ACF-2/HNO3-1m 2200 2800 5000±100 

ACF-2/HNO3-15m 4000 3500 7500±100 

ACF-2/HNO3-30m 4000 4200 8200±100 

 

5.3.2 Toluene Adsorption  

Toluene breakthrough curves are shown in Figure 5.4. The adsorption capacity of the 

ACFs materials was determined by numerical integration as described in Section 3.4.3. 
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Figure 5.4 Toluene (80 ppmv) breakthrough curves for ACF-2 (○), ACF-2/HNO3-1m (▲), 

ACF-2/HNO3-15m (), ACF-2/HNO3-30m (♦) and 2% (v/v) Argon (■). Total flow rate 

(STP) 300 cm
3
 min

-1
 (298 K) 
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As shown in Figure 5.4, ACF-2 is efficient for toluene adsorption even at short contact 

time (~20 ms). The outlet toluene concentration is zero indicating its total adsorption before 

the breakthrough at about 50 minutes. The toluene adsorption capacity obtained is 51 wt. %. 

This value is in agreement with already published results [101]. 

The modification of ACF-2 by nitric acid gradually decreases the toluene adsorption 

capacity with the HNO3 treatment time (Figure 5.5). From 51 wt. % for original ACFs the 

adsorption capacity drops to 44, 30 and 26 wt. % for ACF-2/HNO3-1m, ACF-2/HNO3-15m 

and ACF-2/HNO3-30m, respectively. The breakthrough curve shape of the oxidized samples 

is identical to the original sample suggesting similar adsorption kinetics. This observation can 

be explained by the constant micropore size upon nitric acid treatment (Figure 5.2). The 

lower adsorption capacity of the treated ACFs is explained by their lower specific surface 

areas (Table 5.1) and higher oxygen contents (Table 5.2). It is known that a lower specific 

surface area leads to a lower adsorption capacity for similar pore sizes [101], whereas O-

containing groups weaken the interaction between benzene ring of toluene molecules and 

graphite layers of ACFs [100]. To quantify both effects, the adsorption capacity is normalized 

by the specific surface area of the adsorbent. The normalized efficiencies reflect the effect of 

the O-containing groups. It decreases with nitric acid treatment (Figure 5.5). It is then 

concluded that the presence of O-containing groups decreases the adsorption capacity towards 

toluene.  
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Figure 5.5 Toluene (80 ppmv) adsorption capacities as a function of nitric acid treatment 

(298 K) 

 

To quantify the effect of the O-containing groups, the adsorption normalized by the 

specific surface area of the different samples is plotted on the oxygen surface concentration. 

The results presented in Figure 5.6 show a linear trend, confirming that polar groups weaken 

the interactions between toluene and ACFs surface. 
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Figure 5.6 Normalized toluene (80 ppmv) adsorption capacities as function of the O-

concentration of ACF-2 (298 K) 

 

5.3.3 Acetaldehyde Adsorption  

The effect of ACFs surface functionalities on the acetaldehyde adsorption was studied 

using original and HNO3 treated ACF-2. At similar concentration (80 ppmv), much lower 

acetaldehyde adsorption capacities as compared to toluene were measured for original ACF-2: 

0.3 wt.%, and 51 wt.%, respectively. Despite their lower adsorption capacity, the 

breakthrough curves in Figure 5.7 confirm a complete acetaldehyde removal (outlet 

concentration is zero until breakthrough). Moreover, the steepness of the breakthrough curve 

indicates fast adsorption kinetics. Similarly to toluene, the modification of the fibers by 

oxidative treatment does not influence the adsorption kinetics but only the total adsorption 

capacity. Low adsorption capacity towards acetaldehyde was already reported qualitatively 

for AC [129] and ACFs [106]. Similarly to previously published results, oxidized samples 

demonstrated larger acetaldehyde adsorption capacities. The O-containing groups of the 
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activated carbon surface were suggested to enhance the acetaldehyde adsorption as compared 

to original samples.  
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Figure 5.7 Acetaldehyde (80 ppmv) breakthrough curves for ACF-2 (○), ACF-2/HNO3-1m 

(▲), ACF-2/HNO3-15m (), ACF-2/HNO3-30m (♦) and 2% (v/v) Argon (■). Total flow rate 

(STP) 300 cm
3
 min

-1
 (298 K) 

 

The adsorption capacity as a function of the oxygen surface concentration is presented 

in Figure 5.8 showing its proportionality to the oxygen surface concentration. Higher 

adsorption capacity is obtained for larger O-concentration hence, samples treated longer time 

by nitric acid shows larger adsorption capacity. A maximum adsorption capacity of 2.2 wt.% 

is reported for ACF-2/HNO3-30m at 80 ppmv. Since all types of oxygen functionalities are 

created during the nitric acid treatment, it is not possible to indicate which surface oxygen 

containing groups contribute the most to the acetaldehyde adsorption. Figure 5.8 also shows 

that at higher acetaldehyde partial pressure the adsorption capacity increases for similar O-
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concentration. The acetaldehyde adsorption mechanism on surface functional groups of 

activated carbon has been already reported [129]. It is suggested that the aldehyde group 

interacts with O-containing groups of activated carbon via hydrogen bonding. The results 

presented in Figure 5.8 are consistent with this mechanism.  
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Figure 5.8 Acetaldehyde adsorption capacity as a function of oxygen surface concentration 

for original and HNO3 treated ACF-2. (■) 80 ppmv acetaldehyde, (▲) 150 ppmv 

acetaldehyde 

 

The amounts of acetaldehyde adsorbed are around 10 times lower than the O-content. 

with 0.07-0.5 mmol g
-1

 and 0.4-8 mmol g
-1

, respectively. The coverage of the active sites by 

acetaldehyde remains relatively low at working partial pressure of 80 ppmv. The surface 

coverage increases with the acetaldehyde partial pressure confirming that the maximum 

adsorption capacity is not reached at the working pressure. Hence some adsorption sites 

remained unused due to the adsorption equilibrium. 
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5.4 Conclusions 

The effect of ACFs surface chemistry on the adsorption of toluene and acetaldehyde 

was studied at low partial pressure (80 ppmv). By varying the duration of HNO3 treatment 

time, a series of microporous ACFs with various surface oxygen contents and constant 

micropore size was obtained. The surface oxygen content was assessed by temperature-

programmed desorption of CO/CO2. Toluene and acetaldehyde adsorption capacity were 

shown to strongly depend on the surface functionalities. Larger surface O-concentration 

increases acetaldehyde removal but decreases the toluene adsorption capacity. This effect was 

rationalized by suggesting different type of interactions with the activated carbon surface. 

Acetaldehyde is adsorbed via hydrogen bonding with the O-containing groups while toluene 

adsorption occurs preferentially on hydrophobic carbon surface. 
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6  Amine Modified ACFs for Formaldehyde Adsorption 

In this chapter the results of ACFs surface modification to create specific interactions 

with formaldehyde are reported. Diethylene triamine (DETA) is deposited on the ACFs 

surface as a thin liquid film. Formaldehyde adsorption was carried out over several DETA 

modified ACFs showing a considerable increase of the adsorption capacity as compared to 

original ACFs. A mechanism of adsorption was suggested and a study of the adsorbent 

stability was performed.  
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6.1 Introduction 

As discussed in Chapter 2 adsorption capacity towards polar VOC can be enhanced by 

the functionalization of the adsorbent surface. Besides O-containing groups, surface specific 

interactions with the adsorbate can be created by the introduction of nitrogen groups. Such 

functionalization can represent a valuable alternative for the removal of formaldehyde 

because of its low boiling point (254 K) and polarity [221]. Hence, this chapter reports 

formaldehyde removal over functionalized ACFs.  

Formaldehyde adsorption by various AC has been studied by several research groups. 

High content of functional oxygen hydrophilic groups [222, 223] and large pore volume [224] 

were shown to increase the formaldehyde removal efficiency. The surface functionalization of 

AC and ACFs by nitrogen-containing groups was also studied by several groups and 

significant increase of the adsorption capacity was reported [131, 134]. Similarly, graphite 

oxide containing amino groups was reported as an effective adsorbent for formaldehyde 

abatement [146, 147]. Amorphous silica [144], MCM-41 and zeolite HY [225] were also 

functionalized with various amine containing molecules to efficiently adsorb formaldehyde. 

Finally AC was modified by hexamethylene diamine for gas phase formaldehyde removal. A 

significant improvement of the adsorption capacity was reported upon hexamethylene 

diamine deposition [141].  

Undoubtedly the presence of the amine group on the adsorbent surface enhances the 

formaldehyde removal. In this chapter, the synthesis of a novel adsorbent combining ACFs 

and diethylene triamine (DETA) is reported. A liquid layer of DETA is deposited on the 

surface of the ACFs and the adsorbent was found efficient for formaldehyde removal. DETA 

is an organic high boiling point molecule (477 K) presenting a high density of amine groups 

per unit of weight. Due to its low volatility DETA evaporation from the ACFs does not occur 
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at room temperature. The effect of DETA deposition on the ACFs morphology and its 

performance towards formaldehyde adsorption are evaluated.  

6.2 Experimental  

Materials 

Original and DETA modified ACF-2 are used in this chapter. Original ACFs are 

described in Section 3.1.1. DETA modified ACF-2 was synthesized following the procedure 

detailed in Section 3.1.2.  

Adsorbent Characterization 

The SSA and the porosity of the adsorbent were determined by physical adsorption of 

N2 at 77 K. Detailed description of the apparatus used and the conditions applied can be found 

in Section 3.2. 

Adsorption Measurements 

Formaldehyde adsorption capacity was evaluated at 50 ppmv and 298 K. 20±0.1 mg of 

original and DETA modified ACF-2 were used for formaldehyde adsorption. Prior to 

adsorption the samples were outgassed at 373 K for 30 minutes. The experimental setup used 

for adsorption experiments was presented in Section 3.4.1 and the calculation details in 

Section 3.4.2. 

6.3 Results and Discussion 

6.3.1 Characterization of ACFs 

The morphology of the original ACFs materials consisting of elementary filaments of 

~10 µm diameter was presented in Figure 4.1. Their morphology was kept upon DETA 
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deposition. The porosity of original and DETA (5 to 35 wt.%) modified ACF-2 was assessed 

by N2 physisorption at 77 K. As can be seen in Figure 6.1 the adsorption isotherms of all 

adsorbents exhibit a type I profile signifying microporous material. Although a decrease of 

the pore volume is noticed upon DETA deposition suggesting a gradual filling of the 

micropores, the microporosity is still present even for ACF-2/35%DETA.  
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Figure 6.1 N2 adsorption isotherms (77 K) for ACF-2 (○), ACF-2/5%DETA (▲), ACF-

2/15%DETA (), ACF-2/20%DETA (♦), ACF-2/25%DETA () and ACF-2/35%DETA 

(◄) 
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Figure 6.2 α-plot of ACF-2 (○), ACF-2/10%DETA (▲), ACF-2/15%DETA (), ACF-

2/20%DETA (♦), ACF-2/25%DETA () and ACF-2/35%DETA (◄) 

 

The assessment of the porosity was also performed via the α-plot presented in Figure 

6.2. As can be seen α-plot of all adsorbents present a slope change at the same αs-references: 

0.7 suggesting similar pore size. Hence the deposition of DETA on ACF-2 does not influence 

the mean pore diameter.  

The specific surface area of all samples was calculated through the BET equation using 

N2 adsorption data [55]. The equation was linearized in the partial pressure range of 0.01-0.1 

for ACF-2 and ACF-2/DETA (all loadings). As presented in Figure 6.3, the specific surface 

area was found to decrease with the DETA loading along with the pore volume. 
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Figure 6.3 Influence of the DETA loading on the specific surface area and the pore volume of 

the adsorbent 

 

As can be observed the specific surface area and the pore volume decreases with the 

DETA loading up to 20 wt.% DETA whereas at higher loading (26 and 35 wt.%) the decrease 

is less pronounced. This phenomenon along with the constant micropore size upon DETA 

loading (Figure 6.2) suggests a micropore filling and not a layer by layer addition of DETA 

which would result in a decrease of the pore volume and the pore width simultaneously. 

Assuming slit-shaped micropores as often reported for ACFs [226] we suggest that the 

micropores are gradually filled with DETA leading to an important decrease of the SSA at 

low loading. Moreover since DETA molecule is relatively large as compared to the size of the 

bottom of the micropore, the volume is not efficiently occupied. This assumption can be 

verified by comparing the theoretical decrease of the pore volume and the measured one 

(Table 6.1). Taking the liquid density of DETA (0.995 g cm
-3

), 20 wt.% loading should 

reduce the initial pore volume from 0.94 to 0.74 cm
3
 g

-1
 whereas the pore volume measured is 

0.34 cm
3
 g

-1
. It is concluded that the pore volume is not efficiently occupied by DETA. 
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At higher DETA loading (25-35%) the micropores are filled at 70 % and the addition of 

supplementary DETA only slightly reduces the SSA and the pore volume because of a more 

efficient arrangement of DETA favored by a larger pore diameter at the entrance. The 

optimum DETA loading is achieved at 20 wt.% since an almost constant specific surface area 

is reported for higher loadings (Figure 6.3). A schematic representation of the pore filling by 

DETA is shown in Figure 6.4.  

 

 

Figure 6.4 Schematic representation of DETA micropore filling  

 

The characteristics of original and modified samples are summarized in Table 6.1. As 

can be seen the DETA loading does not influence the C value of the BET equation confirming 

a constant pore width and supporting the DETA pore filling mechanism 
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Table 6.1 Characteristics of ACFs adsorbents 

Sample SSABET [m
2
 g

-1
] C Micropore volume [cm

3
 g

-1
] 

ACF-2 2170±50 280 0.94±0.02 

ACF-2/5%DETA 1760±50 360 0.74±0.02 

ACF-2/15%DETA 1460±50 280 0.64±0.02 

ACF-2/20%DETA 810±30 260 0.35±0.02 

ACF-2/26%DETA 680±30 240 0.27±0.02 

ACF-2/35%DETA 610±30 215 0.26±0.02 

 

6.3.2 Formaldehyde Adsorption 

Formaldehyde adsorption (50 ppmv) over original and DETA modified ACF-2 is shown 

in Figure 6.5. As can be seen the breakthrough curve of original ACF-2 occurs extremely 

quickly implying a very small adsorption capacity (0.1 wt.%) of non-functionalized ACFs. 

This result is in line with the performance reported in the literature [131, 134, 223].  

The deposition of 5% DETA on the fibers leads to a large increase of the formaldehyde 

abatement (2.5 wt.%). The formaldehyde signal remains at zero during 15 minutes signifying 

a total removal. Moreover, the relative steepness of the breakthrough curve suggests fast 

adsorption kinetics. 
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Figure 6.5 Formaldehyde (50 ppmv) breakthrough curves for ACF-2 (○), ACF-2/5% 

DETA (▲) and 2% (v/v) Argon (■). Total flow rate (STP) 300 cm
3
 min

-1
 (298 K) 

 

The large increase of the adsorption capacity noticed for ACF-2/5%DETA indicates the 

importance of the surface chemistry for formaldehyde adsorption [221]. Similarly to 

acetaldehyde removal on HNO3 treated ACFs (Chapter 5) the surface chemistry appears to 

be the main parameter for the removal of oxygenated VOC. The micropore structure is 

apparently less important.  

The importance of amine groups for the removal of formaldehyde was reported for 

several adsorbents and an increase of the formaldehyde adsorption capacity was noticed [141, 

147]. Matsuo et al. suggested a Schiff base interaction mechanism between the aldehyde and 

the electron rich nitrogen atom of the amine group. In general the presence of basic functional 

groups enhances the interactions with formaldehyde [134, 227]. As compared to the other 

amine based adsorbents for aldehyde removal, the deposition of DETA on ACFs presents 

several advantages such as the high SSA of the ACFs and the high density of amine groups 
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per DETA molecule. Such properties allow a larger adsorption capacity as compared to the 

other adsorbents.  

In order to increase the formaldehyde abatement capacity of the fibers, the loading of 

DETA was varied as shown in Figure 6.6.  
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Figure 6.6 Influence of the DETA loading on the formaldehyde (50 ppmv) removal capacity 

(298 K) 

 

The increase of the DETA loading enhances linearly the formaldehyde adsorption 

capacity (loading < 20 wt.%) up to a maximum value of 8.6 wt.%. As can depicted in Figure 

6.6 further increase of the DETA loading leads to a slight decrease of the adsorption capacity. 

This phenomenon was already reported for hexamethylene diamine deposition on AC [141]. It 

was explained by the pore volume decrease at high loading. Hence the optimum DETA 

loading for ACF-2 is 20%. Such observation along with the DETA pore filling mechanism 
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suggested in Figure 6.4 indicates that formaldehyde is adsorbed on the DETA surface and 

does not penetrate into the liquid phase in the microporosity.  

Interestingly 20 wt.% DETA is also the maximum loading which strongly influences the 

SSA (Figure 6.3). It is then suggested that the maximum DETA surface is reached at 20 wt.% 

for ACF-2. Higher DETA loading does not create more accessible adsorption sites.  

6.3.3 Adsorbent Stability 

The ACF-2/20% DETA being a promising adsorbent for formaldehyde removal has 

been evaluated for its stability in time. Since amine based adsorbents are used for CO2 capture 

[228-230], deactivation of ACF-2/20%DETA in ambient atmosphere towards formaldehyde 

adsorption may occur during storage.  
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Figure 6.7 Formaldehyde (50 ppmv) adsorption capacity of ACF-2/20%DETA after storage 

(298 K)  
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As can be seen in Figure 6.7 a deactivation of ACF-2/20%DETA towards 

formaldehyde adsorption takes place during storage. The adsorption capacity towards 

formaldehyde drops from 8.6 wt.% to approximately 3.8 wt.% during the first 200 hours but 

reaches a plateau suggesting long term stability. As compared to toluene adsorption on ACF 

(Chapter 4) the capacity of the ACF-2/20%DETA after stabilization is about 10-fold smaller 

in mass and 5 times less in mole at the same partial pressure (50 ppmv). However 

formaldehyde has a much lower boiling point (254 K) as compared to toluene (384 K). 

Compared to acetaldehyde removal over HNO3 treated ACF-2 (Chapter 5), the performance 

of ACF-2/20%DETA is much higher despite the lower partial pressure. An acetaldehyde 

removal capacity of 2.2 wt.% was reported at 80 ppmv whereas the adsorption capacity of 

ACF-2/20%DETA is 3.8 wt.% at 50 ppmv. Moreover since formaldehyde is a lighter 

molecule the adsorption capacity measured in mole per gram is more than 2 times higher. 

Therefore DETA on ACFs is a promising adsorbent for formaldehyde removal despite its 

deactivation during the first hours of storage.  

The deactivation is explained by two main reasons: either CO2 is interacting with DETA 

or DETA reacts slowly with the oxygen groups present on the ACFs surface (Chapter 4). In 

both cases the amine sites becomes unavailable for formaldehyde.  

To get an insight on the deactivation mechanism, a TPD experiment of ACF-

2/20%DETA was carried out. The TPD profile is shown in Figure 6.8.  
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Figure 6.8 TPD profile of ACF-2/20%DETA (10 K min
-1

, 50 cm
3
 min

-1
) 

 

As observed the desorption of both CO2 and H2O occurs during TPD of ACF-

2/20%DETA. At low temperature (300-380 K), CO2 is desorbed whereas at 440 K, a large 

desorption of water is noticed. This desorption peak is assigned to the reaction between amine 

and oxygen groups present the ACFs surface. A Schiff base reaction between the amines and 

the O-containing groups is suggested deactivating irreversibly the adsorbent. Since ACF-

2/20%DETA was pretreated at 373 K before each adsorption experiment, CO2 should not be 

the origin of the deactivation. The mechanism of the deactivation observed in Figure 6.7 is 

suggested to occur via reaction between the ACFs support and the amine. The stabilization 

reached after 200 hours is then assigned to the reaction of all the O-containing groups with the 

amine. 

6.4 Conclusions 

A novel efficient adsorbent was developed for the removal of low concentration 

formaldehyde by deposition of a liquid layer of diethylene triamine (DETA) on the surface of 
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microporous ACFs. A set of adsorbents with different DETA loading was synthesized. A 

mechanism of DETA deposition on the ACFs surface was suggested based on microporosity 

analysis. An optimum DETA loading of 20 wt.% was determined and considerable adsorption 

capacity increase was noticed in comparison to original ACFs, 8.6 and 0.1 wt.%, respectively. 

A Schiff base mechanism between the amine groups of DETA and formaldehyde was 

suggested as the adsorption driving force. The stability upon storage of the developed 

adsorbent was addressed. After a 50 % deactivation during the first hours of storage, the 

adsorption capacity remains stable with 3.8 wt.% of formaldehyde removal. Irreversible 

interactions between the amines and the O-containing groups present on the ACFs surface 

were suggested.  
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7 ACFs Modified by Metal Oxide for Acetaldehyde 

Adsorption 

This chapter presents novel efficient adsorbents for acetaldehyde removal from diluted 

gas streams (~1300 ppmv). Adsorbents combining the properties of ACFs and nanoparticles 

(NPs) of metal oxides (La2O3, CaO, MgO, ZnO, and Al2O3) have been developed. The 

adsorbents have been prepared by wetness impregnation of ACF using different precursors. 

The NPs are well dispersed and have average particle size below 2 nm. Depending on their 

basic properties metal oxide NPs show different adsorption capacity towards acetaldehyde. 

The NPs deposition provides up-to a 6-fold increase of the amount of acetaldehyde adsorbed 

as compared to the non-modified ACF. The effect of CO2 in the gas stream on the adsorption 

capacity of NPs on ACFs was measured as well as the effect of the initial porosity of the 

ACFs. Finally, based on TPD experiments, an adsorption mechanism was suggested.  
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7.1 Introduction 

As seen in Chapter 5, the original activated carbon showed a limited adsorption 

capacity towards diluted mixture of acetaldehyde. Although AC surface functionalization by 

addition of O-containing groups is a valuable strategy to increase its adsorption capacity, the 

hydrophilic groups are not selective to acetaldehyde and the adsorption capacity remains 

relatively low.  

Other alternatives have been developed to adsorb acetaldehyde and other oxygenated 

VOC from gas streams such as AC functionalization via nitrogen containing groups (Chapter 

6) or via adsorption by metal oxide particles [156]. Recently, metal oxide particles were 

reported to show particular reactivity towards a large range of VOC such as hydrogen sulfide 

[152] sulfur dioxide [155], ammonia [160] or acetaldehyde [231]. Among them 

nanocrystalline aerogels of alkaline earth oxides were proposed as effective adsorbents for 

aldehyde and alcohols. The large specific surface area of aerogel nano-particles (500 m
2
 g

-1
) 

was reported to enhance their adsorption capacity. The adsorption capacity of these materials 

was found to be larger compared to AC due to a multilayer dissociative adsorption of VOC 

[156]. In the particular case of acetaldehyde adsorption, MgO was reported as the most 

efficient.  

Despite their high intrinsic adsorption potential, small nano-particles present 

tremendous pressure drop at high flow rates decreasing their potential for industrial 

application. However their deposition on a support presenting open macro-structure can 

represent a valuable alternative since it allows much higher gas velocity before observing a 

pressure drop [160]. Activated carbon is a material widely used in heterogeneous catalyst 

systems to support the catalysts active phase [232, 233]. Its well-developed microporosity 
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allows the formation of numerous NPs. Although rarely seen for adsorption purpose the 

combination of nano-particles supported by ACFs can represent a novel type of adsorbent.  

The goal of this chapter was to develop novel ACFs-based structured adsorbents for 

efficient removal of acetaldehyde from low-concentrated streams. The approach is based on a 

conjugation of ACFs properties (large surface area and open macro-structure) with the 

reactivity of metal oxide NPs. Different metal oxide NPs were deposited on ACFs and their 

adsorption capacity towards acetaldehyde was evaluated and compared with original ACFs 

and nitric acid oxidized ACFs as presented in Chapter 5. The effect of CO2 exposure on the 

adsorption capacity was also evaluated. Finally an adsorption mechanism is suggested.  

7.2 Experimental 

Materials 

Original, oxidized and metal oxide modified ACFs are used in this chapter. Original 

ACFs are described in Section 3.1.1. Oxidized ACFs and metal oxide deposited on ACFs 

were prepared following the procedure presented in Section 3.1.2. 

Adsorbent Characterization 

The SSA and the porosity of the adsorbent were determined by physical adsorption of 

N2 at 77 K. Metal oxide particle size was assessed by HRSTEM imaging. Detailed description 

of the apparatus used and the conditions applied can be found in Section 3.2.  

Adsorption-Desorption Measurements 

Acetaldehyde adsorption capacity was evaluated at 1300 ppmv and 298 K. 20±0.1 mg 

of original, oxidized and metal oxide deposited ACF-2 were used for acetaldehyde adsorption. 

In the experiment using a mixture of CO2 and acetaldehyde, pure CO2 (99.999 % Carbagas) 
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was added to the acetaldehyde/He mixture via a second gas line. The concentration of CO2 in 

the gas mixture was adjusted by modifying its flow rate. The experimental setup used for 

adsorption experiments was presented in Section 3.4.1 and the calculation details in Section 

3.4.2.  

The temperature-programmed desorption (TPD) experiments were carried out as 

described in Section 3.4.4. A He flow of 50 cm
3
 min

-1
 was applied at different temperature 

ramps (3-30 K min
-1

). Mass 29 and 44 were monitored by the mass spectrometer for 

acetaldehyde. The concentration of CO2 (mass 44 only) was also monitored.  

7.3 Results and Discussion 

7.3.1 Characterization of ACFs 

Morphology 

The morphology of the original ACFs materials consisting of elementary filaments of 

~10 µm diameter was presented in Figure 4.1. Their morphology was conserved upon nitric 

acid treatment and metal oxide deposition.  

The recorded N2 adsorption isotherms of the original and MgO modified ACFs are 

shown in Figure 7.1. The isotherms of MgO modified ACFs correspond to the type I 

(according to the IUPAC classification) typical for microporous materials (dp ˂ 2 nm) 

suggesting that the ACFs morphology is kept upon MgO deposition. However the total pore 

volume is diminished by the NPs deposition.  
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Figure 7.1 N2 adsorption isotherms (77 K) for ACF-1 (■), ACF-2 (○), ACF-2/5%MgO (▲) 

and ACF-2/10%MgO () 

 

In order to evaluate the morphology of ACF-2 and MgO modified ACFs a pore size 

determination was carried out via comparative α-method [71]. Similar methodology was 

presented in Chapter 4, 5 and 6.  
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Figure 7.2 α-plot of ACF-1 (■), ACF-2 (○), ACF-2/5%MgO (▲) and ACF-2/10%MgO () 

 

The α-plots obtained for ACF-1 and ACF-2 and MgO modified ACF-2 are presented in 

Figure 7.2. Similarly to the data presented in Chapter 4 for ACF-1 and ACF-2, the α-plots 

are linear and constant at α > 1 signifying a small external surface as compared to the surface 

in the pores [58]. The α-plots of MgO deposited ACF-2 is compared to original ACF-1 and 

ACF-2. As can be seen in Figure 7.2 the curve slope change of ACF-2/5%MgO and ACF-

2/10%MgO occurs between original ACF-1 and ACF-2. The mean pore size of metal oxide 

deposited ACF-2 is then suggested to slightly decrease upon MgO deposition. Since ACF-2 is 

supermicroporous (dp 1-2 nm) and ACF-1 is ultramicroporous (dp < 1 nm) (Chapter 4), it is 

suggested that the MgO NPs of deposited on ACF-2 are smaller than 2 nm and are located in 

the micropores.  

The specific surface area of all samples was calculated through the BET equation using 

N2 adsorption data [55]. The equation was linearized in the partial pressure range of 0.01-0.1 

for ACF-2, ACF-2/5%MgO and ACF-2/10%MgO. As shown in Table 7.1, in all cases the C 

values obtained are  100. The C value of the BET equation which can qualitatively describe 
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the pore size is increasing for MgO ACF-2/5%MgO and ACF-2/10%MgO suggesting a 

decrease of the micropore size confirming the interpretation of the α-plot. Therefore MgO 

deposition on ACF-2 was found to reduce the specific surface area, pore volume and the 

micropore size.  

 

Table 7.1 Characteristics of ACFs adsorbents 

Sample SSABET [m
2
 g

-1
] C Micropore volume [cm

3
 g

-1
] 

ACF-1 800±50 6400 0.34±0.02 

ACF-2 2170±50 280 0.94±0.02 

ACF-2/5%MgO 1850±50 480 0.78±0.02 

ACF-2/10%MgO 1590±50 1115 0.66±0.02 

 

A high resolution scanning transmission electron microscopy (HRSTEM) analysis 

(EDX mode) of ACF-2/5%MgO revealed a homogenous distribution of MgO through the 

carbon fibers. However, a detailed study of individual MgO NPs was not possible even at the 

highest resolution due to a low contrast between carbon and magnesium. To overcome this 

problem, a HRSTEM study of ACF-2/5%La2O3 was carried out. Lanthanum (mass 237) 

provides a higher HRSTEM contrast. The obtained image is shown in Figure 7.3 where 

homogenously distributed La2O3 nanoparticles with a size of 0.9-2 nm are clearly visible. The 

result confirms that metal oxide nanoparticles are formed within ACFs micropores and their 

size is controlled by the pore diameter. This conclusion holds for ACF-2/5%MgO since the 

nanoparticle formation was the same for all synthesized adsorbents. Nano-sized metal oxides 

are characterized by a very high surface-to-volume ratio and provide a large amount of active 

adsorption sites.  
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Figure 7.3 HRSTEM picture of ACF-2/5%La2O3 

 

Precursor decomposition temperature 

As mentioned in the experimental part (Section 3.1.2) to obtain metal oxide NPs, ACF-

2 is impregnated by nitrate precursors (except TiO2) and further decomposed by thermal 

treatment. The precursor decomposition temperature was studied by mass spectrometry. An 

example of alkaline-earth oxide decomposition on ACF-2 is shown in Figure 7.4. 
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Figure 7.4 TPD profile of Mg(NO3)2, Ca(NO3)2 and La(NO3)3 on ACF-2 (10 K min
-1

 50 cm
3
 

min
-1

) 

 

As can be seen the decomposition of the all the alkaline-earth oxide precursors take 

place between 473 and 673 K. Nitrous oxide and carbon dioxide were the main species 

detected from the nitrates decomposition. Nitrous oxide comes from the nitrate group directly 

whereas the presence of carbon dioxide implies a partial oxidation of the ACFs during the 
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preparation. Whereas the NO signal reached its initial baseline before 673 K for all the 

samples, the CO2 signal remains slightly higher probably due to desorption of O-containing 

group from the surface or formation of the alkaline-earth oxide NPs. The adsorbent were then 

prepared at 773 K. A further optimization of the ACF-2/5%MgO allowed decreasing the 

calcination temperature at 673K.  

7.3.2 Acetaldehyde Adsorption 

Acetaldehyde adsorption (1300 ppmv) on original, HNO3 and MgO NPs treated ACF-2 

is shown in Figure 7.5. The adsorption capacity was assessed by numerical integration of the 

area defined by the acetaldehyde breakthrough curve following the procedure detailed in 

Section 3.4.3. 
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Figure 7.5 Acetaldehyde (1300 ppmv) breakthrough curves for ACF-2 (○), ACF-2/HNO3-

75m (♦), ACF-2/5%MgO () and 2% (v/v) Argon (●). Total flow rate (STP) 200 cm
3
 min

-1
 

(298 K) 
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Similarly to more dilute mixture (Chapter 5), the acetaldehyde signal is equal to zero 

during a certain time and the breakthrough curve is relatively steep for original an HNO3 

modified ACF-2 implying fast kinetics of acetaldehyde adsorption on ACFs. The adsorption 

capacity calculated for the original and HNO3 modified ACF-2 were 3.2 and 9.9 wt.%, 

respectively. Due to the higher partial pressure of acetaldehyde (1300 vs 80 ppmv) these 

adsorption capacities are considerably larger as compared to the values reported in Chapter 

5. 

As showed in Figure 7.5, the deposition of MgO NPs on original ACF-2 increases the 

acetaldehyde adsorption capacity. Although a total acetaldehyde removal is also observed the 

breakthrough curve is less steep suggesting pronounced mass transfer limitations. As 

compared to HNO3 treated ACF-2 the acetaldehyde concentration raised earlier but since its 

slope is less steep the total adsorption is larger (16 wt. %). Hence the deposition of MgO on 

ACF-2 is a more performant strategy for acetaldehyde removal as compared to HNO3 

treatment. Moreover ACF-2/5%MgO is supposed to be a more selective adsorbent as 

compared to the O-functional groups obtained by HNO3 treatment.  

The deposition of other alkaline-earth oxide such as CaO and La2O3 on ACF-2 was 

carried out. The acetaldehyde breakthrough curves are presented in Figure 7.6. 
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Figure 7.6 Acetaldehyde (1300 ppmv) breakthrough curves for ACF-2 (○), ACF-2/5%MgO 

(), ACF-2/5%CaO (♦), ACF-2/5%La2O3 (▲) and 2% (v/v) Argon (●). Total flow rate 

(STP) 200 cm
3
 min

-1
 (298 K) 

 

The breakthrough curve of CaO and La2O3 on ACF-2 shows similar shape than ACF-

2/5%MgO. They are also efficient adsorbent and present similar mass transfer limitations. 

Since the mean diameter of the pores is not drastically affected by the deposition of metal 

oxides, migration of adsorbed acetaldehyde on the metal oxide NPs are suggested to govern 

the adsorption rate. 

The adsorption capacities of the different metal oxide deposited on ACF-2 are shown in 

Figure 7.7. As observed, the ACFs modified by alkaline-earth metal oxide are showing the 

largest acetaldehyde adsorption capacity. Alkaline-earth metal oxides are known for their 

basicity [234]. Both CO2 chemisorption microcalorimetry and TPD experiments showed a 

stronger basic character of CaO as compared to MgO [235]. CO2 adsorption experiments 

revealed a larger adsorption capacity of La2O3 as compared to CaO and MgO implying the 

stronger basic character of La2O3 [236]. The amphoteric properties of TiO2, Al2O3 and ZnO 
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were confirmed by both CO2 and NH3 chemisorption microcalorimetry methods [236]. Thus, 

we can conclude that the acetaldehyde adsorption capacity of ACF modified by metal oxide 

NPs is related to the basicity of the latter. NPs with a higher basicity provide a larger 

acetaldehyde removal capacity.  
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Figure 7.7 Acetaldehyde (1300 ppmv) adsorption capacity of metal oxide modified ACF-2 

(298 K) 

 

A higher acetaldehyde adsorption capacity by MgO and CaO aerogels as compared to 

activated carbon (measured by a static gravimetric method) has already been reported [156]. 

However, metal oxide NPs supported on ACF-2 in our samples are much smaller (0.9-2 nm) 

as compared to aerogel nano-powders (4-7 nm) [231] and provide a much higher amount of 

active sites for acetaldehyde adsorption for a similar metal oxide quantity. Moreover, the 

structured ACF material provides a low pressure drop being suitable for a dynamic adsorption 

from flue gas streams. 



Chapter 7: ACFs Modified by Metal Oxide for Acetaldehyde Adsorption 

122 

7.3.3 Competitive Adsorption: CO2 Effect 

In industrial flue gas streams, acetaldehyde is often mixed with other gases including 

CO2. Therefore, competitive adsorption of CO2 and acetaldehyde on basic metal oxide NPs 

supported on ACFs was studied taking ACF-2/5%MgO as a representative sample. The 

concentration of acetaldehyde in gaseous streams was fixed at 1300 ppmv whereas the 

concentration of CO2 was varied. 
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Figure 7.8 Acetaldehyde (1300 ppmv) adsorption capacity of ACF-2/5%MgO as a function 

of CO2 concentration (298 K) 

 

As shown in Figure 7.8, the presence of CO2 in the stream decreases the adsorption 

capacity of ACF-2/5%MgO towards acetaldehyde. A competitive adsorption of acetaldehyde 

and CO2 on MgO sites can be supposed since CO2 is known for its interactions with basic 

surface [237]. Despite the decrease of the adsorption capacity in presence of CO2, the 

selectivity of ACF-2/5%MgO is still very high. A 100 fold larger CO2 concentration (10 % 
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(v/v)) divides by 2 the adsorption capacity towards acetaldehyde. However, in presence of 

CO2 the acetaldehyde outlet concentration never dropped to zero meaning that the complete 

acetaldehyde removal was not achieved. The minimum acetaldehyde concentration reached at 

the outlet was ~80 ppmv and corresponds to a 90-95 % of acetaldehyde removal.  

Using ACF-1/5%MgO instead of ACF-2/5%MgO, decreased drastically the effect of 

CO2 (Figure 7.9). In the presence of CO2 the adsorption capacity of ACF-2/5%MgO 

decreased from 16 to 9.5 wt. %, while a little or no change was observed for ACF-1/5%MgO. 

As shown in Chapter 4, ACF-1 has smaller micropores as compared to ACF-2 decreasing the 

MgO NPs size. However, the adsorption capacity of ACF-1/5%MgO was ~1.6 times smaller 

as compared to ACF-2/5%MgO. This result can be explained by a partial blockage of MgO 

NPs within the narrower pores of ACF-1. At the same time such geometry results in an 

improved selectivity of adsorption towards acetaldehyde in the presence of CO2.  
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Figure 7.9 Acetaldehyde (1300 ppmv) adsorption capacity of ACF-1/5%MgO (hatched bars) 

and ACF-2/5%MgO (solid bars) in the presence of 10% CO2 (298 K) 
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7.3.4 Temperature-Programmed Desorption of Acetaldehyde 

The interactions between acetaldehyde and the adsorbent surface were characterized by 

TPD of adsorbed acetaldehyde. The acetaldehyde TPD profiles recorded for ACF-2/5% MgO 

are shown in Figure 7.10. The profile recorded for ACF-2/HNO3-75m is also shown for 

comparison. 
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Figure 7.10 TPD profile of acetaldehyde desorption over ACF-2/5%MgO and ACF-2/HNO3-

75m (10 K min
-1

,
 
100 cm

3
 min

-1
) 

 

The experiments were carried out by monitoring mass 29 and 44 at the reactor outlet. 

Mass 44 corresponds to the molecular ion of acetaldehyde whereas mass 29 is the main 

fragment. This is important to underline because mass 44 is also the characteristic mass of 

CO2. Several TPD peaks observed in Figure 7.10 imply that ACF-2/5%MgO has 

energetically different adsorption sites. The first desorption peak corresponds to the weakest 

adsorption sites. The curve of both masses 44 and 29 are detected here simultaneously 
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signifying that acetaldehyde molecules are desorbed in this case. The same peak appears in 

acetaldehyde TPD from ACF-2/HNO3-75m. Since ACF-2/HNO3-75m has only O-containing 

surface groups to adsorb acetaldehyde, it is suggested that the first peak corresponds to 

acetaldehyde molecules adsorbed on O-containing carbon surface groups of ACF-2/5%MgO 

[106, 129]. The larger area under the peak of ACF-2/HNO3 as compared to ACF-2/5%MgO is 

explained by the extremely low content of surface oxygen groups on ACF-2/5%MgO. Indeed, 

ACF-2 has a low initial content of O-containing groups and in the case of ACF-2/5%MgO the 

fibers went through a calcination process, which partially removed the O-containing groups.  

The two next peaks appearing at higher temperatures (~470 and 520 K) are attributed to 

acetaldehyde adsorbed on MgO NPs. The hypothesis of multiple MgO adsorption sites has 

been discussed in several papers dealing with acetaldehyde adsorption on nanocrystalline 

aerogel prepared MgO [156, 238]. The density functional study of acetaldehyde adsorption on 

nano-sized MgO revealed different adsorption sites on the surface. Two modes of 

acetaldehyde adsorption were identified. In one of them, the acetaldehyde carbonyl group is 

aligned perpendicularly to the MgO surface and attached to a Mg
2+ 

ion through the oxygen 

atom without involving the carbon atom. One hydrogen of the methyl group can interact with 

a surface O
2- 

ion (Figure 7.11 A). In other adsorption mode, the carbonyl group is oriented 

horizontally to the MgO surface above a Mg-O bond. In this case, the carbonyl group 

interacts with a MgO NP through both oxygen and carbon atoms (Figure 7.11 B).  
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Figure 7.11 Mode of acetaldehyde adsorption on MgO NPs 

 

The 4
th

 TPD peak (~670 K) in Figure 7.10 is represented only by mass 44. It was 

therefore attributed to CO2 desorption. CO2 is either adsorbed by MgO NPs from ambient air 

during the storage or created by destructive desorption of acetaldehyde and/or products of its 

chemical transformation on MgO NPs. Alkaline earth metal oxides are well known acid-base 

catalysts for various reactions [239, 240], such as aldol addition and condensation [241, 242] 

or Tishchenko reaction [243, 244]. Although, none of the products of these reactions were 

detected in the adsorbent downstream, they could be strongly adsorbed on the ACF-

2/5%MgO surface and decomposed at elevated temperature to form CO2. 

Acetaldehyde desorption from ACF-2/5%MgO was also studied using different 

temperature ramps. In this case, the peaks maxima are shifted depending on the temperature 

ramp. The measurements allow to calculate the activation energy of desorption (Ed) by 

measuring the desorption rate at different temperatures [213]. In TPD experiments, 

temperature is increased linearly and desorption rate changes. The activation energy of 

desorption is determined by varying the temperature ramp and measuring the temperature at 

the maximum desorption rate. Since the difference between activation energy and heat of 

desorption is negligible [213], the activation energy of desorption can be approximated as the 

adsorption enthalpy (ΔHads). The adsorption enthalpy of acetaldehyde on different active sites 

of ACF-2/5%MgO is presented in Table 7.2. 
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Table 7.2 Heat of acetaldehyde adsorption on different active sites of ACF-2/5%MgO (10 K 

min
-1

,
 
100 cm

3
 min

-1
) 

Type of active sites 
Peak position (at 10 K 

min
-1

) [K] 

0

adsH [kJ mol
-1

] 

1 390 -22±10 

2 470 -45±13 

3 520 -77±11 

 

The adsorption enthalpy calculated for the 1
st
 peak is a relatively low (-22 kJ∙mol

-1
). It 

corresponds to physisorption of acetaldehyde molecules on O-containing carbon surface 

groups via hydrogen bonding as already reported by several research groups [106, 129]. The 

obtained ΔHads value is in line with the published ones. The isosteric heat of acetaldehyde 

adsorption determined at zero surface coverage for graphitized carbon black and HNO3 

treated activated carbon was reported to be -25.8 and -32.4 kJ mol
-1

, respectively [129].  

Acetaldehyde adsorption on other active sites (2
nd

 and 3
rd

 TPD peaks) is characterized 

by larger adsorption enthalpy values: -45 and -76 kJ mol
-1

, respectively, and corresponds to its 

chemisorption on MgO NPs. The obtained ΔHads values are comparable to the published 

results calculated by DFT for acetaldehyde adsorption on a nano-sized MgO powder: -44 and 

-73 kJ mol
-1 

[238]. The DFT calculations allowed describing the acetaldehyde adsorption 

conformations on the MgO surface. Acetaldehyde molecules desorbing from the 2
nd

 type of 

active sites (desorption temperature ~470 K, Table 7.2) were adsorbed through the carbonyl 

group oriented horizontally above Mg
2+

-O
2-

 ion pair (Figure 7.11 B). Both carbon and 

oxygen atoms of the carbonyl group are involved in this interaction. Acetaldehyde adsorption 

on the 3
rd

 type site (desorption temperature ~520 K, Table 7.2) takes place solely through the 

oxygen atom of the acetaldehyde group attached to Mg
2+

 ion (Figure 7.11 A).  
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7.4 Conclusions 

In summary, structured adsorbents efficient for acetaldehyde removal from diluted gas 

streams have been developed. ACFs have been used as structured supports for nanoparticles 

(NPs) of basic metal oxides. Deposited NPs were stabilized within the ACFs micropores and 

have mean diameter below 2 nm. The highest adsorption capacity up to 20 wt.% of 

acetaldehyde was obtained with the NPs of the most basic metal oxides, La2O3 and MgO.  

The developed adsorbents based on modified ACF are sensitive to the presence of CO2 

in the gas stream due to its competitive adsorption with acetaldehyde on metal oxide NPs. The 

adsorption selectivity towards acetaldehyde could be increased by using ACF with narrower 

microporosity (ACF-1). Smaller MgO NPs more selective towards acetaldehyde are 

suggested to be created by the narrower microporosity. 

Acetaldehyde TPD from ACF-2/5%MgO revealed three types of surface adsorption 

sites: one was assigned to physisorption on the surface O-containing carbon groups and two 

other sites are on MgO surface and provide acetaldehyde chemisorption in two different 

modes.  

7.5 Practical Applications of Metal Oxide Functionalized ACFs for 

Cigarette Smoke Constituents Removal 

Although not mentioned earlier in this thesis, the adsorbents presented in this thesis 

were developed for the particular application of cigarette smoke constituents removal. The 

targeted VOC chosen along this thesis were also selected based on the smoke composition. 

For the acetaldehyde removal, metal oxide NPs deposited on ACFs showed the largest 

adsorption capacity. The acetaldehyde amount adsorbed was larger than to the quantities of 

acetaldehyde present in cigarette smoke. Moreover ACF-2/5%MgO was shown to be stable in 
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time and efficient in the presence of 10 % (v/v) CO2 in the gas mixture (Figure 7.8). Hence 

this adsorbent was tested in cigarette conditions.  

Figure 7.12 presents the design of the cigarette filter prototypes. The filter is divided in 

3 different compartments. The first one starting from the mouth end is 18 mm long and is 

composed of cellulose acetate, the standard component of cigarette filters. The second 

compartment is constituted of five disks of ACF-2/5%MgO for a total length of 3 mm. The 

weight of adsorbent is 30 mg. The third part of the filter with a length of 6 mm is composed 

of cellulose acetate.  

 

 

 

 

 

The experiments were carried out in a smoke machine with 20 cigarettes constituted 

with ACF-2/5%MgO filters. The performance of the adsorbent was evaluated by measuring 

the composition of the smoke after the mouth end. The performance of the developed 

adsorbents was evaluated for 5 different compounds: acetaldehyde, acrolein, formaldehyde, 

benzene and butadiene. The performances of the filters towards acetaldehyde are reported in 

Figure 7.13. 

 

Figure 7.12 Cigarette filter design 

3 mm 6 mm 18 mm 

Mouth end 
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Figure 7.13 Non-retained acetaldehyde quantities in cigarettes conditions 

 

As can be seen ACF-2/5%MgO is an efficient adsorbent for acetaldehyde in real smoke 

conditions. The non-retained acetaldehyde content in a cellulose acetate filter is about 1.06 

mg whereas it decreases to 0.84 mg with ACF-2/5%MgO. A third type of filter is tested for 

comparison (GCN) which consists of 60 mg of granulated activated carbon disposed in the 

filter. The granulated activated carbon particles have a diameter of 500 µm. They are 

microporous adsorbents similarly to ACFs. However they are not functionalized with MgO 

NPs. As can be seen their performance, is lower as compared to ACF-2/5%MgO since 1.02 

mg of acetaldehyde are not retained by the filter. Hence the combination of ACFs and MgO 

NPs provides a considerable increase of the removal of smoke compounds.  

The performance of ACF-2/5%MgO was also evaluated for the other aldehyde such as 

formaldehyde and acrolein. The results are presented in Figure 7.14.  
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Figure 7.14 Non-retained formaldehyde and acrolein quantities in cigarette conditions 

 

The results clearly indicate that the filters composed with ACF-2/5%MgO are more 

efficient than standard cellulose acetate or granulated activated carbon for aldehydes. A 

removal larger than 50% is achieved by the ACF-2/5%MgO. Such performance is attributed 

to the combination of basic metal oxide NPs due to their high adsorption potential towards 

aldehydes and the favorable open macrostructure of the ACFs.  

Finally the performance of ACF-2/5%MgO was evaluated for non-polar compounds 

such as benzene and butadiene. For such compounds the functionalization of ACF-2 by MgO 

NPs is not supposed to enhance the adsorption capacity. However a large adsorption capacity 

towards toluene attributed to the well-developed microporosity of the ACF-2 was reported in 

Chapter 4. Due to the molecular similarities between toluene and benzene, high adsorption 

capacity of ACF-2 is expected for benzene. Although the microporosity of ACF-2 is slightly 

decreased by the MgO NPs deposition it is supposed to be sufficient for efficient benzene 

removal from cigarette smoke. The performance of the different filters towards benzene and 

butadiene are presented in Figure 7.15.  
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Figure 7.15 Non-retained benzene and butadiene quantities in cigarette conditions 

 

The efficiency of the cigarette filter composed of ACF-2/5%MgO towards benzene is 

clearly shown. More than 50% of the benzene is retained by the filter containing ACF-

2/5%MgO. As suggested earlier the large efficiency towards benzene is attributed to the 

microporosity of ACF-2 and not to the MgO NPs. For benzene, the efficiency of granulated 

activated carbon is in the same range compared to ACFs due to their similar microporosity.  

Despite its non-polar properties similar to toluene, butadiene is efficiently retained 

neither by ACF-2/5%MgO nor by granulated activated carbon. This phenomenon is attributed 

to the high volatility of this VOC (boiling point 269 K) and the lack of specific interaction 

sites.  

In conclusions, an efficient adsorption of aldehydes (acetaldehyde, formaldehyde and 

acrolein) by cigarette filters composed of ACF-2/5%MgO is observed in real conditions 

despite the complexity of the smoke constitution. A 20% removal is measured towards 
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acetaldehyde whereas a 50% removal has been measured for acrolein and formaldehyde. The 

performances of ACF-2/5%MgO are significantly better than granulated activated carbon. 

The efficiency of this adsorbent in cigarette conditions towards benzene was also shown. 

Only butadiene is not efficiently retained because of its high volatility and the absence of 

interactions with MgO NPs. Hence another strategy is necessary for the development of an 

efficient adsorbent.  
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8 Butadiene Adsorption by Zeolites 

This chapter reports the adsorption of diluted butadiene (100 ppmv) over original and 

modified Na-X. The modification of this zeolite was performed via water treatment followed 

by calcination. The bulk composition and surface chemistry of the original and modified 

zeolites were characterized. Adsorption of butadiene over modified zeolites was studied by in 

situ FTIR to get an insight of the adsorption mechanism. The thermodynamic parameters were 

obtained through the modelling of butadiene adsorption isotherms. Temperature-programmed 

desorption was carried out and simulated. Finally the thermodynamic parameters obtained by 

TPD and isotherm methods were compared.  
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8.1 Introduction 

As described in Chapter 4, ACFs are very efficient for the removal of non-polar high 

boiling point VOC such as toluene thanks to pore condensation mechanisms, whereas, for 

non-polar low boiling point VOC, their adsorption capacity is considerably smaller, 

particularly for diluted mixtures [221]. Identically to polar VOC removal (Chapter 6 and 7), 

the creation of specific adsorption sites can represent a valuable alternative for efficient 

adsorption of non-polar low boiling point VOC. 

As presented in Chapter 2, besides activated carbon, zeolite is another widely used 

adsorbent. Consisting of crystalline microporous aluminosilicates with an infinite three 

dimensional framework of AlO4 and SiO4, zeolites are characterized by an important 

micropore volume and a large specific surface area [245]. Because of their particular 

structure, they can present surface acid sites often used in catalytic reactions [246, 247]. In the 

context of adsorption, these acid sites can serve for specific adsorption. Two types of acidity 

are usually reported for zeolites: Brønsted and Lewis sites [248]. Brønsted acid sites are 

formed by aluminum atoms connected to silicon by a “bridging hydroxyl” (Si-OH-Al) where 

the framework negative charge is compensated by a proton. Lewis acid sites are composed of 

aluminum or silicon with low coordination [249] or of alkaline cations such as sodium [250]. 

Recently Brønsted sites were reported to interact with the π bond of olefins in H-ZSM-5 

[251].  

Butadiene is a non-polar low boiling point (269 K) VOC. Because of its physical 

properties efficient butadiene adsorption is particularly challenging. Indeed the adsorption 

capacities of microporous ACFs reported for similar compounds (butane) are relatively low 

[104]. Hence, efficient adsorption requires specific chemical interactions. Some publications 

report the use of transition metal-exchanged zeolites [181, 182] or polycations metal 
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exchanged zeolites [184] for butadiene adsorption involving a π-complexation mechanism. 

Interactions between the d orbital of the transition metal and the electron rich π system of 

butadiene are suggested [158]. Although exchanged zeolites are efficient adsorbents, the 

adsorption mechanism is still unclear. Moreover, since a large number of transition metals are 

interacting with butadiene, there are still doubts regarding the activity of the exchanged metal 

cations [182]. 

This chapter reports a novel efficient adsorbent for butadiene removal at low partial 

pressure. An approach for studying the type of zeolite acidity and the butadiene adsorption 

capacity is chosen. Butadiene adsorption isotherms have been measured and temperature 

programmed desorption measurements were performed to get insights of the adsorption 

enthalpy. Adsorption mechanism and characterization of surface sites is assessed by FT-IR 

spectroscopy, pyridine TPD and 
27

Al MAS NMR.  

8.2 Experimental 

Materials 

The zeolite samples are described in Section 3.1.3. Prior to adsorption measurement the 

zeolites were heated at 373 K (He 40 cm
3
 min

-1
) during 30 minutes. 

The butadiene/He 0.1 % (v/v) was purchased by Carbagas and was diluted 10 times to 

obtained an outlet concentration of 100 ppmv in the setup described in Section 3.4.1. 

Adsorbents Characterization  

The zeolite morphology was characterized by N2 adsorption at 77 K and scanning 

electron microscopy. The bulk composition of the zeolites was assessed by elemental analysis 

via AAS method and MAS NMR whereas the crystallography of the zeolites was measured 
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by XRD. The analysis of the zeolite surface was obtained by IR spectroscopy. The acidity of 

the adsorbent was evaluated by in situ FTIR with pyridine as a probe molecule for qualitative 

evaluation and by pyridine TPD using a Micromeritics Autochem II for acid site 

quantification. Detailed description of the apparatus used and the conditions applied can be 

found in Section 3.2. 

Adsorption-Desorption Measurements 

Butadiene adsorption isotherms on the Na-X and Na-X-H2O (40 mg ± 0.5) were 

obtained by measuring the adsorption capacity at different temperatures (298-333 K) and 

butadiene partial pressures (25-300 ppmv). The experimental setup used for adsorption 

experiments was presented in Section 3.4.1 and the calculation details in Section 3.4.2.  

The temperature-programmed desorption experiments were carried out as described in 

Section 3.4.4.  

8.3 Results and Discussion 

8.3.1 Characterization of Zeolites  

Morphology 

A representative SEM image of the original Na-X is shown in Figure 8.1. As can be 

seen on the right picture the pellet size is around 500 µm. Such pellet size was chosen to 

avoid pressure drop encountered with small particles and mass transfer limitations appearing 

with large particles. The pellets are constituted of elementary microcrystals of around 4-5 µm 

linked together (right picture) without possessing a proper 3-dimensional shape. The general 

appearance of the zeolite was maintained after water treatment.  
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Figure 8.1 SEM picture of zeolite 

 

The N2 adsorption isotherm of the original Na-X and water treated Na-X are presented 

in Figure 8.2. The two isotherms are similar implying that the water treatment does not affect 

the porosity of the zeolite. They correspond to a type I isotherm according to the IUPAC 

classification indicating a microporous material (pore diameter < 2 nm) [12]. The specific 

surface area of the adsorbents was calculated from N2 adsorption data using the BET equation 

[55]. The BET equation was linearized in the 0.001-0.05 pressure range. The specific surface 

area was found to be 750 m
2
 g

-1
 and the pore volume was measured around 0.28 cm

3
 g

-1
 

which is in the same range as already published values [252]. The “C” value of the BET 

equation is a qualitative representation of the first layer adsorption energy. Such high value 

(~50000) indicates microporous structure with narrow pore size corresponding to the 

theoretical faujasite channel size of 7.4 Å [245]. 
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Figure 8.2 N2 adsorption isotherm (77 K) of Na-X (○) and Na-X-H2O (■) 

 

The increase in N2 adsorption capacity at p/p0 > 0.8 suggests adsorption on external 

surface of the zeolite. Due to the small size of the zeolite crystals presented in Figure 8.1 their 

external surface is large enough to influence the N2 isotherm. Since in this study butadiene 

removal is studied at low partial pressure (300 ppmv), it should not be influenced by the 

zeolite external surface.  

Bulk Composition 

The structure of the adsorbent was studied by X-ray diffraction and solid state NMR 

whereas its chemical composition was determined by atomic absorption spectroscopy (AAS). 

Since zeolites are crystalline aluminosilicates, strong XRD signal was expected for the 

original compound used as a blank. As shown in Figure 8.3 the XRD pattern of Na-X 

corresponds to the faujasite reference. The XRD analysis of Na-X-H2O also reveals a 

crystalline structure identified by sharp diffraction peaks. Moreover the position of the 
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diffraction peaks is identical to the faujasite pattern implying that the treatment with water 

does not affect the initial crystalline structure of the zeolite.  
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Figure 8.3 XRD pattern of original and modified zeolite 

 

The result of the elemental analysis performed by AAS is shown in Table 8.1. The 

analysis of original Na-X shows a Si/Al ratio of 0.96, slightly lower than the composition 

announced by the provider (Section 3.1.3). The Na/Al ratio is 0.93 insuring that the majority 

of the framework counterions are sodium. The elemental composition of Na-X-H2O showed a 

slightly increased Si/Al ratio signifying that partial zeolite dealumination occurred during the 

water treatment whereas the Na/Al (0.95) ratio was kept constant within experimental error.  
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Table 8.1 Elemental analysis of Na-X and Na-X-H2O 

Sample Si/Al Na/Al 

Na-X 0.96±0.05 0.93±0.05 

Na-X-H2O 1.3±0.05 0.95±0.05 

 

The bulk composition of Na-X and Na-X-H2O was studied by solid state NMR. As can 

be seen in Figure 8.4 both samples show a sharp band at 64 ppm in their 
27

Al MAS NMR 

spectra, consistent with the presence of tetrahedral coordinated aluminum in the zeolite 

framework. No additional peak is observed for Na-X-H2O. The slight shift between the two 

curves is attributed to experimental error and is not representative of a different type of Al 

atom environment.  
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Figure 8.4 
27

Al MAS NMR spectra of Na-X and Na-X-H2O 

 

 



 

143 

Surface Chemistry 

The surface chemistry of the original and water treated zeolites were characterized by 

FTIR techniques. Since zeolite samples surface are generally covered by chemi and physi-

sorbed water, they were treated at 573 K under N2 flow in order to observe the hydroxyl 

surface groups. As shown in Figure 8.5 Na-X displays three distinct bands in the OH region 

at 3637 (Si-OH-Al located in large cavity) [253], 3700-3680 (OH on extraframework/defect 

sites) [254, 255] and 3734 cm
-1

 (silanols) [256]. A wide contribution is observed between 

3300 and 3500 cm
-1

, attributed to bonded OH, partially located in small cavities. Na-X-H2O 

presents mainly bands at 3637 and 3734 cm
-1

 whereas the band at 3680 cm
-1

 observed for Na-

X has a much lower intensity. 

Since the band at 3680 cm
-1

, attributed to extraframework Al or defect sites, does not 

appear after the treatment, it is suggested that such treatment of Na-X leads to the removal of 

these Al sites. The increase of the Si/Al content reported in Table 8.1 is in line with this 

assumption.  
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Figure 8.5 OH region of FTIR spectra for Na-X and Na-X-H2O (573 K) 

 

Qualitative analysis of the acid nature was performed by FTIR spectroscopy using 

pyridine as a probe adsorbed on the zeolite surface. Such technique is widely known for 

zeolite acid site characterization [234, 257]. The FTIR spectra of pyridine adsorption on both 

zeolites are shown in Figure 8.6. The bands at 1590, 1490 and 1443 cm
-1

 are attributed to 

Lewis acid sites whereas the peak at 1541 cm
-1

 is characteristic for Brønsted acid [258]. As 

can be seen, the pyridine adsorption peaks of Lewis acid sites are clearly visible for both 

zeolites. Na-X does not display an adsorption peak for Brønsted acid whereas a broad peak is 

present at 1541 cm
-1

 for Na-X-H2O. The presence of Brønsted sites on Na-X-H2O is explained 

by a partial exchange of the Na
+
 cation with H

+
 cations present in aqueous solution during the 

water treatment. However, their content remains relatively low compared to Lewis acid sites.  
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Figure 8.6 FTIR spectra of pyridine adsorption on Na-X and Na-X-H2O 

 

For quantitative analysis of the zeolite surface acidity, their surface was characterized 

by desorption of pyridine. Acid strengths were defined according to the pyridine desorption 

temperatures. For quantitative analysis the desorption peaks were integrated based on a TCD 

calibration. As shown in Figure 8.7 Na-X shows two types of acid sites: weak ones, identified 

by a desorption peak at around 600 K and a strong one with a desorption peak at 740 K. As 

can be seen, the quantity of weak acid sites is lower as compared to strong ones.  

The absence of desorption peak at 600 K in the pyridine desorption pattern of Na-X-

H2O clearly indicates a disappearance of weak acid sites upon water treatment. These type of 

weak acid sites were attributed to unsaturated atom in a defective zeolite framework [259], or 

extraframework Al(OH)3 and Al(OH)
2+

 [260, 261]. However, since the TCD signal of Na-X-

H2O starts to rise at around 650 K, one can suppose that a small amount of these sites still 

exist on the zeolite surface. These results confirm the hypothesis formulated on the basis of 

FTIR (Figure 8.5) and elemental analysis (Table 8.1).  
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The amount of strong acid sites is similar between Na-X and Na-X-H2O with 0.16 and 

0.15 mmol g
-1

, respectively. Such value, far below the theoretical maximum value of acid 

sites reported for H-USY (3 mmol g
-1

) [262], is explained by the Na
+
 form of the zeolite. 
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Figure 8.7 TPD spectra of pyridine of Na-X and Na-X-H2O 

 

In conclusion the water treatment applied to Na-X was found to reduce the Al content as 

shown by the elemental analysis, without affecting the crystallinity of the framework. The 

analysis of the zeolite surface by FTIR and pyridine TPD suggests that the extraframework 

alumina species are removed.  

8.3.2 Butadiene Adsorption  

Adsorption of butadiene at 100 ppmv was performed over Na-X and Na-X-H2O. The 

butadiene breakthrough curves are shown in Figure 8.8. The adsorption capacity is calculated 

by integration of the area defined by the butadiene and the argon breakthrough curves. 
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Figure 8.8 Butadiene (100 ppmv) breakthrough curves of Na-X (○), Na-X-H2O (■) and 2% 

(v/v) Argon tracer (●). Total flow rate (STP) 300 cm
3
 min

-1
 (298 K) 

 

As depicted in Figure 8.8, the adsorption capacity towards butadiene drastically 

increases upon water treatment. The adsorption capacity of original Na-X is close to zero 

whereas it reaches 7.2 wt. % for water modified zeolites. The butadiene outlet concentration 

remains zero for around 20 minutes with Na-X-H2O indicating total butadiene removal. It is, 

therefore, an efficient adsorbent for butadiene.  

8.3.3 Butadiene Adsorption Mechanism 

The in situ FTIR spectrum of butadiene adsorption on Na-X-H2O is shown in Figure 

8.9. As can be observed with the increase of the 3000-3500 cm
-1 

broad bands, cooling the 

sample from 573 to 298 K under N2 flow leads to partial rehydroxylation due to the moisture 

present in the gas flow. The sharp band appearing at 3693 cm
-1

 when cooling the sample is 

attributed to the rehydroxylation of remaining extraframework Al sites.  
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Once Na-X-H2O is exposed to butadiene at 298 K, the band at 3693 cm
-1

 suddenly 

decreases. Simultaneously C-H bands are observed around 3000 cm
-1

 indicating butadiene 

adsorption. Those results indicate an interaction of butadiene with the zeolite surface. For 

comparison similar experiments were carried out over Na-X. As observed in Figure 8.10 with 

the band at 3693 cm
-1

 rehydroxylation of OH sites in Na-X also occurs when cooling down 

the sample to 298 K. However, the exposition of Na-X to butadiene leads neither to 

adsorption (Figure 8.8) nor to a decrease of the 3693 cm
-1

 band. Instead, constant 

rehydroxylation takes place indicating that the OH band at 3693 cm
-1

 is not representative of 

an adsorption site. Some publications suggest interactions between olefin bonds and Brønsted 

acid sites (Si-OH-Al) [251, 263]. However, it appears to be unlikely for Na-X since only a 

very small number of Brønsted were measured in Na-X-H2O (Figure 8.7). Similarly to 

molecular simulation of alkene adsorption in zeolites [264], one may suggests that the double 

bond of butadiene is linked to an oxygen of the zeolite lattice.  

Hence it is suggested that a high presence of extraframework Al prevents the 

interactions between butadiene and the double bond of butadiene. Consequently the removal 

of these Al species allows butadiene-zeolite interactions, increasing considerably the zeolite 

adsorption capacity.  
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Figure 8.9 in situ FTIR spectra of butadiene adsorption on Na-X-H2O 
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Figure 8.10 in situ FTIR spectra of butadiene adsorption on Na-X 
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8.3.4 Butadiene Adsorption Isotherms 

Butadiene adsorption isotherm over Na-X-H2O was measured to get a deeper insight 

into the adsorption thermodynamic parameters. By varying the butadiene concentration (25-

300 ppmv) and temperature of adsorption (298-333K) a set of adsorption isotherms was 

obtained for Na-X-H2O. The Dubinin-Astakhov (D-A) model was used to fit the experimental 

data [201]. This model is a generalization of the Dubinin-Radushkevich model originally 

developed for benzene adsorption on activated carbon [202]. It was developed for sub-critical 

vapors in microporous solid where the adsorption follows a pore filling mechanism. A liquid-

like adsorbed phase in the micropores is assumed. The D-A equation takes the following 

form: 

0

0

exp

N

A
W W

E

  
   
   

 
(8.1)  

The model variables are the maximum adsorbed volume (W0) and the characteristic 

adsorption energy (E0). The parameter β is a constant which depends on the nature of the 

adsorbate, called the affinity coefficient. A β value of 0.97 was obtained for butadiene using 

the molar volume prediction [208]. The parameter A represents the Polyani adsorption 

potential. The value of A is equal to the difference between the chemical potential of the 

adsorbate in the liquid state and in the adsorbed state at the same temperature. 

0ln
p

A RT
p

 
  

 
 (8.2)  

Where p0 is the vapor pressure, p is the adsorbate partial pressure and T is the 

temperature at which the adsorption experiment took place. In this model the adsorbed phase 

is supposed to be liquid. For sake of simplicity, the maximum adsorbed volume (cm
3
 g

-1
) is 

expressed as the saturation capacity (mol kg
-1

) via the liquid molar volume. The variation of 
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the liquid molar volume with temperature is taken into account by the thermal expansion 

coefficient of the saturation capacity. This parameter has been fixed to 0.001 [209]. The full 

development of the D-A equations can be found in Chapter 4.  

The isosteric adsorption enthalpy can be calculated by combining the D-A model with 

the van’t Hoff and the Clausius-Clapeyron equations.  

1 1

0
0

1 1
ln ln

N N

vap

E T
H H E

N

 


 



      
          

      
 

(8.3)  

with  

max

q

q
   

(8.4)  

Where  is the heat of condensation. For butadiene -22.7 kJ mol
-1

 is used [265].  

The isosteric adsorption enthalpy is therefore the summation of three terms. The first 

represents the adsorption potential, the second is the heat of vaporization and the third 

expresses the influence of the maximum capacity change with temperature. The isosteric 

adsorption enthalpy is by definition larger than the heat of vaporization and depends on the 

characteristic adsorption energy (E0) and on the adsorbent loading (θ). The maximum 

adsorption capacity and the characteristic adsorption energy were obtained by fitting the 

experimental data to equation 8.1 for all the isotherms as shown in Figure 8.11.  

 

vapH
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Figure 8.11 Butadiene adsorption isotherm on Na-X-H2O fitted with the D-A model at 

different temperature: 298 K (■), 308 K (●), 318 K (▲), 333 K (▼) 

 

A good fitting of the experimental points is obtained with the D-A equation. The curve 

determination coefficient (R
2
) was 0.97. The parameters (E0, qmax and N) used to fit the 

experimental data are presented in Table 8.2. The model predicts a maximum adsorption 

capacity at 298 K of 2.07 mol kg
-1

. Therefore at 30 Pa (300 ppmv) a coverage close to 0.8 is 

already obtained indicating the efficiency of Na-X-H2O for the adsorption of diluted 

butadiene. Adsorption of 2.07 mole of butadiene per kilo of adsorbent represents a volume of 

0.17 cm
3
 g

-1
 whereas the total pore volume calculated from the BET equation was around 0.28 

cm
3
 g

-1
 (Figure 8.2). The difference between the maximum adsorption capacity calculated 

with butadiene adsorption and the N2 adsorption isotherm can be explained by the nature of 

the D-A equation. Since this equation considers only the micropore filling, the eventual 

adsorption on the zeolite outer surface is not taken into account whereas it was considered in 

the volume calculated from the N2 adsorption isotherm. Considering only the microporous 

part of the zeolite, a volume of 0.19 cm
3
 g

-1
 was calculated at p/p0 = 0.2. This value is close to 
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the maximum butadiene volume adsorbed calculated from the D-A equation confirming the 

pore filling adsorption mechanism suggested by the model. At saturation butadiene is then 

filling almost entirely the zeolite framework.  

Hence the modification of Na-X is probably occurring in the whole zeolite framework 

allowing an almost complete micropore filling by butadiene in Na-X-H2O at saturation 

condition. Such pore filling is possible in Na-X-H2O due to a more favorable surface 

chemistry obtained by the removal of extraframework Al species.  

The relatively large N value obtained for the fitting of the D-A equation to the 

experimental data (Table 8.2) indicates a homogeneity of the micropore size. Indeed the 

exponent of the D-A equation indicates qualitatively the pore size heterogeneity. Low N 

values (1-2) are generally obtained when fitting non-homogeneous microporous adsorbents 

[201, 207] whereas N values comprised between 4 and 6 are commonly found for small and 

homogenous micropores such as zeolites [212].  

The energetic parameter of the D-A equation (E0) has been calculated at 21.5 kJ mol
-1

 

indicating moderate adsorption strength due to the high volatility of butadiene. For 

comparison hexane has characteristic adsorption energy of 30 kJ mol
-1

 on carbon molecular 

sieve whereas it is only 17 kJ mol
-1

 for ethane on the same adsorbent [266].  

 

Table 8.2 Parameters of the D-A equation for butadiene adsorption on Na-X-H2O 

Sample qmax [mol kg
-1

] E0 [kJ mol
-1

] N 

Na-X-H2O 2.05±0.02 21.5±0.5 6±0.05 

 



Chapter 8: Butadiene Adsorption by Zeolites 

154 

The isosteric enthalpy of adsorption was calculated using equation 8.3 and the 

parameters obtained from equation 8.1. The adsorption enthalpy is obtained by a summation 

of the vaporization enthalpy, the energetic parameter (E0) and the influence of the maximum 

capacity variation with temperature. A value of -45 kJ mol
-1

 was obtained for a fractional 

loading of 0.63. Since the pore size is extremely homogeneous in zeolite, the influence of the 

fractional loading on the enthalpy of adsorption was extremely small (~5 kJ mol
-1

). For 

comparison Eder and Lercher reported a slightly lower value for butane adsorption on Na-X (-

34 kJ mol
-1

) [267] whereas -50 kJ mol
-1

 was reported on silicalite [268]. The enthalpy of 

adsorption of 1-butene was found by numerical simulation at -48 kJ mol
-1

. Hence the 

adsorption enthalpy for butadiene on Na-X-H2O is in the same range validating the adsorption 

model used.  

8.3.5 Temperature-Programmed Desorption of Butadiene 

The interaction between butadiene and active adsorption sites was characterized by 

temperature-programmed desorption. It allowed to quantify the adsorption energy and can be 

considered as a complementary method to adsorption isotherm. Desorption of butadiene from 

Na-X-H2O was studied with different temperature ramps. The TPD profiles are presented in 

Figure 8.12.  
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Figure 8.12 TPD profiles: desorption of butadiene from Na-X-H2O at different temperature 

ramp (100 cm
3
 min

-1
) 

 

The experiment was carried out by monitoring mass 54 corresponding to the molecular 

ion of butadiene at the reactor outlet. The TPD profile shows only one desorption peak 

signifying that one type of adsorption site is present in the zeolite channels. The integration of 

the butadiene desorption curve revealed that all the adsorbed butadiene could not be desorbed. 

The mass balance was systematically smaller than 1. Screening of other desorbed mass was 

performed with the mass spectrometer but only butadiene was detected. The incomplete 

desorption of butadiene was confirmed by a set of adsorption-desorption cycles where a 

systematic decrease of the adsorption capacity was observed. This phenomenon suggests that 

a heavy compound such as an oligomer or polymer is formed in the zeolite either during the 

adsorption process or at higher temperature during the TPD.  

The increase of the temperature ramps shifts the maximum desorption rate to a higher 

temperature, characterized by the top of the desorption peak. The kinetic desorption 

parameters, the activation energy of desorption (Ed) and the kinetic constant (k) were obtained 
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by numerical simulation of butadiene desorption. These two parameters were varied to obtain 

the best fit to the experimental points. The simulations were performed at different 

temperature ramps. Since in TPD experiment the temperature increases linearly, desorption 

rate changes. By solving the mass balance and the temperature variation simultaneously a 

desorption curve is obtained. The development of the equation used to simulate desorption 

curves is presented in Chapter 4. The gas phase concentration of desorbed species in function 

of temperature is then obtained. An example is shown in Figure 8.13.  

 

 

Figure 8.13 Simulation of butadiene TPD pattern on Na-X-H2O (20 K min
-1

, 100 cm
3
 min

-1
) 

 

The activation energy of desorption (Ed) obtained for the butadiene zeolite system was 

constant for all the simulations performed. The simulations fit very well the butadiene 

desorption data. Since the model applied supposed 1
st
 order desorption kinetics, we suggest 

that such desorption kinetics take place for the butadiene/Na-X-H2O system. The model gives 
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an activation energy of desorption of 47.5±2 kJ mol
-1

. The activation energy of adsorption 

being negligible, the enthalpy of adsorption is represented by the activation energy of 

desorption.  

As can be seen a good fit is obtained with the simulated curve. The mass transfer 

influence noticed in Chapter 4 for toluene is apparently avoided for butadiene on Na-X-H2O 

because of the lower quantities adsorbed. The value of adsorption enthalpy is very close to the 

value determined by modelling of adsorption isotherms. Moreover, they correspond to the 

adsorption enthalpy of 1-butene, a very similar molecule. The interactions created between 

the zeolite active site and butadiene coupled with the narrow microporosity of zeolite is likely 

the driving force of butadiene adsorption. The porosity itself is not sufficient to have a large 

adsorption capacity since original Na-X showed extremely limited butadiene removal.  

8.4 Conclusions 

This chapter reports the adsorption of diluted butadiene over zeolites. The water 

treatment followed by a calcination of commercial Na-X zeolites is reported to considerably 

increase its efficiency for butadiene removal. The two adsorbents, Na-X and Na-X-H2O were 

compared in order to get an insight on the adsorption mechanism. Bulk characterization of 

Na-X and Na-X-H2O revealed a similar microporosity and crystallinity whereas surface 

characterization by FTIR and pyridine TPD showed the removal of extraframework Al 

species. The presence of these species on the zeolite surface was suggested to prevent 

butadiene adsorption. The adsorption mechanism was studied by in situ FTIR adsorption of 

butadiene confirming this suggestion. By their removal, the adsorption capacity was 

considerably increased due to favorable chemical interactions and optimal microporosity of 

the zeolite. A set of butadiene adsorption isotherms and its modelling with the D-A equation 

was performed. Subsequently, the adsorption enthalpy was calculated. The value reported is 
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in the same range compared to 1-butene adsorption on zeolites. To further confirm the results 

obtained, butadiene TPD experiments were carried out. A simulation of the TPD pattern 

allowed a good fitting of the experimental data and adsorption enthalpy was calculated. 

Identical thermodynamic parameters were calculated as compared to isotherm experiments.  
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9 General Conclusions and Perspectives 

This chapter summarizes the results obtained in this study. The general conclusions and 

the outlook are also presented.  
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9.1 Conclusions 

The main objective set for this thesis was the development of efficient adsorbents for 

the removal of volatile organic compounds at low concentration and short contact time (20 

ms). Moreover pressure drop and gas flow mal-distribution should be avoided in the 

adsorbent bed. In order to achieve these goals, specific surface modifications of commercial 

adsorbents depending on the VOC physical properties were carried out. Activated carbon 

fibers and zeolites were used as commercial basis for functionalized adsorbents.  

Effect of ACFs morphology and surface chemistry on toluene and acetaldehyde 

adsorption 

In a first step, the effect of the morphology of ACFs on toluene removal was studied. 

Two microporous ACFs with low oxygen content were used. The characterization revealed 

supermicroporous (dp 1-2 nm) and ultramicroporous (dp < 1 nm) adsorbents with similar 

surface chemistry. Toluene adsorption isotherms over two ACFs were obtained. The 

modelling of the isotherms suggested an adsorption mechanism by micropore filling for both 

microporous ACFs. The toluene adsorption enthalpy obtained from the isotherm modelling 

was found higher for the ultramicroporous sample. To confirm these results toluene 

temperature-programmed desorption was used as a method to evaluate the adsorption 

enthalpy and similar results were obtained.  

The effect of the surface chemistry on the removal of toluene and acetaldehyde was 

studied using ACFs with similar morphology but different surface chemistry. The hydrophilic 

character of the ACFs was gradually increased by means of nitric acid treatment. The increase 

of the oxygen content of the ACFs was found to enhance the interactions with acetaldehyde. 

A hydrogen bonding mechanism was suggested. On the contrary the hydrophilic surface 
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decreased the toluene removal capacity due to unfavorable surface chemistry and the decrease 

of the micropore volume.  

Hence, the effect of the surface chemistry and the ACFs morphology were studied for 

the removal of acetaldehyde and toluene at low concentration. Hydrophobic surfaces with 

ultramicroporosity were identified as the two key parameters to design an optimized 

adsorbent for non-polar high boiling point VOC such as toluene. For polar high boiling point 

VOC such as acetaldehyde, the surface chemistry is the main parameter to optimize. An 

increased adsorption capacity is reported for hydrophilic ACFs surface.  

Creation of specific sites on ACFs for formaldehyde and acetaldehyde adsorption 

Although the performance of ACFs towards acetaldehyde was significantly enhanced by 

a hydrophilic surface the adsorption capacities could be further increased by specific surface 

functionalization of ACFs. The acetaldehyde removal was improved via the deposition of 

basic metal oxide NPs on the surface of ACFs. Such adsorbents take advantage of the intrinsic 

high adsorption capacity of metal oxide NPs and avoid the problems of the pressure drop and 

mass transfer through the adsorbent bed due to the ACFs morphology. The deposition of NPs 

of MgO, CaO and La2O3 was found to greatly increase the adsorption capacity towards 

acetaldehyde. An adsorption mechanism was suggested based on the TPD pattern.  

A novel adsorbent obtained by the deposition of a diethylene triamine (DETA) layer on 

the ACFs surface was developed for formaldehyde removal. The amino groups contained in 

DETA were found to interact with formaldehyde and a 50-fold adsorption capacity increase 

was reported as compared to original ACFs.  
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Hence, the functionalization of ACFs by creating specific sites for selective adsorption 

is a valuable strategy for diluted VOC removal.  

Zeolite as specific adsorbent for butadiene 

The development of a zeolite based adsorbent was performed for the adsorption of 

butadiene. Commercial zeolites were modified through a water treatment followed by 

calcination to create a more favorable surface. The removal of zeolites extraframework 

cations is suggested, allowing interactions between butadiene and the framework. A 50-fold 

increase in adsorption capacity is reported upon such surface modification. The adsorption 

enthalpy was obtained from adsorption isotherms and via TPD methods with conclusive 

results indicating strong physisorption.  

9.2 Further Development 

With regards to toluene adsorption on ACFs, the thermodynamic parameters governing 

the adsorption have been determined. However this study does not report the effect of the 

pore size on the adsorption kinetics. A deeper study and a modeling of the adsorption 

breakthrough curve supported by the thermodynamic data presented in this thesis could allow 

understanding the kinetic of adsorption and the mass transfer limitations [269, 270]. A 

comparative study of the ultramicroporous and the supermicroporous adsorbent could reveal 

the dependence of the adsorption kinetic on the micropore size.  

The oxidation of the ACFs surface was shown to enhance the adsorption capacity 

towards acetaldehyde and was attributed to the largest surface oxygen content. However, the 

ACFs characterization revealed the presence of several types of O-containing groups and their 

specific contribution in the acetaldehyde adsorption process was not studied. An interesting 
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study would be to establish specifically the adsorption potential of each type of O-containing 

group.  

Although a large adsorption capacity increase towards formaldehyde was noticed upon 

DETA deposition, a deactivation occurred during storage. Reaction between O-containing 

groups and DETA were suggested, but no clear evidence has been obtained. Moreover, 

neither the thermodynamic adsorption parameters nor the adsorption mechanism were studied. 

Hence, deeper studies on this adsorbent could be carried out with IR characterization and by 

exactly quantifying the amino groups.  

The deposition of metal oxide NPs on the ACFs surface was reported to greatly increase 

its adsorption capacity towards acetaldehyde. A decrease of the removal capacity was also 

noticed for metal oxide NPs deposited on ACF-2 in presence of CO2. However, when 

changing the support from ACF-2 to ACF-1, a constant adsorption capacity was reported 

regardless of the presence of CO2 in the gas stream. The interactions between CO2 and the 

NPs suggested by the lower adsorption capacity reported for ACF-2 are therefore not 

occurring with ACF-1 as a support. The reasons of the higher stability of ACF-1 are not 

clearly established and further studies would be needed. The effect of the pore size on the 

metal oxide particles size could be an explanation but deeper characterization is necessary. 

Regarding the removal of butadiene, the water treatment of Na-X was suggested to 

remove the extraframework Al allowing interactions between butadiene and the zeolite lattice. 

Although the suggested interactions seemed reasonable, the exact adsorption mechanism 

remains unknown. Moreover since zeolites were used in the form of pellets of ~500 µm, 

internal mass transfer resistance and flow mal-distribution may occur. To circumvent this 

drawback, the deposition of zeolite microcrystals on microfibers has to be studied.  
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