A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Alberto Crivellaro¹ Mahdi Rad² Yannick Verdie¹ Kwang Moo Yi¹
Pascal Fua¹ Vincent Lepetit²

¹Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
²Institute for Computer Graphics and Vision, Graz University of Technology, Austria
{alberto.crivellaro, yannick.verdie, kwang.yi, pascal.fua}@epfl.ch
{rad, lepetit}@icg.tugraz.at

Abstract

We present a method that estimates in real-time and under challenging conditions the 3D pose of a known object. Our method relies only on grayscale images since depth cameras fail on metallic objects; it can handle poorly textured objects, and cluttered, changing environments; the pose it predicts degrades gracefully in presence of large occlusions. As a result, by contrast with the state-of-the-art, our method is suitable for practical Augmented Reality applications even in industrial environments. To be robust to occlusions, we first learn to detect some parts of the target object. Our key idea is to then predict the 3D pose of each part in the form of the 2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the object even when only one part is visible; when several parts are visible, we can combine them easily to compute a better pose of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible.

1. Introduction

3D object detection and tracking methods have undergone impressive improvements in recent years [5, 27, 13, 4, 30, 25, 39, 17, 1, 45, 38, 20, 35, 44]. However, each of the current approaches has its own weaknesses: Many of these approaches [5, 13, 1, 35] rely on a depth sensor, which would fail on metallic objects or outdoor scenes; methods based on feature points [25, 17] expect textured objects; those based on edges [4, 39] are sensitive to cluttered background; most of these methods [13, 27, 30, 38, 11, 45, 20] are not robust to occlusion. We also want a method fast enough for interactive 3D applications.

Figure 1. Detecting a box in 3D with a regular camera under challenging conditions. On this dataset, the user removes objects from the box and leaves them on the table, often occluding large portions of the box. Despite these difficulties, we can accurately estimate the 3D pose of the box, in each image independently.

As Fig. 1 shows, we are interested in scenes with poorly textured objects, possibly visible only under heavy occlusions, drastic light changes, and changing background. A depth sensor is not an option in our setup, as the target objects often have specular surfaces. Feature point-based methods also fail because of the lack of texture. These are typical conditions of many Augmented Reality applications.

At the core of our approach is the efficient detection of discriminative parts of the target object. Relying on parts for 3D object detection is not new [12, 27, 33, 20, 45]. The
2. Related Work

3D object detection has a long history, and we focus here on representative works. A well-established research direction relies on edges [10, 21, 14], but they are sensitive to large occlusions and clutter. More recently, keypoint-based methods became popular [34, 41, 42] probably because keypoints can be extracted and matched more reliably. Unfortunately, the use of keypoint is limited when the target object is poorly textured. Some works combine keypoints with edges [31, 3] or stereo information [25]. However, extracting and matching edges remains delicate, and requiring a stereo configuration limits the applicability of the 3D tracker.

Besides keypoints, silhouettes and region-based methods have also been proposed. In [29, 28], 3D tracking problem is considered as joint 2D segmentation and 3D pose estimation problem, and the method looks for the pose that best segments the target object from the background. Contours and edges are used in [2] with multiple hypotheses to provide robust pose estimation. Partial occlusions, however, are difficult to handle with such approaches.

The development of inexpensive 3D sensors such as the Kinect has recently sparked different approaches to 3D object detection. [5, 32] use votes from pairs of 3D points and their normals to detect 3D objects, [18] uses a decision tree applied to RGB-D images. [13] uses a template-based representation for dealing with poorly textured objects. The more recent [1, 38] rely on recognition of local patches. However, all these methods were designed for RGB-D images, which are not an option in our target applications.

Like [37] and [12], we learn 3D poses. Nonetheless, our part-based approach allows us to be much more robust to occlusions, while such approaches are not straightforwardly generalizable to a part-based framework.

Since our approach is based on object parts, it is also related to works such as [26, 27, 45, 20] that mostly focus on category rather than instance detection. These works were mostly motivated by the success of the Deformable Part Model [7] developed for 2D detection, which was extended successfully to 3D, e.g. in [27]. [45] also performs 3D tracking through part-based particle filtering by integrating multi-view. [26] uses contours as parts. In [20], 3D shared parts are learned with CAD models and real images for fine pose estimation. However, these works are not robust to occlusions of some of the parts, especially because the 2D location of the part is solely considered to constrain the object pose.

Finally, a very active and related field is SLAM (Simultaneous Localization and Mapping) [15, 24, 6]. On one hand, SLAM does not require prior 3D knowledge, but on the other hand it is limited to estimate a relative pose only, which is not suitable for many Augmented Reality applications. Moreover, SLAM is prone to fail on dynamic scenes.
3. Part Pose Representation and Estimation

Given an input grayscale image\(^2\), we want to estimate the 3D pose \(p \) of a calibrated projective camera with respect to a known rigid object. We assume that we are given a 3D model of the object, for example in the form of a triangular mesh, and a set of manually labelled parts on the object. A very small number of parts is required by our framework; in all our tests we employed at most 4 parts for an object. We currently select the parts by hand (automatic selection could probably be used).

\(^2\)All experiments of this work were performed with VGA images.

In this section, we justify our choice for the representation of the pose parts, and we explain how we detect the parts and predict their poses. The next section describes our algorithm to compute the pose of the camera based on the predicted pose parts. The main notations are resumed in Table 1.

3.1. Representing the Part Poses

One can think of different ways to represent the 3D poses of parts of objects. For example, it is possible to use homographies [16, 12, 45]. However, this assumes that the part surface is planar, and makes it difficult to merge the contributions of the different parts.

Another possibility we considered is to predict from the appearance of the part, a 3D rotation matrix and the depth value of its center. Assuming an orthogonal projection, it is possible to retrieve the 3D translation as well, from the patch center image location and the predicted depth. However, this representation is not translation invariant in a full perspective model. Also it is not clear how to merge rotations for estimating the pose of the whole target object. Finally, it is difficult to predict the depth accurately from the image patch, as our results will demonstrate.

Since our final solution is based on 3D control points, as already mentioned, we could also directly predict the 3D locations of the 3D Control Points in the camera reference system: This makes combining the poses simpler, as this only involves computing the rigid motion between two sets of 3D points [40]. Unfortunately, this representation is not translation invariant. Moreover, as for the previous option, it requires to directly predict the depths of the points, which is far from accurate in our experiments.

This is why we propose to represent the part pose as the 2D reprojections of a set of 3D control points. This representation is fully translation invariant; it is straightforward to combine the poses of an arbitrary number of parts, by simply grouping all the 2D reprojections together and solving a PnP problem; we do not need to predict the depth of the 3D points, which is difficult to do accurately. These advantages entail a tremendous accuracy gain, as showed by our results in Section 5.2. In our experiments, we used 7 control points for each part, spanning 3 orthogonal directions, as shown in Fig. 2(a), however other configurations could probably be used.

3.2. Detecting the Parts

We use a set of registered training images of the target object under different poses and lighting (as the one shown in Fig. 3(a)) to learn to detect the parts and predict their control points. We will denote our training data as:

\[
\mathcal{T} = \left\{ \left(i, \{ c_{ij} \}, \{ v_{jk} \} \right) \right\}_i
\]

\[(1)\]
is made of take as input a patch of size of the control points for these candidates. Each part is centered on the candidates

During an offline stage, we train a first CNN with a standard multi-class architecture shown in Fig. 5 to detect the parts. The input to this CNN is a 32×32 image patch q, its output consists of the likelihoods $P(J = j \mid q)$ of the patch to correspond to one of the N_P parts. We train the CNN with patches randomly extracted around the centers c_{ij} of the parts in images I_i and patches extracted from the background, and by optimizing the negative log-likelihood over the parameters w of the CNN:

$$\hat{w} = \arg \min_{w} \sum_{i=0}^{N_P} \sum_{c \in \mathcal{T}_i} - \log \text{softmax}(\text{CNN}_{\text{part}}^w(q))[j],$$

where \mathcal{T}_j is a training set made of image patches centered on part j and \mathcal{T}_0 is a training set made of image patches from the background. \text{CNN}_{\text{part}}^w(q)$ is the $N_P + 1$-vector output by the CNN when applied to patch q, and softmax($\text{CNN}_{\text{part}}^w(q))[j]$ is the j-th coordinate of vector softmax($\text{CNN}_{\text{part}}^w(q)$).

At run-time, we apply this CNN to each 32×32 patch in the input images captured by the camera. This can be done very efficiently as the convolutions performed by the CNN can be shared between the patches [9]. As shown in Fig. 3, we typically obtain clusters of large values for the likelihood of each part around the centers of the parts. We therefore apply a smoothing Gaussian filter on the output of the CNN, and retain only the local maximum of these values as candidates for the locations of the parts.

The result of this step is, for each part j, a set $S_j = \{(c_{ij}, s_{ij})\}$ of 2D location candidate c_{ij} for part j together with a score s_{ij} that is the value of the local maxima returned by the CNN. We will exploit this score in our pose estimation algorithm described in Section 4. We typically get up to 4 detections for each part in a given input image.

3.3. Predicting the Reprojections of the Control Points and their Uncertainty

Once the parts are detected, we apply a second CNN to the patches centered on the candidates c_{ij} to predict the reprojections of the control points for these candidates. Each part has its own specific CNN. As shown in Fig. 5, these networks take as input a patch of size of 64×64. The output layer is made of $2N_V$ neurons, with N_V the number of control points of the part, which predicts the 2D locations of the control points. We train each of these CNNs during an offline stage by simply minimizing over the parameters w of the CNN the squared loss of the predictions:

$$\hat{w} = \arg \min_{\{q, w\} \in \mathcal{V}_j} \sum_{(q, w) \in \mathcal{V}_j} \left| \left| w - \text{CNN}_{\text{pred}}^w(q) \right| \right|^2,$$

where \mathcal{V}_j is a training set made of image patches q centered on part j and the corresponding 2D locations of the control points concatenated in a $(2N_V)$-vector w, and $\text{CNN}_{\text{pred}}^w(q)$ is the prediction for these locations made by the CNN specific for part j, given patch q as input.

At run-time, we obtain for each c_{ij} candidate, predictions $\{\mathcal{V}_{jkl}\}$ for the control points projections. In addition, we estimate the 2D uncertainty for the predictions, by propagating the image noise through the CNN that predicts the control point projections [43]. Let us consider the matrix:

$$S_V = J_c(\sigma)J_c^T,$$

where σ is the standard deviation of the image noise assumed to be Gaussian and affects each image pixel independently, I the $64^2 \times 64^2$ Identity matrix, and J_c the Jacobian of the function computed by the CNN, evaluated at the patch centered on the candidate c. A Jacobian matrix can be computed easily with a Deep Learning framework such as Theano, by composing the Jacobians of the successive layers of the network. We neglect the correlation between the different control points to finally extract from the block diagonal of S_V the 2×2 uncertainty matrix noted S_{jkl} below for each control point. An example of predicted control points and their uncertainties is shown in Fig. 2(b). Note that we can easily compute the S_{jkl} matrices without having to compute the entire, and very large, product in Eq. (4).

4. Estimating the Object Pose

Thanks to our representation for the part poses, estimating the object pose is straightforward, since each control point provides a 3D-2D correspondence. We describe here the method we use, other methods are probably possible.

We assume that we are given a prior on the pose \mathbf{p}, in the form of a Mixture-of-Gaussians $\{\{\mathbf{F}_{m}, \mathbf{S}_{m}\}\}$, as was done e.g. in [23]. This prior is very general, and allows us to define the normal action range of the camera. Moreover, the pose computed for the previous frames can be easily incorporated within this framework to exploit temporal consistency.

In the following, we will first assume that this prior is defined as a single Gaussian distribution of mean and covariance $(\mathbf{p}_0, \mathbf{S}_0)$. We will extend our approach to the Mixtures-of-Gaussians in Section 4.3.
4.1. Using a single Gaussian Pose Prior

Let us first assume there is no outlier returned by the part detection process or by the control point prediction, and that all the parts are visible. Then, the object pose \(\hat{p} \), or equivalently the camera pose, can be estimated as the minimizer of the functional

\[
F(p) = \frac{1}{N} \sum_{j,k} \text{dist}^2(S_{jk}, \Gamma_p(V_{jk}), \hat{v}_{jk}) + (p - \hat{p}_0)^T S_0^{-1} (p - \hat{p}_0),
\]

where the sum is over all the control points of all the parts, and \(\Gamma_p(V) \) is the 2D projection of \(V \) under pose \(p \). \(\hat{v}_{jk} \) is the projection of control point \(V_{jk} \) and \(S_{jk} \) its uncertainty estimated as explained in Section 3.3—since we assume there is no outlier, we dropped here the index corresponding to the multiple detections. \(\text{dist}(,.) \) is the Mahalanobis distance:

\[
\text{dist}^2(S, v_1, v_2) = (v_1 - v_2)^T S^{-1} (v_1 - v_2).
\]

\(F(p) \) is minimized using the Gauss-Newton algorithm initialized with \(\hat{p}_0 \).

4.2. Robust detection of parts

In practice, for the location of the \(j \)-th part, the detection procedure described in Section 3.2 can get a set of hypotheses \(\mathcal{S}_j \), and at most one is correct.

Checking all the possible combinations would be time consuming, so we rank the candidates according to their score \(s_{ij} \), keep the best four candidates for each part and greedily examine the possible sets \(\mathcal{C} \) of correspondences between a part and the candidate detections.

Similarly to [23], we exploit the pose prior for first quickly evaluating if the correspondences in \(\mathcal{C} \) can yield a good pose estimate.

We only consider a set \(\mathcal{C} \) if

\[
\forall j \in \mathcal{C} : \hat{\rho}_j < T^2 \quad \text{with} \quad \hat{\rho}_j = \rho_j - \rho_j^* \quad \rho_j^* = \text{dist}^2(S_0(C_j), \Gamma_{p_0}(C_j), \tilde{e}_{ij}),
\]

where \(T = 40 \), and where \(\hat{S}_0(C_j) = J S_0 J^T \), with \(J \) the jacobian of \(\Gamma_{p_0}(C_j) \), is the covariance of the projection \(\Gamma_{p_0}(C_j) \) of \(C_j \), and \(\rho_j \) is a random candidate of the set (since it is reasonable to suppose that at least one candidate of a part has been reliably detected).

If \(\mathcal{C} \) passes this test, we compute the average distance

\[
\overline{p} = \frac{1}{N} \sum_{j} \hat{\rho}_j \text{ of its points}. \quad \text{We keep the } N_C \text{ sets with the lowest average distance (in practice, we set } N_C = 4 \text{ for all our experiments); we run the Gauss-Newton optimization of Eq. (5) using each } \mathcal{C} \text{ to obtain a pose estimate, and evaluate it as explained in Section 4.3.}
\]

4.3. Using a Mixture-of-Gaussians for the Pose Prior

In practice, the prior for the pose is in the form of a Mixture-of-Gaussians \(\{ (\hat{p}_0, \Sigma_{00}) \}_{m} \) with \(M = 9 \) components (the prior employed for the BOX dataset is shown in Fig.6). We apply the method described above to each component, and obtain \(MN \) possible pose estimates: \(\hat{p}_1^{(1)}, \ldots, \hat{p}_1^{(MN)} \).

To finally identify the best pose estimate, we evaluate each \(\hat{p}_1^{(1)} \), employing a weighted sum of several cues: the angle between the quaternions for \(\hat{p}_1^{(1)} \) and the corresponding \(\hat{p}_0 \); the average reprojection error of the set of control points \(C \) according to \(\hat{p}_1^{(1)} \); the correlation between the object contours after projection by \(\hat{p}_1^{(1)} \) and the edges detected in the image. For setting the weights, we train a simple linear regressor on the training video sequences to predict the Euclidean distance between \(\hat{p}_1^{(1)} \) and the groundtruth. At testing time, we use the linear regressor to evaluate the quality of the computed pose, i.e we keep the pose that gives the smallest predicted distance.

If the optimization of Eq. (5) converges, we add to the initial prior the estimated pose and its covariance as part of the pose prior for the next frame. This helps enforcing temporal consistency. The pose covariance is obtained using the Extended Kalman Filter update formula [43] when optimizing Eq. (5).

5. Experimental Results

In this section, after describing the datasets we used for evaluating our method, we present and discuss the results of our evaluation. In Section 5.2 we validate the choice of reprojections of control points for representing the pose of each part. Then, in Section 5.3 and 5.4 we present the results of an extensive comparison with other methods, showing that our approach achieves state-of-the-art performances on our challenging sequences.

5.1. Datasets

There is currently no standard dataset for benchmarking 3D object detection and tracking methods in presence of
heavy occlusions and cluttered, dynamic background. We therefore introduce several datasets for extensive evaluation of 3D object tracking, consisting of both learning data and testing video sequences, a CAD model without texture and the groundtruth pose for all the sequences. For each dataset, the training set is made of 3000 frames. We test our approach on the following datasets:

- **BOX Dataset**: The target object for this dataset is an electric box. In the test videos, it is manipulated by a user, filled and emptied with objects, simulating, for example, a maintenance intervention by a technician. The training images show the box on a uniform background, with different objects inside and outside it. A CAD model is made by a simple parallelepiped. We use the 4 corners of the box as parts, as shown in Fig. 7.
- **CAN Dataset**: The target object of this dataset is a food can. The label is completely black, and the top of the can is specular. Distractor objects are present in the scene and large occlusions occur. Only the can lid breaks the cylindrical symmetry of the object, making the pose estimation almost ambiguous. We use the top of the can as a single part. A CAD model of the can is provided.
- **DOOR Dataset**: This dataset consists of one video showing a daily set-up where a non-textured door is opened and closed by a user. Despite the apparent triviality of the sequence, our tests show that it is particularly challenging to track the pose of the door along the full video, when it moves on a cluttered background. For this dataset, we track the 3 parts shown in Fig. 9, the knob, the keyhole and the lock of the door. A CAD model of the door is provided as well.

The images of the training and testing videos of the datasets were registered using the ARUCO marker tracking tool [8]. As showed in Fig. 7, we used a full grid of markers for the learning sequences, while a small set of markers has been placed far from the objects for the testing sequences. We then cropped them so that they could not influence detection and tracking performance when testing the methods.

5.2. Validation of the Part Pose Representation

To validate the part pose representation introduced in Section 3.1, we trained several regressor CNNs for predicting the object pose of all the frames of the first video of the BOX Dataset. Each CNN was trained to predict a different part pose representation:

- **Averaging Poses**: The output of the CNN is a 3D rotation and a depth for each part. The in-plane components of the translation are retrieved from the position of the patch on the image. The full object pose is then obtained by averaging the parts poses. Rotations were averaged as proposed in [22].
- **3D Control Points**: The output of the CNN are the coordinates of the projected control points shown in Fig. 2 on the patch and a depth for each control point. So, the 3D coordinates of the control points in the camera reference system can be computed; the poses of the parts are then combined by computing the 3D rigid transform aligning the points in the camera and in the world reference system in a least-square sense.

- **2D Control Points and PnP**: The output of the CNN is given by the coordinates of the reprojections of the control points, as described in Section 3.1. The pose is computed by solving the PnP problem after gathering all the 3D-2D correspondences given by all the parts. The results are shown in Fig. 8. The last choice entails a tremendous accuracy gain over the previous ones.

We also performed two other experiments:

- we replaced the predicted 2D reprojections in the case of the 3D Control Points experiment by the ground truth (3D Control Points - GT X and Y);
- as the previous experiment, but replacing the predicted depths by the ground truth (3D Control Points - GT Depth).

In the first case, the results did not improve much. In the second case, the results are equivalent to the ones of 2D Control Points and PnP (for sake of clarity, the 3D Control Points - GT Depth curve is not shown in Fig. 8). This shows that predicting the depths is a difficult task, while predicting the 2D locations is much easier.

5.3. Comparison Framework

We compared our approach with three state-of the art methods, LINE-2D [13], PWP3D [28] and LSD-SLAM [6]. LINE-2D is one of the best methods for rigid object recognition and it proceeds using very fast template matching. PWP3D is an accurate and robust model-based 3D tracking method based on segmentation. LSD-SLAM is a recent, powerful and reliable SLAM system: amongst other things, it does not require prior 3D knowledge, while we know the
3D locations of the control points and their appearances. The comparison should therefore be taken with caution, as this method does not aim to achieve exactly the same task as us. Nevertheless, we believe the comparison highlights the strengths and weaknesses of the compared methods.

For every testing video, we compare the poses computed by each method for all frames. Following the evaluation framework in [36], we align each of the trajectories with respect to the same reference system. Then, we compute the absolute pose error for each frame, the empirical cumulative distribution functions for the rotation and translation components (as shown in Fig. 10 for one of the videos), and report the Area Under Curve (AUC) scores for each of them in Table 2. The rotation error is computed as the distance between the exponential maps of the poses.

In each test, the templates for LINE-2D were extracted by the same 3000 images we employed for training our method; PWP3D was manually initialized using the ground-truth pose data, while LINE-2D, LSD-SLAM and our method do not require any initial pose.

5.4. Results

Quantitative results of our tests are shown in Table 2. LINE-2D, LSD-SLAM and PWP3D actually fail very frequently on our sequences, drifting or losing tracking. In the BOX dataset, on the longest of our video sequences, we also re-initialized LSD-SLAM and PWP3D using the ground-truth pose at roughly half of the video, but their accuracy over the whole sequence remains outperformed by our method. LINE-2D, on the other hand, often fails matching the templates not only when the contours of the box are occluded, but also because its appearance is constantly changed by objects put inside and outside it.

For the CAN dataset, we use a single part to track the full object. In the first video the silhouette of the can is seldom occluded: LINE-2D and PWP3D achieve similar performances, while the lack of texture and the distractor objects make LSD diverge. In the second video, where occlusions occur more often but the background color is different from the one of the can, LSD-SLAM performs better. On both videos, our method consistently outperforms all other methods.

In the DOOR dataset test, LSD-SLAM fails as soon as the door starts to move. LINE-2D fails very often because of the ambiguous contours present in the scene. Finally, PWP3D immediately loses tracking, while our method manages to track frames across the whole video. This result is somehow surprising, since PWP-3D exploits the appearance of the whole door, while our method just exploits a minimal part of its structure. We only use the CAD model for predicting contours and evaluating the computed poses.

5.5. Runtimes

Our current implementation on an Intel Core i7-4820K desktop with GeForce GTX 780 Ti takes 22 ms for the part detection, plus 30 ms to predict the control points for each
detected part. The pose estimation takes about 150 ms. Many optimizations are possible; for example, the control point predictions for each part could be run in parallel.

6. Conclusion

We introduced a method for detecting an object and estimating its 3D pose in the challenging conditions that occur in practical applications. The core of our contribution is in the representation of the 3D pose of discriminative parts of the target objects. The parameters of this representation—the projections of the control points—can be inferred from images using statistical methods; each part provides enough information to estimate the object pose, and when several parts are visible, they can be easily combined to obtain a better estimate than a single part alone.

We believe that this representation, simple and powerful, could be useful not only for object instance detection, but also for the 3D pose estimation of categories of objects, where the current approaches drastically suffer from partial occlusions.

Acknowledgement: This work was supported in part by the EU projects EDUSAFE and MAGELLAN. The authors thank the anonymous reviewers for their helpful and constructive advice.

References

[34] I. Skrypnyk and D. G. Lowe. Scene Modelling, Recognition and Tracking with Invariant Image Features. In ISMAR, November 2004. 2