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Abstract

Geophysical gravity-driven flows — including avalanches, debris flows, pyroclastic
flows and submarine turbidity currents — are multiphase natural hazards that flow
under the influence of gravity. Despite their differences, they share much of the same
physics, having the potential to pick up material from beneath, a process called basal
entrainment during which the flow may increase in volume and velocity manyfold. Due
to their complexity and unpredictability there are still many unanswered questions
about their mechanics, so that many of the theoretical models in use are based on
insufficient data sets and may not apply to a general case.

Here, basal entrainment by geophysical gravity-driven flows is studied by isolating
the process in idealised laboratory experiments. The avalanche is simplified and con-
trolled in such a way that any changes can be confidently attributed to the entrainment
process alone. Further, the methods available in the laboratory allow the continuous,
passive study of entrainment, so that for the first time full data sets of internal mea-
surements are obtained, from experiments ranging from simple to complex. The data
obtained is easily exploited for confirmation of the mathematical models developed in
this thesis.

Experiments which simulated entraining avalanches as Newtonian dam-breaks along a
horizontal flume and as viscoplastic dam-breaks along an inclined flume both showed
an increase in front position, dependent on the amount of material available, amongst
other changes. The experimental results allow the development of a theoretical thin-
film model in both cases which is solved numerically and compares favourably with the
data obtained. The Newtonian model reproduced the flow characteristics excellently
and the viscoplastic model successfully simulated the effects of entrainable material.
The possibility of performing similar experiments using a granular suspension is also
investigated, with promising results.

This work shows that the effect of entrainment on gravity-driven flows can be quan-
tified and modelled mathematically as a non-local transport process. This has im-
plications for hazard modelling: if the quantity of available loose material is known,
and its characteristics are similar to those of the flowing avalanche, the avalanche and
the entrainable bed can be modelled as a continuous flow over a rigid base. Thus it
is suggested that the models developed be tested in more realistic cases, e.g. in the
case of an avalanche entraining material with different characteristics, or in a more
complex geometry, in order to better mimic what happens in nature.
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Résumé

Les courants de gravité géophysiques — y compris les avalanches, les laves torrentielles,
les coulées pyroclastiques et les courants de turbidité sous-aquatiques — sont des
catastrophes naturelles multiphasiques qui coulent sur des pentes sous I'effet de la
gravité. Malgré leurs différences, leurs comportements physiques se ressemblent, et ils
ont la capacité d’entrainer des matériaux du substrat, un processus au cours duquel
le volume et la vitesse peuvent s’accroitre fortement. En raison de leur complexité et
leur imprévisibilité, il existe encore des questions clés au sujet de leur mécanique qui
restent sans réponse, de sorte que la plupart des modeles théoriques utilisés sont basés
sur un nombre insuffisant des données et peuvent ne pas appliquer a un cas général.

Ici, 'entrainement de matiere par des courants de gravité géophysiques s’étudie en
isolant le processus dans des expériences idéalisées de laboratoire. Lavalanche est sim-
plifiée et controlée de maniere a ce qu'un changement de comportement puisse étre
attribué directement au processus d’entrainement. En outre, les méthodes disponibles
en laboratoire permettent la visualisation continue et non-intrusive de I’entrainement,
afin d’obtenir pour la premiere fois des ensembles de mesures internes, a partir d’expé-
riences allant du simple au complexe. Les données obtenues sont facilement exploitées
pour la validation des modéles mathématiques développés dans cette theése.

Afin de simuler I'entrainement par des avalanches, des expériences ont été congues
au cours desquelles une rupture de barrage libére du fluide newtonien dans un canal
horizontal, ou du fluide viscoplastique dans un canal incliné. Une augmentation de la
position du front de I’avalanche, qui dépend de la quantité de fluide disponible, a été
observée dans les deux cas. Les résultats expérimentaux ménent au développement
d’'un modele théorique a couches minces dans les deux cas, qui est résolu numéri-
quement et qui reproduit directement les données obtenues. Le modéele newtonien
reproduit les caractéristiques d’écoulement de facon excellente et le modele viscoplas-
tique simule avec succes les effets de la matiere entrainée. La possibilité de réaliser des
expériences similaires en utilisant une suspension granulaire est également étudiée,
ce qui ouvre des perspectives prometteurs.

Ce travail montre que l'effet de 'entrainement sur un courant de gravité en laboratoire
peut étre quantifié et modélisé mathématiquement de maniere globale. Cela aura des
implications pour la modélisation des risques : si la quantité de matiere disponible
est connue, et ses caractéristiques sont similaires a celles de ’avalanche qui coule,
I'avalanche et la couche entrainable peuvent étre modélisées ensemble comme écou-
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lement continu sur un fond rigide. Ainsi, il est suggéré que les modeles développés
soient testés dans des cas plus réalistes, par exemple, dans le cas d'une avalanche qui
entraine de la matiere avec des caractéristiques différentes, ou dans une géométrie
plus complexe, afin de mieux simuler ce qui se produit dans la nature.

Mots clefs : courant de gravité, avalanche, lave torrentielle, entrainement, mécanique
des fluides expérimentale, modélisation mathématique, théorie de lubrification
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Introduction

In Switzerland, debris flows account for around 4.5 % of storm-related damage, amount-
ing to 350 million EUR over the period 1972-2007 [1], and every year around 25
avalanche deaths are reported!. In the notorious Winter of 1999, around 1 billion
CHF of direct damage was caused by snow avalanches in Switzerland, despite signifi-
cant expenditure on avalanche defences in the preceding 50 years [2]. In Spring 2015,
persistent rain combined with snowmelt caused a debris flow in the river Morge, which
significantly damaged two restaurants in St Gingolph, VS, and required evacuations
and considerable clean-up efforts. In 2014, a deadly debris flow in Oso, Washington,
USA destroyed a village, blocked a highway and claimed 43 lives [3], and in China
hundreds of lives are lost every year [4], highlighting that these extreme events occur
in developed as well as developing countries, where damage and lives lost may not be
reported. Some of the most deadly debris flows are detailed by the USGS online?. Due
to the destruction caused by these natural disasters it is important that their physics
are properly understood for better planning and protection of at-risk areas.

When a snow avalanche or a debris flow occurs, it usually encounters previously
deposited or loosened material along its path. For snow avalanches this is likely to
be undisturbed snow, and for debris flows this is generally loose sediment and rocks,
although these phenomena are often forceful enough to dislodge larger boulders or
uproot trees and sometimes even destroy installations and buildings, carrying away
the rubble (Figure 1.1).

This entrained material has an important role in the flow’s evolution, as its volume can
increase many-fold between release and final arrest [5-7], and the run-out distance
increases with flow volume [8]. Unfortunately information about its exact effect is
lacking, as conclusions are often drawn from individual post-event field studies where
flowing masses, velocities and so on are estimated from back-analysing flow tracks

http://www.slf.ch/praevention/lawinenunfaelle/lawinenunfaelle/lawinenstatistik/index_EN
Zhttp://landslides.usgs.gov/learn/majorls.php



Chapter 1. Introduction

Figure 1.1: Restaurant damage at St Gingolph (20minutes/lecteur reporter 2015);
Uprooted trees by debris flows in the River Uina, Grisons (B. Bates 2014); Destroyed
chairlift at St Francois de Longchamp, France (C. Ancey 2012)

and deposits [9-15]. The complexity of these flows means that the cause of any one
behaviour is difficult to isolate, and many avalanches at many different sites should be
studied to understand their mechanics. Therefore there is a clear case for obtaining
new and reliable data on entrainment in the general case.

This chapter details what is currently know about entrainment and its effects on
avalanches and debris flows, based on existing field studies and experimental cam-
paigns. To begin, a brief summary of the physics of these phenomena is presented.

1.1 Experimental observations of avalanches and debris flows

Recently, good quality, full-scale data has been obtained by instrumenting test sites
which are known for avalanches or debris flows. Either avalanches are triggered such
as at Vallée de la Sionne in Switzerland [16] and Rygfonn in Norway [17], or a triggered
measurement system can be installed as in the Iligraben, Switzerland [18] and at Vallée
de la Sionne [19], where seismic signals trigger downstream recording equipment
during spontaneous events. When a site is instrumented, measurements can be
obtained continuously throughout the flow, but usually at discrete geographic locations
(7,20, 21]. Radar and other scanning methods are being tested to give more continuous
measurements throughout the flow but this method is currently restricted to velocity,
height and temperature measurements [22, 23].

Iverson [24] presents a review of research into the structure and behaviour of debris
flows, much of which was based on field observations and full-scale measurements.
Debris flows are mixtures of different solid materials and fluid, usually initiated by
landslides, dam collapse or heavy rainfall [25] and are self-organizing during flow
under gravity [26]. As the mixture flows downstream the smaller particles drop to
the bottom and larger stones and boulders are forced upwards in a process called
grain-size segregation. In this way, the larger blocks flow over the smaller ones and
end up at the front and sides of the flow, creating an unsaturated bouldery front and

2



1.1. Experimental observations of avalanches and debris flows

confining lateral levees [27]. A similar process occurs in snow avalanches [28].

After the front has passed, the middle section or body of the flow arrives. This part
of the flow is saturated and contains a range of particle sizes which appear to flow as
a dense, fast-moving liquid, exhibiting plastic behaviour [5, 29, 30]. A similar region
exists at the base of snow avalanches, but due to their layered structure it is often
obscured in observations by the saltation layer and powder cloud [17]. The tail of a
debris flow is more watery and may sometimes transform into a hyperconcentrated
flow [31, 32]; an avalanche tail is shallower than the body and experiences increased
friction so that deposition often occurs [33]. Surges are common in debris flows and
avalanches, meaning that during one event multiple flow fronts may travel down the
same channel [22, 25, 34].

Due to the complex composition of avalanches and debris flows, their motion de-
pends strongly on internal interactions between their components [35] and external
interactions with their environment [36]. Two important dynamic controls on debris
flow and avalanche mobility are pore pressure (pressure in the interstitial fluid) and
basal shear stress. Under certain conditions, debris flows can travel much further and
faster than expected [31, 37]. Iverson [37] suggests two reasons for long run-out in
their large-scale experiments: bed roughness — which increases basal shear - led to
flow sorting which increased run-out by creating levees that channelled the flow, and
increased pore pressure due to mud content led to reduced flow resistance. McArdell
et al [38] used geophone data from the Iligraben site to infer that sustained increased
pore pressure during debris flows contributed to their increased mobility, but they
did not find a link with basal shear. Results from the Chalk Cliffs site in Colorado [31]
also found a link between high pore pressure and long run-out distances in debris
flows. Large-scale experiments, such as those carried out on debris flows by Iverson
and colleagues at USGS, have also been performed using snow at the Weissfluhjoch in
Switzerland, to investigate their velocity profiles and rheological behaviour [39].

Due to the complications associated with studying gravity flows in nature, an effective
alternative is to move to the laboratory. Here, simplified experiments can be performed
in which one process is isolated and cause and effect is easier to attribute. Iverson
[40] discusses the applicability of small-scale experiments to large-scale natural phe-
nomena and concludes that bigger is better, yet the strategy of the Laboratory of
Environmental Hydraulics (LHE) is to understand individual processes by simplifying
systems, and this is the approach adopted in this thesis.

Most laboratory studies use idealised material in place of natural material, in order to
avoid the complications of working with snow and mud. For example, Larcher et al [41]
used water-saturated PVC pellets in a steady uniform flow and filmed from the side
in order to see the flow structure throughout the depth. Four different flow regimes
applicable to real debris flows were found, with differing amounts of stratification.



Chapter 1. Introduction

However natural geophysical gravity flows are not steady and uniform, and some
authors have developed novel facilities in order to study non-uniform flows. In a
rotating drum, an avalanche is stationary in the fixed frame of reference so that it
can be analysed, e.g. for the effect of composition on rheological behaviour [42], its
dynamic properties including velocity profiles and pore pressure [43], its structure [44],
particle interactions [45] or to see bedrock erosion [46]. Other authors have used an
upwards-moving conveyor belt to study a gravity flow in a stationary way [47, 48].

The evolution of a gravity-driven flow from start to finish is perhaps best studied as part
of a simplified dam-break study. The classic work by Huppert [49] on a viscous gravity-
driven flow propagating over a horizontal surface has given rise to many more complex
studies, for example, propagation of a gravity-driven flow along a fluid interface [50],
along channels of varying geometry [51], down a slope [52, 53] or over a lubricating
layer [54]. The problem has been extended to viscoplastic dam breaks on slopes [55—
60], and to suspensions and fluid-solid mixtures in which novel imaging techniques
allow the study of the flow in the centre of the flume, in order to avoid wall effects in
dam breaks of fluid-solid mixtures [61-63].

1.2 Modelling avalanches and debris flows

In many models, the complexity of mixture flows is treated by depth averaging over a
flow column, as in the St. Venant approach [64]. The Savage Hutter depth-averaged
model for granular motion is perhaps the key reference upon which many models are
based, and it describes the motion of a mass of grains moving downslope, with con-
siderations for particle interactions and basal friction from a Coulomb yield criterion.
This model assumes that the fluid phase is passive and does not influence the flow.
Over a planar base this model yields two equations for the evolution of flow height
h(z,t) and depth-averaged slopewise velocity u(z, t):
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Here, interactions with the external environment occur through the basal friction angle
0, the slope angle is denoted by 6, and 3 dictates the relationship between normal and
shear stresses, depending on the internal friction angle. No considerations are made
for vertical velocities and the velocity profile is set to uniform.

More recently, theoretical models have focused on taking into account the different
phases [65], i.e. solid and fluid phases which interact through various forces including
buoyancy and drag [66, 67], varying internal friction angles to allow for fluid-solid
transitions [64] and vertical particle rearrangement [68].



1.3. The problem of entrainment

A variety of commercial models are used by engineers to predict the dynamics of
avalanches and debris flows, usually with the goal of generating risk maps and planning
defences for inhabited zones and areas where new buildings or infrastructure are
proposed. In general these models are based on shallow continuous flows with some
rheology considerations to account for basal and internal friction. As an example, the
RAMMS model was developed at the SLF in Switzerland for snow avalanches [69] but
has been extended to debris flows and rock avalanches. It solves the depth-averaged
equations of avalanche motion [70] with either Voellmy Salm frictional rheology [71]
or a rheology based on random collisions dissipating kinetic energy [72].

Rickenmann et al [73] evaluated three debris flow models of this kind, including a
finite volume model with Herschel Bulkley rheology, and found reasonable results.
Some authors have added further detail, for example dilatancy and pore fluid pressure
[74]. Many other models exist in the literature, all with differing physical assumptions,
usually concerning the material rheology.

1.3 The problem of entrainment

Observations in the field have revealed a variety of different entrainment mechanisms
in snow avalanches and debris flows. In snow avalanches, four mechanisms were
suggested: particle impact, abrasion, ploughing and fluidization by excess pore air
pressure [75]. Sovilla et al [7] presented radar measurements showing step entrainment
when soft snow, initially protected by a strong layer, is entrained instantaneously. In
debris flows progressive entrainment of sediments was observed in all sections of the
flow [76] and was faster when sediment was saturated, indicating a shear-induced
pore-pressure control on entrainment [77].

Not all available models take into account mass entrainment, and those that do often
use crude methods. For example RAMMS [69] assumes snowpack fragmentation when
the avalanche arrives, and an entrainment rate proportional to the snow density and
flow velocity. Other models require an entrainment rate selected by the user or cali-
brated constants [78, 79]. However it has been shown that models taking entrainment
into account - even using a simple model - do significantly better at predicting run-out,
flow velocities and flow heights [7, 80].

In depth-averaged models for avalanches and debris flows, the question of entrainment
is problematic as it occurs only at the base. Often these models include alocal exchange
rate E(x,t) which defines how much loose material is entrained or how much of
the flow is deposited [79, 81], but the definition of this rate varies throughout the
literature [82, 83] and is usually fitted to experimental results e.g. from granular heap
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experiments [84]. These equations usually take a form similar to:
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where z,(z, z,t) — z = 0 defines the exchange surface, and 7, is a basal shear stress
term, which is defined depending on the rheology of the material.

The local nature of this exchange rate means that it describes the vertical enlargement
of one column of flow at position z and time ¢. Iverson & Ouyang [83] present a
review of many existing depth-averaged models which consider entrainment effects,
highlighting the different formulae for £, and note that many of them violate essential
conservation laws when exchange occurs between flow and substrate. In order to
rectify these violations, a number of jump conditions are proposed which must hold
on the surface zy(z, 2, t).

Other models simplify the flowing mass using a model with a yield stress [85, 86] and
comparing the avalanche’s basal shear stress with the entrainable bed’s yield stress
[87, 88]. Issler [89] presents a detailed derivation of an abrasion-type entrainment
rate, however the analysis is based on a moving column of material, and not a full
avalanche. Further theoretical mechanisms are a mixing layer between flow and
substrate based on kinetic theory [90], increased pore pressure at the entrainment
interface [91], and fluidized zones in the bed [92, 93]. Although somewhat differing,
many of these analytical works have one thing in common: they bemoan the lack of
high quality data from idealised laboratory studies (e.g. [89]).

Most existing laboratory studies have focused on entrainment by dry granular avalanches.
For example, slope angle was seen to be a controlling factor in the effects of entrain-
able material [94], with a critical angle of 12° identified, below which entrainment
decreased run-out and above which it increased run-out by up to 40%. Further controls
on bed excavation were identified above this angle [95] in particular entrainable bed
depth, flow volume and flow velocity. Barbolini et al [96] found that ploughing and
abrasion were the two most significant mechanisms in entrainment, whereas Roche
et al [97] found evidence for block entrainment by increased pore pressure gradients.
The photoelastic techniques used by Estep & Dufek [98] showed that force chains may
propagate far ahead of the flow front into the entrainable bed, potentially dislodging
the substrate, yet in cases with rough substrate these force chains may stabilise the
bed and halt the avalanche [99]. Very little work has been done on saturated granular
flows, finding for example that bed sediment size affected the entrainment rate [100].
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These experimental studies are limited, due to their only being observable from the
exterior, and as such the results may have been influenced by the flume walls. For
instance, examining an entraining avalanche after arrest [101] it was found that features
on the entrainment interface at the centre were not seen at the edge. This therefore
calls for a study that takes continuous internal measurements during entrainment, so
that the fluid mechanics far from the side walls may be studied.

1.4 Contribution

This work is an experimental and theoretical study of entrainment by idealised dam-
breaks. Experimental techniques are used to provide new, high-quality data on en-
trainment by geophysical gravity-driven flows, by reducing the problem to the simplest
Newtonian and viscoplastic cases. The experimental data is then exploited for the de-
velopment of new theoretical lubrication models — in which entrainment is modelled
as non-local transport — which successfully reproduce observations.

This thesis makes an novel contribution due to the following two reasons.

e Asfar as] am aware, the experiments performed represent the first study in which
entrainment is studied continuously within the flowing avalanche, by adapting
the experimental system of Andreini et al [62] for non-intrusive measurements
of gravity flows.

e The lubrication models developed model the transport of entrained material in a
non-local way, assuming that the dam-break and all entrainable material — even
material far downstream which may never be disturbed — flow as a continuum.
This removes the need to define local exchange terms, which have been a sticking
point for many previous models.

Figure 1.2 is a map showing the three experimental campaigns of increasing complexity
and the questions asked at each stage.
Measurements of bulk and internal dynamics are taken in order to respond to the
following two questions:

e How does an avalanche interact with entrainable material lying in its path?

e What happens to the avalanche as a result of entraining material during flow?
This thesis presents two principle experimental studies: a dam-break of Newtonian

fluid which flows down a horizontal channel containing an entrainable layer, and a
gravity-driven flow of viscoplastic fluid entraining material in an inclined channel. In
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Figure 1.2: A guide to reading this thesis.

the simpler case of an entraining Newtonian dam break, a classical analytical thin-film
model [49] was adapted for this new case including entrainment. The model was
solved numerically, with results showing a good agreement with all of the experimental
data.

The success of the lubrication model in the Newtonian case led to the idea of adapting a
model for viscoplastic dam breaks to the problem at hand. Although this kind of model
has been shown to have its drawbacks (e.g. [53]), it perfectly predicts the effect of the
entrainable material on the position of the flow front, whilst qualitatively reproducing
the surface height of the flow.

A detailed study of entraining dam-breaks of granular suspensions is shown as prac-
tically feasible, pending several improvements, and is left as a suggestion for future

work.



Experimental Facility and Tech-
niques

This chapter presents the experiments performed to investigate entrainment: first the
equipment is described, and then the three experimental campaigns are presented in
detail. The three studies increase in complexity: the first is a Newtonian dam-break
flowing down a horizontal flume, then similar methods are applied to a viscoplastic
fluid on a slope, and finally a granular suspension is studied.

2.1 Equipment

Flume

A 3.5 m long by 10 cm wide inclinable flume [62] was modified for this work. The flume
was constructed to study internal velocities in gravity-driven flows, and as such was
made with a polymethyl methacrylate (PMMA) base and a 50 cm long viewing window
on each side. The observation area was fixed, so for this thesis a mobile pneumatic
lock-gate was added in order to release the material at the appropriate distance. Two
shallow sheets of PMMA were placed along the flume, making a false bottom. A gap
was left between the two pieces and filled with entrainable material, so that the dam-
break initially flowed over a rigid base, then over a finite layer of loose material - the
entrainable bed — before continuing over a rigid base (figure 2.1).

Laser and PIV set-up

A 2 W Diode-Pumped Solid State Nd:YAG laser with wavelength 532 nm was used with
the optical set-up shown in figure 2.2 to create a vertical laser sheet down the centre
of the flume in the observation zone, so that particle image velocimentry (PIV) could
be performed. PIV is a flow visualisation technique in which a seeded flow is filmed
at high speed so that the instantaneous velocities can be found by comparing the
distribution of seeds in two consecutive images. The seeds used in this study were
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mobile pneumatic lock-gate
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camera 2: plan view >

laser sheet mobile reservoir back wall

back-lit panel / .
(@ - camera 3: side view
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lbed _— camera 1: PIV with orange filter
) entrainable zone
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Figure 2.1: Experimental set-up including reservoir, lock-gate, step and entrainable
bed layer, and the location of the laser sheet. The flow is in motion at slope angle 6 and
the bed dimensions are ;.4 long by 6k deep.

b)

Figure 2.2: a) Optical set up with laser, mirrors, lens and rod for creation of vertical
laser sheet; b) prism to film interior of flow from below.

20 pnm PMMA beads tagged with rhodamine 6G, a stain which is fluorescent in green
light. In this way only the particles in the central laser sheet were illuminated and only
they were filmed.

The suspension experiments (described in section 2.4) required a slightly different
technique and a stronger laser. Instead of seeding the suspension — small particles
may act as lubricating fines or cause unwanted effects such as grain size segregation —
rhodamine 6G was mixed directly into the suspending fluid so that it fluoresced and the
grains did not, and PIV was possible in this way. Contrary to the fluids, the transmission
of light through the suspension was not perfect, and so a better focus was required
for sufficient image quality. With a smaller aperture the focus was improved, however
images were much darker, and so a 4 W laser was chosen for these experiments.

10
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Figure 2.3: Images from Cameras 1 and 3 (top) and camera 2 (bottom) during viscoplas-
tic experimental campaign.

Cameras and image acquisition

Three different high-speed cameras were used in the experiments. Camera 1 filmed
the illuminated internal section of the flow through an orange filter: the light emitted
by rhodamine has a longer wavelength than that absorbed and the orange filter blocks
the green light of the laser but allows the transmission of the emitted light. This
camera was placed below the flume and filmed through the transparent base and a
prism, using a tilted lens for the Scheimpflug principle [102] in order to obtain clear
images from a focal plane which is non-parallel to the image plane. Usually PIV is
performed by filming from the side, but the flow front in many of these experiments
was significantly curved in the cross-stream direction, and so images were acquired
through the base to avoid distortion at the flow front. Camera 1 was a Basler A403k
camera, and was calibrated for each experiment using a grid immersed in fluid in the
flume. PIV measurements were taken in a 6.5 cm long central streamwise section in
the entrainment zone.

Camera 2 (also a Basler A403k) filmed from above to show the progression of the flow
front, through a red filter if the laser was on. Camera 3 was used to film through the
observation panel in the side of the flume in order to obtain the flow and bed surface
elevation during entrainment. This was a Basler acA2000-165um USB 3.0 camera and
an LED panel provided backlighting. Figure 2.3 shows some examples of raw images
taken during the viscoplastic experimental campaign.

PIV software

To obtain measurements from camera 1’s images, the velocity field was calculated
using PIV between two images an appropriate time-step apart. This was then filtered
with a signal to noise ratio (SNR) of 1.3 and a local filter of 2.7, then all removed
vectors were interpolated linearly. All measurements were corrected for perspective
using a calibration grid. The PIV software used was the opensource package MatPIV
[103]. Error quantification in PIV remains difficult, but it is known that strong velocity

11
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gradients reduce measurement accuracy [104], so steps were taken to minimise errors,
such as choosing the optimum seeding density and correlation window size.

2.2 Experimental campaign 1: Newtonian fluid

A natural starting point for fluid dynamics investigations is to perform a simplified
exploratory experimental campaign. Keeping in mind the goal of simulating and un-
derstanding entrainment by avalanches on slopes, initial experiments were carried out
using a Newtonian fluid in the flume set to 0° inclination. This allowed the develop-
ment of techniques and was of interest in itself, as a previously unsolved problem about
what happens when a moving layer of viscous fluid flows over a layer of stationary
fluid.

The fluid used was glycerol (supplied by Alfa Aesar GmbH, Germany) diluted to a
98.5% volume concentration aqueous solution. This was done because glycerol has
a high affinity for water, and is unstable at high concentrations, absorbing water
vapour quickly from its surroundings. At this concentration, its density is 1257.5 kg
m~—3 4 0.5 kg m~3. As glycerol has a highly variable viscosity with temperature and
concentration, its viscosity was closely monitored and experiments were performed as
close to 20°C as possible.

Two main experimental campaigns were undertaken. In one, the fluid was dyed with
Methylene blue and filmed from above over the entire flow length, and through the
50 cm long transparent side-panels, in order to obtain information about the bulk
flow characteristics, namely the front position with time and the surface height profile
during entrainment. In the other campaign, the flow was seeded and filmed for PIV at
the entry to the entrainment zone, in order to study the internal dynamics of interaction
between the dam-break and the bed. A summary of the experiments performed is
presented in table 2.1.

In most cases the length of the reservoir (behind the lock-gate) was kept constant
at 30 cm; only in the two experiments in which 1500 ml fluid was released was the
reservoir the shorter length of 20 cm. The length /., is the distance from the reservoir
back wall to the step and so includes the length of the reservoir. Based on calculations
by Didden & Maxworthy [105] ., was chosen so that it was always > (p?gVy /1?)'/7,
where p is the fluid density, u its kinematic viscosity, and V; is the volume per unit
width. This guarantees a dominant balance between gravity and viscous forces, with
inertia playing a less significant role. The length of the entrainable bed /;., was varied
between 10 and 50 cm, and its depth was either 3, 6 or 9 mm, to be compared with the
no-entrainment case.

For the bulk experiments, cameras 2 and 3 had frame rate: 20 frames per second,

12
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Table 2.1: Experiments performed using glycerol

Run ‘ Vol, ml [lgep, cm  6h, mm  lpeg, €M lreg, CM u, Pas temp, °C
Bulk A 800 - 0 - 30 1.041 20.10
Bulk B 800 50 3 50 30 0.916 19.95
Bulk C 800 50 6 50 30 1.038 20.30
Bulk D 800 50 9 50 30 0.902 20.05
Bulk E 800 50 6 30 30 1.007 -
Bulk F 800 50 6 10 30 1.009 20.05
Bulk G 800 60 6 30 30 1.011 20.10
Bulk H 800 70 6 30 30 0.984 20.00

BulkI | 1500 - 0 - 20 0.843 19.50
BulkJ 1500 60 6 50 20 0.835 19.50
PIVA 800 50 3 50 30 1.121 4 0.062 19.5
PIVB 800 50 6 50 30 1.121 £ 0.062 19.5

except for runs I & J where the frame rate was 33.3 frames per second. For the internal
experiments, camera 1 had parameters: exposure time 3000 us, frame period 7500 ps,
acquisition time 12 s and image size 600 x 2352 pixels.

In the bulk tests both the bed and the reservoir fluid were dyed blue, but for the internal
measurements two configurations were used for visualizing the flow (see figure 4.5).
In a “reservoir run” denoted by the letter R, the fluid released from the reservoir was
seeded and the bed fluid was largely without seeds. The idea here was to show a clear
and measurable interface between the substrate and the avalanche. A “combined
run” denoted by a C, refers to experiments where all fluid was seeded, thus providing
detailed velocity measurements in all of the system, but the interface is not shown. A
similar set of configurations was also used for the viscoplastic experiments.

2.3 Experimental campaign 2: Viscoplastic fluid

In order to study entraining flows on a slope, it was necessary to choose a material
which could act as both a stationary bed layer — mimicking undisturbed mud or snow —
and a flowing avalanche. An aqueous solution of Carbopol Ultrez 10 (manufactured by
Lubrizol), a viscoplastic “micro-gel” is an appropriate choice, as it exhibits a yield stress,
remaining plastic on a slope until sufficient shear is applied (i.e. by the overriding
avalanche), causing it to yield and flow. This is because it contains polymer chains
which, when sheared, are forced to untangle and unwind. It differs from other polymers
as the chains are highly-branched, making them sponge-like [106], thus allowing high
viscosities at low concentrations and shear thinning without the stringiness of an
extensional flow [107].

13
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Figure 2.4: Shear stress versus rate of strain graph for clear and blue-dyed Carbopol
Ultrez 10 at 0.3% concentration.

Carbopol has been shown to be well modelled by the Herschel Bulkley constitutive
law, which makes it an appropriate substitute for snow or mud [108]. The Herschel
Bulkley model describes a yield stress, below which no flow occurs and above which
a change in viscosity occurs. The relationship between shear stress and strain rate is
T = 7. + K4"™ where 7. is the critical shear stress, K is a property called the consistency
and n the power law index [30, 107]. When n < 1 the material is shear-thinning above
the yield stress. Its surface tension has been measured and found to be around 10%
less than that of water [109].

Carbopol is transparent and easily seeded with fluorescent tracking micro-particles,
without significantly changing the material rheology. Nanoparticles are known to
affect the rheology of Carbopol polymer solutions by interfering with the polymer
chains, however small concentrations of microparticles such as used here have no
effect [110]. Nonetheless it was necessary to check that no significant rheological
effects were caused by these tracers, for example by altering the pH of the mixture,
as this is known to significantly change the rheological properties of Carbopol gels.
Rotational rheometry showed no significant difference between seeded and unseeded
Carbopol for any of the rheological tests performed.

Further advantages of Carbopol Ultrez 10 are its low toxicity, the facility of preparation
and the easy control of rheological parameters by varying the concentration. It is also
non-thixotropic. The Carbopol was prepared as follows: the powder was first added to
the required amount of deionized water at 60°C, and left until it sank to the bottom,
over a few hours or one night. Then it was stirred for around two hours and left to settle
for a further few hours. Finally an aqueous solution of NaOH was prepared and mixed
with the Carbopol-water solution, for neutralisation. It is during this final step that the
mixture takes on its viscoplastic gel-like appearance. Once prepared, the bubbles must
be removed, which is easily achieved by stirring at a constant, low speed for around
one hour.

Based on results from Cochard & Ancey [60] and some preliminary tests, the Carbopol
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Table 2.2: Viscoplastic experiments performed: dyed with Methylene Blue

run name ‘ 6,° O0h,mm config M,kg Igep, cm Iy, cm  temp, °C

12-0a | 12 - - 3 70 - 19.20
12-6Ra | 12 6 r 3 70 30 19.20
12-6Ca | 12 6 c 3 70 30 19.30

16-0c | 16 0 - 3 70 - 19.50
16-3Rd | 16 3 r 3 70 30 19.90
16-3Cc | 16 3 c 3 70 30 19.85
16-3Re | 16 3 r 3 80 20 19.90
16-3Cd | 16 3 c 3 80 20 19.90
16-6Rc | 16 6 r 3 70 30 19.70
16-6Cc | 16 6 C 3 70 30 19.50
16-9Ra | 16 9 r 3 70 30 20.00
16-9Ca | 16 9 c 3 70 30 20.00
16-6Rd | 16 6 r 3 90 30 19.90
16-6Cd | 16 6 c 3 90 30 19.65
16-6Cf | 16 6 c 3 90 20 19.90
16-6Cg | 16 6 c 3 90 15 19.50

16-0e | 16 0 - 3 90 - 19.60

20-0a | 20 0 - 3 90 - 19.45
20-6Ra | 20 6 r 3 90 30 19.95
20-6Ca | 20 6 c 3 90 30 20.10
20-6Rb | 20 6 r 3 90 20 20.00
20-6Cb | 20 6 c 3 90 20 19.80
20-6Rc | 20 6 r 3 90 10 19.50
20-6Cc | 20 6 c 3 90 10 19.65
20-6Cd | 20 6 c 3 110 10 19.65
20-6Rd | 20 6 r 3 110 10 19.90
20-6Ce | 20 6 c 3 100 20 19.95
20-6Re | 20 6 r 3 100 20 19.60
20-3Ra | 20 3 r 3 90 30 19.55
20-3Ca | 20 3 c 3 90 30 19.95

24-0a | 24 - - 3 90 - 19.45
24-3Ra | 24 3 r 3 90 30 19.50
24-3Ca | 24 3 c 3 90 30 19.40
24-6Ra | 24 6 r 3 90 30 19.20
24-6Ca | 24 6 c 3 90 30 19.20

solution chosen was 0.3% concentration by weight, and its rheological properties were
determined using a Bohlin Gemini rotational rheometer, supplied and maintained by
Instrumat SA, distributors of Malvern Instruments Ltd. Tests were performed in which
the shear stress was measured in response to an increasing applied strain, and also
in which the elastic response to very gentle rotation was measured. Striated parallel
plates were chosen to reduce slip due to wall depletion effects [111], with diameters of
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40 and 25 mm, and the gap size was either 1 mm or 0.5 mm. Cone-plate geometries
were also tested due to the independence of the measurement on the radius, however
the results were far less conclusive.

Two sets of experiments were carried out. In one set the fluid was stained with Methy-
lene Blue so that accurate front tracking could be performed by camera 2 down the
length of the flume, and so that surface heights could be measured by camera 3. The
slope was varied between 12 and 24°, the mass released was kept constant, the bed
location was varied in some cases and the bed length and depth was varied at some
slopes. Table 2.2 shows the experiments performed in this set-up. A Herschel Bulkley
model was fitted to the rheometry measurements and the fluid was found to have
rheological parameters K = 35 Pas”, n = 0.33, 7. = 78 Pa as shown in figure 2.4 (black
crosses). Adding Methylene Blue appeared to change the accuracy of the fitted law, but
not the parameters (blue dots). To the eye there was no obvious change.

In the other set of experiments PIV measurements were taken to identify any internal
changes due to entrainment. A reduced set of experiments was performed, shown in
table 2.3. This batch of Carbopol was found to have rheological parameters K = 35 Pa
s, n = 0.33, 7. = 58 Pa. The fluid had been prepared and stored for two months prior
to use, and perhaps this caused the yield stress to fall, however this is not a problem if
itis properly taken into account when the results are interpreted.

These rheological parameters, and the characteristic length-scales of the experiments
performed mean that the Bingham number, defined as B = 7../(pgH sin 0) [53] where
H is the characteristic height scale, is never greater than 1. In this regime, the slope
effects are dominant over yield stress effects [112] and so the shear layer at the base of
the flow is significant, in comparison with yield stress dominated flows in which the
pseudo-plug extends almost to the base.

The mass released, the concentration of the Carbopol, and the slopes were all chosen
so that the flow released from the dam-break was fast enough, but the layer of fluid in
the entrainable bed stayed still. The bed location was then chosen so that a viscoplastic
version of Didden & Maxworthy’s force balance applied: to guarantee viscous forces
were greater than inertial forces, TLW ~ KLWU"/H" > pVoLW/T?, where L, H U, W
are scalings for length, height and velocities respectively, I’ = L/U and V;, = L x H.
Then balancing buoyancy with viscous forces, U" = pgsinH"*! /K, so that L >>
(pVo(gsin @)1 ="/2/K)?/(37+2)_ For this reason the bed begins at least 70 cm downstream
for slopes 12° and 16°, but at least 90 cm downstream for slopes 20° and 24°.

In these experiments, care was taken to remove bubbles from the fluid and to perform
the experiments as close to 20°C as possible. Further, precautions were taken to
minimise slip on the PMMA base — an ionic reaction causes increased wall depletion,
which leads to excess lubrication on the base — covering the flume with Carbopol and
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Table 2.3: Viscoplastic experiments performed: seeded for PIV

run name ‘ 6,° O0h,mm config M,kg Igep, cm Iy, cm  temp, °C

12-0a | 12 0 - 3 70 - 20.00
12-6Ra | 12 6 r 3 70 30 20.35
12-6Ca | 12 6 c 3 70 30 20.25

16-0a | 16 0 - 3 70 - 20.00

16-0b | 16 0 - 3 90 - 19.80
16-6Ra | 16 6 r 3 70 30 19.90
16-6Ca | 16 6 c 3 70 30 19.65
16-6Cb | 16 6 c 3 90 30 19.70

20-0a | 20 0 - 3 90 - 19.70
20-6Ra | 20 6 r 3 90 30 20.15
20-6Ca | 20 6 c 3 90 30 20.00

24-0a | 24 0 - 3 90 - 19.60
24-6Ra | 24 6 3 90 30 19.60
24-6Ca | 24 6 3 90 30 19.75

letting it dry was found to significantly reduce this effect [62].

2.4 Experimental campaign 3: Granular Suspension

The most complex experiments performed in this thesis used a refractive-index-
matched suspension, in this way building on the experimental work described in
e.g. Ancey et al [63], and bringing the experiments more in line with natural multi-
phase flows.

The suspension released from the reservoir behind the lock-gate contained 57% con-
centration by volume PMMA beads, from Altuglas International (France), which had
been sieved in a Retsch sieving stack with 200 and 180 um sieves in order to filter
out the smallest particles (figure 2.5). This was intended to reduce any unwanted
effects arising from particle size differences such as lubrication by small particles and
particle size segregation. A sample of 2900 filtered beads were analysed using a series
of image processing operations in Matlab and they were found to be roughly normally
distributed with mean diameter just less than 200 pm. A secondary peak is shown near
zero. This is partly anomalous due to the image processing program detecting some
badly resolved larger beads as several small beads, and to dirt being detected as beads.
However there are a number of small beads which were not removed, as static charges
prevented them from passing through the sieves.

Once filtered, the beads were suspended in a fluid mixture of Triton X-100, a detergent
with density 1065 kg m~3, supplied by Chimie Brunschwig, and UCON 75-H-4500, a
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Figure 2.5: Sample image of PMMA beads after sieving, and their grain size distribution.

lubricant with density 1095.2 kg m~—3 supplied by Dow Chemicals. The UCON was
mixed with the Triton until the mixture refractive index was between 1.48850 and
1.48900 at 20°C. A total fluid mixture volume of 7.644 1 was produced, with density
1068 kg m~—3, thus for a concentrated suspension of 57% particle volume 10.133 1 or
11.997 kg of PMMA beads were required, at a density of 1184 kg m—3. Other authors
have made use of density matching in suspensions [62, 63], however due to the small
phase density difference (less than 10%) and the short duration of the experiments
(less than 5 minutes) compared to the timescale of sedimentation, I decided that this
extra step was not necessary. Finally a small amount of rhodamine 6G was added to
the suspension so that when illuminated by the laser, the fluid would fluoresce and the
beads would show on the images as dark spots. This mixture was stirred continuously
under a vacuum of at least 900 mBar below atmospheric pressure so that any trapped
bubbles disappeared. Figure 2.6 shows the difference between the beads suspended in
a refractive index-matched mixture and beads in water with rhodamine.

The experiment was conducted on a slope of angle either 12° or 16°. These slopes were
chosen due to the flow properties of the suspension: the slope must be steep enough
that the avalanche flows sufficiently fast yet shallow enough that the suspension lying
in the entrainable zone does not flow away. This was also the reason for the choice of
suspension concentration: lower concentrations were too liquid and separated too
quickly and higher concentrations were too dense and didn’t flow quickly enough.
At each slope six dam-breaks were released. Three entrained a bed 3 mm deep and
three entrained a bed 6 mm deep. The laser was turned on before the lock-gate
was opened, leading to some degradation of the rhodamine in the bed layer. This
unexpected side-effect meant that the bed material could be easily distinguished from
the overriding avalanche during entrainment. For each experiment, the refractive
index and temperature were checked, and the mass released was carefully measured
to be either 3.25 kg or 3.8 kg. Table 2.4 details the different experiments performed.

The flume was also equipped with differential pressure sensors at four locations below
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Figure 2.6: Refractive index-matched suspension versus an aqueous suspension: trans-
mission of a laser beam.

Table 2.4: Suspension experiments performed.

runname | 6,° 0h,mm  M,Kg lsep, €M lpeg, CM RI temp, °C
12-3a | 12 3 3.25 60 30 1.4884 20.80
12-3b | 12 3 3.25 60 30 1.48831 20.90
12-6a | 12 6 3.25 60 30 1.48825 21.00
12-6b | 12 6 3.8 60 30 1.48828 20.65
12-6¢c | 12 6 3.8 60 30 1.4882 20.70
16-3a | 16 3 3.25 60 30 1.48825 20.65
16-3b | 16 3 3.8 60 30 1.48821 20.65
16-3c | 16 3 3.8 60 30 1.48813 20.40
16-6a | 16 6 3.8 60 30 1.48815 20.50
16-6b | 16 6 3.8 60 30 1.48815 20.60
16-6¢ | 16 6 3.8 60 30 1.48817 20.50

the entrainable material. Their purpose was to see what happened to the basal pressure
signal during entrainment and whether it increased corresponding to when the surface
height increased. These Honeywell sensors were connected to a National Instruments
acquisition card, which was also connected to the cameras, so that the images obtained
could be compared with the pressure signals to see where the front was in relation to
each pressure sensor.

2.5 Error quantification

Inherent to any experimental study are measurement errors, for example it has already
been noted that quantification of errors in PIV is difficult, and therefore error bounds
on (u,w) are not possible to define. The other errors originating from measurements
are discussed here.

e Volume/mass of fluid/suspension. In all cases this was measured as a mass, by
weighing the container before and after the fluid had been extracted to be put
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20

in the flume reservoir. For Newtonian and viscoplastic studies this was accurate
to within 10 g. For the suspension this was within 20 g. For the Newtonian and
suspension experiments, some fluid was lost down the sides of the inserted steps.
The maximum estimate for lost fluid is 1.5 ml based on the size of the two thin
gaps either side, which is maximum 0.18% of the 800 ml Newtonian fluid released
and maximum 0.1% of the fluid phase in the suspension experiments with mass
M = 3.25kg.

The set-up lengths were measured with a tape measure or ruler with 1 mm
markers, and therefore are accurate to within around 0.25 mm.

Viscosity of glycerol. This was a tricky parameter to measure — an Ostwald vis-
cometer was used to measure viscosity for the bulk experiments, yet the results
were variable. Thus many measurements were taken for each sample and the
error was around 1%. The PIV experiments were performed earlier and the viscos-
ity was calculated by measuring the glycerol concentration by its specific gravity
(using a hydrometer) and reading its viscosity from a table.

Rheology of Carbopol. It has been noted [47, 53] that Carbopol preparations are
very sensitive to concentration and they may change their properties over a short
period of time. For this reason there is some margin of error around each of 7., n
and K. Analysing the spread of the rheometric measurements gives an error for
K of around 5%, similar for »n, and around 3% for ..

Measurements from cameras 2 and 3. Using the calibration grids, camera 2’s
resolution was roughly 2 pixels per mm and camera 3’s resolution was around 3
pixels per mm. Thus measurements from these two cameras (surface height and
flow front position) can be estimated to be accurate to within 0.5 mm, taking into
account effects such as shadows in camera 2 and surface curvature in camera 3.



3

e

Theoretical models for thin-films

At each step in this investigation, a model is sought to try to reproduce the experimental
results. As such, a summary of the details of lubrication models is presented for
Newtonian and viscoplastic gravity-driven flows, and a review of what is known about
granular suspensions is presented.

The starting point for the derivation of these flow models is to take the Cauchy equa-
tions for conservation of mass and momentum, together with the constitutive equation
for the extra stress tensor. This describes the relationship between stresses and the
strain rate which is dictated by the rheological properties of the material under inves-
tigation. Then the equations are simplified based on the flow regime —i.e. whether
inertia, gravity, pressure gradient or viscous forces have the dominant effects on the
flow — and the flow geometry, for example whether one spatial dimension is much
larger than the others.

In two dimensions the full equations are

Uy +w, =0

& . inf — @ + 00z 00y
p Dt Pgs ox ox 0z
Dw Op 00z, 00,
pﬁ = —pgcost — 9 + B 5 3.1

where (u,v) are the velocities in the slope-wise and slope-normal directions (z, z),
D/ Dt is the convective derivative, p the density, § the slope angle, p the pressure and
or o;; is the Cauchy stress tensor. A summary of the notation used is presented in the
Glossary at the end of this thesis.

The flow is assumed to be two-dimensional in the slope-wise and the slope-normal
directions, neglecting cross-stream effects, although it has been noted that channeled
viscoplastic flows had reduced basal shear stress [109]. This is something to bear in
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Chapter 3. Theoretical models for thin-films

mind in what follows.

Boundary conditions are usually given by the no-slip condition at the rigid base v =
w = 0 for z = 0, and the stress-balance condition at the flow surface with normal
n = (h;,—1) and tangent t = (1, h,), as well as the kinematic boundary condition
that a particle on the surface remains on the surface, so that (neglecting atmospheric
pressure and surface tension) on z = h

n->-t=0 Opz + Ogzhye =0
n->-n=20 02z — Ogzhy =0,

(3.2)

hi +uh, = w.

In the above experiments, the flume length was chosen so that viscous forces were
dominant over inertial forces in the arguments presented by Didden & Maxworthy
[105], so that the role of inertia is minimised. In this way the characteristic length of the
flow is much greater than its height and a lubrication model provides the simplification
required [58, 113].

The chief assumptions of the lubrication approximation are that the characteristic
flow height H is much smaller than the characteristic flow length L. and by mass
conservation the downstream velocity is much greater than the slope-normal velocity.
In this case, and with negligible inertia the model simplifies to:

Uy +w, =0

. ap 8sz
0—pgs1nc9—%+ 35,
0= —pgcosfh — @ (3.3)
0z

In what follows these equations are adapted to a Newtonian flow and then a flow
described by the Herschel Bulkley rheology.

3.1 Newtonian dam breaks

Huppert [49] treats the case of a non-entraining two-dimensional viscous gravity-
driven flow, in which a dam-break is modelled under the assumptions of lubrication
theory. Beginning with equations (3.3) at ¢ = 0°, and supposing that the density and
pressure of the ambient fluid is small, it is found that

p=—pg(z — h(zx,t)) (3.4)
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3.2. Viscoplastic gravity-driven flows

where h(z,t) is the surface elevation. In this way, and with o, ~ pou/0z,

82u_g@

92 vor 8-5)

Then with the no-stress condition at the flow surface and the no-slip condition at z = 0,

u(zx, z,t) = —=——2(2h — 2). (3.6)

At this point, the depth-integrated continuity equation is used to give an equation for
the flow height h(x,t)

oh g 0 [ 40h\
e TG o0

where ¢’ is the reduced gravity and is equal to g, the acceleration due to gravity, when
the density of the ambient fluid is small, and v is the fluid’s kinematic viscosity. Volume
is conserved between the front 2 (t) and the origin at z = 0

zg(t)
/ h(z,t)dx =V, (3.8)
0

which yields an analytical solution for the surface height of a dam-break of a constant
volume per unit width Vj, by searching for a similarity solution to (3.7) with the variable
n = (3v/g'V)/5xt~1/5, The front position, zx(t) is found by solving h(x 7, ) = 0 to be

3

1/5
V.
zy(t) =ny <93V°> £/, (3.9)

where 7 = 1.411 - - - is the value of the similarity variable  at the flow front x = x .

3.2 Viscoplastic gravity-driven flows

Various constitutive equations can be used to characterise non-Newtonian materials
by describing the shear stress response to a varying strain rate and subsequently
obtaining the viscosity; this is their rheology. For example in Newtonian fluids the
shear stress increases linearly with strain rate, therefore they have a constant viscosity.
The simplest model to incorporate a yield stress is the Bingham rheology [114]: a yield
stress must be exceeded in order for flow to occur, and once this happens, the viscosity
is roughly linear. Iverson [24] notes that this model could be adapted so that the yield
stress depends on the internal friction of the material and the viscosity depends on the
deformation rate, but in practice this is often not done.

Now a more complex model is often used to model natural viscoplastic materials.
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The Herschel Bulkley model is a generalised Bingham model and has been found to
describe both snow [39] and muddy debris [55] well. The Herschel Bulkley constitutive
equation has been used by many authors, [47, 53, 55, 56, 58, 112, 113, 115] and can be
incorporated into the simplified Navier Stokes equations (3.3) by

o= Ozz  Oxz — M(L (3.10)
Ozz Ozz Y
where
d— Uy (uy + wy)/2
(uz +wy)/2 w,
7% is defined as the second invariant of this strain rate tensor, 5 = %tr(dQ), and the

total stress 7 is defined as the second invariant of o, the extra stress tensor, so that
7=V =/5tr(0?) = |r. + 2"K4"|.

Ancey & Cochard [53] show the lubrication method to be successful in two regimes: the
diffusive regime for gentle slopes where the pressure gradient balances viscous forces
and gravity has little effect; and the slope-dominated regime where pressure gradient
forces become small compared to gravity and viscous forces. The slopes considered
here are moderate, from 12° to 24°. Using the scaling U" = pgsinH'*"/K, the
slope-dominated regime is selected and the derivation of the (dimensional) evolution
equation is as follows.

Solving system (3.3), the expression for the shear stress distribution becomes:

Ozz = pgsinf(h — 2) <1 — cot th> . (3.11)

X

In this case, using the approximation 4 ~ 3 |u.| for lubrication flows, the expression
for /I, becomes /I, =~ 0., = |pgsinf(h — z)(1 — cot 00h/dz)|, and u(z, z,t) is found
by solving the differential equation

ou 1 . oh Hn
o [K (pg sinf(h — z) <1 — cot 9%) - Tc>:| , (3.12)
with
Y =h fe and e (3.13)

_ he = .
|1 — cot OOh/Ox|’ pgsind

This yield surface Y (z, t) separates the shear flow below from the plug flow above and
is found by solving o, = 7.. It should be noted that the strain rate in the plug layer is
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3.2. Viscoplastic gravity-driven flows

actually slightly non-zero [116] as found using an asymptotic expansion, but for this
work, the approximation of plug flow is sufficiently accurate.

With this definition of the yield surface Y (z, t), the equation to solve becomes

ou

R = A(1 = cot Oh)/™ (v — )/, (3.14)
z

with A = (pgsin§/K)Y/™ and S = cot 6. This is solved in the shear layer to give

—nA
n+1

n+1

(1= Sh)Y™ (Y = 2)"% +Cg]. (3.15)

US($, th) =

Subscripts S and P denote the shear and plug layers respectively. Then the no-slip
condition ug(z,0,t) = 0 fixes Cg = —Yy"+, and continuity is used across the yield
surface so that up is constant with z and given by ug(x, z =Y, t). Then

nA

n+1 n+1

ug(z, z,t) n+1(1—Sh$)1/" Yo — (Y —2)"
up(z, 2, t) n"fl (1— Shy) /"y ™ (3.16)

and the continuity equation for each layer — using no normal velocities on z = 0 and
continuity across the yield surface — leads to

’LUS(%, z )t)
- Shey . 1/n—1 n _N\2+1/n y2+41/n 1+1/n
= 225 (1 - She) A[2n+l<(Y 2) ) oyt

- (1 . Shm)l/n AYx |:Y1/nz+ n : <(Y i Z)1+1/n - Y1+1/n):| ’

n 4+

_ Shaz 1/n—1 1+1/n ny2+1/n
wp($,z,t)—n+1(1 Shy) A(Y s
1+1/n
— (1= Shy)Y™ Ay, (Yl/"z - ”iﬂ) . 3.17)

From the kinematic boundary condition, the evolution equation for i(z, t) is therefore

Ooh 0

E+ ox

y1i+1l/n
n ( —0. (3.8

on\'"
2n+1)(n+1) 1 _COt9> ((2n+1)h —nY)

ox

Andreini et al [62] and Ancey & Cochard [53] compared this model to experimental
results with Carbopol Ultrez 10 at varying concentrations. They found that the model
worked best at slopes around 25° and less well for shallower slopes, but failed to
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describe the complex behaviour observed inside the head of the fluid. Surprisingly,
Ancey et al [117] found that the simpler kinematic wave approximation [118] for slightly
non-uniform flows predicted the front position with time better, although the front
shape was unrealistically approximated as a shock. Chambon et al [47] found a better
agreement between lubrication theory and experimental results for velocity profiles in
stationary surges of Kaolin and Carbopol at 0.1% concentration on a conveyor belt.

Ancey & Cochard [53] derived a composite model including an inner solution in the
nose of the flow, where surface curvature was strong. Results obtained for a similar
model in the Newtonian case — which did not include an inner solution at the nose
—showed a close fit with experimental measurements (see chapter 4), and so it was
decided that including the inner solution may well be more trouble than it is worth.

3.3 Flows of granular suspensions

An entraining avalanche or debris flow can be modelled as a granular suspension.
This section discusses the definition, the properties and the complexities of a granular
suspension.

Definition

A suspension is defined as a mixture of undissolved (usually solid) particles in a lig-
uid, where the particles are of diameter d > 1 um. Coussot & Ancey [119] present a
qualitative overview of the different flow regimes possible in suspension flow, based
on the type of particle interactions. Here, only non-colloidal suspensions are used,
meaning that the particles are easily mixed with the suspending fluid, but can be
mechanically separated (e.g. by sieving); equally, Brownian effects are assumed unim-
portant. The grains used are hard, non-deformable spheres, which interact through
inelastic collisions and interactions with the interstitial fluid. The interstitial fluid
itself is incompressible and Newtonian, and so if two particles approach each other,
they can slow down significantly due to an increase in the lubrication forces (from
the pressure in the squeezed fluid). A suspension is said to be concentrated when the
distance between two grains is smaller than the radius of a single grain [120], and a
particle volume fraction of around 0.4 usually corresponds to this definition.

A brief history of granular suspension research

In 1851 Sir George Gabriel Stokes linked the terminal velocity for a sphere falling in
a viscous liquid with the frictional drag force acting on it through a law which came
to be known as Stokes’s law. Since then, problems involving one or two spheres in a
suspending liquid have been addressed [121], leading to a comprehensive description
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of dilute suspensions which behave in a Newtonian way. Increasing the volume fraction
leads to a deviation from this simple behaviour [122, 123] where lubrication theory
may still perform reasonably well in front prediction up to a volume fraction of around
56%, but not in the description of the internal dynamics [63]. This change in behaviour
shows that non-Newtonian effects become important and these have been attributed
to effects such as particle migration, dilatancy and jamming.

A variety of experimental configurations have been used to try to understand the be-
haviour of dense granular suspensions, usually focusing on the rheology [63, 123-132].
A rheological description has proved elusive as inhomogeneities in flowing suspen-
sions appear due to particle migration and a bulk volume fraction is difficult to define
[133]. For this reason, many authors have obtained measurements of particle concen-
tration and internal velocities in conjunction with bulk measurements, using such
methods as nuclear magnetic resonance (NMR) imaging [124, 129, 134], Laser Doppler
velocimetry (LDV) [122, 135] and particle tracking / particle imaging velocimetry (PIV)
(126, 136-138].

For homogeneous and isotropic suspensions, a well-accepted result is that the bulk
viscosity y;, depends on the particle concentration ¢ and the fluid viscosity 1 through
the Krieger-Dougherty relation [139],

15(0) = po(1 — ¢/dm) " (3.19)

with § = 2.5¢,, assuming that the random close packing volume fraction ¢,, is well
defined (a fact disputed by Torquato [140]). However Leighton & Acrivos [127] observed
that viscosity initially increased and then gradually decreased during the period of
shear and subsequently studied particle flux in a sheared suspension [126]. They
proposed that particles would be irreversibly displaced when interacting with two or
more other particles and developed a probability density function for the position
of a particle at time ¢t depending on a diffusivity coefficient which was found as D =
ja?D(¢), where D is a self-diffusion coefficient and « is the particle radius. Later, the
coefficient D was found to increase significantly for ¢ > 55% [141].

Local inhomogeneities

These concepts have been expanded by adding considerations of local particle con-
centrations. The diffusive flux model [124] incorporates a local particle concentration
which evolves in time due to spatial variations in the viscosity and in the shear rate,
used in a Newtonian constitutive equation with locally varying viscosity. The particle
concentration is well modelled in rectangular channels [122] and Couette cells, but not
in a parallel plate rheometer [129] as no radial migration is observed. Criticisms have
been made that as a continuum model, the motion of particles across the stream are
not accounted for, leading to velocity profiles that are heavily “blunted” in comparison
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with the theory. Further, there is no particle size consideration [142].

The “suspension balance” model [142] analyzes particle fluctuation velocities or tem-
perature in Stokesian Dynamics simulations by splitting particle motion into a mean
part and a fluctuation about the mean, in analogy with temperature in kinetic theories
[143]. Here, the particle temperature is linked to the suspension pressure in conser-
vation equations for suspension mass, momentum, and energy. This model was later
extended to non-neutrally buoyant flows, in which gravitational settling plays a role
[144].

Lyon & Leal [135] found that a third model for particle migration performed better
than these two at reproducing their experimental data for monodisperse suspensions.
This model was devised by Mills and Snabre [145] and its novelty is that the transverse
diffusive flux of particles is generated by lubrication drag forces arising from microflows
in the interstitial fluid during particle collisions. In this way a stress tensor resulting
from particle interactions can be incorporated into the viscous stress tensor. This
model correctly predicts no migration in parallel plate rheometers and has proved
successful in predicting velocity profile shape in channel flows [146].

Investigating shear-induced normal stress anisotropy, Zarraga et al [147] found a linear
relation between shear and normal stresses, confirming that shear-induced normal
stresses were important in particle migration and re-suspension, which enabled them
to calculate the particle phase pressure using a new definition for the bulk viscosity
based solely on particle volume fraction,

e—2:34¢
(1 - ¢/¢m)3
with ¢,, = 0.62.

pp(¢) = (3.20)

Due to this increased particle phase pressure, during free-surface flow particles in
concentrated suspensions may migrate towards the free surface, thus causing surface
deformation [136]. Ovarlez et al [128] were able to obtain local concentration and
viscosity measurements for a suspension in the range 55-60% volume fraction, in
which jammed and sheared zones coexisted, and migration happened quickly. They
proposed a new constitutive law based on a critical shear rate, below which no flow
can occur and above which the Krieger-Dougherty relation applies, with g = 2 and
®¢m = 0.605. Bonnoit et al [132] retrieved bulk viscosity measurements in a free surface
channel flow which compared well with the local measurements found by Ovarlez et
al [128], suggesting that particle migration could be neglected in the bulk dynamical
description.

A successful description of bulk rheology was obtained for concentrated suspensions
of ¢ > 56% away from the front [63, 137]. A power law rheological model gave a good
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fit to the velocity profiles when it was of the form

nﬁl/n

] (h1+1/n _ (h _ 2)1+1/n). (321)

0z, = K" with  u(z, z,t) =

This did not apply near the front, though, as the velocity profile appeared parabolic.

Static-flowing transitions

An important issue in suspension rheology and in the present entrainment study
is the transition between static and flowing grains. Heymann et al [131] found that
the behaviour of concentrated granular suspensions changed from elastic solid to
Newtonian with increasing shear stress. At moderate stresses which depend on the
volume concentration and the duration of shear, a transition regime was found where
the material began to flow. Fall et al [134] found that shear banding and yielding
occurred at a lower volume fraction for non-density matched suspensions. In a later
paper, Fall et al [148] showed that the critical shear rate required for yield in non-
density matched suspensions was when viscous forces were comparable to gravity
forces, thus homogenizing the suspension and suppressing particle sedimentation.
Indeed it was found by Hanes & Inman [125] that shear and normal stresses were
almost linearly related at the yield surface, suggesting that overburden weight should
balance with shear stress for stratification and yield.

Suspensions may also undergo shear thickening. Brown & Jaeger [149] examined
discontinuous shear thickening where there is a jump in shear stress as the strain
rate is increased. They found that for settling suspensions, this regime begins when
the hydrostatic pressure from overburden weight causes dilation and shearing of
neighbouring particles. Further, when there is a confining stress such as the surface
tension at the air-liquid interface, dilation may be frustrated, causing further frictional
dissipation.
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23 Entrainment by Newtonian Dam-
Breaks

In this section the results from the first experimental campaign using Newtonian
gravity-driven flows are presented, and a model is proposed for this problem, based on
classical thin film theory for spreading viscous dam breaks.

4.1 Experimental results

Bulk flow

As described in section 2.2, experiments were performed to investigate the bulk dynam-
ics of gravity-driven flows entraining different quantities of material. Specifically, the
surface height profile and the position of the flow front were studied, and compared
to the case without entrainment (which should follow Huppert’s predictions). To this
end, flows were filmed from above and from the side.

The images obtained from Camera 2 paint a clear picture. The time space plot has
been created by sampling a central line of pixels in the image at each time step, then
the front is found using image processing techniques in MatLab. A Newtonian dam-
break will travel further if it entrains material along its path. In figure 4.1 the flow
front is plotted with time for all bulk experiments performed. It is clear that the most
influential parameter is /;.4, the length of the entrainable layer, as the front position is
significantly increased with increasing /;.4. The bed depth 64 has a small effect, and
the position of the bed has no significant effect within the range considered.

Figure 4.1 also highlights the problem of calculating the position of the front as it passes
over the entrainable bed. The front position was found by identifying the interface
between the dark colour of the flowing material and the light colour of the rigid base.
In what follows the flow front is defined as the furthest downstream point where the
surface height is non-zero. As will be shown shortly the flow front contains uplifted bed
material, and so the entrainable bed was also chosen to be dyed blue. Unfortunately
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Figure 4.1: Clockwise, from top right: Space-time plot of flow front from camera 2;
Front position against time — comparison of entrainable bed depths; Comparison of
bed locations; Comparison of entrainable bed lengths.

this meant that camera 2 could not provide accurate flow front measurements over the
entrainable bed, explaining the absence of data here.

Figure 4.2 shows surface height measurements taken from camera 3 at time intervals
of 0.6 s for a non-entraining and an entraining dam-break. When the flow first contacts
the entrainable bed, the total surface height profile is composed of the original current
plus the initially flat surface of the entrainable layer. The mobility of the bed then allows
the discontinuity at the current front to be quickly smoothed out in a diffusive way. For
example, comparing experiment G with experiment A in figure 4.2, the differences are
clear. Further, there is a kink in the surface just downstream of the step, here defined
as a local curvature maximum, which connects the incoming dam-break with the flow
over the bed at all times. This shows that after the material has moved out onto the
entrainable bed, it flows away faster than the supplying gravity-driven flow.

There are two possible explanations for this. The first takes into account contact line
singularities. When no entrainment occurs the dam-break flows over a rigid base and
the flow front is abrupt with a moving contact line singularity at the liquid-solid-air
interface [150]. If the current entrains loose material, after the flow front has made
contact with the surface of the entrainable bed the only liquid-solid-air interface is at
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Figure 4.2: Top: Comparison of raw images from runs A (no entrainment) and G; Bot-
tom: Surface height evolution in runs A and G. Measurements taken at 0.6 s intervals.

the end of the bed. Thus the surface height profile continuously extends to the end of
the entrainable layer. Obviously this raises important questions about the moment
that the flow front contacts the bed fluid for the first time. There is a singularity at the
step, before which the current flows over a rigid base, and after which it flows over
entrainable material. The details of this technical question will not be investigated
further in this thesis, as the model developed in the following section is solved in a
domain with no corners and reproduces the results well.

A second explanation involves the no-slip condition. When the current begins flowing
over the entrainable bed, it is no longer subject to the no-slip condition at z = 0 in this
region, instead this now applies at = = —dh, where Jh is the depth of the bed. In this way,
the stress which was acting on the rigid base now acts on the surface of the entrainable
bed. The bed is quickly set into motion, which will be shown algebraically in section
4.2, allowing greater surface flow velocities as shear may occur over a greater vertical
distance. A clue to the importance of this effect is given in figure 4.1. The presence of
an entrainable bed accelerates the flow front, yet doubling and even tripling the depth
of the bed has only a small effect. Thus it is suggested that the lowering of the no-slip
condition to allow more vertical shear is less important than the removal of the contact
line singularity at the step.

When the flow front reaches the end of the entrainable bed, it is seen to slow down
significantly and even stop while the surface elevation increases, before flowing over
the rigid base once more. Examining the side-view images, it seems that the flow
thickness above the step must reach a critical value before the flow front is able to exit
the entrainable zone. In the following subsection it will be shown that this behaviour
is reproduced by a model which considers neither surface tension nor a geometry with
corners. For this reason it is hypothesised that this is a constraint posed by the viscosity
of the fluid and the no slip condition on the rigid base.

Figure 4.3 shows experiments I and J, carried out with a larger volume of 1500 ml. The
idea was to see how entrainment in one area affected the avalanche bulk upstream.
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Figure 4.4: Flow front position with time for experiment G: measurements from camera
2 supplemented with measurements from camera 3.

The difference is subtle but becomes more obvious with time. In Figure 4.3 i) the
two flows have roughly the same surface height profile, bar a small experimental
difference. By image iv), 12 s later, there is a significant difference. As the nose of the
flow moves further downstream due to entrainment, it is perhaps natural to expect,
by conservation of volume, that there is less fluid upstream and therefore a decreased
surface height compared to the no entrainment case.

Measurements from camera 3 are not only able to show the evolution of surface height
in response to entrainment, but also to complete the picture of front propagation, as
shown in figure 4.4. The conclusion is clear: the front markedly accelerates over the
entrainable bed.

In the next subsection, internal velocity measurements will be examined to complete
the picture of the interaction between gravity-driven flow and entrainable bed.
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4.1. Experimental results

Figure 4.5: Left: 3mm-deep bed, configuration “C” for surface identification and PIV
data. Right: 6mm-deep bed, configuration “R” for interface identification.
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AL

Figure 4.6: Schematic to show the displacement of the entrainable bed by the incoming
avalanche.

The internal velocity field

Figure 4.5 shows the raw images obtained using camera 1, and it is now possible to
tackle the question: how do the flow and the entrainable bed interact? On the left
are images from the combined “C” runs where the entire flow is visualised, and on
the right are images from the reservoir “R” runs where the bed surface is shown to be
deformed as the current passes over it.

The bed fluid is set into motion almost instantaneously when the flow front makes
contact with its surface. The motion is predominantly due to streamwise shear as the
horizontal velocity in the front is greater than the vertical velocity but there is a small
normal force which causes weak vertical velocities in the bed. After the bed fluid is
set into motion, the current sinks downwards near the step to replace the material
that has been advected downstream, explaining the convex shape of the current/bed
interface shown in the right-hand images of figure 4.5. Figure 4.6 shows this process
schematically.

In figure 4.7 the velocity components (u,w) att = t. + 1 s (1 s after entry into the
entrainable bed) found from PIV, are shown as contours and a vector field, here non-
dimensionalised with the scalings: = — Lz, (h,z) — H(h,2), v — Ut and w — U,
where e = H/L < 1and U = €3L?g/v m s~!. The values for these dimensional
parameters were L = 1 m, H = 0.0185 m (which comes from the modelled maximum
flow height when Huppert’s solution arrives at the step), v = u/p = 8.915 x 10~* m?
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Figure 4.7: Contour plots for horizontal and vertical velocity after 1 s with velocity
vectors. In the vertical velocity plots the positive velocity vectors are highlighted in red.
Top: 3 mm step, bottom: 6 mm step.

Figure 4.8: Velocity profiles in 6 mm deep bed, after 1 s flow.

s~ and g = 9.81 m s~2. When ¢ is non-dimensionalised, its scalingis 7' = L/U =
vL?/H3g = 14.2Ts.

The motion is predominantly horizontal, as shown by the vectors in all velocity fields.
The left hand images show the horizontal velocity, 4, which is strongest just above
the step. In the case with the deeper bed, the flow is faster and fluid is in motion
farther downstream after the same amount of time. In the right hand plots of vertical
velocity, the deeper bed also induces stronger velocities, but it is more enlightening
to look at the direction of the flow. Near the flow front some regions of positive w are
found, indicated by red arrows, which show that when the dam-break flows into the
entrainable bed it induces uplift of bed material further downstream. This explains
why, if the flow front (¢) is defined as the furthest point downstream with A(x,t) > 0,
itis further downstream than the front of the original current, called the interface front,
xp(t) (see figure 4.6).

In all cases there is a stagnant corner next to the step where there is no flow. Figure 4.8
shows the horizontal velocity profiles, which are typical of viscous fluids, except for
next to the step, where the velocity profile has a concave shape. Fluid in this corner
will not be entrained or replaced by incoming fluid.
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Figure 4.10: Progression of z(¢) for 3 mm (left) and 6 mm (right) beds. The two data
sets correspond to two different experiments.

Using the “R” runs, it is possible to study the progression of the current as it flows
across the entrainable bed surface, by measuring the position of the flow parameters
dmaz(t) (the maximum depth of the interface) and xp(¢) (the furthest downstream
extent of the current flowing atop the bed - see figure 4.6).

Figure 4.9 shows the rate at which the current sinks into the bed, this can be thought
of as digging, or displacement of the bed by the avalanche. Once the bed fluid is in
motion, the current flows down the stepped geometry under gravity. During the first
phase, d,,,,, increases rapidly with ¢, then its progression slows, and finally it tends
towards a constant value, when the rigid base stops any further displacement from
occurring. Finally, since the gravity-driven flow is created from a finite volume the
velocities are weaker in the tail, so that when the latter parts of the current are passing
over the bed, they have much less of an effect. The progression of d,,,,,, can be fitted
by the rule d,q.(t) = A; x t5 + C; where {As, B3, C3} = {—0.007,-0.573,0.186} and
{A¢, Bs, Cs} = {—0.0155, —0.6,0.334}.
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Figure 4.10 shows that the position of the interface front = is largely unchanged by the
depth of the entrainable bed, and when a curve is fitted to the data, a similar power law
with exponent ¢3/* rule for both a 6 mm- and 3 mm-deep bed apply. Any differences
are probably due to effects of lighting quality on the identification of the interface.

The above trends are different from those obtained for earlier experiments with a bed
13 mm deep by 50 cm long [151], which aren’t presented here. There, a clear trend was
found for a range of different released volumes, with the non-dimensionalised values
of d,q, collapsing onto a curve described by a t!/2 power law at first, and a t!/° law
later. The interface front position = was also plotted but did not collapse as neatly
and gave different exponents from those found above. This shows that those flows
propagating over a shallow entrainable layer should be treated differently from those
flowing over a deeper bed.

4.2 Amodelfor entrainment by Newtonian gravity-driven flows

The theoretical model for this problem is inspired by Huppert’s model (equation 3.7),
adding an extra contribution from an entrainable layer which leads to a significant
advancement of the flow front over the entrainable material as in figure 4.6. The
experiment is modelled as a two-dimensional viscous dam-break in = and z, ignoring
the cross-plane direction y. The current is released suddenly from a reservoir and
initially flows without entrainment until the front encounters an entrainable region,
exactly as in the experiments described above. The entrainable zone contains a layer of
loose entrainable material, held initially at rest behind a backwards step. This material
lies between z = 0 and z = b(x) < 0, defining a rigid base below which entrainment is
impossible.

The entrainment process is considered as two separate problems: as the entrainable
layer is initially at rest, there should be a short period during which this material is set
into motion by the incoming current. Once in motion, the fluid from the bed flows
together with the fluid from the current in the stepped geometry. The experiments
showed that the bed is set into motion almost instantaneously. Thus only the leading
order shearing effects of the front are important for this process. There is a boundary
layer at the front of the current in which surface curvature is strong and vertical
velocities are non-negligible, but its effects are second order [53]. The time scale of the
setting into motion of the fluid is so fast that normal forces from the front are negligible
on this timescale. The bed fluid is sheared and separates from the step, quickly being
replaced by the incoming current, and thus the second of the two processes becomes
dominant.

Further, from Huppert [49] the shape of the current may be approximated by a deform-
ing box characterised by a very steep front (e.g. [152], [153]). Using this simplification
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the problem becomes reminiscent of the Rayleigh problem of a sudden tangential
motion on the surface of the half plane [154]. A brief dimensional analysis shows that
the associated timescale is 7. = (6h)? /v s, which is O(1072) s for this problem. For this
reason the suitability of Huppert’s near equilibrium solution is justified from the first
instances of bed-current interaction in our geometry.

As the entrainable layer has been set into motion, the entire velocity field may be
treated as continuous, including the stationary material far downstream of the flow
front. Fluid occupies the space between the bottom basal function b(z) < 0 and h(z, t)
the surface height of the flow, which comprises the surface of the flow and the surface
of the entrainable bed at z = 0 if the flow front has not yet arrived. The time ¢ = 0
corresponds to the front of the avalanche arriving at = [, the location of the
backwards step where the entrainable bed begins as shown in figure 4.6, thus the initial
profile h(x,t = 0) = ho(x) is the Huppert solution with front position zy = I, for
x < lstep, and ho = 0 for x > [4¢,. The no-slip condition on the base is u(x, z = b,t) =0
when the extra material is included in the flow. Following Huppert [49], the current
is assumed to have small surface curvature (this is only violated near the front, and
despite this the results are satisfactory) and that surface tension is negligible.

A dimensional analysis leads to the scalings
N A N . . L.
x— Lz, (h,z) - H(h,2), u—Ut, w— eUw, p— pgeLp, t—>ﬁt 4.1)

with e = H/L < 1and U = ¢3L%g/v. The new base function b — Hb describes a
shallow cavity containing an entrainable layer of depth 64, where |0h| < h. Then, the
Navier Stokes equations in the inertia-less regime become

o
5= b

9% op

— = . 4.2
022 0% (4.2)

Dropping the hats for simplicity,
p($, Z7t) =h— 2,

and u(x, z, t) is found using the no-stress surface condition and the no-slip condition
on the rigid base b(z) whose geometry is non-trivial. w(z, z, t) is calculated from the
continuity equation, w, = —u, with the condition u - n = 0 on b(z), giving expressions
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Chapter 4. Entrainment by Newtonian Dam-Breaks

for the velocity field in the flow comprised of the entrainable bed and the dam-break:

Dy
u(zx, z,t) = > (22 —2hz — b + 2hb) ,
3

1 263
w(z, z,t) = -3 {hw (’; — hz? + 2hbz — b2z + 5 th>

+ h2 (2bz — 2% — V%) + hgby (hz — bz + b* — hb)] . 4.3)

The kinematic boundary condition, stating that a particle on the surface remains on
the surface throughout the flow, is used to relate k, v and w on the surface, z = h(z,t).
oh oh

5 + u(z, z,t)|,_y, 9 w(x,z,t)],_y, - (4.4)

So using (4.3) in (4.4) the differential equation to solve simplifies to:

Oh 10 [0Oh
ot 30z

Z(h=0b3 =0 4.5
o =] 0. @s)
which is nothing less than the Huppert surface evolution equation with a correction

for the basal geometry.

The total fluid in the system is conserved, i.e. the volume per unit width of the fluid
released by the dam-break, {, together with the bed fluid. When fluid is displaced
below z = 0, experiments have shown that this is balanced by fluid uplift downstream,
advancing the front x 5 (¢) as shown in figure 4.6 and in section 4.1. Thus conservation
of fluid gives

zN(t) .
/ h(z,t)dx = Vy
0

where z y (t) is the value of z at the front such that h(zy,t) = 0, and Vp = Vy/eL? is the
dimensionless volume per unit width. The upwards forcing of the bed fluid means that
x N, the corrected front, lies further downstream than xz, the Huppert solution for the
front position in (3.9).

An asymptotic solution to the problem was sought as the dimensionless Huppert
solution plus a correction of order 6% (the small depth of the bed), yet no solution
was found that satisfied the no-flux boundary condition at z = 0 whilst also remain-
ing bounded in time. As the full analytical solution to this problem was not readily
obtained, numerical methods had to be adopted.
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Figure 4.11: Current enters entrainable zone of length 0.5, progression from ¢ = 0 to
t = 4.4984 (60 s dimensional time). Profiles are plotted every 4 s or 0.3 dimensionless
time. Top to bottom: Bed depth §» = 0, Huppert solution; h = 3 mm/H; éh = 6
mm/H.

4.3 Numerical solution

The parabolic solver pdepe in MatLab [155] was used to solve the dimensionless
problem (4.5) in order to make a comparison with the experimental results. b(z) =
—0h/2(tanh(100(z — lstep)) — tanh(100(z — lsep — lbea))) Was used as an approximation
to the basal geometry with an entrainable bed of length [;.; beginning at [, before
the avalanche runs out over a rigid base. This function was chosen to approximate the
stepped base as smoothly as possible, thus optimizing the grid size and minimizing
the calculation time. Defining no-flux boundary conditions at each end, the surface
height with time is found and (4.3) gives the velocity field for z < h(z,t).

Experiments showed that when entrainment occurs, the current flows onto the bed,
sinking in and displacing downstream material upwards, leading to the diffusion of
strong surface height gradients and the downstream propagation of the front position
xn. This also occurs in the numerical results, as shown in figure 4.11, where after 60 s
dimensional time the front which has flowed over the deepest bed has progressed the
furthest. Further, the surface height profiles predicted are remarkably similar to those
observed in figure 4.2.

The main goal is to establish the suitability of the model for the flow it is designed to
describe. Figure 4.12 shows the (dimensional) front position with time for run G, taken
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Figure 4.12: Comparing the numerical and experimental results for front progression
in experiment G.

from cameras 2 and 3. A numerical simulation with exactly the same parameters was
performed and the front position was identified as the furthest point downstream with
h > 0.0005 m, chosen to correspond to the resolution of camera 3. The comparison
shows a close agreement over the entire domain — before the bed, while the front passes
over the bed and after the front has left the bed — thus confirming the appropriateness
of this model.

The modelled internal flow features are compared with the results from the experi-
ments performed in section 4.1 and all non-dimensionalisations use the same scalings.
Contour plots for the velocity field in figure 4.13 show that during entrainment the
horizontal velocity is strongest above the step and decreases downstream (plots (a)
and (b)), and that there is a region of upwards motion near the flow front (plots (c)
and (d)). This is in agreement with the velocity fields obtained from experiments after
the same amount of time (figure 4.7). Further, the velocities are quantitatively similar
to those observed: the velocity magnitude and the shape of the contours resemble
the predictions, especially for the horizontal velocity. The slight difference in vertical
velocity magnitudes between the numerical and experimental results can be explained
by the approximation of the step by a hyperbolic tangent, chosen to minimise calcu-
lation time. In panels (c) and (d), there is a region of upwards motion above the step
which was not detected in the experiments. Its origin is likely to be the steepness of
the hyperbolic tangent function, which should require a smaller grid size near the step,
but since the model performs well in all other aspects, this anomaly is considered to
have little effect, and the grid size is kept. When the front reaches the run-out zone,
the strongest velocities are again localised at the flow front (plots (e) and (f)). Finally,
the surface shape has a kink above the step where the flow front has been advected
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Figure 4.13: Contour plots for modelled non-dimensional velocities (u, w) inside the
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t =4.4984 (60 s); f) u, d = 6 mm, t = 4.4984.

over the bed, exactly as in figure 4.2.

Further, to obtain a direct comparison, the PIV and modelled measurements for the
horizontal velocity are plotted on the same graph in figure 4.14. Near the step the model
performs exceptionally well, despite the approximation of the step by a tanh function.
Further downstream, the surface height is overestimated, and thus the velocities are
overestimated, yet the predicted values are well within the same order of magnitude as
the measurements.

It is also of interest to see if the numerical current/bed interface evolves in the same
way as in the experiments, with the same deformation and transport of entrained
material. This was studied as a simple advection problem where an indicator function
¢ —which is equal to 1 for —6h < z < 0 and 0 for z > 0 - is used in the advection
equation

oy Tz tws-=0 (4.6)

on an Arakawa C-grid [156]. An external velocity field (figure 4.13), was applied to
the system, found above on a non-dimensional domain 1.1 x (1 + §h) with a grid of
size 0.022 x 0.05. The time step was chosen as 2.5 x 10~% in order to satisfy the CFL
condition wy,q; At/ Ax 4+ wpe, At/Az < 1. The shape of the interface is plotted in figure
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4.15 and it is qualitatively similar to the right-hand plots of figure 4.5. Its progression
was quantified (figure 4.16) by looking for its lowest point, d,,,., and its downstream
extent, xr (as previously defined). Near zr the interface has been forced upwards,
in accordance with the positive vertical velocities shown near the flow front in figure
4.13. Numerical diffusion of the interface occurred but the results capture the essential
details of entrainment.

Looking at the progression of d,,,, in the upper panels of figure 4.16 there appears
to be a slight difference between simulations and experiments. Here, the excavation
of the bed is slower and shallower, being described by a ¢'/2 rule at early times. An
explanation for this is that the modelled step was a hyperbolic tangent, and not a full
step function. However later on an excellent fit is obtained by using a similar rule
as that used for the experimental data, and the bed is excavated as a;t” + ~; where
{as, B3, v3} = {—0.0121,—0.57,0.120} and {ag, 8,76} = {—0.0238,—0.6,0.237}. The
lower panels present z(t). This point was found by looking at the highest point of
the interface, corresponding to the front of the original current which has been forced
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Figure 4.16: Progression of the current/bed interface (left: 64 = 3 mm/H; right: 6h = 6

mm/H). Top: d..., maximum interface depth (the stepped shape is due to the grid
resolution). Bottom: = (¢), interface front.

upwards (as in figure 4.16). It evolves initially with t/* and later with ¢°/9. There is little
difference between the two cases, suggesting that the bed depth has little influence
on zr, as found in the experiments. The experiments also showed a t3/4 rule, but the
observation window was not long enough to measure the later progression.

4.4 Discussion

Figure 4.12 shows that the model (4.5) provides an excellent reproduction of bulk ex-
perimental results, despite numerous simplifications. Further, on closer examination,
the model produces similar internal velocities and the current excavates the bed in a
similar manner, which is encouraging given the simplifications of the geometry and
the potential for experimental error.

This tells us some interesting things about the experiments. First, the model ignores
surface tension and supposes that longitudinal variations and vertical velocities are
small, which may not be the case in the tip of the current. Nevertheless the front
propagation and the surface shape are excellently reproduced. Thus it can be inferred

that these excluded effects are not important — at least to first order — in the physical
problem.
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Second, the flow was modelled on a smooth geometry with tanh functions instead
of sharp corners. While this may have had a small effect on internal measurements,
bulk measurements showed no sensitivity to this, which means that it is perhaps not
worth worrying about the effects of such a singularity on the flow front as it passes
from rigid base to entrainable bed surface and vice versa. When the flow front reached
the end of the bed, the surface height increased until it was a few millimetres high
before it continued to flow over the rigid base. As no surface tension was considered
nor was there an angular corner in the model, the model’s good reproduction of this
bulging behaviour means that it can be attributed to the viscosity of the fluid alone,
which controls the velocity gradient. The front must again travel over a rigid base, with
zero velocity at z = 0 and so the surface must be a certain elevation for it to flow at a
detectable velocity.

Finally the good agreement shows the merits of incorporating the entire bed into the
flow, instead of considering a local mass exchange. Perhaps this is obvious due to the
simplicity of the fluid but it will be useful when considering the more complex fluid
used in the next chapter.

The success of the model and simulations in reproducing the experimental results
means that rules can confidently be inferred from non-dimensional numerical experi-
ments. In figure 4.17, the front progression over the bed is examined for different flow
depths. As is shown here, the front advancement due to entrainment seems to saturate
for deeper beds, showing again that the most important factor is the presence of the
entrainable bed, and its depth is secondary.
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4.4. Discussion

Defining AX;(t) = xn:(t) — xzno(t) as the front advancement over an entrainable
bed i mm deep compared with the rigid base case x (), the distance gained by the
front due to entrainment can be quantified. During the front progression over the
entrainable material, the front advancement (defined as AX;(t) = xni(t) — zn,0(t))
can be described by a power law, as shown by the straight lines fitted on the log-log plot.
The straight lines on this figure are log AX;(t) = 5/91og t+ C;, where C; was found to be
{—4.056, —3.277, —2.396, —1.814, —1.373, —1.018, —0.715, —0.4535, —0.2264, —0.03068},
therefore x v ;(t) = xn0(t)+exp(C;) xt°/?. Finally, the coefficient exp(C;) can be related
to the non-dimensional bed depth max]|b;| by a power law exp(C;) = A x max|b;|?,
where A = 3.174 and B = 1.646 give an excellent fit. After the front reaches the end of
the bed it slows down, and there is a transition period before the front moves according
to a new regime, in which the curve is parallel to the Huppert solution. The front
advancement due to the flow passing over an entrainable bed seems to be permanent.
Any study at long times would probably need to take into account surface tension to
see where the current stopped.
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Entrainment by Viscoplastic
Avalanches

This section takes what was learnt in the previous chapter and builds on it, in order
to apply the developed experimental and theoretical techniques to an entraining
gravity-driven flow on a slope.

5.1 Experimental results

Bulk measurements

In order to investigate the question of what happens to a viscoplastic avalanche due to
the entrainment of stationary material lying in its path, experiments were performed
as detailed in section 2.3. Camera 2 filmed a bird’s eye view of the dam-break down the
length of the flume, and from these images it was possible to isolate the front position.
In what follows the front is defined as the furthest downstream point with positive
surface elevation, with the entrainable bed surface at z = 0 for ¢ = 0. Figure 5.1 shows
the position of the front with time in two experiments. In contrast to the Newtonian
flows, the front finding algorithm often picked up the flow front over the bed — the
translucent nature of the Carbopol meant that the shallow bed (pale blue) could easily
be distinguished from the steep flow front (dark blue) — but this was not always the
case (usually when the bed was deeper and darker, or if dark spots were seen in the
bed) and the front had to be isolated manually in some cases.

Figure 5.2 shows a comparison between a non-entraining flow and its entraining
equivalent, with images taken at the same time intervals. Choosing one slope, for
example 20°, the flow front can be tracked over the entrainable bed, and compared
between different bed sizes. Clearly the presence of entrainable material advances
the flow front. By image (d) the difference is clear — the entraining flow front has
almost exited the observation zone, whereas the non-entraining flow front is several
centimetres behind.

49



Chapter 5. Entrainment by Viscoplastic Avalanches

Figure 5.1: Time-space plots from camera 2, showing front progression and bed posi-
tion. Experiments 16-3Cc & 16-6Cc.

Figure 5.2: Experiments 20-0a and 20-6Ca. a: entry time, ¢t = t.. b: t = t. + 45 s. c:
t=t,+112.5s.d:t =t. +202.5s.e:t =1, + 315s.

Quantifying the effects of entrainment on the dam-break by looking at the position of
the flow front allows us to determine what the most important control is on avalanche
front speed. In figure 5.3 (a) four experiments are compared with increasing bed depth:
16-0c, 16-3Cc, 16-6Cc and 16-9Ca. Clearly the bed depth is an important controlling
parameter as the flow front travels further over an entrainable bed than over a rigid
base, and this effect increases significantly with the depth of entrainable material, in
contrast to what was observed for Newtonian flows.

A longer entrainable bed also increases the flow front position in a roughly linear way,
for example, in figure 5.3 (b) the flow fronts are advanced by approximately 2 cm,
5 cm and 8 cm for bed lengths of 10 cm, 20 cm and 30 cm respectively. These are
experiments 20-0a, 20-6Ca 20-6Cb and 20-6Cd. In some experiments the position of
the entrainable bed was varied but this comparison had no clear conclusion.
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Figure 5.3: (a) Front position with time for flows over entrainable beds of increasing
depth: 16° slope, 30 cm-long bed as indicated by arrow. (b) Front position with time
for flows over entrainable beds of increasing lengths, indicated by arrows. 6-mm deep
bed at 20°. (c & d) Comparing front position between entraining and non-entraining
flows for different slopes.

Finally experiments conducted at different slopes were compared, however this posed
a problem. It was expected that using the time scaling T = (pgsin 0H'*"L" /K)'/",
in the slope-dominated regime [53] would allow a direct comparison of slope effects,
but this was not found to be the case. The curves of front position against time did
not collapse, with the dimensionless flow front travelling faster at steeper slopes. So
in order to examine the effect of flume inclination on entrainment, at each slope the
flow front of an entraining flow was plotted against its non-entraining equivalent.
Figure 5.3 (c & d) shows clearly that slope has no effect on front advancement, defined
as the distance gained by the avalanche front due to entrainment of loose material. For
each slope considered the curves collapse neatly on top of each other, meaning that
entrainment of material has the same effects at each slope studied here.
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Figure 5.4: L: Progression of surface profile including surface irregularity (stars) orig-
inating from the original dam-break front. 6 mm deep by 30 cm long bed at 20°. R:
Difference in surface height profiles, avalanche flowing over entrainable bed (experi-
ment 20-6Ca, light colour) versus avalanche on a rigid base (20-0a, dark colour).

Clearly the quantity of entrainable material is the most important parameter here,
causing the front to travel faster downstream when more loose material is available.
To begin to answer the question of how entrainment leads to the advancement of the
flow front, images from camera 3 are used to study the evolution of the surface height
of the avalanche over the bed. For example, figure 5.2 shows the upright front shape
when no entrainment is possible, compared to the more oblique front when there is
entrainable material available.

This is due to the entrainable material lifting up downstream of the avalanche front,
in a similar way as for the Newtonian case discussed in section 3. The difference
here is that it occurs locally with no effect further downstream. In figure 5.4 (left) an
indentation in the surface profile has been highlighted (by a star). This corresponds to
the original front of the flow so that the material downstream of this point is from the
bed. Unlike the Newtonian experiments, the fluid’s non-Newtonian rheology means
that this irregularity is not smoothed out during the flow.

This explains why the flow front crosses an entrainable bed faster than a rigid base.
The avalanche may not travel faster over this distance, but the front is composed of
uplifted material, like a wave whose velocity is faster than the velocities of individual
fluid packets.

But if the same avalanche travels over an entrainable bed and a rigid base, why is the
front position permanently advanced in the case with entrainment, and why does the
quantity of entrainable material matter if the mass released is the same? Figure 5.4
(right) shows a comparison of two images — one from entraining flow 20-6Ca and one
from 20-0a which flowed over a rigid base — taken the same amount of time after the
avalanche front reaches 90 cm, the start of the entrainable bed when there is one. The
avalanche follows the geometry, scouring out the bed material and leading to a concave
flow surface above the bed in the case with entrainment. At 95 cm, the difference
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Figure 5.5: Schematic to show the displacement of the bed by the incoming avalanche.

in surface heights is significant, and corresponds to the bed depth. This displaced
material travels downstream and contributes to the difference in front positions when
entrainment occurs, as illustrated in the schema of figure 5.5. Thus the more loose
material available for entrainment, the further downstream the front will travel.

Internal measurements

Entrainment of stationary material led to an increase in flow front position compared
to the non-entraining case due to some uplift of bed material by the avalanche. Internal
velocity measurements taken from camera 1 during the PIV measurements will give
more detail on the exact mechanics of this process, also showing whether entrainment
happens in the same way at all slopes considered.

Experiments were performed to visualise and quantify the internal velocities of the
flow, specifically concentrating on the zone just downstream of the step, to see how
the avalanche interacted with the entrainable material. It should be noted that all
measurements were taken in a frame of reference in which the z axis is perpendicular
to the slope and the z axis is tangent to the slope. As such, in what follows, “vertical”
refers to this z axis and not to the direction of gravity.

As a first step, the raw images (e.g. figure 5.6) were examined, from which an idea of
the flow progression can be inferred:

e The flow initially rolls out a short distance onto the bed with only a local effect
on the bed material: the bed surface is deformed slightly, moving downwards
underneath the avalanche’s front, and forwards just downstream of the front.

e As the flow progresses, a region of significant downwards vertical motion is
established next to the step, in a similar way to that seen in the Newtonian
experiments.

e The avalanche front continues to drive forwards across the entrainable bed, but
remains pronounced with an indentation in the flow surface where it meets the
bed.

e The protrusion of the flow into the bed near the step displaces the bed material
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Figure 5.6: Entrainment illustrated using a sequence of raw images and velocity vectors.
6 mm deep by 30 cm long bed at 20°. Surface indicated to exclude refraction effects.

downstream, towards stationary material. As well as causing some forward mo-
tion further downstream, this causes significant upward motion just downstream
of the flow front. The viscoplastic nature of the fluid means flowing bed material
will more readily ride up over stationary material than cause it to overcome its
yield stress.

¢ By this point, the bed surface has been uplifted almost in line with the original
flow front, but the indentation here is still visible, and the bed is in motion much
further downstream. Much of the flow behind this point is now a plug flowing
over a thin shear layer on the rigid base.

Figure 5.7 shows the internal velocity profiles at two different moments in the flow for
an entraining dam-break compared to a non-entraining dam-break at slopes 16° and
24°. The velocity profiles have been scaled by 5 and 0.25 respectively for clarity, and
averaged over five time-steps. First, considering the non-entraining flows (a, b, e &),
figure 5.7 shows clearly that the shear layer at shallower slopes is much thinner than
at steeper slopes. It is also reassuring to see that no slip occurs on the base, showing
that the strategy of coating the flume with dry Carbopol was effective in avoiding
the wall-depletion problem [62]. However experiments at shallower slopes with an
entrainable bed showed some basal slip downstream of the step, but not at the steeper
slopes (c, d, g & h). A thought-provoking question is then: if there is no slip in the
non-entraining case, and apparent slip in some of the entraining cases, why do the
bulk measurements presented in figure 5.3 show little or no slope dependence?

Two possible responses are then: either no slip occurs in any of the entraining flows,
but for shallower slopes the shear layer is so thin that it contains no PIV seeds and
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Figure 5.7: a — d: Velocity profiles for 16° slope, ls, = 90 cm, comparison between
entraining (16-6Cb) and non-entraining (16-0b) cases at t=34 s and t= 114 s. e — h:
Velocity profiles for 24° slope, comparison between entraining and non-entraining
cases at t=2.25sand t=5.5s.

it is not visible in the internal measurements; or the presence of slip has very little
influence on the effects of entrainment.

The viscoplastic nature of the fluid used means that how the initially stationary en-
trainable bed is set into motion by the overriding dam-break is not a trivial question.
How is the shear stress transferred down through the entrainable material, and are
there differences at different slopes? Imagining a two layer flow, in which the avalanche
is the upper layer (z > 0) and the bed is the lower layer (z < 0), the horizontal shear
applied to the bed surface causes motion in the bed. If the shear stress at the interface
z = 0 is greater than the fluid yield stress o,.(z,z = 0,t) > 7. then the yield surface
is found in the top layer, whose basal velocity is non-zero. In this case, interesting
velocity profiles may appear, such as shown in the inset illustration of figure 5.7 (c).
This bumpy velocity profile is more pronounced at the shallower slopes.
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Figure 5.8: Velocity fields for horizontal (L) and vertical (R) velocity components. 16-
6Ca: 16° slope, 6 mm deep by 30 cm long bed. Plotted at times 10.5 s (top) and 24
s (middle) after front entry into bed. Velocities and lengths non-dimensionalised.
Bottom: equivalent non entraining flow after 24 s.

Finally, comparing an entraining flow to a non entraining flow, the velocity changes
in response to entrainment. Bed material below and downstream of the original flow
front is set into motion, and as a result the velocities in the overriding avalanche seem
to be reduced. This is particularly obvious comparing panels (f) & (h). So with respect
to the horizontal velocity, more fluid is set into motion due to entrainment, at a cost to
internal avalanche velocities.

Contour plots of the velocity components complete this picture, and are particularly
useful for showing regions of pronounced vertical velocities and significant shearing.

Figure 5.8 shows the internal velocity fields for the PIV experiment 16-6Ca at times
10.5 s and 24 s after front entry, and the corresponding non entraining flow at 24 s.
Initially there is strong horizontal shear at the surface of the bed, with almost plug
flow above and small horizontal velocities in the bed. The flow has strong downwards
velocities close to the step, displacing bed material downstream. A bump is beginning
to appear in the bed surface just downstream of the original flow front =, where
strong upwards motion in a triangular region has been induced by the squeezing of
bed material between regions of positive horizontal velocity upstream and zero velocity
downstream.

Later, this bump has become more pronounced and vertical velocities are stronger,
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Figure 5.9: Velocity fields for horizontal (L) and vertical (R) velocity components. (a &
b) 12-6Ca, 12°, bed at 70 cm, (c & d) 16-6Cc, 16°, bed at 70 cm, (e & f) 16-6Cd, 16°, bed
at 90 cm, (g & h) 24-6Ca, 24°, bed at 90 cm.

as if the bed has buckled downstream of the point z». Motion occurs right down to
the rigid base, and horizontal velocities inside the overriding avalanche have been
reduced with respect to the non-entraining avalanche at the corresponding time. The
flow front position is much further downstream due to the bed uplift. In this figure,
and in figure 5.9, velocities have been non-dimensionalised by their slope-dependent
scaling, Uy = (pgsin §H™ ! /K)'/", with H kept constant at 0.03 m and L = 1 m, so
that they can be compared between slopes.

It would be expected to see differences in the internal velocities due to the slope angle,
as the effects of gravity differ. It has already been noted that the scalings suggested by
lubrication theory are not sufficient to account for the differences in front position with
slope, and the same applies for internal velocities. Figure 5.9 shows velocity profiles at
times when their non-entraining equivalents all had matching front positions, found
by advancing the same number of time-steps forward from the moment when the
front arrives at the step location.

Aside from the magnitude of the velocity, the flows also differ with slope in their
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viscoplastic behaviour. At 12° (a) much of the flow is a plug, with a thin region of
strong horizontal shear and possibly large amounts of slip on the base, whereas in a
similar flow at 16° (c) the shear layer is far thicker. Similarly the bed is more strongly
sheared at 24° (g) than at 16° (e), and the region of bed uplift is much smaller (f & h).
What appears to happen at shallower slopes is that the dam-break intrudes deeply into
the bed, effectively bulldozing downstream material and causing the bed to buckle.
This is consistent with a stronger vertical gravity component. At steeper slopes, this
bulldozing motion is not seen, instead the bed is strongly sheared and is uplifted only
very close to the point z .

The differences of flow intrusion into the bed are confirmed by examining the “R”
experiments (figure 5.10). Here only the material released from the dam-break was
seeded and the bed was unseeded, showing the interface between the flow and the
entrainable bed as it deforms. The avalanche intrudes more deeply into the bed
for shallower slopes. This is perhaps intuitive, as on a steeper slope the downslope
component of gravity becomes more important and the component directed into the
slope has less effect. In figure 5.10 the maximum depth of the interface, d,,. is plotted
against the maximum downstream extent of the overriding avalanche, x5, showing
this difference clearly. At shallower slopes the avalanche intrudes more deeply, and
the same happens when the entrainable bed is further downstream (thus reducing the
velocity of the overriding flow). Here the beginning of the bed is located at x = 0.7 m
for slopes 12° and 16°, and at z = 0.9 m for 20° and 24°.

Even though there are seemingly important differences in the internal mechanics of
flows entraining material at different slopes, this has no obvious difference on bulk
measurements when considering the front advancement, i.e. the distance gained by
the front due to entrainment, when compared to the non-entraining case (figure 5.3).
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5.2. Amodel for entrainment by viscoplastic gravity-driven flows

In the following sections a model is derived and then compared to these observations,
which will help to explain this behaviour.

5.2 Amodelfor entrainment by viscoplastic gravity-driven flows

The slopes considered range from small to moderate meaning that there may be
significant contributions from gravitational forces. The height of the flow is again
much smaller than its length. Thus a model similar to (3.18) has been developed in
the case where the flow entrains loose material. As in the previous chapter on viscous
flows, the entrainable layer fills a shallow cavity lying in the flow path of the avalanche.
The initial condition comes from solving equation (3.18) numerically with pdepe for
the height profile when the front has reached the beginning of the entrainable bed.

The aim is to obtain a model for the entire flow domain in order to simulate the
avalanche’s effect on the initially stationary bed, and to study the subsequent flow.
Experiments showed that, however locally, the bed was instantaneously affected by
the dam-break passing over the top surface, suggesting that the yield stress was imme-
diately breached by the overriding flow. This can also be shown mathematically.

Duffy et al [157] studied a modified Rayleigh problem where the lower half plane was
filled with a generalised Newtonian fluid and an infinite plate was placed on its surface
at z = 0. Following their analysis, the time scale for the setting into motion of the
bed can be found. In this case, the acceleration term should be kept but there is no
pressure gradient in x, thus the equations to solve are

Uz +w, =0

@ = pgsinf + 00z
p@t — P9 0z

0= —pgcos&—@. (5.1
0z

The time-scale required for all three terms to balance in the z-momentum equation is

T — (pg’” sin 0”1H"+1>1/”7
K

which is always < 1 when the height scale H is small. This would imply that the
timescale for the transmission of stress into the bed is very quick, almost instantaneous,
and it is possible to suppose that the velocity is continuous between the overriding
avalanche and the bed from the outset. The experimental results agree: there is no
evidence for shocks with discontinuous velocities.

To proceed, the set of equations (3.3) has been solved in the same way as in chapter

59



Chapter 5. Entrainment by Viscoplastic Avalanches

3 — with tangential shear stress given by (3.11) — but for one crucial difference. The
zero velocity boundary condition on z = 0 is replaced by a condition on an arbitrary
base function b(xz) < 0 which represents the rigid bottom of the geometry. The stepped
geometry used in the experiments can be approximated using hyperbolic tangents,
thus removing the corner singularities of the steps, exactly as in section 4.3.

Applying the no slip boundary condition ug(x, z = b(x), t) = 0 on the surface b(z) and
solving (3.12) gives an equation for the velocity below the yield surface, in the shear
layer. The yield surface is now defined as Y (x, t) = max (h — h./|1 — cot 00h/dz|, b(x)).

n+1 n+1

us(z, 2,t) = AL — Shy)* [(Y(x,t) b)) - (Yo t) - 2)], (6.2)

n+1

up describes the plug flow above the yield surface and is defined to first order as
constant with z, thus up(z,t) = us(x,z = Y (x,1),t)

n
n+1

n+1

A(1 — Shy)* [(Y(x,t) —b(z))" ], (5.3)

up(z,t) =

with S = cot§ and A = (pgsin8/K)'/".

Then the mass conservation equation is used to obtain expressions for dwgs/9z and
Owp/0z. These can be integrated with the no-normal velocity condition u.n = 0 fixing
the constant of integration below the yield surface, and the continuity of the velocity
across the yield surface fixing the constant in the pseudo-plug region.

Thus:
ws(x, z,t) = M (1—-Sh )1/"*1 A n ((y _ Z)2+1/n —(Y - b)2+1/n>
o n+1 ! on + 1
F (Y — b (s - b)} — (1 Shy)'/" A [(Yx —b)(Y — b)Y/ (z —b)
nYy N1/ _ \141/n
T <(Y ?) (Y —b) ) )
_ Shaw 1/n—1 1+1/n ”(Y_—WL
wp(z, 2,1) = 1 (1 — Shy) ALY —b) (z—b) T

TLYI(Y _ b)1+1/n
n+1

— (1= Sha)Y™ A | (Ve — b)) (Y = b)Y/ (2 — b) —

] (5.4)

Finally, equations (5.2), (5.3) and (5.4) may be linked by solving for the kinematic
boundary condition on the surface z = h(z, t) so that

ht + uphy = wp,

60



5.3. Numerical solution

14 :
L1} /J
= 1.3¢ );;’
§ ] e @ - - - - - XS;‘
s 12p-mrmmmmmmmm e g o
209 «Sy
2 L1t
< 0.8
3 17
2
g T e e 709k - ——no entrainment
206 ——no entrainment | 16 6mm
é —12 6mm 08 20 6mm
— O
205 16 6 mm 1 07t &L 24 6mm
N © 12 6Ca Vol © 20 6Ca
0.4 O 16 6Cc 1 0617 % © 16 6Cd
o 24 6Ca
0.3 : : : : 0.5 : :
0.4 0.6 0.8 1 1.2 0.6 0.8 1 1.2
Front position, no entrainment Front position, no entrainment

Figure 5.11: A reproduction of figure 5.3 (c & d), showing the numerical solution
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sign (1 - ng> [(2n+4+1)h —nY — (n+ 1)b].

This equation has the form of a parabolic partial differential equation and as such
may be solved using the inbuilt MatLab solver pdepe. In this way we may compare
theoretical predictions with the measurements taken in the laboratory.

5.3 Numerical solution

Various theoretical approximations to gravity-driven flows were tested by Ancey &
Cochard [117]. They found that the lubrication model for non entraining flows per-
formed qualitatively well, but that front positions were overestimated due to an over-
estimation of initial acceleration. For this reason, the model will not be compared
to absolute experimental results, but used to examine the effect of entrainment, for
example by reproducing figure 5.3.

The parabolic solver pdepe in MatLab [155] was again used to solve the problem (5.5) in
order to make a comparison with the experimental results. The grid size was dz = 1073,
and the time-steps were exponentially increasing to save computing time while still
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guaranteeing accuracy at the early stages of flow when velocities and gradients were
strong.

The problem was solved in two steps: first equation (3.18) was solved until the front
arrived at x = [y, in this case the time evolution was designated as t = exp[b x
(nor — 1)] — 1, where nor was the number of time-steps required (either 10 000 or
20 000) and b = log(tp + 1)/(nor(end) — 1), where tr is specified by the user as an
upper limit for the time. The value for / at the moment where zr = [, defined as
the furthest downstream point where h(zr,t) > 0 is then used as the initial condition
for the second step: entrainment.

In this step, the new evolution equation for A, (5.5) is solved on a domain including
a layer of fluid lying between z = b(z) < 0 and z = 0. Atz = [, the base function
b(x) = dh/2tanh(—100 X lpeq) ~ —0h/2 and so any problem that would have been
posed by the flow contacting the bed for the first time has been removed. Contact is
already established and the bed and flow are connected. The time evolution continues
in exactly the same way as in the solution for the initial condition, thus allowing large
steps at later times when the flow moves more slowly.

Figure 5.11 shows that when comparing the entraining flow to its corresponding non-
entraining flow, the effect of entrainment on the front position is well reproduced at all
slopes. Thus, even though the original model was shown to be inaccurate at simulating
non-entraining flows, it was successfully adapted to model the effects of entrainment.

The experiments showed that entrainment effects can be quantified by looking at the
advancement of the front position. From the numerics the following can be inferred:
the rate of front advancement (i.e. the distance gained due to entrainment) over the
entrainable bed, the relative importance of bed depth, bed length and bed position,
and their effects on the surface height and front position.

Solving the problem numerically with the rheology as defined in section 2.3, the
velocities of the avalanche are greatly reduced compared to the experiments. The
problem was solved for different rheological parameters as a basic sensitivity test, and
it was found that 7. had the most significant effect on the flow velocities. So if there is
uncertainty surrounding the value of 7, this could explain the discrepancy between
the numerical results and the experiments: the elevation of the yield surface Y (z, )
depends linearly on 7. and if Y is higher then the flow is faster. However, figure 5.11
shows that rheological uncertainties have no effect when comparing the entraining
case to the non-entraining case, and so in the mechanism of entrainment alone, the
yield stress 7. seems not to play a role.

A further comment about this discrepancy concerns lateral surface height variations.
The model produces a 2-D flow originating from a dam-break where the initial volume
has been divided by the flow width. In reality as the flow develops, its surface becomes
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Figure 5.12: Comparison of surface height profiles for front travelling over entrainable
bed, 6 mm-deep at 20°. For qualitative comparison only — times do not correspond.
Experiment 20-6Ca.

slightly curved, with a maximum at the flume centre and a minimum at each wall,
which is especially pronounced near the flow front. This would imply that more
material is involved in the dam break at the centre than at the sides, contrary to the
assumption of constant volume per unit width in the model, and this may also help
explain the observed difference.

Finally, the model took only the first order terms into account. Inertial terms were
dropped from the governing equations. Even though inertia is clearly second order
here, it may still have a small effect on the flow, and thus its absence in the model may
be the most likely explanation for the slowness of the numerical results compared to
the experiments. For example, at 16°, Re ~ 1.8 for H = 0.03 m so that inertial terms,
although small, may have some effect.

In any case, the shape of the flow is qualitatively well reproduced, with a hollowed out
surface above the entrainable bed, and a stronger upstream effect the larger the bed
(in both dimensions). Figure 5.12 shows an example of this qualitative agreement: the
essential characteristics are captured. There is a large kink in the surface near the step,
the surface height upstream of = = [, decreases in agreement with the modelled
profile, and the front shape is quite well reproduced, although the times at which the
experimental surfaces are plotted do not correspond to those for the model. There are
also some local errors but these could partly be due to measurement inaccuracies.

Figure 5.13 shows how the flow follows the geometry, highlighting the effects of differ-
ent slopes. The yield surface is shown as a dashed line and it is clear that at steeper
slopes the shear layer is deeper, as found in the experiments. The same flows are
modelled over bed depths of 3 and 6 mm, showing clearly the surface height response
to a deeper entrainable layer. When the bed is deeper, the avalanche is able to scour to
a deeper level, which is evident in the more pronounced surface features around the
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Figure 5.13: Comparison of surface height profiles (solid line) and yield surfaces
(dashed line) for flows travelling over entrainable beds 3 (L) and 6 mm-deep (R). From
top to bottom: flow front at 90 cm, bed at 70 cm for 12° and 16°; flow front at 110 cm,
bed at 70 cm for 16°; flow front at 105 cm, bed at 90 cm for 16°, 20° and 24°; flow front
at 130 cm, bed at 90 cm for 20° and 24°.

entrainable bed. Equally, the surface height differences due to slope — such as a steeper
flow front at higher slopes — lead to more exaggerated effects on the flow surface as
shown by the bottom two panels.

Finally, the internal velocities can be calculated by solving equations (5.2), (5.3) and
(5.4). Figure 5.14 gives an idea of what the internal velocity profile resembles for a
flow at 20° entraining a 6 mm-deep by 30 cm-long bed. Exactly as in the experiments,
a significant part of the flow front experiences upwards motion as the bed material
is forced upwards. The velocities can be compared roughly to values found in PIV
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Figure 5.14: A sample of modelled velocity fields for experiment 20-6Ca.

experiments for the top case, zy = 0.934 m. The observed horizontal velocities ranged
from 0 to around 2.2 x 1072 m s~!, compared with around 8 x 1072 m s~! in the
numerics. However the observed vertical velocities ranged from around —4.5 x 1073 m
s 1t02 x 1073 m s~!, similar to those predicted by the model.

Simulations were run at 20° inclination to investigate the effects of entrainable bed ge-
ometry on the flow, specifically looking at the advancement of front position compared
to anon-entraining flow AX;(t) = xn;(t) —zn,0(t). The results are shown in figure 5.15.
The simulations were run for 70 000 time steps (O(10°) s) and behaviour that seemed
asymptotic in e.g. figure 5.11 was found not to be so, although the time-scale over
which it changes is very long.

In the top left panel, the bed depth is varied and its length remains constant at 30 cm.
When the front reaches the end of the 9 mm deep bed — at 1.2 m — it is 10.6 cm further
downstream than the non-entraining flow front. Then as it leaves the entrainable
bed it slows down temporarily, but A X; continues to increase afterwards, instead of
reaching an asymptote, as shown in the middle panels. These local maxima of AXj,
corresponding to zy ;(t) = 1.2m, are {1.4,2.7,3.9,5.1,6.3,7.4,8.5,9.6,10.6 } cm, for bed
depths of 1 mm up to 9 mm deep.

When the bed is 30 cm long, AX; (i) is related to v (t) approximately linearly, apart
from the initial moments. The top right panel shows, however, that this approximation
is no longer adequate for a 50 cm long bed.

Further investigation into the effects of slope in the numerical results show something
that was not clear from the experimental results - slope does indeed have an effect
on front advancement but only a small one. The difference in front position AX; is
actually greater for a shallower slope, but only by a few millimeters. For example, when
the non-entraining flow frontis at 1.05 m, at 24° its corresponding entraining flow front
is 48 mm further downstream, for 20° this value is 52 mm and for 16° this increases
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to 57 mm. When the front flows over a rigid base once again, this difference becomes
even smaller.

This slight difference due to slope inclination is reassuring. It would have perhaps
been paradoxical that differences in bed excavation were seen in figures 5.9 and 5.10
yet this had no effect at all on the bulk flow. Further, this is consistent with the fact that
the bed is scoured out faster at shallower slopes than at steeper slopes, as would be
expected due to the relative strengths of the perpendicular and downslope components
of gravity. In this way more bed fluid is pushed downstream at shallower slopes than
at steeper slopes. The bottom panels illustrate this: the increase at 12° (blue) was
more than for 16° and the increase at 16° (yellow) was more than 20° (orange) or 24°

(purple).

5.4 Discussion

In this chapter it has been found that when a viscoplastic avalanche travels down a
slope and entrains identical stationary material, its front propagates downstream faster
than if there was no material to entrain, due to the uplift of bed material contributing
to the flow front. Testing flows at slope inclinations of 12° to 24° showed that slope
played a negligible role and the graphs of figure 5.3 — which compare the front position
in entraining flows to its non-entraining equivalent — appear to collapse onto the same
curve. Not only the length of the entrainable layer, but also its depth had clear effects
on the front position.

Internal measurements showed that the bed was quickly accelerated from rest and
began to deform as the avalanche flowed down the step. Downstream material was
forced upwards, thus advancing the flow front, defined as the furthest downstream
point of positive surface height. Surface measurements showed that the avalanche
followed the shape of the geometry closely, hollowing out the region containing en-
trainable material. This hollowing out happened differently for different slopes: at 12°
the avalanche dug quickly down behind the step, excavating the bed faster than at 24°,
which is consistent with the direction of gravity relative to the slope.

A model was developed following the lubrication theory discussed in section 3.2, due
to the success of the Newtonian entrainment model developed in section 4.2. It was
difficult to find quantitative agreement between the modelled flow parameters and
their experimental equivalents perhaps due to the lack of inertia in the model.

The model’s success in describing entrainment is evident in figure 5.11. Because
the model performed qualitatively well in both entraining and non-entraining flows,
I decided to compare the front positions in each case. Here, the model performs
excellently, showing that even if the flow itself is not accurately described, the effects
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Figure 5.16: Bed buckling on a 12° slope, L: 3 mm deep bed. R: 6 mm deep bed.

of entrainment are. In a way, the errors in a non-entraining flow are balanced by those
in an entraining flow.

Two questions arose, which are beyond the scope of this thesis, but could be interesting
problems. These are described below.

Buckling

In many of the experiments the bed was significantly buckled downstream, especially
at shallower slopes like in figure 5.16. This was particularly obvious when the bed did
not contain blue dye. The buckling led to a regular series of bumps whose wavelength
was longer for a deeper bed, as in figure 5.16. The model derived above makes the
long wave assumption that variable changes in the z direction are gentle compared to
the z direction, and thus does not capture this behaviour. Figure 5.8 shows that these
bumps develop due to the local squeezing of fluid, between moving upstream fluid
and stationary downstream fluid. It is beyond the scope of this work, but it could be
interesting to see if the kind of bulldozing problem described by Bagnold [158] and
Sauret et al [159] could be applicable to this problem, particularly given that in the
latter study some interesting effects were observed due to slip.

Non-identical flow/bed

As described in table 2.2, the experiments designed to give bulk measurements were
often performed in two configurations. In one configuration the bed was composed of
dyed Carbopol (denoted c for combined), and in the other it was composed of clear
Carbopol (denoted r for reservoir-only). The r experiments were not used in the above
analysis, but offered some interesting complementary information. On one hand they
were useful to see that slip was indeed minimised: when the flow exited the entrainable
bed its front was made up of clear fluid, but rapidly this clear layer was overtopped by
blue fluid as would be expected in a flow obeying the no-slip condition on its base.

These flows were analysed in the same way to find their flow front speed, which seemed
to be slower than the c runs in most cases. This suggests that there was some sort of
difference between the blue stained Carbopol and the un-dyed Carbopol, which may
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5.4. Discussion

affect the results. Considering that in nature avalanches and debris flows rarely entrain
identical material (e.g. [160]), investigating how to adapt this model to an avalanche
flowing over a non-identical bed would be a worthwhile extension of this work.
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Entrainment by Granular Suspen-
sions

In this section, the experimental techniques applied successfully in chapters 4 and
5 are tested for granular suspensions and an exploratory experimental campaign is
carried out. A noteworthy problem encountered involved the reproducibility of the
experiments. Each time an experiment was performed, a small amount of the fluid
drained away underneath the steps, and was left on the flume afterwards. A sufficiently
large amount of suspension was prepared so that this fluid loss had minimal effect on
the suspension composition, however over time the suspension became slightly more
concentrated. As such, each experiment is slightly different and a full comparison of
the data may not be possible.

For this reason, the analysis of the data in this section remains qualitative, and this
study represents an exploration of the mechanisms involved without placing too much
importance on quantitative details. The technique requires some improvements before
full quantitative measurements are possible but these early results are promising
and there is great potential for a more detailed study which is recommended as a
continuation of this thesis.

6.1 Experimental results

Three example images are shown in figure 6.1 from different runs. The top image is
from run 12-6b and shows a 3.8 kg mass which flows over a 6 mm-deep entrainable bed
at 12°. The middle image is from run 12-3b and shows a 3.25 kg mass flowing over a 3
mm-deep bed at 12°. The bottom image shows a 3.8 kg mass entraining a 3 mm-deep
bed at a slope of 16°. The image quality is the best at the base, as the camera films
from below. The quality deteriorates towards the surface due to bubbles in the flow
entrained by the front, slight differences of refractive index between fluid and particles,
and because some of the beads were not transparent. Despite this, most images are of
a sufficiently good quality to use in PIV, and for other image analysis. An unexpected
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Figure 6.1: Raw images from Camera 1. Top: 3.8 kg released on a slope of 12°, 6 mm-
deep bed. Middle: 3.25 kg released on a slope of 12°, 3 mm-deep bed. Bottom: 3.8 kg
released on a slope of 16°, 3 mm-deep bed

result was that the rhodamine in the bed was gradually depleted by the laser, so that
the incoming flow glowed more brightly upon arrival, showing the interface between
the avalanche and the bed material, which was similar in shape to that seen in the
viscoplastic experiments. This also means that in the time-space images the moment
of front arrival is observable, by the bright line in figure 6.4.

In all cases, the progression was as follows:

e The avalanche moves out onto the surface of the entrainable layer with no initial
effect.

e The flow sinks very slightly into the bed, the front skimming some top layers of
beads from the bed surface, disturbance is local.

o After the avalanche travels some distance over the entrainable bed, massive
failure occurs and material downstream of the front is ploughed downstream in
an apparent plug flow. Near the step, the avalanche entrains the bed material
progressively - the suspension flows into the bed replacing the material that has
been advected downstream.

The bed material began to slip on the rigid base, around 5 cm downstream of the step.
The flow was a mixture of shear flow (near the step) and plug flow regions (further
downstream).

PIV can be performed on the images obtained, so long as they are not too blurred or
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Figure 6.2: Velocity profiles. L: Run 16-3b, at times (im 320 and 1020) R: Run 16-6a, at
times (im 420 and 1500). In all images the dotted grey line shows a limit above which
the image is significantly blurred. Velocities averaged over 5 timesteps.

contain too many bubbles. This study is concerned with the entrainment of a basal
layer, and in this region the images are the clearest, as camera 1 filmed from below.
Not all of the experiments produced satisfactory results and so only a couple of runs
will be used as examples.

Analysing the velocity fields in the experiments performed showed that the depth of
the bed had a different effect from that seen before, illustrated in figure 6.2. Velocities
in experiment 16-3b, which has a 3 mm-deep bed, are greater than in experiment 16-6a
which has a 6 mm-deep bed. The initial phase in which the flow rolled out over the bed
with little or no effect lasted much longer when the bed was deeper, as if the bed was
braking the avalanche’s flow. In the top panels, the front is at the same position, but
the 3 mm bed has already yielded in contrast to the 6 mm-deep bed. Later, both beds
have yielded and slip occurs in both cases. Interestingly the flow moves as a single
plug in experiment 16-6a, but there is some shear in experiment 16-3b. Finally, there is
a significant unyielded corner of flow next to the step in experiment 16-6a, which is
smaller in experiment 16-3b.

This all suggests that a deeper bed initially provides greater resistance to entrainment.
Shear stress is exerted on the rough surface by the flow which is transmitted downwards
through the suspension which eventually gives and slips over the base. The smaller
shear stress required to entrain the 3 mm-deep bed seems not to cause as much basal
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Figure 6.3: Images converted to velocity field using PIV. Experiment 16-3b.

slip, and some internal shear is possible.

In figure 6.3, the velocity fields at ¢t = . + 12.8 s (image 750) are shown for experiment
16-3b. Upwards motion is seen at the flow front, and some downstream material is
displaced. This upwards motion is more localised than in the viscoplastic experiments.

In figure 6.4 time-space plots are created by sampling a line of streamwise pixels at
regular intervals, and repeating it vertically. In the top image, images from camera 2
are used during the flow 12-3a. The front of the avalanche arrives from the left hand
side, and enters the entrainable zone as shown. The rough surface of the suspension
in the entrainable bed means that it reflects light irregularly so that the motion of the
bed surface can be tracked by studying trajectories of surface particles. In figure 6.4
this can be seen as streaks of light and dark which begin straight and slightly diagonal,
and begin to curve as the front arrives and pushes the suspension downstream.

These lines are diagonal because the entrainable material is gradually moving down-
stream before the front arrives, either under gravity or as an initial effect of the front
entering the bed (implying that either no yield stress exists or it has already been
breached). Then as the front approaches, the material just downstream is pushed up-
wards and entrained into the flow, as shown by the curved trajectory and the addition
of material to the flow front.

In the lower images, images are taken from camera 1, filming the flow internally. In the
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Figure 6.4: Front progression during entrainment. The entrainable bed begins on
the left and is 30 cm long. Top: Bird’s eye view: The three dark lines show three of
the pressure sensors, at 3.5, 7 and 10.5 cm from the beginning of the bed. Bottom:
Time-space images from camera 1 show a line of pixels in the entrainable bed, for
experiments 12-6¢ (L) and 16-6a (R).

same way, a line of pixels is sampled from the bed regularly (here each 0.06 s, or every
third image), and these lines are put together to create a time-space plot. The position
of the original flow front is shown by the line separating the bright and dark sectors.

The left hand image shows flow 12-6c, where 3.8 kg of suspension was released at 12°
over a 6 mm-deep bed and the right hand image shows a similar experiment 16-6a
at 16°. In both images, pixels are sampled from the same depth in the bed, because
surface particles were entrained more quickly than deeper particles. As would be
expected, the front travels faster at 16° and material is therefore entrained earlier.
Other comparisons are difficult to make, as information about the exact composition
of the bed is not available. It seemed as if fluid drained more quickly from the bed at
16°.

Between experiments 16-6a and 16-6b, the flume was not properly cleaned upstream
leading to some interesting results for campaign 16-6b. As the plastic steps were just
inserts placed in the flume, there was a narrow gap down each side. This did not have a
visible effect in the two previous experimental campaigns for viscous and viscoplastic
fluids, however in this campaign some fluid separated from the suspension and leaked
into these gaps. As experiment 16-6b was being set up, this fluid ran downstream, and
entered the entrainable bed, making a dilute area just next to the step. Then, when the
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Figure 6.5: Schema showing a recirculation zone being set up due to a concentration
difference in the bed. Lighter = less concentrated.
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Figure 6.6: Differential pressure sensor signals, showing arrival of the front.

avalanche began to flow over the entrainable bed, large shear stresses were exerted
on the bed surface. Previous studies (e.g. [124, 134, 147]) have shown that particles
migrate from regions of high to low stress, and so some beads began to flow upstream
into the dilute zone, thus setting up a recirculation zone where some beads moved
upwards next to the step only to be entrained by the avalanche at the bed surface, as
shown in the schema of figure 6.5.

Figure 6.6 shows an example of the pressure response to the front arriving in the bed.
It was possible to compare the timing of the pressure signals with the arrival of the
front, by comparing images with the timing of the pressure increase. Here, the pressure
increased exactly when the front arrived, after a small prior drop which means that
no pressure signal is transmitted downstream ahead of the front. Calibration would
need to be performed in future studies in order to get absolute measurements, which
would show whether the pressure increase corresponds with expected hydrodynamic
pressures in the flow, or whether there is an extra contribution due to stress-induced
excess pore-pressure.
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6.2 Discussion

Rheological behaviour

Similar experiments were carried out without entrainment [63, 137] for a range of
concentrations of suspension. In these experiments the suspending fluid differed in
that it was density matched, and the slope was 25°, an inclination that was not possible
for the present study due to logistical constraints imposed by the loose bed. However
they consistently found no slip at the base, in the same flume as was used for this study.
Away from the front their velocity profiles were well fitted by a power law, and close to
the front a parabolic profile performed better. For this reason it is expected that the
rheological behaviour is more complicated than a viscoplastic model, and indeed the
velocity profiles shown on the right of figure 6.2 differ somewhat from those shown in
figure 5.7 (c & d).

A particular difference is that the earlier profiles show almost no velocity for the
suspension — the flow must exert a certain stress on the bed before it yields. This
could be due to the roughness of the surface of the bed, something that was not
encountered in viscoplastic experiments. However once the bed material has yielded,
some similarities are observed: a corner of no flow is observed next to the step and
basal slip occurs downstream. The interface between avalanche and bed material has
qualitative similarities and the bed material moves upwards just downstream of the
front in a similar way to that seen in viscoplastic experiments.

An improved series of experiments, including a comparison with the no-entrainment
case should be performed in order to obtain a reliable set of results which gives infor-
mation about the rheological behaviour of an entraining gravity-driven flow of granular
suspension. This preliminary set of results shows that the experimental technique is
applicable to granular suspensions, pending a few improvements.

Finally the recirculation zones set up in flows with dilute areas in the bed hint at some
interesting effects of having differing concentrations in the bed and in the granular
dam-break. How this kind of experiment might be implemented in the lab is an
interesting question which deserves some consideration.

Problems encountered and suggested improvements

In every experiment, when the loose bed failed, it began to slip on the base. A solution
to this problem could be to stick similar PMMA beads on the flume base with PMMA
glue of the same refractive index, as the camera must still be able to film through
the base. However it is unclear whether even this would stop the flows from slipping.
Ancey et al [63, 137] found no slip when using the same flume for non-entraining
flows of a similar suspension, yet Sanvitale & Bowman [61] found significant slip when
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filming flows with multiple sizes of rough particles in the centre, despite covering the
flume with a slip-resistant layer. Performing experiments on a rough base would at
least indicate the origin of the slip, e.g. if slip still occurs at the base, even over a rough
base, then perhaps the slip is inherent to the problem, originating from increased pore
pressure as the overriding flow increases stresses at the base.

The pressure sensors were difficult to use, and their results were not always satisfactory,
however with proper calibration it could be shown whether there is increased pore
pressure in the base of the flow. Already it was found that the pressure increased when
the avalanche front flowed over the entrainable bed at that point, but it remains to
be seen whether this pressure was in line with hydrodynamic pressure or whether
it had extra contributions from shear-induced excess pore-pressure due to particle
interactions.

Finally, measures should be taken to stop the fluid draining away from the loose bed,
and down the sides of the step. The suspension seemed to thicken with time, indicating
that more fluid than particles was lost, but this was not measurable as some particles
were also lost due to cleaning methods. Similarly, the concentration of the suspension
probably increased in the bed during the experiments due to drainage, and the overall
concentration of the suspension used probably increased during the campaign. It
is suggested to seal the entrainable bed and the sides of the steps to avoid drainage,
but this would not avoid fluid filtering downstream through the loose material and
potentially overflowing the bed. Some innovation is required in this problem, indeed
the suspension may have to be density-matched to avoid this, but using the density-
and refractive index-matched suspending fluid Trimix [63, 137] adds the problems of
chemical damage to the flume and to the beads.
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Discussion and Outlook

7.1 Summary

During this thesis three experimental campaigns were undertaken, in order to address
the lack of good-quality experimental data on entrainment by gravity-driven flows.
Specifically, no study until now had taken continuous velocity measurements during
entrainment in the interior of the flow, far from the sidewalls.

Viscous dam-breaks

The first experimental campaign used a Newtonian fluid which encountered a shallow
layer of loose material some way down a horizontal channel. It was shown that even
when this layer was very shallow, its presence significantly advanced the flow front,
leading to a seemingly permanent increase in flow position compared to the non-
entraining case. The length of the entrainable zone was the most influential parameter,
and increasing the depth of available material had a smaller effect. This suggests that
the increase was due to the sudden removal of the fluid-air-solid contact line and
no-slip condition on z = 0.

Internal measurements showed that the fluid in the entrainable bed was set into
motion instantaneously, and the fluid from the dam-break gradually displaced the
bed fluid, causing upwards motion inside the bed downstream of the front. Internal
velocities were shown to increase with increasing bed depth both in the vertical and
horizontal direction.

When the flow front arrived at the end of the bed, it slowed down until the front was
steep enough and the front height was great enough. In light of a model developed
without surface tension, simulating flow in a geometry without sharp corners, this
behaviour is attributed to the fact that a large enough velocity gradient must be set up
before the flow can exit the entrainable zone and flow on a rigid surface once more,
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obeying the no-slip condition at z = 0.

A theoretical model was developed from first principles based on Huppert [49], in
which a layer of stationary material lying below z = 0 is incorporated immediately into
the flow. When h(x,t) = 0 fluid at « is stationary, and the no-slip condition is applied
on the bottom of this material z = b(z) < 0. This model successfully reproduced
the trajectory of the flow front along the flume, including over the entrainable region.
Further, the model was able to simulate the internal velocities, surface height and
avalanche/bed interface deformation.

The model did not take into account surface tension nor strong horizontal variations
in surface height or velocity, and yet it performed excellently. The corners of the bed
were modelled as hyperbolic tangents, removing the singularity at the steps. Therefore
none of these three complications was important in the evolution of the flow.

Viscoplastic avalanches on a slope

In light of the success of the first experimental campaign, similar methods were applied
to viscoplastic material flowing down a slope. In order to have a stationary layer of
identical material on a slope, the fluid properties and the slopes studied had to be
chosen carefully. Flume inclination and quantity of entrainable material were both
studied to see their effects on an entraining gravity-driven flow.

In order to compare the different slopes, entraining flows were contrasted with non-
entraining flows at each inclination. At a first glance the curves for flow front position
appear to collapse perfectly one upon the other at each slope. Both the depth and
length of the entrainable zone had significant effects on front advancement, in contrast
to the Newtonian case. The avalanche progressively hollowed out the entrainable
material, and the surface shape followed the rigid geometry, with the bed material
eventually pushed downstream, explaining the dependence on bed depth.

Similarly to the previous experiments, it was found that the avalanche sank into the
entrainable bed, forcing downstream material upwards, however the viscoplastic
nature of the fluid meant that this happened more locally than for the viscous case.
Significant apparent slip was observed at shallower slopes during entrainment, but
not in the non-entraining flows or at steeper slopes. The avalanche appeared to lose
momentum to the bed, with a decrease in internal velocities compared to the non-
entraining avalanche, except where significant basal slip occurred. Considering the
bed excavation, shown by the avalanche/bed interface, the avalanche intruded much
more prominently into the bed at shallower slopes. It was interesting to note that
internal velocities should exhibit slope-dependence of internal measurements and not
bulk measurements.

80



7.2. Suggestions for future work

The success of the lubrication model for entraining viscous dam-breaks suggested a
similar model for viscoplastic flows. However these models have been less successful
than their Newtonian counterparts in reproducing experimental results. For this
reason, the theoretical model developed in this thesis was used to compare entraining
flows to non-entraining flows in order to model the effect of entrainment but not the
outright flow.

In all cases, the model showed excellent agreement with experimental results when
comparing the flow front to its non-entraining equivalent. It also reproduced velocity
fields and surface heights qualitatively well. Further study of the numerical results
showed that front advancement did depend on slope, but only slightly, that front
advancement over the bed was roughly linear, and that bed depth and length does
indeed appear to increase the front position in a permanent way.

Dam-breaks of granular suspension

A set of preliminary experiments was performed in order to test the feasibility of
this kind of experiment for granular suspensions. Although some improvements
are required (summarised below in the suggestions for future work), the results are
promising, and a qualitative description of entrainment by avalanches of granular
suspension has been obtained. The avalanche moves out onto the entrainable bed
with no initial effect, and after some shallow skimming of particles from the top layer of
the bed, the bed layer fails. Interestingly, a deeper bed presented more flow resistance
and reduced flow velocities compared to a shallower bed, which shows that the type of
model derived in the previous section might not be suitable, as surface roughness and
particle jamming might need to be taken into account.

7.2 Suggestions for future work

Improved granular suspension experiments

As mentioned above, the work carried out in chapter 6 is a promising first attempt at
experiments on entraining granular avalanches. Some improvements need to be made,
however, before full and reliable results can be obtained:

e A series of experiments should be carried out on a flume with a rough base, for
example by glueing PMMA beads onto a thin plastic insert. Care must be taken
that camera 1 can still obtain images through this layer. In this way the origin of
the slip that has been observed at the base can be identified. For example, if slip
still occurs at the base, even over a rough base, then perhaps the slip is inherent
to the problem, originating from increased pore pressure as the overriding flow
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shears the entrainable bed.

e During the experiments, the suspension separated somewhat, losing fluid down
the sides of the step inserts placed in the flume. For better experimental results,
the gaps down the sides of the steps should be filled in, and the entrainable bed
should be made leak-proof, so that no fluid drains away downstream.

e The pressure sensors installed could provide useful information about pore-fluid
pressure, if properly calibrated. In this case, non-entraining flows should be
compared with entraining flows, with surface height profiles closely monitored,
in order to see whether the pressure readings correspond to the expected hydro-
dynamics of the system, or are elevated in line with increased pore pressure.

¢ It may be necessary to use a density-matched suspension, to avoid drainage of
the fluid phase downstream through the entrainable bed, however this would
require adding Dibromohexane which is known to corrode PMMA.

Testing the models on more complex cases

The models that were developed here looked at entrainment in a new, global way:
instead of a local mass exchange between the avalanche and the bed through a stat-
ic/flowing surface, the entire loose bed was included in the flow domain from the
moment the avalanche front entered the entrainable zone and the flow was modelled
as a continuum. This may have implications for avalanche and debris flow models
which include entrainment. Instead of requiring exchange and growth parameters
for the avalanche and the bed, models may need only to know the quantity of loose
material available for example the total snow lying above a hard surface, or the total
loose sediment lying in a debris flow gully.

However more research is necessary before it is known whether this is possible. The
models developed here were based on a simple geometry with a flat bed surface at
z = 0. In nature this is not the case and studies could be undertaken with either more
complex rigid bed geometry, filled with entrainable material, or with an entrainable
zone which has a non-zero or variable bed surface.

Further, entrainable material may not have the same properties as that in the overriding
avalanche, it would be interesting to see how far the model could be pushed, and what
differences are produced when the bed has a different composition from the avalanche,
as discussed in section 5.4. A more complicated model could be developed based on
system (5.5), but with two layers of fluid of different properties. For example, solving
system (3.2) simultaneously for two different layers that have continuous velocities on
an evolving interface I(x, t) may be possible.
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Glossary

PMMA, Polymethyl Methacrylate
PIV, Particle Image Velocimetry

lyed, length of entrainable zone

lstep, length from reservoir back wall to en-
trainable zone

oh, depth of entrainable layer

0, channel inclination

Runs C and R, combined (all dyed) or
reservoir run (only dam-break dyed)

p, fluid density

1, dynamic viscosity

v, kinematic viscosity

Vo, volume per unit width

d = 1/2(0u;/0x; + Ou;/0x;), rate of strain
tensor

4 = /1/2tr(d?), second invariant of rate
of strain tensor

T, total stress

K, consistency (Herschel Bulkley)

n, index (Herschel Bulkley)

T, critical yield stress (Herschel Bulkley)
o, extra stress tensor

H, characteristic height

L, characteristic length

B = 1./(pgH sin #), Bingham number
he = 7c/pgsin @

A = (pgsinf/K)'/"

S = cot 6
t., time of front entry into entrainable
zone

b(x), function describing arbitrary rigid
base

p(z, z,t), pressure

(u(zx, z,t), w(z, 2z,t)), horizontal and verti-
cal velocity components

h(z,t), current surface height

ho(x), initial condition for entrainment,
comes from solution over rigid bed

T., time-scale for bed acceleration

x(t), Huppert solution for flow front po-
sition

nm, value of similarity variable n at flow
front

Y (z,t), yield surface (viscoplastic)

xn(t), front position: furthest down-
stream point with A > 0

xp(t), front of the overriding current

dmaz (t), maximum depth of bed/current
interface

AX;(t) = xn,;(t) — zn,, front advance-
ment due to entrainment

R], refractive index (suspensions)
iy, bulk viscosity (suspension)

¢, solid fraction

¢m, random close packing fraction
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We can only see a short distance ahead,
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