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Abstract 
Model structure selection and parameter identification for biokinetic modeling of biological 
wastewater treatment processes is broadly accepted to be a complicated task. Contributing factors 
include (i) nonlinear behavior, (ii) lack of knowledge, (iii) lack of (accurate) measurements, and 
(iv) a large number of model parameters to estimate.  Several strategies have been proposed in the 
wastewater engineering literature to deal with the complexity of the modeling task. These include 
(i) experimental design, (ii) determination of identifiable parameters, and (iii) stochastic nonlinear 
optimization. Despite these developments, model identification remains challenging. Extent-based 
modeling simplifies this task by identifying each reaction kinetics separately. The available 
method fits in a strategy where the reaction network (graph) and its stoichiometry (matrix) are first 
identified. Then, the extents of reaction are computed and the identification of the individual rate 
functions is made in terms of extents. In this work, the original extent-based method is modified to 
take nonlinear constraints and measurements into account. A simulated batch process is used to 
demonstrate the method.  
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Methods. For simplicity, we assume that the (bio)chemical process that includes R reactions and S species 
occurs in a batch reactor without gas exchange. The stoichiometry is given by the (R x S)-dimensional 
stoichiometric matrix N. The numbers of moles of the S chemical species, n(t), can be expressed as functions 
of the extents of reaction, 𝐱𝐱𝑟𝑟(𝑡𝑡): 
 𝐧𝐧(𝑡𝑡) = 𝐧𝐧0 + 𝐍𝐍T𝐱𝐱𝑟𝑟(𝑡𝑡).  (1) 
The extent of reaction 𝐱𝐱𝑟𝑟,𝑖𝑖(𝑡𝑡) expresses the number of moles produced or consumed by the  ith reaction in the 
period [0, 𝑡𝑡], as described in [1]. Concentrations are given by 
 𝐜𝐜(𝑡𝑡) = 𝐧𝐧(𝑡𝑡)

𝑉𝑉
, (2) 

where V is the volume inside of the reactor. Assuming equilibrium for acid-base reactions, one can write a 
number of algebraic constraints between concentrations: 
 𝐠𝐠�𝐜𝐜(𝑡𝑡)� = 𝟎𝟎. (3) 
Finally, the measurements 𝐲𝐲(𝑡𝑡) can be written as functions of concentrations, 
 𝐲𝐲(𝑡𝑡) = 𝐟𝐟�𝐜𝐜(𝑡𝑡)� + 𝐞𝐞(𝑡𝑡), (4) 
with 𝐞𝐞(𝑡𝑡) the measurement errors. This last equation allows considering nonlinear measurements, such as 
pH, as well as measurements of lumped states, such as total ammonia nitrogen (TAN). The extents of 
reaction can be estimated in the weighted least-squares sense by solving the problem 
 𝐱𝐱�𝑟𝑟(𝑡𝑡) = arg min𝐱𝐱𝑟𝑟(𝑡𝑡)  �𝐟𝐟�𝐜𝐜(𝑡𝑡)� − 𝐲𝐲(𝑡𝑡)�

T
𝐖𝐖(𝑡𝑡) �𝐟𝐟�𝐜𝐜(𝑡𝑡)� − 𝐲𝐲(𝑡𝑡)� (5) 

 s.t. 𝐜𝐜(𝑡𝑡) = (𝐧𝐧0 + 𝐍𝐍T𝐱𝐱𝑟𝑟(𝑡𝑡)) 𝑉𝑉⁄   (6) 
  𝐠𝐠�𝐜𝐜(𝑡𝑡)� = 𝟎𝟎,  (7) 
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with 𝐖𝐖(𝑡𝑡) denoting the weighting matrix, usually the inverse of the measurement variance-covariance 
matrix. The estimation procedure corresponds to maximum likelihood estimation if the measurement errors 
are normally distributed with zero mean and 𝐖𝐖(𝑡𝑡) is the variance-covariance matrix. 
 
A nice feature of the extents x�𝑟𝑟(𝑡𝑡) is that each one contains information about a single reaction. This helps 
evaluate and optimize the quality of a model by considering each rate function individually. Practically, 
kinetic model identification proceeds by identifying the structure of the rate function and the value of the rate 
parameters separately for each reaction. The rate of change of each extent can be written as a function of the 
species concentrations, 
 𝑑𝑑𝑥𝑥�𝑖𝑖 𝑑𝑑𝑡𝑡⁄ = 𝑟𝑟𝑖𝑖(�̂�𝐜(𝑡𝑡),𝛉𝛉𝒊𝒊),      𝑖𝑖 = 1, … ,𝑅𝑅, (8) 
where 𝛉𝛉𝒊𝒊 denotes the rate parameters of the ith reaction. However, the species concentrations are expressed 
in terms of all extents 𝐱𝐱�𝑟𝑟(𝑡𝑡) as 
 �̂�𝐜(𝑡𝑡) = (𝐧𝐧0 + 𝐍𝐍T𝐱𝐱�𝑟𝑟(𝑡𝑡)) 𝑉𝑉⁄ . (9) 
In the general case, the dynamics of the extents are described by means of a system of differential algebraic 
equations. In simple cases, the rate of change of a given extent is only a function of that extent and of its 
corresponding parameters. However, it is more common that the extents of the other reactions are required as 
inputs to some rate functions. In this study, this case is treated by means of linear interpolation of the extents, 
similarly to [2]. Given this analytical framework, one can then identify each rate function separately.  
 
Results. A simplified two-step nitrification process is simulated to demonstrate the method. The biomass 
concentration is assumed to be constant. The stoichiometric matrix is given as follows: 

 𝐍𝐍 =

⎣
⎢
⎢
⎢
⎡
−1    0   0    1   0    0   0
   0    0   0 −1   0    1   0
   1 −1   0    0   0    0   1
   0    0   1 −1   0    0   1
   0    0   0    0   1 −1   1⎦

⎥
⎥
⎥
⎤
. (10) 

The columns of the stoichiometric matrix correspond to the S = 7 species {𝑁𝑁𝑁𝑁3, 𝑁𝑁𝑁𝑁4+, 𝑁𝑁𝑁𝑁2−, 𝑁𝑁𝑁𝑁𝑁𝑁2, 𝑁𝑁𝑁𝑁3−, 
𝑁𝑁𝑁𝑁𝑁𝑁3, 𝑁𝑁+}. The first R = 2 rows represent the biological oxidation reactions and the last three the acid-base 
reactions, which are modeled as instantaneous equilibria. Assuming no change in biomass concentration 
during the reaction, the biological reaction rate expressions can be formulated as 
 𝑟𝑟𝑁𝑁𝑁𝑁3(𝑡𝑡) = 𝑟𝑟1(𝐜𝐜(𝑡𝑡)) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁3 ∙

𝑐𝑐𝑁𝑁𝑁𝑁3(𝑡𝑡)

𝐾𝐾𝐴𝐴,𝑁𝑁𝑁𝑁3+𝑐𝑐𝑁𝑁𝑁𝑁3(𝑡𝑡)
∙ 𝐾𝐾𝐼𝐼,𝑁𝑁𝑁𝑁3
𝐾𝐾𝐼𝐼,𝑁𝑁𝑁𝑁3+𝑐𝑐𝑁𝑁𝑁𝑁3(𝑡𝑡)

  (Haldane) (11) 

 𝑟𝑟𝑁𝑁𝑁𝑁𝐻𝐻2(𝑡𝑡) = 𝑟𝑟2(𝐜𝐜(𝑡𝑡)) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝐻𝐻2 ∙ �1 − exp �− 𝑐𝑐𝑁𝑁𝑁𝑁3(𝑡𝑡)

𝐾𝐾𝐴𝐴,𝑁𝑁𝑁𝑁𝐻𝐻2
��  (Tessier) (12) 

The initial conditions and parameters are listed in Table 1. TAN, TNO2, TNO3, and pH are measured every 
5 minutes and zero-mean normally distributed noise with standard deviations of 0.05 g N/l for TAN, TNO2 
and TNO3, and 0.01 for the pH is added to the simulated data. Figure 1 shows the simulated noisy profiles. 
 
Figures 2a and 2c show the estimated extents with their point-wise confidence intervals. The expected 
variances are obtained by error propagation after linearization of Eqs. 5-7 at the optimum. One can see that 
(i) the first extent is more precisely estimated than the second one, and (ii) the precision of the first extent 
changes over time. In contrast, the second extent exhibits a fairly constant variance. This can be explained by 
the fact that the change in pH affects the first reaction but not the second one.  
 
The estimated extent can be used for model identification. For each reaction, the same three candidate rate 
functions are considered, namely the Haldane (Eq. 11) and Tessier (Eq. 12) functions as well as the Monod 
function with the subscript 𝑠𝑠 denoting the species involved in the modeled reaction: 
 𝑟𝑟𝑠𝑠(𝑡𝑡) = 𝑟𝑟(𝐜𝐜(𝑡𝑡)) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠 ∙

𝑐𝑐𝑠𝑠(𝑡𝑡)
𝐾𝐾𝐴𝐴,𝑠𝑠+𝑐𝑐𝑠𝑠(𝑡𝑡)

 . (Monod) (13) 
To model the first extent, the second extent is interpolated linearly and provided as a known input. The 
parameters of each of the three candidate functions are adjusted by means of a nonlinear search. Figure 2a 
shows the resulting best-fit simulations. As expected, the Haldane function fits the first extent best. On the 
other hand, the best fit for the second extent is obtained with the Tessier model (see Figures 2b and 2d). 
 

2 



 Mašić et al. 

 
Figure 1. Simulated (lines) and measured (dots) values of TAN, TNO2, TNO3, and pH. 
 

Table 1. Model 
parameters and initial 
conditions. 

Symbol Value Unit 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁3 140 g/L∙d 
𝐾𝐾𝐴𝐴,𝑁𝑁𝑁𝑁3  1 g/L 
𝐾𝐾𝐼𝐼,𝑁𝑁𝑁𝑁3  0.5 g/L 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝐻𝐻2  16 g/L∙d 
𝐾𝐾𝐴𝐴,𝑁𝑁𝑁𝑁𝐻𝐻2  0.0025 g/L 
𝑐𝑐𝑇𝑇𝐴𝐴𝑁𝑁(0) 5 g/L 
𝑐𝑐𝑇𝑇𝑁𝑁𝐻𝐻2(0) 0 g/L 
𝑐𝑐𝑇𝑇𝑁𝑁𝐻𝐻3(0) 0 g/L 
𝑝𝑝𝑁𝑁(0) 11.4 - 

 

 
Figure 2. Measured (dots, 66% confidence intervals shown with dashed lines) and fitted extents (using Monod, Tessier 
and Haldane models, respectively the blue, red and yellow lines) for the first reaction (left, insets a and b) and the 
second reaction (right, insets c and d) 
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