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Abstract

With the ever increasing adoption of smartphones worldwide, researchers have found the

perfect sensor platform to perform context-based research and to prepare for context-based

services to be also deployed for the end-users. However, continuous context sensing imposes

a considerable challenge in balancing the energy consumption of the sensors, the accuracy

of the recognized context and its latency. After outlining the common characteristics of

continuous sensing systems, we present a detailed overview of the state of the art, from sensors

sub-systems to context inference algorithms. Then, we present the three main contribution of

this thesis.

The first approach we present is based on the use of local communications to exchange sensing

information with neighboring devices. As proximity, location and environmental information

can be obtained from nearby smartphones, we design a protocol for synchronizing the ex-

changes and fairly distribute the sensing tasks. We show both theoretically and experimentally

the reduction in energy needed when the devices can collaborate.

The second approach focuses on the way to schedule mobile sensors, optimizing for both the

accuracy and energy needs. We formulate the optimal sensing problem as a decision problem

and propose a two-tier framework for approximating its solution. The first tier is responsible

for segmenting the sensor measurement time series, by fitting various models. The second tier

takes care of estimating the optimal sampling, selecting the measurements that contributes

the most to the model accuracy. We provide near-optimal heuristics for both tiers and evaluate

their performances using environmental sensor data.

In the third approach we propose an online algorithm that identifies repeated patterns in

time series and produces a compressed symbolic stream. The first symbolic transformation is

based on clustering with the raw sensor data. Whereas the next iterations encode repetitive

sequences of symbols into new symbols. We define also a metric to evaluate the symbolization

methods with regard to their capacity at preserving the systems’ states. We also show that the

output of symbols can be used directly for various data mining tasks, such as classification or

forecasting, without impacting much the accuracy, but greatly reducing the complexity and

running time.

In addition, we also present an example of application, assessing the user’s exposure to air

pollutants, which demonstrates the many opportunities to enhance contextual information

when fusing sensor data from different sources. On one side we gather fine grained air quality

information from mobile sensor deployments and aggregate them with an interpolation model.
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Abstract

And, on the other side, we continuously capture the user’s context, including location, activity

and surrounding air quality. We also present the various models used for fusing all these

information in order to produce the exposure estimation.

Key words: mobile sensing, time series, collaborative sensing, machine learning, sensor

scheduling, energy-efficiency, symbolic representation, stream processing
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Résumé

Avec l’adoption mondiale sans cesse croissante des smartphones, les chercheurs ont trouvé la

plateforme idéale pour mener leurs recherches sur le contexte et préparer le terrain pour que

les services basés sur le contexte soient déployés jusqu’aux utilisateurs finaux. Néanmoins,

la perception en continue du contexte pose un défi considérable pour trouver un compro-

mis entre la consommation énergétique des capteurs, l’exactitude de la reconnaissance du

contexte et sa latence.

Après la présentation des caractéristiques communes des systèmes de mesures en continue,

nous présentons un aperçu détaillé de l’état de l’art, partant des sous-systèmes de capteurs,

jusqu’aux algorithmes d’inférence de contexte. Ensuite, nous décrivons les trois contributions

principales de cette thèse.

La première approche que nous présentons est basée sur l’utilisation de communications

locales pour échanger les informations collectées avec les appareils voisins. Comme les in-

formations environnementales, de proximité et de position peuvent être obtenues d’autres

smartphones proches, nous avons conçu un protocole pour synchroniser les échanges et répar-

tir de manière équitable les tâches. Nous démontrons théoriquement et expérimentalement

la réduction d’énergie nécessaire dans le cas où les appareils peuvent collaborer.

La deuxième approche se concentre sur la façon de planifier les capteurs mobiles, optimisant

l’exactitude et les besoins énergiques. Nous formulons le problème de planification optimale,

en tant que problème de décision et nous proposons un système à deux étapes pour approxi-

mer sa solution. La première étape segmente la série temporelle des mesures du capteur en

ajustant divers modèles. La deuxième étape défini l’échantillonnage optimal, sélectionnant les

mesures qui contribuent le plus à l’exactitude du modèle. Nous fournissons des heuristiques

quasi-optimales pour chacune des étapes et évaluons leurs performances en utilisant des

données de capteurs environnementaux.

Pour la troisième approche nous proposons un algorithme d’apprentissage incrémental qui

identifie les motifs répétitifs dans les séries temporelles et produit un flot de symboles com-

pressé. La première transformation symbolique partitionne les données initiales. Puis les

itérations suivantes encodent les séquences répétitives de symboles en d’autres symboles.

Nous présentons une métrique pour évaluer les transformations par rapport à leur capacité

à préserve les informations d’état du système. Nous montrons également que les symboles

en sortie peuvent être directement utilisés pour diverse tâches d’exploration de données, tels

que la classification ou prévision, sans impacter de manière notable leur exactitude, mais en
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Résumé

réduisant fortement leur complexité et temps de calcul.

De plus, nous présentons un exemple d’application, estimant l’exposition aux polluants at-

mosphérique, qui démontre les nombreuses opportunités pour enrichir les informations

contextuelles lors de la fusion de différentes sources de données. D’un côté, nous collectons

des informations détaillées sur la qualité de l’air à partir d’un déploiement de capteur mobiles

et nous les agrégeons au moyen d’un modèle d’interpolation. Et, d’un autre côté, nous cap-

turons le contexte de l’utilisateur en continue, incluant sa position, son activité et la qualité

de l’air environnant. Nous présentons aussi les divers modèles utilisés pour fusionner ces

données afin de produire l’estimation d’exposition.

Mots clefs : collecte mobile, séries temporelles, collecte collaborative, apprentissage automa-

tique, planification de mesures, efficacité énergétique, représentation symbolique, traitement

de flux
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Introduction

With 1.2 billion units sold in 2014, smartphone sales represented more than 60% of the

overall mobile phone sales, according to Gartner [92]. This trend is expected to continue

growing, especially in the developing countries, where smartphones are increasingly available

at affordable prices.

In the near future, the ever increasing capabilities of smartphones to record and sense will raise

the promise of more personalized and contextually relevant services. Given the numerous

built-in sensors in today’s smartphones (accelerometer, GPS, microphone), and their access to

their owner’s calendar, to-do list, SMS/call history, etc., it is not hard to imagine that in the near

future they will be capable of completely analyzing our daily schedule, and giving specifically

tailored and highly personalized recommendations. These could include what clothes to wear

(depending on predicted activities and weather forecast), which route to take to avoid traffic

jams, and which items to buy at the supermarket (depending on food preferences or whether

one plans to have guests). In addition, the role of sensor networks is expected to become

pervasive. Smart home and smart city concepts require sensor deployment in almost every

corner of our living space, to make sure that homes and cities are “smart enough” to assist and

support the needs of their inhabitants [17].

All the information collected by these mobile sensors, following us everywhere, enables the

devices to understand our context and, day after day, allows them to know us better. As Jain

and Jalali wrote in their vision article [120], humans are driven by curiosity, and understanding

themselves has always been of great interest. For this reason, humans started writing diaries

and chronicles, recording events of their life, also taking pictures and videos. More recently, the

notion of quantified self related to the more scientific approach of recording all digital traces

left by our actions. Finally, with the pervasiveness of sensors, Jain and Jalali [120] proposed

a new concept, called objective self, where the sensors actively and objectively sense all the

aspects of our context, without the bias of the user driven sensing.

However, to make this future a reality, some challenges have to be addressed, related to the

limitation on the resources on mobile devices, like for example the battery or the local storage.

Going in this direction, this thesis presents contributions that leverage mathematical models,

smart use of sensors and communication and the combination of sensors.

First we propose to share the output of energy hungry sensors between nearby devices, and
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we develop a protocol to schedule the measurements and exchanges, distributing the load

evenly among the devices. Then, we design a method in two steps to approximate the optimal

sampling in the case of a mobile sensor, relying on various models to interpolate the measure-

ments. Finally, we propose an efficient representation of sensor data to reduce the costs of

storage and data mining, while identifying and preserving the states’ information present in

the data stream.

The chapters 3, 4 and 5 of this thesis are based on the following publications:

• J. Eberle, Z. Yan and K. Aberer. Energy-Efficient Opportunistic Collaborative Sens-

ing. IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS),

Hangzhou, China, October 14-16, 2013.

• Z. Yan, J. Eberle and K. Aberer. OptiMoS: Optimal Sensing for Mobile Sensors. 13th

International Conference on Mobile Data Management (MDM), Bengaluru, India, July

23-26, 2012.

• J. Eberle, T. K. Wijaya and K. Aberer. Online Unsupervised State Recognition in Sensor

Data. IEEE International Conference on Pervasive Computing and Communications

(PerCom), St. Louis, Missouri, USA, March 23-27, 2015.

, and the chapter 6 is partially based on these ones:

• Y. Kim, J. Eberle, R. Hanninen, E. C. Un and K. Aberer. Mobile observatory: an exploratory

study of mobile air quality monitoring application. ACM conference on Pervasive and

ubiquitous computing - UbiComp ’13, Zurich, Switzerland, 08-12 09 2013.

• E. C. Un, J. Eberle, Y. Kim and K. Aberer. A model-based back-end for air quality data

management. ACM conference on Pervasive and ubiquitous computing - UbiComp ’13,

Zurich, Switzerland, 08-12 09 2013.

• B. Predic, Z. Yan, J. Eberle, D. Stojanovic and K. Aberer. ExposureSense: Integrating

Daily Activities with Air Quality using Mobile Participatory Sensing. IEEE International

Conference on Pervasive Computing and Communication, San Diego, California, USA,

March 18-22, 2013.
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1 Background and Motivation

1.1 Background

In this thesis we define the context as a multidimensional space representing the user’s

situation. This is very similar to the well known definition from A. Dey:

Context is any information that can be used to characterise the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves. [70]

However, in our case we will focus on the personal context, and all the sensing modalities

that are related. We can already divide the contextual dimensions into two types, namely

environmental (exteroception), and personal (proprioception). The exteroception relates

to the perception of external signals such as the proximity to other people or objects, the

environmental conditions, including the weather, sound or light, and the positioning in

an external coordinate system. Whereas the proprioception relates to the perception of

internal signals, in our case the human body, such as the user’s activity (at different levels),

her vital signs, emotions, and other health related parameters. Then, the combinations of

these dimensions can be mapped to a higher level description of the user’s situation, such as

"working in front of a computer in my office", "walking home", or "shopping with my parents".

Mobile computing has greatly evolved in the last few years, since the survey on context-aware

mobile computing from Chen and Kotz [46] and the update by Hong et al. [112]. Some of their

research topics became actual products on the market and some new hardware and enablers

opened new research directions. But most importantly, smartphones have taken a prominent

place in our society, giving the researchers the perfect tool to build sensing platforms.

First, the smartphones encapsulate a wide range of sensors, long-range as well as short range

communication, and mechanisms to rapidly develop and deploy applications at large scale. In

this way, they are perfectly fitting the need as a context sensing device. The sensing modalities
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present on today’s smartphones allow them to measure some of the contextual dimensions

directly through the embedded sensors, such as the GPS or the light sensor. And for the

other dimensions, they have to be translated from indirect measurements, as for example

the accelerometer, which can provide information about the activity of the user, or the front

camera which can be used for tracking our emotions [317].

Secondly, the smartphones are following their owners very closely, thus matching their mea-

surements to the actual situation of the user in a non-intrusive way. In 2006, Patel et al. [214]

conducted an experiment showing that users were having their phones at arms reach only

58% of the time and in the same room 78% of the time. But more recently, Dey et al. [71]

conducted a similar experiment with smartphones and even if the close proximity didn’t

change much, the smartphones were located in the same room almost 90% of the time. The

authors also provided a model for predicting the proximity of the phone, allowing context

sensing application to adapt themselves to the situation.

1.2 Applications

This section introduce various use cases and applications that are or could be benefiting from

a continuous context-aware mobile system.

Sensing and collecting information about the context of users can be, by itself, a research

goal. But more interestingly the main driver for such research is to be found in the potential

applications that can be enabled on top of a context-aware mobile platform. In their survey,

Lockhart et al. [174] give an overview of the various applications that can be built on top of

an activity recognition platform. For example, they mention the fitness tracking application

recording daily performances and calories burnt, health monitoring applications and fall

detection, home automation, but also third party applications such as targeted advertisement

or corporate management and accounting for employee time.

The first thing one may want to do with contextual data is to store them and develop various

visualizations to quickly grasp the life patterns and events, like in the Lifelogging applica-

tion [241] or more recently in Memo-it [3]. Once the current context and some historical

life patterns are identified, there is also a possibility to develop context-based recommender

systems [170]. For example, knowing the user’s wardrobe, her mood, clothes preferences, the

weather condition of the day, the user’s agenda and the groups of people she will likely meet

during the day, one could develop an application for recommending what to wear today.

Health related applications have also drawn a lot of attention because of their potential impact

on human beings’ primary needs. They can be split in two categories, the ones for well-being,

like sports tracking, and personal training, usually based on the gamification concept, and

the ones for medical usage, like monitoring and alerting, usually targeting specific groups

of people, like elderly people, the ones with chronic diseases and high-risk groups. Some

example of such applications have already been implemented as prototypes, like Mobilize! [39],
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a mobile application for helping depressive people follow their therapy or LaCasa [109], an

application for alerting when a patient with dementia is having an abnormal behavior.

In a more general way, if we do not restrict ourselves to a single application field, like clothing,

health, places, movies, a recommender system could become a personal assistant [100], able

to react to the user’s emotions and provide useful information when queried. When coupled

with a natural language interface, such as Siri1 or Cortana2, it can become a very personalized

assistant. According to their website3 and an article in the news4, Viv labs are currently

developing "an intelligent, conversational interface". They would be able to mine all available

information about the user (calendar, contacts, . . . ) and from the Internet to answer pretty

complex queries such as "finding the store on the way to your brother’s that has the cheapest

wine that goes well with lasagna". Going further, one could imagine the endless possibilities if

the reasoning back-end could be empowered by engines such as IBM Watson5.

Finally and most importantly, the contexts information should be open and made accessible to

third party applications, with the user’s permission of course. This would let anybody express

their imagination to define new possible usage and services around contextual information.

It can be implemented in the operating system API or as an extension to the HTML and

JavaScript standard library, similarly to the W3C Sensor API6, thus making the web context

aware.

1.3 Challenges

As for every embedded and mobile device, the available computational and energy resources

are critical. Especially the battery lifetime is an important factor for people’s daily use of their

smartphones. The limitations of the mobile platform must be taken into account at each

level of design. First, the power consumption of the sensors themselves are spread over a

wide range. Previous studies have shown for example that GPS energy consumption is one

order of magnitude higher than normal mobile phone energy consumption in idle mode [79].

Therefore their sampling rate and duty cycles have to be carefully defined to enable them

to sleep for some time and save energy, while providing enough meaningful measurements

when they are awake.

This holds also for the algorithms that will process the data. Even if modern smartphones

now possess similar computing capacities to desktop computers, allowing them to run very

complex algorithms in real-time on the sensor data flow, it does not come for free. Indeed,

in most recent smartphones, the power consumption of the CPU can be adapted to its load,

1https://www.apple.com/ios/siri/
2http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana
3http://viv.ai/
4http://www.wired.com/2014/08/viv/
5http://www.ibm.com/smarterplanet/us/en/ibmwatson/
6http://www.w3.org/2009/dap/
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by adjusting its working frequency. Therefore, reducing the computational needs or making

the algorithms more efficient will also improve the battery duration. The marginal cost of

improving accuracy of the models and algorithms must also take into account the increase in

computational complexity. Moreover a good usage of sleep time and synchronization between

repetitive processes can also take advantage of these adaptive CPUs.

Therefore, when dealing with energy-hungry sensors, we need to come up with a good sensing

strategy that considers the “trade-off” of three dimensions, i.e., latency, accuracy and energy

consumption.

First, as we aim at having a system that is continuously aware of the contexts to support

real-time context-based applications, we need to minimize the detection delay of a state

change. This does not necessarily imply continuous sensing on all sensors, but rather knowing

the right time to turn them on. From the sensor perspective this is also an issue as some of

them, like the GPS, are not available everywhere, raising the need for having other sensor

alternatives. On the algorithmic side, the latency constraint can have different meanings: it

can be in terms of performance, where fast and efficient algorithms will be able to detect

instantly a context change or on the algorithm needs, like for example requesting data that is

not yet available because of the network/sensors being slow or the sliding window needing

future data.

The second constraint, accuracy, can be adapted by changing the sampling rate of the sensors,

increasing the uncertainty between the measurements, or by sensor selection, with a more or

less accurate sensor or group of sensors. At the algorithm level, different models can be used,

showing various performances in terms of accuracy and complexity.

Finally, energy consumption, as explained before, can be impacted in various way, either

by energy-hungry sensors or by running intensive computation and communication tasks.

Minimizing the power consumption, while optimizing the accuracy of the measurements for

reconstructing the measured field has recently been a subject of intense research [58, 83, 209]

and Chapter 2 gives a broad overview of the various methods used in the literature to improve

in any of these dimensions.

Mobile sensing also raises other challenges, more specific to the domain in which it is used.

These includes, for example, connectivity, privacy, trust, reputation, user attention, incentives,

sensor invasiveness and acceptance, and sensor calibration. However, they have been subjects

of orthogonal researches and will not be further considered in this thesis.

1.4 Generic architecture

For this thesis we will consider a generic architecture that corresponds to the typical data-flow

in mobile phone based context sensing applications [115], but focusing more on the lower

layers and adding our contributions. The Figure 1.1 shows the three different layers of this
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Figure 1.1: The generic architecture for continuous context sensing

architecture.

First, at the bottom, the sensor subsystem takes care of efficiently gathering data from the

physical sensors. An abstraction layer simplifies the access to internal as well as external

sensors with a common API. It includes a collaborative module that takes care of sharing

measurements with neighboring devices. Its protocol, using Bluetooth communication, is

described in detail in Chapter 3. A scheduler takes care of optimizing the sensor sampling in

such a way that the requests can be satisfied while reducing the energy consumption of the

sensors (see Section 2.2.1). An offline version of this algorithm is presented in Chapter 4. To

be able to access the sensors from the operating system, the direct access API serves as a proxy,

forwarding the requests to the scheduler and reading the sensor values from the abstraction

layer. An alternative access to the sensor data is provided by the StateFinder module, presented

in Chapter 5. It outputs a symbolic representation of the data, that is more efficient to process,

while keeping most of the information from the sensors. This module can also generate

queries for the scheduler, if it needs more recent data or if it runs in continuous data flow.
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The whole sensor subsystem is supposed to be running continuously in the background, and

thus has very hard energy efficiency constraints. Therefore, in most of its implementations in

present day smartphones, it runs on a separate hardware processor (see Section 2.1).

Then, the context framework implements the typical pipeline for context recognition, either

in a supervised way, through classification, or an unsupervised one through clustering (see

Section 2.3). Starting from raw data, the first step is to extract the information and usually to

represent it as a feature vector. The classification step uses pre-computed models, that were

trained on user annotated data, to classify and put semantic labels on the feature vectors or

to groups of feature vectors. On the other hand, the clustering process is not provided with

any model and looks for similarity in the data to group them in clusters. To provide sense

to those clusters, a labeling step is then needed to attach semantic labels to them. It can be

done through inference rules based on expert knowledge or classification. As we will show

in the Chapter 5, the symbolic representation of sensor data can be used as an alternative

representation that can be directly input to a labeling process, in order to generate a semantic

context, or fed to the more traditional preprocessing and feature extraction path. Moreover,

different tasks can also be preformed on top of those symbols, such as multi-resolution

long-term storage, anomaly detection, user profiling, etc.

Finally, at the top, the context-based applications can directly subscribe to the streams of

semantic data output provided by the Context Framework. As we mostly focus on the data

flow from the sensors up to the applications, the schema does not show the feedback channel

from the application down to the API, but in a real implementation this could allow the lower

layers to be aware of the applications needs and further adapt their behavior.

This architecture of sensor subsystems is not only designed for smartphones, but also for any

kind of sensing devices such as smart-watches, wireless weather stations, mobile air quality

sensor nodes, etc. They could benefit from the optimizations described further in this thesis.

For this reason and to show the versatility of our approach, we do not restrict our experiments

to data acquired from smartphones, but also use the ones from other kinds of mobile and

static sensor systems.

1.5 Contributions of this thesis

As highlighted in the architecture description, our contributions to enable energy-efficient

continuous context sensing devices can be summarized along three directions. First we

explored the collaboration opportunities among smartphones to reduce the overall sensing

load. Then, we optimized the scheduling of mobile sensors, based on different models of

the sensors outputs. Finally, we designed an algorithm to encode the sensor data, making its

processing more efficient while having a low impact on accuracy.
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• A collaborative sensing protocol

– We formulate the online/distributed collaborative sensing as a non-linear op-

timization problem, in order to reduce useless redundancy among the sensing

devices via opportunistic collaborative sensing.

– We design two technical solutions for our online/distributed collaborative sensing,

including a basic strategy and synchronization methods.

– We provide extensive experimental studies using two real world datasets, showing

the impact of collaboration in terms of sensing error reduction.

– Moreover, we provide a theoretical analysis of the online strategy compared to the

offline optimal solution.

• A Model-based optimal sampling algorithm

– We formulate the mobile sensor sampling problem as an optimization problem

and provide optimal solutions, applicable for small instances.

– We develop a two-tier framework, based on segmentation and sampling, as a

general approach for the above problem.

– We design and evaluate near-optimal heuristics for both segmentation and sam-

pling in the case of a mobile sensor.

• Finding states in sensor time series

– We propose a novel state preservation index which quantifies how good a clus-

ter/symbolic configuration is (given the measurements) in preserving system’s

states.

– We propose a novel StateFinder algorithm which combines the effectiveness of

some well-known techniques, such as Markov chain and subsequences cluster-

ing.The algorithm is able to identify the states along a data stream in an online and

unsupervised way, using a limited memory and computational footprint.

– We carry out experiments using real-world datasets from different domains, e.g.,

human energy consumption and activity recognition, and present different appli-

cation scenarios, e.g., state recognition, forecasting, and anomaly detection, to

show the versatility of our approach.

In addition, to showcase the various concrete developments made in this thesis, we present in

Chapter 6 a complete ecosystem for assessing the daily air pollution exposure, by fusing data

collected on a smartphone and, at a larger scale, by mobile sensors deployed on buses.
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2 State of the art

This chapter describes the different approaches that were researched to address the challenges

from Section 1.3, namely trading off latency, accuracy and energy consumption. This research

being technology driven, we start by presenting the hardware platforms that enabled context

sensing. Then we present the upper layers, namely the sensors abstraction and the context

inference.

Previous mobile sensing surveys [115, 149, 180] have taken different points of view, for example

detailing more the inference pipelines and features extracted from the sensors or focusing on

low-level sensing and implementations. To complement these perspectives, we present more

recent work that emphasize the energy efficient continuous context sensing on mobile phones.

Before going further, it is also worth noting that the identified context by itself can be a very

valuable piece of information that can in its turn be used for reducing the energy consumption

of the mobile device as explained in the survey of Vallina-Rodriguez and Crowcroft [286].

2.1 Sensing platforms

2.1.1 Dedicated Hardware

Before smartphones were available with all their sensors, or to have a better control on sensor

placement or the complete data management pipeline, researchers have built their own

sensing platforms. In the continuity of wireless sensor networks, they designed autonomous

sensor boards able to communicate locally or store the collected data. Being mounted on

the belt or wrist, they were part of the large category of wearable computers. We present

in this section the main generic context sensing hardware, but more specific ones can be

found in Section 2.3, whether they are related to activity recognition, health monitoring or

environmental monitoring.

The TEA awareness module from Gellersen et al. [90] is a small sensor board with light sensors,

microphones, accelerometer, skin conductance sensor and a thermometer built-in. The
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microcontroller extracts cues from each sensor feature individually, abstracting the sensor

from the context inference module. The board was designed to complement a mobile phone

and provide it with context awareness. Whereas the Mediacup, from the same authors, is a

standalone device, attached at the bottom of a coffee cup. It is also able to recognize its own

context with accelerometers and a temperature sensor.

Also complementing a mobile phone without sensors, the SenSay [266] platform connects

to an external sensor box, including an accelerometer, a microphone, a light sensor and

a thermometer, all of them managed by a microcontroller. The latter samples the sensors

at the maximum rate and keeps the last values in a cache, whose latest value is returned

to the phone upon request. A decision module keeps track of the user state (normal, idle,

uninterruptible or high activity) and triggers the corresponding action on the mobile phone.

The wired serial connection between the board and the phone passes through a laptop for

sensor data processing, but it was planned to remove this intermediary in a later version.

Similarly, the Mobile Sensing Platform (MSP) [56] is a small wearable device implementing

activity recognition algorithms using data from the integrated sensors, like Gyroscope, barom-

eter, BT, accelerometer, microphone, etc. In a first version, it was attached to a PDA for data

processing and storage and in its second version a larger memory allowed all the data to be

kept on the MSP device. By removing the need for a secondary device and some other opti-

mizations, the batterie life was substantially increased, almost reaching a full day. The context

inference algorithms were also run directly on the microcontroller of the second version.

Developed by Yamabe and Nakajima [308], in collaboration with Nokia Research Center Tokyo,

the Muffin device holds a large number of sensors (thermometer, hygrometer, barometer, pulse

and skin resistance sensor, compass, gyroscope, accelerometer, GPS, camera, microphone,

etc.), behind a touch screen and managed by the Linux operating system. It has the same

form factor as a smartphone, just a little bit thicker. No specific management of the sensors

is discussed in the paper, the main focus being on fusing the various contexts from all the

sensors (see Section 2.4).

2.1.2 Smartphones

The smartphones themselves having a large panel of available sensors directly on-board,

such as the inertial sensors, positioning, or proximity sensors, they have become the default

platform for context sensing. In his work, Liu [169] gives a detailed review of these sensors

and how they were typically used in various applications.

However, the smartphones were not initially designed for continuous sensing, which trig-

gered some research to overcome this issue. For example, Microsoft Research launched the

SensoryPhone project to provide an energy efficient hardware and software platform, sup-

porting continuous awareness of the user’s context. They added a secondary processor, in

reality composed itself of two processors, named Little-Rock, to directly interface the sensors
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and allow certain tasks to be offloaded from the main CPU [227]. Then they developed the

SpeakerSense [177] application, relying on the secondary processor to detect if someone is

speaking or not, and, only in the first case, to wakes up the CPU to identify the person. But no

further details were given on the other sensor management policies.

The idea of using dedicated hardware to do the continuous processing of sensor data was

integrated later on in commercial devices such as the iPhone. Apple presented in September

2013 its sensor co-processor (named M7 1), equipping the iPhone 5S. It runs continuously

and processes accelerometer data for coarse grained activity recognition. Since then, the

next generation of co-processor, named M8, has integrated some other sensors, such as a

barometer for computing variation of altitude. More sensors can also be integrated by using

the iOS accessory mode, like the digital multi-meter demonstrated by Brateris et al. [32].

The Android ecosystem, even if it is more often used for building demonstrators, does not

however impose many constraints on the hardware requirements. It provides a unified view

of the various underlying implementations of sensor hardware and allows the developers to

query the sensors by specifying some high level requirements, such as the location accuracy

(high, medium, low) for location or the sampling rate (fastest, game, normal, UI) for the

accelerometer. Most of these APIs are asynchronous to help the operating system manage

better the CPU sleeping cycles. Regarding the support of co-processors, it is introduced in the

form of soft sensors, for example the Z series of Sony Xperia provides a step counter sensor2.

The X8 chipset from Motorola3 also provides built-in dedicated cores for always-on sensor

processing, supporting the voice commands.

Future developments seem to be oriented towards more dedicated co-processors and system-

on-a-chip (SoC), that are highly optimized for specific tasks.4, 5

2.2 Sensor abstraction

When dealing with various platforms and sensors, one may want to have an abstraction layer

that provides a common and intuitive interface to access all of them transparently, whether

they are on-board sensors or external ones. The current mobile operating systems already

provide some abstractions, but they are limited to location sensors and activity in Android.

Therefore, some research groups developed middlewares that allow other researchers to

quickly prototype mobile sensing applications. In addition to providing the sensor readings,

they also proposed different ways to describe the context one wants to identify, and gave

access to the context inference results to the applications, while taking care in the background

of using the appropriate sensors. Running all the context recognition pipelines on the phone

1http://www.apple.com/iphone-5s/specs/
2http://developer.sonymobile.com/2014/03/24/lower-your-xperias-power-consumption-with-the-new-

sensor-co-processor-video-code-example/
3https://www.motorola.com/us/X8-Mobile-Computing-System/x8-mobile-computing-system.html
4http://www.pnicorp.com/products/sentral-sensor-fusion/
5http://www.audience.com/multisensory-processors
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poses some challenges, as we have seen in the previous chapter. Moreover, when collecting

data from a large group of participants, like in the participatory sensing scenario, there is a

need for aggregating all the data in one place. For these reasons, many of the sensor abstraction

middlewares also include a way to have their collected data sent to a server, either just to

store it or to run more complex applications. Two approaches have been considered. The

first one consists of having the sensing tasks defined on the smartphone application, either

at programming time or through the user interface and the second one is pushing the tasks

from the server, sometimes also selecting which device is more suitable for performing it.

Finally, inspired by sensor networks and cloud computing, other abstractions based on service

oriented architectures, such as Sensing as a Service (SaaS)[68, 74, 264], have been proposed to

make the mobile sensing platform available from anywhere through the Internet, similar to

the growing Internet of Things [282].

For accessing built-in as well as external sensors, through any network interface, the mSense

middleware [144] defines two layers. The Sensor layer is hosting the hardware sensors’ entry

points, the network sensors’ providers and simulated sensors, when they are not available in

the hardware. Then, the Data layer is taking care of storing and fusing the data streams, for

example in a dead reckoning module. Finally, the applications will subscribe to one of the

available modules. The Dandelion [165] framework introduces the senselet abstraction for

programming external sensors, independently of its processing hardware. Senselets allow to

push some of the pre-processing closer to their source, thus improving the communication

efficiency. Whereas, the Dandelion runtime, installed on the sensors and the smartphone is

taking care of the coordination and communication and provides the application with the

sensor data.

To simplify further the development of context based applications, the context inference

algorithms were integrated directly in the sensor abstraction layer. For example, Seemon [126]

is a framework for context monitoring defining context changes with a set of changes in the

features extracted from the sensors. The context queries from the applications are translated

using predefined thresholds and rules, and indexed for fast access when the sensor data arrives.

To reduce the energy required, sensors are activated according to the ESS (Essential Sensor

Set), which is re-computed from the current running queries at regular intervals. To be able

to dynamically adapt to new context definitions and inference pipelines, the Dynamix [44]

context framework allows new plug-ins to be loaded automatically at runtime, uploaded by the

developer community. The plug-ins and their privacy policies can be configured by the user

through the application interface. Other applications can access the resulting contexts directly

from the Dynamix service, through a firewall also configured by the user. Similarly, the Mobile

Sensing Framework [42] provides support to run personalized inference pipelines, but also

reacts to other applications and manages sensor access conflicts, like for example releasing

the microphone if an incoming call is detected. Flexibility is also needed in terms of available

sensors, especially when those are wearables and can be easily added and removed by the user.

For this purpose, Seeger et al. [255] proposed an event-based middleware managing sensors

connected to a Body Sensor Network (BSN). A central event reasoner, on the smartphone, is
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taking care of identifying situations and creating derived events. All the events are then made

available to the applications.

One of the typical uses of context-based applications by the research community being data

collection, there was also a need to aggregate the data centrally by pushing them to a server.

The first example is the Funf Open Sensing Framework [8], from the MIT Media Lab. This

open source extensible framework for mobile devices provides a reusable set of functionalities

for the remote collection of many data types. It is currently implemented as an application

for Android and server-side scripts for uploading, parsing and visualizing of the collected

data. Later, the Open Data Kit (ODK) [35] was developed as a set of tools for a non-technical

audience aiming at recording any sensor available on mobile phones, including surveys for

the users. In its second iteration, namely ODK 2.0 [36], it includes a module for uploading the

collected data, either to a cloud storage provider or to personal machines running their own

Aggregate server. Similarly, the AIRS [283] middleware enables the exploitation of the various

sensing modalities available, in a highly configurable manner, also including users’ input

and annotations, while providing a way to collect the data centrally on a server. Following

the design principles of the Global Sensor Networks (GSN), namely virtual sensors as stream

processing classes and wrappers as data source abstractions, the MOSDEN [122] mobile

application was designed to support crowdsensing scenarios. The plug-ins abstracting the

mobile phone sensors allow accessing internal as well as external ones. Regarding cloud data

aggregation, it uses the GSN servers as backend, relying on its push and pull restful API for

communication.

Pushing the collected data on the server allowed the researchers to have at their disposal a

much larger computational power and the possibility to run the actual application in the

cloud. For example, the MobiSens [304] mobile application only implements lightweight

activity recognition, while the server runs the heavy-weight processing and hosts a Lifelogger

application. The server is also responsible for pushing the sensing policy and some incentives

to the participants for providing annotations. Similarly, the architecture of HealthOS [163]

is also based on lightweight adapters on mobile devices, whereas most of the computation

happens on the server side. This system aims at abstracting commercial health applications

and devices for fusing their data through various configurable pipelines before providing it

back to the smartphone.

To address the need for a new application, or reconfiguring them all, each time the researchers

want to conduct a different study, some mobile sensing applications were designed with the

opposite paradigm. The server contains the description of the modalities needed and pushes

to the participants the sensing tasks. This also allows to select only a subset of the participants

and to perform optimizations centrally. For example, the PRISM [63] platform automatically

deploys binary applications to the registered mobile devices satisfying predefined criteria.

Special care has been taken for mitigating the privacy risks of the participants when running

the code pushed by the server. Similarly, the Pogo [34] middleware allows researchers to

submit applications in the form of JavaScript files and the Pogo administrators are taking care
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of assigning the Pogo participants. To avoid draining too much energy on the participant

smartphone, piggybacking is used to synchronize the communication and sensing with other

processes on the device. Also using javascript as a task description language, the Code In

The Air [240] system proposes in addition a visual interface for end users to define their tasks

without coding. It supports conditions on activities as well as places and automatically divides

the client and server side of the tasks for deployment. Finally, the MECA [314] middleware

exposes a declarative interface for cloud applications to describe the phenomenon they want

to monitor. The backend server then translates the request into data needs and selects the

devices and which of their sensors to enable.

2.2.1 Sensor scheduling

Having an abstraction layer in between the applications and the sensors allows a fine grained

management of the available resources, optimizing the sensor duty cycles (ON/OFF cycles)

and sampling rates to minimize the energy consumption while satisfying the applications’

needs. The first approaches that were studied on smartphones were to find the best uniform

sampling rate, according to the three dimensions presented earlier (energy, delay and accu-

racy). The CenceMe [190] application uses various duty cycles for the GPS, Bluetooth and

data upload to reduce the power consumption. The authors show in their experiment the

impact of duty cycle on accuracy and inference delay, and conclude that it should be adapted

to the user or application need and to the context. This strategy is used for example in the

EmotionSense [229] application, designed for recognizing speakers and their emotions, where

the sampling rate of the GPS, accelerometer and microphone are adapted based on a set of

rules. The A3R [310] application for recognizing activity also adapts the sampling rate of the

accelerometer, depending on the current activity. The optimal rates and minimum set of

features to extract are defined for each activity based on actual energy measurements.

However, as the context used for setting the uniform sampling rates is actually based on those

same sensors outputs, the low sampling states will tend to absorb short activity changes and

increase the detection delay. Therefore, a continuous adaptation of the sampling rate and

defining when the sensor should be sampled next, based on the current context knowledge, is

an optimization problem which attracted many researchers. For example, Wang et al. [296]

formulated the problem as a constrained Markov decision process, where the model de-

cides when to perform the next sample according to the user’s states. They also show the

improvements over the uniform sampling. Similarly, Lu et al. [176] also implemented a Markov

decision process for duty cycling the GPS in their sensing application, Jigsaw. But for the other

sensors, microphone and accelerometer, the duty cycling is continuously adapted, increasing

the sleeping time when no activity is detected and decreasing it otherwise. Rachuri et al. [228]

conducted an extensive study, for various sensors, on possible back-off and advance functions

for varying the sampling rate. They show that no single solution works for all sensors in all

contexts and discuss a dynamic algorithm for selecting the best one in each situation. The

same authors also implemented SociableSense [230], a software for studying interactions and
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sociability among users. To improve the energy efficiency, linear reward-inaction is used to

learn a sampling policy that minimizes the number of missed events. They also show that it

outperforms the other back-off and advance functions (linear, quadratic and exponential).

Regarding participatory sensing platforms, more specific optimizations can be applied to

schedule the environmental sensors as well as the location ones. For example, in the USense [4]

middleware, participants can specify their own constraints on the percentage of energy ded-

icated for sensing and an adaptive sampling scheme is defined accordingly. Whereas, in

PSense [14], the mobile application schedules the GPS according to the distance to the avail-

able nearby queries from the server. Similarly, the geo-fencing application from Man and

Ngai [185] selects the sensing granularity according to the distance to the nearest region of

interest.

More recent approaches leverage the numerous sensors available on the mobile platform. As

Schirmer and Höpfner [252] proposed in their work, two methods can be applied, namely

sensor substitution and sensor triggering. The first one aims at using a cheaper sensor, when

available and providing enough accuracy, instead of using an energy-hungry one, both sensors

contributing to the same contextual dimension (see also Table 2.1).

For example, the EnTrackedT [136] framework is using the compass and accelerometer to

estimate when the users are changing their trajectory and then scheduling a GPS measurement.

Also for location tracking, the FreeTrack [55] application learns from the user’s habits and

records the cell-towers as an input for triggering the Wi-Fi based positioning or the GPS. At a

higher level the ACE [200] middleware provides the application with semantic contexts, such

as "is driving" or "is alone". By using some rules mined from the past observations, it can infer

certain contexts from others and uses them to find cheaper conditional sensing scenarios.

The Senergy [129] context API allows the programmers to specify their priority among latency,

accuracy and energy use and then decides which sensors and which method will be used to

provide the context information. Finally the phone sensors can also be substituted by external

sensors, as presented in the METIS [231] sensing platform. It opportunistically leverages the

available sensors in the infrastructure of a smart building for reducing its own sensing cost,

selecting the sensors in the same room as the mobile device.

The second method, namely triggering, consists of using other contextual dimensions to

trigger an expensive sensor, based on some rules, either learned or explicitly given. For

example, the Energy Efficient Mobile Sensing System (EEMSS) [295] allows the programmers

to describe the situations and which sensors need to be used for detecting a possible transition

to another situation in the configuration files, relying on some expert knowledge. In the

RAPS [209] application from Paek et al., the GPS is triggered based on the user activity, obtained

from the accelerometer, but also considering user’s mobility history. It also keeps tracks of the

cell-tower’s received signal strength each time the GPS fails to obtain a fix to build a black-list,

to prevent turning the GPS on if it has a low probability of success. Similarly, the LifeMap [54]

context provider uses the accelerometer to identify if the user is moving or not, and then selects
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the appropriate minimum sensor set. More recently, Pendao et al. [217] also implemented a

motion detection algorithm, based on the accelerometer. They studied in detail the impact on

the battery life of various sensing policy, based on periodic sampling and motion detection.

But those method rely heavily on the developers and researchers defining the appropriate set

of rules for triggering energy-hungry sensors. Therefore, Li et al. [160] built an inference model

of context stability that takes care of triggering the heavy-duty sensors when the probability of

a context change is high enough, given the data collected by the light-duty sensors.

It should also be noted that these two methods are not mutually exclusive and can be com-

bined, like for example in the middleware developed by Zhuang et al. [322] which aggregates

the location sensing needs from the applications and merges them to reduce the GPS usage.

For this purpose they implemented four methods, namely substitution, as defined above, sup-

pression and adaptation, which are similar to the triggering approach above, and piggybacking

which improves the synchronization of the application requests. Similarly, the SenseMe [25]

system performs continuous context identification, applying the same scheduling optimiza-

tions to be able to provide a context API to third party applications, including location, activity

recognition, social and environmental contexts.

2.3 Context inference

The context is a multidimensional concept that can be built from many different sensor

inputs. But the mapping from sensors to the dimension they can contribute to is not always

straightforward. Table 2.1 lists the commonly found sensors on the various mobile sensing

platforms and their contributions to the usual context dimensions.

Direct (D) contributions are obtained directly through the sensor output, like the GPS which

gives the latitude and longitude. Some sensors’ output however needs to be processed and,

using some learned model, mapped (M) to contextual outputs. For example, the accelerometer

values have to be processed and a classifier would then be able to tell the user’s activities.

Finally, some contributions are obtained by combining (C) the sensor data with some other

dynamic data source, being either other sensors on the device or external sensors. For example

combining the accelerometer for counting the steps and the compass for the heading makes it

possible to track the motion of the subject, this is called dead reckoning. It is important to

note here that we consider in this list the sensing modality only. For example Wi-Fi is only

considered for scanning the neighboring access points, not for communication, and similarly

for Bluetooth.

We also limit our survey to first level contexts, such as location and activity. Higher level

contexts, such as places and routines, that can be further inferred, are out of the scope of this

survey.
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Activity Location Environment Proximity Health

GPS M [161] D M [210, 307] C [179, 229]

Wi-Fi M [268] M∗ D [97, 188]

GSM cell tower M [48] C [159]

Bluetooth M[318] D∗

NFC M[107, 202] D∗

light sensor C [189, 213] M[12, 147] D [203, 321] C [179]

camera M∗ M[299] M [166] M∗ M [254]

microphone C [189, 213] M [12] D ∗ M∗ M∗

accelerometer M∗ C∗ D [82] C [110] M [179, 184]

gyroscope M∗ C∗ C [188]

compass C [213] C∗

barometer C [213, 248] D D [203]

thermometer C [189, 213] D [203, 208] D

hygrometer C [213] D

gas sensor D∗

ECG M [153, 213] M∗

breath rate sensor M [153, 213] M∗

Table 2.1: Non-exhaustive list of available sensors on mobile platforms and how they can
contribute to the usual context dimensions. D: directly, M: mapping through a model, C:
combined to other sensors. The grayed cells indicate the most commonly used sensors for
those contexts. ∗see the sections below for a longer list of related works using these sensors.

2.3.1 Activity recognition

During the last 15 years of research, human activity recognition has been studied under

many aspects. In addition to the challenges mentioned earlier, this research had to address a

number of issues related to machine learning, such as feature selection or building realistic

and representative training sets. In their survey, Lara and Labrador [152] provided a large

overview of the human activity recognition systems using wearable sensors, including the

smartphone based approaches. After describing the general design of such a system, namely

data collection - feature extraction - model training - classification, they gave an overview of

the feature extraction and classification methods used. Most of the surveyed methods used a

direct mapping from a feature vector to an activity or probability of an activity. The feature

extraction is performed either through statistical methods, summarizing a window of sensor

data into representative values such as its mean, variance, energy, etc., or through structural

detectors trying to match predefined or learned patterns. The learning part itself makes use

of the whole set of available classifiers, from decision trees to neural networks and Markov

models, including also support vectors machines and many others. The comparison of their

performance varies from one work to another, making it difficult to draw a clear winner. This
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is also linked to the difficulty of making quantitative comparisons of the methods themselves,

mostly due to the lack of standard procedure and datasets. From the evaluation they show

in the end of their work, we can already conclude that adding more sensors and especially

well placed ones increases greatly the accuracy and generality of the methods. This is also

shown in the experiments of Gao et al. [89]. A typical example is the system developed by

Parkka et al. [213], consisting of 22 different sensors, such as GPS, light sensor, microphone,

accelerometer, thermometer, heart rate and breath rate sensors, etc.

In addition to those accelerometer based approaches, Liao et al. [161] proposed to perform

significant places identification at the same time as activity recognition from the GPS output

only. Using hierarchical conditional random fields, they were able to model the links between

activities and the location where they happened, thus recognizing activities like working,

walking, taking the bus, driving, etc. In their Telepathic Phone experiment Sigg et al. [268]

demonstrated that it is possible to recognize some gestures, walking speed and presence of

the user just by using Wi-Fi signal strength information.

Among the latest advances on human activity recognition and the ongoing research, we can

find two main directions. The first one is trying to apply more advanced or recently invented

machine learning methods to increase the recognition performance. For example, Extreme

Learning Machines, a kind of artificial neural network, has been used by Wang et al. [293] on

top of a bag of linear dynamical systems as features. Another example is the semi-supervised

method from Tran et al. [281]. It is based on partially hidden discriminative models, as opposed

to the generative Hidden Markov Model generally used for representing transitions between

activities. In this case they show that their discriminative model outperforms the generative

counterpart.

The second approach is trying to improve on the generality of the methods, and thus their

applicability in real-life scenarios. Most of the current solutions are designed specifically for

a given problem, in a given environment and sensor setup, and with a limited population,

making their comparison and usage in widely deployed applications more difficult. Therefore

researchers have been trying to generalize the solutions. For example, by including a more

diverse population, Capela et al. [41] were able to build a more robust classifier from a single

smartphone accelerometer signal, identifying the relevant features for each group (able bodied,

senior, stroke) and for the whole population. An automated way of grouping similarly behaving

people was also proposed by Lane et al. [151], by creating community similarity networks from

the sensor data and personal information and training personalized classifiers. By creating

virtual physical environments, Poshtkar et al. [224] were able to generate automatically large

labeled datasets, allowing them to test various solutions quickly. Reducing the supervision

of the classifier, like in [281] and [26], is also a way to get to an online version that would be

acceptable in terms of user interruption and input needs, as there is currently no unsupervised

(or semi-supervised) online method.

Among the efforts made in reducing the energy consumption of the mobile devices used for
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context inference, most of them tried to adapt the sensor scheduling and sampling rate to

the current activity. Some others have explored the trade-off of off-loading the classification

and computation to dedicated servers. And finally some of them have tried to simplify the

processing, taking into account its cost in energy. For example, Kobe [57] is an implementation

of a feature classification system using the cloud to compute the most effective parameters

according to predefined configurations (connectivity, CPU load, phone model). And then, at

runtime, it switches between the parameters and it is able to offload part of the classification

to the cloud as long as it respects the constraints of the user (energy budget and latency).

Sensor parameters like scanning rate or measurement precision are also precomputed in the

cloud and changed in real-time according to the current configuration of the phone.

Regarding human activity recognition, we should also mention the huge amount of work

using external sensors, such as video cameras [223], presence sensors [175], floor accelerome-

ters [181] that can be deployed at the house or building level. Most recent developments in this

field were made thanks to the large availability of 3D camera, that include depth [7]. Moreover,

the usage of newer kind of sensors opened the door to more fine grained and less intrusive

monitoring. For example Sigg et al. [269] were able to use the variation in the signal of a local

FM radio station to identify the motion activity of a user in a room. Home electrical appliances

can also provide useful information regarding the activity of the inhabitants, through their

usage and monitored via their electricity consumption [22], or even their noise [215].

2.3.2 Location

As the Global Navigation Satellite System (GNSS) is providing direct information about loca-

tion, it is nowadays typically used in most implementations of location-based services. But its

high power consumption, long time to first fix and unavailability indoors has pushed the re-

searchers to find alternatives. First, the most represented one for the mobile platform is using

radio fingerprints, especially from Wi-Fi networks [81], but also from the GSM network [48].

The principle of fingerprinting is to associate a place with a recognizable and hopefully unique

pattern of sensor data. In their survey on indoor positioning systems Liu et al. [167] and

Gu et al. [94] presented their very first implementation, namely RADAR [13] and a few years

later, improving the fingerprints, Horus [315]. They work in two phases, both having strong

limitations to their wide adoption. In the first phase they need to learn a complete mapping of

the fingerprints. This is sometimes called war-driving as it started with people driving cars

with Wi-Fi antennas. This is costly for large areas and even worse when the Wi-Fi infrastructure

is likely to change over time. The second phase is the online query of the learned mapping,

which is made difficult due to the high variability of the Wi-Fi signal, influenced by the layout

of people and furniture in the neighborhood.

In recent years, several solutions have been proposed to overcome these limitations. First,

Simultaneous Localization And Mapping (SLAM) systems have been developed [84, 116] to

avoid the need for a training phase. To this purpose, the EZ localization algorithm [52], based
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on a genetic algorithm, is merging all the reports of fingerprints, some of them having abso-

lute coordinates attached, and centrally reconstructs the map by constraining the distances

between users and access points. Another approach by Dousse et al. [76] is to directly apply

clustering on the fingerprints and associate the clusters with a semantic tag, as a place of

importance. But by using only Wi-Fi signal strength as input these methods have a limited

accuracy that can be improved by using more information from the Wi-Fi physical layer. In

PinLoc [257] and its continuation, CUPID [258], the channel frequency responses are directly

clustered, and the system is able to estimate the angle of arrival and the distance to the access

point, dealing with the multi-path effect. But these methods need special hardware unlike the

one from Martin et al. [186], who first proposed an implementation working on a smartphone,

having a precision of up to 1.5 meters.

To improve the accuracy of the fingerprint maps, some researchers have also combined it with

other sensor inputs. For example, [168] and [134] used acoustic ranging to compute precisely

distances between peer devices. In their LiFS system, Yang et al. [311] used the accelerometer

as a pedometer to help mapping in 2D the Wi-Fi fingerprint space. In their continuation

work [50], they included the concept of virtual rooms, which are k-means clusters of finger-

prints. Werner et al. [299] combined a Wi-Fi based localization with an image recognition

algorithm, able to recognize a place from the camera of a mobile device.

Finally, once the map is built, new fingerprints can be recognized and associated to a location.

But depending on the features and distance measures used, the results can vary greatly [81].

Therefore Sharma et al. [260] proposed KARMA, an online method for recalibrating the maps

by taking into account the dynamic changes of the environment, affecting the Wi-Fi signal. Yu

et al. [316] also showed those variations of the fingerprints, and compared the performances

of 2.4 GHz and 5GHz Wi-Fi channels, the latter being more accurate for indoor localization.

Fingerprints are not limited to radio signals, they also include more exotic modalities, such

as sensing the ambiance to recognize a place, based on the sound, light, and accelerometer

fingerprints [12].

The uniqueness of fingerprints being sometimes an issue, for places without Wi-Fi coverage,

or to get more accurate localization, researchers also considered artificially enhancing the

fingerprints by spreading beacons around. These are usually based on the Bluetooth com-

munication channel, which is more accurate than Wi-Fi as shown by Zhao et al. [318], or

RFID like the SpotON [107] and LANDMARK [202] systems. But they can also rely on light, as

demonstrated by Kuo et al. [147].

Another alternative to the GPS, often used to complement it, is dead reckoning. The principle

is to use inertial information from the device to compute its displacement, for example

by knowing the speed and bearing, it is possible to rebuild the trajectory. In contrary to the

methods shown above, this method gives only a relative positioning, that can be made absolute

by knowing some reference points. For example, in the CompAcc application developed by

Constandache et al. [61], the assisted-GPS is triggered when it observes a too large dissimilarity
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between the reported path and walking paths from a map. As it does not rely on external input,

it has some advantages for tracking motion and users trips in places without recognizable

fingerprints. But it relies greatly on the accuracy of the measurements taken on the heading

and the estimated distance covered, and drifts can lead to very large errors. In his survey

Harle [102] presents the various methods used for detecting steps and heading, using the

accelerometer, gyroscope, compass or foot pressure. However, the compass is easily influenced

by its close environment, leading to large errors on the position estimation. Therefore Roy

et al. [247] developed the WalkCompass, by integrating the motion patterns of walking with

the identification of the phone placement on the body. They showed an improvement in the

estimation of the user’s walking direction, directly benefiting dead reckoning systems.

To take advantage of the fingerprinting and dead reckoning complementary strength, many

works have been conducted on fusing their outputs. For example, Rai et al. [234] and Hong

et al. [111] used particle filtering for estimating the location of the user on a map and, this

way, being able to geolocate the Wi-Fi fingerprint more easily. Seitz et al. [256] used a Hidden

Markov Model whereas Liu et al. [173] applied a Markov Chain Monte Carlo to integrate the

fingerprint observations. In their UnLoc system, Wang et al. [290] extended the fingerprints

concept to landmarks, by including other sensor recognizable output, similar to the work of

Chen et al. [49], based on a Kalman filter for the data fusion. For example a turn in a corridor

or an elevator can be recognized from the gyroscope, respectively with the barometer. In

addition, the Travi-Navi application from Zheng et al. [319] integrates the smartphone camera

to help in recognizing places and detecting when the user is deviating from a defined path.

2.3.3 Environment

The environment represents all the external influences that can affect the user. We distinguish

it from proximity sensing, described in the next section, which represents the other surround-

ing entities, which can be other people or physical objects. Environment and location are very

often correlated as the measured phenomenon are space- and time-dependent. Therefore

all the previous methods used to get the user’s location can be indirectly used here if one

has a model of the field of interest. Since the recent rise of participatory sensing, measuring

environmental parameters from mobile devices gained a lot of traction. They can indeed be

used for collaboratively building the model and maps from a very large number of geo-located

measurements, thus allowing users without those sensors to also obtain information about

these parameters at their location.

Most environmental parameters can be sensed directly from the available sensors, such

as temperature, humidity, air pressure, noise and light. But also by extending the sensing

capabilities with external devices such as air quality sensors. Therefore most of the research

has been focused in gathering and aggregating the measurements, with the idea of alleviating

the poor quality of the reports by their huge quantity. In addition to air quality, which is

surveyed in Section 6.2.2, the most present topic in this literature is urban noise monitoring,
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made easy to deploy by the large number of microphone equipped devices, namely all mobile

phones.

In his evaluation of the NoiseSpy mobile application, Kanjo [127] presents the challenges of

deploying such a smartphone based distributed monitoring system, namely the incentives

of the participants, accuracy of the measurements, the need for managing the local phone

resources and the privacy of the participants. Rana et al. [237] developed a complete end-

to-end mobile phone based noise mapping system, named Ear-Phone. They particularly

focused on the reconstruction of the map, using compressive sensing, from incomplete

measurements reported by the participants. Santini et al. [250] made an extensive study on

the actual capabilities of off-the-shelf smartphones, showing that calibration can be an issue,

depending on the hardware abstraction and direct sensor data accessibility from the API, as

the noise canceling filters cannot always be bypassed. They also raised some concerns about

real deployments and the impact of the phone placement (pocket, bag, hands), as opposed

to controlled studies, mostly used because of their more predictable results. Maisonneuve

et al. [182] proposed NoiseTube, an application used to measure the personal and collective

noise exposure, including manual tagging of the place and noise cause. In their continuation

works [183], they expanded the semantic tagging and made it partially automated, from the

time and location of the participant and, more recently [73], they conducted a larger study to

validate their system.

Complementing physical sensor output with human reports was also one of the focuses in

the work of Demirbas et al. [66]. They used Twitter as a communication channel for sending

measurement queries and responses about the noise level and weather conditions, mixing au-

tomated sensor Tweets with manual reports in a predefined format. In the Atmos application,

Niforatos et al. [203] also used the temperature, air pressure and light sensors for assessing

the weather conditions, which can be used for complementing current weather forecasting

infrastructure at the very local level. The idea of using the internal battery thermometer for

measuring the air temperature was also explored by Overeem et al. [208]. They showed in their

study that a correlation exists, but many other parameters have to be taken in consideration,

such as the phone usage, position and whether the user is indoors or outdoors.

Some other interesting natural phenomena have been, or are currently being monitored,

through the use of mobile phones. For example, Faulkner et al. [82] presented an earthquake

detector based on the smartphone accelerometer and Pankratius et al. [210] are designing a

system for measuring the ionosphere by monitoring the slight variations of the GPS signal.

In general the main issue of environmental sensors is their huge dependency on the user’s

context, and this has to be taken into consideration for obtaining better quality data, whether

it be for participatory sensing or direct local usage.

One typical context dimension that lies between location and environment is the indoor

versus outdoor identification. Some algorithms introduced before the era of smartphones

were already able to identify if a picture from a digital camera was taken indoors or outdoors,
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aggregating low-level features like in the work of Szummer and Picard [274] or using the

straightness of edges like in the work of Payne and Singh [216]. More recently some algorithms

were developed to run on the smartphone’s camera. For example, Lipowezky and Vol [166]

used the white balancing parameters and boosting to classify the pictures directly on the

device.

Using a dedicated temperature sensor, John Krumm [123] was able to correctly classify the

position of the device 81% of the time based on generally available online outdoor temperature,

increasing to 91% when comparing to an actual outside thermometer.

Since the location can be used for determining if the the device is indoors or outdoors, many of

the methods seen in the previous section can be used for this classification. But recently some

researchers studied algorithms for this specific task. Xu et al. [307] used the GPS signal noise,

in addition to the light intensity, to infer if the device is indoors or outdoors. Canovas et al. [40]

built a boosting binary classifier based on Wi-Fi fingerprints. But the GPS, and Wi-Fi scanning

to a lesser extent, being known to be power hungry, one may want to use cheaper sensors and

avoid the need for war-driving as in the second method. For this purpose, the IODetector

from Zhou et al. [321] uses a combination of detectors based on light intensity, cellular signal

strength and magnetic field variation to classify the location of the mobile phone as indoor,

semi/outdoor or outdoor. In their experiment they successfully used the detector to switch

between indoor and outdoor positioning methods, namely GPS and Wi-Fi fingerprints.

2.3.4 Proximity

We consider in this section proximity information as the detection, identification, and some-

times the precise relative position of other entities in the vicinity of the user. These entities

can be other people or more generally physical objects. Two distinct approaches were used for

this purpose, either the other entity can be directly seen from the signal it emits or its response

to a signal, or both entities infer their collocation by observing a similar environment or even

directly by knowing their own location.

The first and primary task that can be achieved by proximity sensors is presence detection

and, more interestingly counting the number of other devices. For example Naini et al. [198]

equipped a few volunteers with smartphones logging the Bluetooth devices they detect to

estimate the population size at a music festival, with similar methods as biologists use for

estimating animal populations. Based on audio tones, Kannan et al. [128] had a completely

different approach where the devices communicate with their neighbors, in a distributed

fashion, to converge to their actual count. Also using the microphone, the Crowd++ appli-

cation [306] is able to count the number of people talking in a certain place, in a completely

unsupervised way.

The unique identifiers used in the detection process can actually be used to map the signals to

entities. This has been first used for identifying objects, by equipping them with RFID tags
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that can be read one by one. Vogt [288] proposed a method for optimizing the tag reading

process to enable it to identify multiple objects with passive RFID tags. In their RFIG lamps,

Raskar et al. [239] augmented the tags by making them sensitive to light and adding geometry

information from the reader, composed of a camera, a projector and a RFID reader. The

information from the tags allowed them to project images and track the deformations of the

objects. Augmented reality games also took advantage of this technology as in the Pac Man

version of Cheok et al. [51], where the real world interaction of the user with tagged objects

was reflected in the game.

As smartphones started being equipped with a camera, other kinds of tags appeared, like the

visual ones. In their study Toye et al. [280] evaluated the viability of printed visual codes for

users interacting with their environment. They showed that the participants learned quickly

how to scan the codes and received positive feedback. Among other works with visual tags,

Rohs and Zweifel [246] demonstrated a way to combine them with motion recognition, to

create new kind of interaction with bus stops or vending machines, for example by rotating

the phone after reading the tag to get the arrival time of the next bus. Further advances in

smartphone capabilities enabled them to directly use the camera to recognize the objects [91],

without the need to transform them to make them recognizable.

When detecting nearby people, the identifiers they carry, mostly their Bluetooth enabled

smartphone, allow us to link them to their online social profiles, such as Facebook or LinkedIn,

revealing another dimension of context, namely the social context. In their survey Schuster

et al. [253] identified the different dimensions of the "Pervasive Social Context", based on their

own taxonomy: STiPI, for Space, Time, People and Information source. The intersection with

this survey is to be found in S1 (small scope), T1 (short-term activity), P1 (individuals) and I1-3

(From pervasive sensors, potentially integrated with social networks), which mostly contain

Bluetooth and RFID proximity detection.

For example, the WhozThat social application from Beach et al. [20] collects neighboring

people identifiers and fetches their online profile for finding common hobbies or musical

preferences. Ben Mokhtar and Capra [24] used physical and social proximity to assign tasks

to co-located friends, developing the concept of social computing. In a more pragmatic

application, Rafael et al. [232] used the detection of nearby people to help blind people engage

in social interactions. The link between physical proximity patterns and social interaction has

also been studied by Do and Gatica-Perez [75]. They presented a method to infer the social

groups from Bluetooth scans and the temporal context, and predict interactions.

Due to its limited spatial propagation, sound, and especially the voice, has also been used to

identify nearby people, like in SpeakerSense [177]. Nakakura et al. [199] and Wyatt et al. [305]

went further by identifying the conversation groups and who is talking to whom.

After detecting and identifying the other entities, the researchers designed methods to com-

pute their relative positions. On one hand some of them used the distance and the angle of

arrival as in the external device developed by Hazas et al. [105], where a radio signal and an
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ultrasound allowed them to obtain relative positioning with other devices within an error

of less than 10 cm for the 90 percentile. On the other hand some of them used the distance

between nodes to build a graph and then projected this graph onto a 2D plane, like the Virtual

Compass [18], which is based on Bluetooth or the BeepBeep [218] protocol, able to compute

distances between devices by emitting sound beacons.

On the social side, the relative positioning of two individuals enables the detection of face-

to-face interaction. For example, Van den Broeck et al. [287] deployed active RFID badges

at two conferences, allowing the participants to explore their social graph, combining real-

life encounters and social network inputs. Instead of relying on external hardware, Matic

et al. [188] used the smartphone’s integrated gyroscope and Wi-Fi signal strength to measure

the orientation, respectively the distance, between two persons, inferring if they are facing

each other or not.

For the cases where the needed proximity sensors are not available, an alternative to direct

detection of neighboring devices was also envisioned by some research groups. Namely, they

assumed that if two devices are sensing similar environments, or locations, they have a high

probability of being collocated. One of the first attempts in this direction, by Holmquist

et al. [110] was to use the accelerometers and if the shaking patterns on the two devices

matched, they will get connected. The NearMe system [145] compares the Wi-Fi fingerprints

sensed from several devices to figure out if they are nearby, without needing an absolute

location system. Instead of giving a fine-grained estimation of the distance, Carlotto et al. [43]

proposed a Gaussian Mixture Model classifier for three proximity levels, namely high (same

room, < 5m), medium (same floor, 5m-15m) , low (same building, > 15m). At a larger scale,

in their PeopleTones application Li et al. [159] used the GSM fingerprint to infer collocation

and informing the user with a specific pattern of vibration of the phone, depending on the

identity of the other user. Whereas, Gupta et al. [97] used a Wi-Fi based localization technique

to match mobility traces of users and determine their affinity. They also cluster co-presence at

a place to infer informal social groups.

Somehow related to proximity, researchers have recently explored the case of phone place-

ment, allowing them to detect if they are in a pocket, lying on a desk or in a bag. In their

Phoneprioception app, Wiese et al. [300] relied on the accelerometer and a light sensor,

augmented with the capacitive screen input and a multi-spectral sensor to infer the phone

placement with 85% (pocket/bag/hand) to 100% (enclosed) accuracy. They also conducted a

large user study, asking participant where they keep their phone in various contexts. However

the Phoneprioception runs on some dedicated hardware developed specifically for the study,

as some sensors were not available on commercial off-the-shelf smartphones. On the contrary,

the Sherlock [312] platform continuously recognize the micro-environment of the phone

(placement, backing material, interaction), using only the on-board sensors, such as the ac-

celerometer, microphone, camera, gyroscope and light. A hierarchical detection algorithm

is used to trigger only the needed sensors, thus reducing the long term consumption of the

system.
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2.3.5 Health

We regroup in this section all the contextual information about the user’s physical and mental

state that can be gathered through the sensors. This includes the directly observable vital

signs, such as the heart rate, breath rate, blood pressure, or oxygen concentration in blood and

the indirect parameters like sleep quality, mood, happiness or stress. As defined by Istepanian

et al. [118] 10 years ago, this field of study has been called m-Health, standing for "mobile

computing, medical sensor, and communication technologies for health care." This definition

depicts the main research topics and challenges that were addressed in the field, namely

building small, less intrusive and accurate sensors, enabling a reliable, efficient and versatile

communication for the on-body wireless sensors, and developing an end-to-end system that

makes the collected data exploitable. Even if most of these challenges have been addressed by

researchers, m-Health has not yet shown its full potential. Recently, the U.S. National Institutes

of Health gathered m-Health specialists for discussing the need for rigorous empirical and

theoretical foundation in this field [146]. Indeed, many studies and developments have been

made independently and with various goals, showing how large the topic is, but without

collecting enough evidences on the efficacy of m-Health. As shown on Figure 2.1, they also

outlined the trend of m-Health, going from measurements (getting the data) to diagnosis

(understanding the data), treatment/prevention (using the data) and a global service (scaling

up).

Figure 2.1: Evolution of m-Health applications (source [146, p. 229])

Regarding the first step, namely the data acquisition, Pantelopoulos and Bourbakis [211]

surveyed the wearable health-monitoring systems, including the mote, smart textile and
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smartphone-based systems, evaluating their maturity with respect to their full potential.

Among the "mature" smartphone-based systems combined with wearable sensors, the Per-

sonnal Health Monitor [157] allows the user to perform a heart attack self-test, by answering

questions and using the ECG sensor. As for the HeartToGo system [207], it shows the user

an in-depth analysis of its ECG in real-time, identifying arrhythmia with the help of a neural

network classifier.

More recently, Postolache et al. [225] proposed a smart bracelet with a photoplethysmographic

sensor (light based) and an accelerometer, that preprocesses the data before sending them to

an Android phone via Bluetooth. The smart bracelet is able to extract the hearth rate and blood

oxygen levels as well as computing some simple features, while being non-invasive and easy

to carry compared to chest-bands and electrodes. These sensing platforms can also be used

for supporting medical and psychological experiments, like the PsychLog platform [87] which

is used for experience sampling. This method captures the participants behavioral, emotional

and physical state in their natural environment, by recording their vital signs, and regularly

(or randomly) prompting for filling a survey. To save energy the sensor data is recorded only in

a time window centered on survey time.

Part of the acquisition of the data, the wireless communication challenges with the phone and

the external sensors has also been addressed, preferring Bluetooth communication to Zigbee,

as the later is not natively available on smartphones. For example, Zhong et al. [320] designed a

wireless body sensor network, optimizing the Bluetooth communication for energy efficiency

and pushing most of the computation onto the phone. In their work, Istepanian et al. [119]

successfully implemented a sensor network based on the Internet of Things communication

protocols and based on IPv6.

It is worth noting that some researchers investigated physiological parameter sensing in

rather unusual ways. The Septimu [204] modified earbuds include a small microphone that

is able to listen to the heartbeat and infer the heart rate. It also includes an accelerometer

and gyroscope for activity level recognition, the processing being done on the phone. Scully

et al. [254] studied the feasibility of using the mobile phone camera and flash to infer the

heart rate, breathing rate and oxygen saturation. The users were instructed to put a finger

directly on the phone’s camera, with the flash light being on. They were then able to extract

the physiological parameters from color change signal from the camera.

Some works based their system on the microphone only, like Larson et al. [154] who extracted

specific features for cough detection that prevented reconstructing the user’s voice. The

BodyScope [313] wearable device is maintaining a microphone on the throat to classify ac-

tivities such as eating, drinking, speaking or coughing. Similarly, BodyBeat [233] identifies

non-speech body sounds from a neck device.

The second step, namely understanding the data for a diagnosis, includes many kinds of

inferences. Sleep quality has been studied with the HealthGear system [206] of Bluetooth

connected sensors, more precisely with a blood oximeter and two methods for detecting sleep

29



Chapter 2. State of the art

apnea, namely based on thresholds or based on a spectral analysis of the oximeter signal.

Detection of insomnia was also performed within the OPTIMI [184] project through small

heart rate sensors and accelerometers carried like a necklace. The time and frequency features

are extracted directly by the sensors as well as the computation of the activity level and heart

rate variability signals. Using only the phone’s microphone, Hao et al. [101] implemented

iSleep, a mobile application which classified the sounds during the night into either noise or

sleep events, like moving, coughing or snoring. Then a score of sleep efficiency was computed

and compared to a questionnaire, showing a very good match.

On the psychological side, Ma et al. [179] proposed a framework for mood analysis, called

Mood Miner. They collected data from the accelerometer, microphone, GPS and light sensor

as input for a classifier based on a factor graph, assuming mood has a Markovian property. As

for LiKamWa et al. [162] they used the user interactions with the phone, including SMS, calls,

applications usage as well as the location for inferring mood in their MoodScope application.

The application then provides an API enabling other services to access the user’s mood state. In

EmotionSense, Rachuri et al. [229] implemented a speaker recognition subsystem, augmented

with a location, activity and proximity modules as input for a Gaussian Mixture Model classifier

for emotions. Other works, more specifically focused on happiness, can also be found in the

survey of Muaremi et al. [195].

Another important aspect of one’s mental state is the stress level. The AutoSense wearable

system, measuring the heart rate and breathing rate, was used by Plarre et al. [221] to provide

sensor input to a personalized classifier for perceived stress in the natural environment.

However, the need for wearing additional sensors making it less practical for daily usage,

researchers focused their efforts on the data already available from the phone. Based on the

mobility traces, call logs and the social context from Bluetooth scans, Bauer and Lukowicz [19]

were able to show a significant change in participant’s behavior between stressful and non

stressful situations. Furthermore, Sano and Picard [249] combined these data with a small

wrist sensor for skin conductance. However they showed that the wrist sensor’s data did

not improve much the classification results. Using the microphone, Lu et al. [178]proposed

StressSense, an application for recognizing stress level from the voice features, based on an

adaptive GMM classifier using Maximum A Posteriori estimates. The classification pipeline

was also designed for saving energy, only running on-demand the heavy computation parts

and taking advantage of the phones’ multi-core CPUs. Bogomolov et al. [31] also showed

in their experiment that weather conditions are also an important factor influencing the

participants’ stress level.

Finally, the third step, namely making use of the data and closing the loop, was studied in

numerous intervention studies as surveyed by Klasnja and Pratt [137]. However, most of those

works were based on SMS communication, the patient reporting his health status. Among

the works that use sensor and instant feedback, Morris and Guilak [193] estimated the stress

level of the user from the heart rate and the mobile application provided advices to manage

the stressful situations as soon as they were detected. Another large category of applications
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that provide feedback are the wellness and sport coaching applications, mostly because they

are less risky to experiment with than the ones concerned with health issues. For example

MPTrain [205] is a sport training application monitoring the heart rate through a chest-band

and counting steps from the accelerometer in order to calibrate the exercise intensity by

changing the music played. Ubifit Garden, developped by Consolvo et al. [60], provides a

glanceable display of a garden, where the achievement of a training goal is shown as a flower.

The authors conducted several studies [138] showing the usefulness of this kind of constant

reminder for initiating a real behavioral change of the user in the long term.

2.4 Sensor fusion

The principle of sensor fusion is to combine data from various sensors to improve the accuracy

or extract more information, over what would be available from each sensor individually.

As we have seen in the previous sections, when several sensors can be used for the same

contextual dimension, they can either be used alternatively, choosing the most accurate or

energy efficient one, or in a complementary way. In this section, we present the various

methods that have been used to fuse sensor data at all the processing stages, whether they be

for the same contextual dimension or for different ones.

Raw sensor data Features Low level Contexts High level Contexts

Scheduling PCA Multi-level

Models

Reasoning Display

Figure 2.2: The context processing stages and their corresponding fusion methods.

First, while manging the sensor schedule, their complementarity can be used to trigger or

disable other sensors, as in the state-machine proposed by Shimizu et al. [265], based on

the accelerometer, microphone and Bluetooth output. Some other similar approaches have

been also mentionned in Section 2.2.1. Then, when processing the raw data from the various

sensors, Guiry et al. [95] suggested to apply a principal component analysis dimensionality

reduction over the feature vectors from all sensors, thus building new feature vectors that

summarize them.

Most of the sensor fusion approaches are applied at the classifier construction level. The

feature vectors including data from all sensors are directly input to build the various kind

of classifiers, with or without the feature selection step. For example, Ganti et al. [88] used

a hierarchy of Hidden Markov Model to fuse acceleration and audio samples for activity
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recognition. Whereas Liu et al. [171] merged the breath rate and acceleration with an SVM

classifier for activity and SVR for estimating the energy expenditure. Regarding location and

transportation modes, Reddy et al. [242] integrated features from the GPS and accelerometer

into their two stage classifier composed of a decision tree and a discrete HMM.

Based on the Muffin sensing device, Yamabe and Nakajima [308] developed the citron frame-

work, following the blackboard architecture. The idea is to have a single database of resources,

consisting of sensor data and processed contextual inferences on which simple modules

analyze context and send back their inference results to the database. This allows them to

abstract multi-level inferences and sensor fusion, and making them adaptive to the available

resources. Similarly, Dunkel et al. [77] represented the sensor data as events and built an event

processing system, where successive modules transformed the sensor events into behavior

events and situation events. Another way of fusing inferences inside a multi-level model was

demonstrated by Altun and Barshan [10], who used the activity inferences to recalibrate their

dead reckoning method. At each activity change, the location is re-evaluated by mapping

the possible action and their location, before recomputing backward the last trajectory and

improving its accuracy.

Next, the fusion can also be applied after the context information is extracted, as in the

SocialFusion system [21] where pattern discovery is applied after a first stage of inference on

individual context dimensions. More precisely, user specific and group patterns are mined

by computing the frequent sequences and frequent itemsets across modalities to provide

recommendations. If the previous inference stage is able to produce a symbolic context,

using for example a predefined ontology, then reasoning can be applied to fuse the data and

produce more complex situation information. This principle was implemented in COSAR [244]

where the semantic location was merged with the low level activities to produce high level

activity. As for Bicocchi et al. [27], they proposed an approach for dealing with uncertainties

of inferences while fusing them by computing their semantic proximity on the ConceptNet

semantic network, using commonsense reasoning.

Finally, the fusion can be left to the last stage, namely while communicating the context

information back to the user. For example by using the huge amount of possible display

dimensions as in the BeWell [150] mobile application where the activity, social and health

dimensions are represented by the behavior of various underwater animals, evolving on the

smartphone wallpaper.
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3.1 Introduction

The strategies presented in Chapter 2.2.1 have been designed to optimize the use of each

sensor present on the device. Single sensors’ duty-cycles are computed to maximize the

information gain, while reducing the sensing cost and taking the applications’ needs into

account. Some strategies [185, 217, 322] also take advantage of the various possibilities to get

the same information from different sensors, for example the location can be obtained from

the GPS or by triangulation with the visible Wi-Fi access points. But they are only focused on a

single device or sensing node, determining when or where to turn them on or off.

In this chapter, we add another dimension to the problem, namely the sensing nodes are able

to establish both long-range and short-range communications. Most, if not all, smartphones

can connect to the Internet either through the GSM network or Wi-Fi access points and

they have the capability to communicate to neighboring devices through Bluetooth. Those

other devices can be external sensors, such as a wristband monitoring the heart rate or shoes

counting the steps [273], but also other smartphones, thus creating a new kind of opportunistic

sensor network.

Typically, sensor scheduling and data transfer has been widely studied in static sensor net-

works, but in contrast, we investigate sensing amongst multiple mobile users. The mobility

of these devices can be turned into an advantage over static sensing nodes as they can cover

much larger areas and comparatively reduce energy consumption as shown in the work of

Wang et al. [294]. Similarly, the OpenSense project [2] applies this principle by mounting air

quality monitoring sensors on buses and trams. Beside individual sensor optimization, a more

global scheduling and placement problem is defined by Saukh et al. [251]. Their solution is to

select the tram lines and the sampling points that provide the best coverage of a city. But these

sensors’ mobility is predefined with constraints. When we consider unconstrained mobility,

for example using smartphones to gather air quality information [103], the problem becomes

more challenging. We need to dynamically provide real-time sensing strategies that enables

the collaboration between nearby devices, in an opportunistic way.
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In terms of collaboration, mobile devices may reduce their individual expenses by sharing

sensing information between the mobile nodes thereby reducing the total number of mea-

surements needed. This collaboration can be done in two different ways:

• Centralized Strategy – There is a central server monitoring all nodes, and it is provided

in real-time with their mobility information. Based on the locations, the centralized

server can select which node should sense at which time to reduce redundancy. As

it has a complete knowledge of the nodes and potentially also the values they are

measuring, it can also perform more complex tasks such as faulty sensor detection or

trust management [243].

• Distributed Strategy – Instead of using central-control, the distributed strategy focuses

on exploiting proximity to share the nearby/similar measurement. Some mobile nodes

may then get the measurements from their neighbors instead of sensing by themselves.

Such a distributed strategy requires no central-control, and only short-range communi-

cation is allowed.

The contributions in this chapter are focused on the distributed version of collaborative

sensing by studying the opportunities of mobile proximity to reduce the energy consumption

of each sensing node. As an example, we consider reducing the number of needed GPS and

Ozone level measurements by sharing them through Bluetooth. Indeed, with an average power

consumption of less than 20mW [15], Bluetooth is a very good candidate for replacing the

pluggable Ozone sensors [226] (more than 400mW according to our measurements) if another

device can share it. Designing an energy-efficient sensing protocol for such distributed mobile

sensing scenarios is non-trivial and we have the following challenges:

• No-central control – The first one is quite obvious as the opposite of the centralized

strategy. There is no master server with the knowledge of real-time mobility. Even with a

range of mobility prediction methods, it is still not guaranteed to have a complete view

about who is where at what time. The distributed strategy should be able to deal with

the uncertainty of mobile nodes’ mobility in real-time.

• Heterogeneous nodes – For real-life opportunistic sensing, each mobile node can have a

different energy-budget and sensing preference. For example, some nodes are super

users with massive energy consumption compared to others; whilst some care more

about own-sensing quality rather than approximation of the measurement from nearby

nodes. An optimal sensing strategy should be able to satisfy various types of node

requirements.

• NP-Hard – Like many other works studying the problem of sensing protocol [143, 309],

we face a NP-hard problem to get an optimal sensing. Even in many cases, near-optimal

solutions are computationally expensive. Real-life applications should take these into

account.
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To address these challenges, in this chapter, we design a protocol allowing the nearby devices

to synchronize and reduce duplicate measurements. In addition to empirical studies using

real-life rich datasets (the Nokia Data Collection Campaign dataset [135] and the Paleo Festival

dataset from Naini et al. [198]), we also compute an optimal upper-bound on the gain of

collaboration.

After reviewing the previous work on collaborative sensing, Section 3.3 presents the formal

definitions and the instance of the problem studied in this paper. A new strategy is incre-

mentally built in Section 3.4, detailing the construction steps. In Section 3.5, we formulate

the scheduling problem as an optimization under constraint that we use in Section 3.6 for

comparison with the performances of our strategy on a real world dataset.

3.2 Related Work

3.2.1 Centralized coordination

Two distinct approaches have been studied for coordinating mobile sensing nodes with

unconstrained mobility, namely centralized and distributed. The first one allows to reach

better results in terms of coverage and minimal redundancy, but it needs to track continuously

the nodes and for them to be able to communicate at any moment. For example, Ngai and

Xiong [201] propose a strategy where the central server keeps a constantly updated view of the

quality of the knowledge in each region and asks mobile nodes for more measurements if this

quality is too low or if an event is suspected. Such centralized information can also be used

for learning mobility patterns, as in Bigwoodt et al. [28]. They used the pattern in history to

predict the encounters of a mobile node, allowing a better coordination.

Riahi et al. [243] proposed an efficient heuristics to select the sensing nodes based on the mix

of queries received by the central server, taking into account different aspects such as data

reliability, users privacy and resources constraints.

But central coordination also has a lot of drawbacks and challenges to solve, such as long-

range (and costly) communication, privacy and big data processing, therefore we preferred

using an ad-hoc peer-to-peer coordination between the nodes.

In this scheme, the mobile nodes only exchange information locally using short range com-

munication. This information enables them to select the best sensing policy.

3.2.2 Opportunistic collaboration

Information exchange happens opportunistically as soon as two nodes are within communi-

cation range.

In their work, Wang et al. [291] studied uncoordinated mobile sensors that can exchanges their
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knowledge about the field they are sensing if they meet each other. The protocol is based on

the fact that a node will ask the neighboring nodes for information if it doesn’t have enough

confidence in its own measurements. A simulation was run to evaluate the performances on a

mobility model.

In RAPS [209], a system for tracking the location of a mobile phone, the authors included the

option for sharing GPS location through Bluetooth. They also made some extensive energy

measurements for Bluetooth and GPS among other sensors. In their protocol, the communica-

tion is initiated when a node has a fresh GPS position and it sends it to all neighbors, updating

their location according to their uncertainty. The results showed more than a 10% energy

saving using this process on their dataset, but very often the client failed to connect as several

other clients were trying to initiate the connection all at the same time.

3.2.3 Ad-hoc coordination

But even in ad-hoc fashion, coordination is needed to reduce duplicated measurements and

overall energy-consumption.

Weinschrott et al. [298] presented the notion of virtual sensors which represents a static

view of all the mobile sensors. When in a certain region, mobile sensors provide data to the

corresponding virtual sensor, responsible for this region. Using this paradigm, the authors

presented a centralized and a distributed version of their coordinating algorithm, both relying

on route prediction. This algorithm optimizes the selection of mobile nodes and the schedul-

ing of measurement to minimize overlapping and reduce the overall energy consumption. It

also supports re-assignment of the task if the sensor cannot fulfill the request. The Aquiba

protocol [277], developed by Thepvilojanapong et al., sets the sensing rate of each sensor

according to the need of the query received from the central server and to the number of

peers that are visible in the neighborhood. A variation of this protocol supports the selection

of representatives that will actually perform the sensing task. Their evaluation is based on

simulations only on mobility models.

3.2.4 Fairness

When optimizing for a global objective function, there is a risk that a few nodes actually take

all the load and therefore one should also factor fairness into the optimization. In their offline

algorithm for solving optimally the centralized scheduling of sensors problem, Sheng and

Tang [263] proposed a min-max approach. On their side, Tang and Zhang [276] presented a

centralized algorithm that is able to compute efficiently the optimal solution to the scheduling

problem, defined using the virtual sensors abstraction, while seeking a min-max fair sensing

schedule.

Unfortunately this issue was to our knowledge never taken into account for online opportunis-

tic coordination.
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Our approach differs from these previous works in the fact that we implemented an ad-hoc

distributed strategy for coordination of the measurements themselves and we also provide

an optimal offline one for comparison. The evaluation, by simulating over two real-world

datasets instead of a mobility model reflects better the issues that may arise when going for a

real implementation.

3.3 Problem Formulation

In this section, we first define the general sensing problem, using a similar notation to Wang

et al. [291]. Then, the specific instance of this problem that we develop further and evaluate, is

presented.

3.3.1 General definitions

We consider a set of N mobile nodes {n1..ni ..nN }, having each a limited budget Bi and as

a task to take measurements mn
s = [ρn

s , t n
s ,µn

s ] with a sensor s of a field F with noise: µn
s =

F (ρn
s , t n

s )+ω. We define ρ as the location, t as the time and µ as the value of the measurement

m. The goal is to achieve a sufficient coverage for modeling with precision a certain spacio-

temporal field M n(ρ, t) = F (ρ, t )+ε. The definition of the specific problem or field to sense

contains information on the sensing coverage requirement and the way measurements are

merged to build the model. Each measurement has a cost depending of the sensor used c(mn
s ).

The collaboration between users happens when one user sends her current measurement to

another user. Sending and receiving operations also have a cost c(sendn
s ) and c(receiven

s )

For our evaluation we define the total error as

E =
N∑

i=1

∑
t∈T

|F (ρ, t )−M ni (ρ, t )|, (3.1)

where ρ is the location of the user at time t . In practice, we use the last known location ρ
ni
s

taken from the last measurement before time t .

To evaluate how evenly shared is the load amongst the sensing nodes, we also define an

approximation of the fairness. For this purpose, we compute the average gain ratio of each

node, expressed by the number of received measurements, divided by the number of sent or

receives measurements:

G n
s = |receiveni

s |
|receiveni

s |+ |sendni
s | (3.2)
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Then Jain’s Fairness Index [121] is used to assess the distribution of the gains among the nodes:

Js =
(∑N

i=1 G
ni
s

)2

N ·∑N
i=1 G

ni
s

2 (3.3)

This is an approximation because it assumes that on average every node will encounter the

same number of other nodes and thus a fairness of 1 is not always possible. However, for a

given experiment with predefined paths and encounters, it can still serve for easily comparing

different protocols’ fairness.

The Table 3.1 summarizes all the symbols defined so far.

symbol definition
N number of mobile nodes
ni a mobile node
Bi the budget of node i

mn
s a measurement with sensor s at node n
ρ the location of the corresponding measurement
t the time of the corresponding measurement
µ the value of the corresponding measurement
F the field to sense
ω the noise of measurements

M n the model of the field at node n
ε the error of the model

c(x) the cost of the operation x
E the total error
Js the fairness

Table 3.1: Summary of the notation

3.3.2 Specific instance

As we have two variables to minimize, namely the cost and the error, we will consider a

generic optimization problem, including both. To this purpose, we define δ as the cost of the

error, quantifying the relative importance of modeling error with regard to the sensing cost.

Therefore our cost function, also called total cost, will be as follow:

C =
N∑

i=1

∑
t∈T

c(mn
s )+δ ·E . (3.4)

Without limiting the generality of the foregoing, we will use an abstract field F sensed by
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the nodes with an uncertainty growing linearly with time. Meaning that the error of the last

measurement is directly proportional to its age. A real-world example could be measuring the

location of somebody moving at constant speed. In a discrete time, the total error between

samples is growing as the well-known sequence of triangular numbers (1,3,6,10,15, ...), but to

use it in a continuous time as we will be doing in some further computation, we express it as a

function of time between samples ∆t :

E (∆t ) = ∆t · (∆t +1)

2
. (3.5)

Then the total error is the sum of all these triangles as shown on Figure 3.1.

Sampling points

time

E
rr
o
r

Figure 3.1: The error is growing linearly between the measurements and the total error is the
total area of the triangles.

For the simulation and evaluation we will restrict ourselves to a concrete problem, but of

course the algorithms presented here can easily be adapted to other collaborative sensing

scenarios.

The mobile nodes are making measurements with a certain sensor, mn
Sensor and can commu-

nicate using Bluetooth with the neighboring nodes. The field F to sense is the same as for

the theoretic part and evolves with time. The model M n simply returns the last sensed value.

As the datasets we use for the evaluation have a granularity of 1 minute, we will also use this

step-size for our simulation, which makes 1440 steps per day. A budget Bi is computed at the

beginning of the experience for each node i and represents the number of measurements that

would minimize the equation 3.4 for a given δ, see next section for the formula. Then, we will

try to further minimize the costs by using as much collaboration as possible . According to

our measurements and the ones reported by Paek et al. [209], certain sensors such as GPS

or Ozone sensors have a much higher energy consumption than Bluetooth, thus making

collaboration desirable. Moreover, the new version of Bluetooth low energy (BLE) suggests

even more incentives to use short range communication instead of using the GPS or other

costly sensors.
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3.4 Opportunistic Strategy

This section shows the sensing strategy developed to maximize the collaboration, thus mini-

mizing the total power consumption. We will build our strategy incrementally, adding new

behavior at each step.

3.4.1 Base-strategy

We start with the very simple case where the mobile nodes do not know when they will meet

each other, but they are aware of the duration of the experiment and therefore can plan when

measurements have to be taken. Moreover, if all measurements are equally useful for the

model, the optimal distribution is to sense uniformly at regular intervals. In our simulation,

we defined the error as being linear in time, therefore we will sample uniformly. Given the

ratio δ and an experiment of one day (1440 steps) it is possible to optimize beforehand the

number of measurements using the error definition from Equation 3.5. This will be called the

initial budget, and for a node i , it is given by:

Bi = ar g mi nb

(
b +δ · 1440/b · (1440/b +1)

2
·b

)
(3.6)

Figure 3.2, shows the initial Budget for different values of δ.

This first scenario is illustrated on Figure 3.3-A, the user 1 having a larger δ and thus a higher

sampling rate.

At anytime, the nodes are broadcasting their latest measurement and at each time step they

scan the neighborhood and collect information about the other devices within communication

range. With this communication we can see on Figure 3.3-B that during encounters the nodes

have more measurements available, reducing their sensing error, but a lot of duplicated

measurements appear. A measurement is called a duplicate if it was performed in the same

step as another measurement and the two nodes where within communication range and

could have shared their measurements.

To avoid the communication collision while using Bluetooth, we suggest using the discovery

beacon for piggybacking the broadcast information in the extended inquiry response packet’s

payload (see the Bluetooth LE specifications [267] for more details). An example of a real

implementation of such a connectionless scheme was realized by Bin and Kim [29].

3.4.2 Synchronization

Collaboration so far is limited to passively listening to other nodes and no specific action is

taken for avoiding duplicate measurements. In order to achieve that, the nodes would need to
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Figure 3.2: Optimal Number of samples for different values of δ for an experiment of one day,
without collaboration.

decide which one is in charge of sensing.

To deterministically decide, the nodes also exchange some other information, like their re-

maining budget, age of last measurement and δ, and the node with the largest remaining

budget will adapt its next sensing time to the other node’s need. More formally, it defines its

next sensing time as the minimum between its own next sensing time and the planned next

sensing time of the other node, based on the sampling rate computed from Formula 3.6.

To illustrate this, we show on Figure 3.3-C that user 1 (with a larger δ and thus also a larger

budget) will continue taking measurements while user 2 will just rely on the ones he receives.

After some time, the budget of user 2 is at the same level as user 1, thanks to the saved

measurements and therefore user 2 is selected to take a sample, while user 1 in his turn relies

on it. This selection process ensures that, with long encounters, the two nodes will contribute

parts of their budgets that are proportional to their actual needs, and ensure some kind of

fairness.

3.4.3 Time-window

Such collaboration works well when the nodes spend a lot of time together, but it may lead to

bad scheduling if the encounters are very short. For example a node meets another one with a
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user 1

user 2

duplicates

user 1

user 2
saved measurement

user 1

user 2

user 1

user 2

within communication range

A.  No collaboration, each node sense at its own rate.

B.  Nodes can exchange measurements when in range, but they don’t change
     their sensing rate.

C.  Nodes can exchange measurements when in range and choose their sensing 
      time to bene�t more from collaboration.

D.  The optimal scheduling 

Figure 3.3: Timelines showing the samples taken and exchanged by two users.

larger remaining budget and decides that it will rely on the other node to take a measurement

at the next step instead of scheduling a measurement itself, but then the other node leaves

and our first node will have its error increased, by not taking a new measurement.

Therefore, to determine if two nodes can start collaborating, we need to know with a certain

probability that they will still be in range at the following step. The distribution of the length

of encounters shows a lot of very short ones (see more details in Section 3.6). Those are either

due to actual short encounters, people passing by or to missing beacons because of the short

communication range. Thus we define a time window of size W and a ratio R . If the number of

encounters per step is greater than R within the last W steps, then the node will assume that

there is enough probability to establish a contact at the next step and will try to synchronize

with the other nodes.
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Of course this strategy is also applicable with more than two devices, the one with the largest

budget taking the measurements. Algorithm 1 summarizes the final strategy using the param-

eters previously defined.

3.4.4 Parameters selection

The above presented strategy can be tuned using a few parameters. These can be set globally

for a given application or individually for each device, according to users’ preferences.

The first and most important parameter is δ; it represents the trade-off between accuracy

and energy saving. More formally it is the cost of an error of one unit. Therefore the effect

of this parameter is strongly linked to the choice of the error function of the model. In the

case of a linearly growing error as we chose and from the Figure 3.2, we can see that a value

greater than 0.5 would lead to sample more than once every two steps and a δ of 0 implies

that no measurements are needed. A typical value that we used for the evaluation is 0.2, giving

a sampling period of approximatively 4 steps.

The two other parameters W and R need some more knowledge about the distribution of

encounters length and interval. Typically if the duration between encounters is short, for

example when the devices are around the limit of communication range, a larger W can help

to keep the devices collaborating. Conversely, if encounters are separated by large amount of

time you may want to reduce the W to react faster at the next encounter.

The ratio R when set to 100% will restrict collaboration to encounters that last at least W +1

steps. This can be used if the distribution of encounters contains too many short encounters

that would trigger the collaboration mechanism, but not last long enough to be of benefit to

the nodes. Smaller values of R could be used to overcome gaps in encounters, but would also

increase the delay for ending collaboration at the end of an encounter.

3.5 Theoretical Optimum

In this section, we look at how an offline algorithm would perform in scheduling the sensing

nodes to minimize the objective function given by Formula 3.4, as shown on Figure 3.3-D. We

use the field F and model M defined in Section 3.3.2 and formulate an optimization problem

under constraints.

According to the definition of our problem, each node will have to satisfy the tradeoff between

modeling error and measurement cost. In the offline case, the nodes know exactly the starting

and ending time of the experiment and can therefore plan all their measurements.

In the simple case where the nodes never meet and therefore cannot exchange any information,

the optimal solution we gave in Section 3.4.1 can be used and the node would sample uniformly

over time. In the opposite case where for example two nodes spend all the time together, the
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Algorithm 1: collaborative sensing strategy

1 /* initialization */
2 age ← infinity //how old is the last value

3 measurement ← null //last value

4 lastNode ← null //who was the last encounter

5 b ← Bi //budget from Equation 3.6

6 timeWindow ← [0... 0] //FIFO queue of size W
7 baseRate ← T / b
8 /* main loop */
9 while remainingTime > 0 do

10 temp ← currentMeasurements //get sensor data

11 if temp then
12 age ← 0 //update last value

13 measurement ← temp

14 setBroadcastingInfo(measurement,age,b) //to be sent

15 others ← received info //get other nodes' data

16 timeWindow.push(|others|)
17 timeWindow.pop()
18 if others is not empty then
19 lastSeen ← 0
20 lastNode ← max(others,b) //keep the node with max budget

21 if any (other.age < age) in others then
22 (measurement,age) ← (other.measurement,other.age) //if newer, update our

data

23 if lastNode and sum(timeWindow) > R ·W then
24 if b >= lastNode.b then
25 sampling ← (age >= baseRate)
26 or (lastNode.age >= lastNode.baseRate)

27 else
28 sampling ← (age >= baseRate)

29 else
30 sampling ← (age >= baseRate)

31 if sampling then
32 querySensors()
33 b -= 1

34 age += 1
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optimal solution is for them to alternatively sample and send their result to the other node,

reducing this way their own expense in terms of measurements. The reduction grows then

proportionally with the number of nodes.

But if we consider a more complex schedule of encounters between the nodes, the solution is

no longer trivial. Indeed, if two nodes have overall a different total time spent with other nodes,

they will be able to save different amount of sample-budget and distribute it over the time

they are alone. But if two nodes that have a different overall target sampling rate meet, they

should agree on a collaborative sampling rate that can be anything between their respective

targets. To compute formally the total amount each node will use from its budget for each

period, we first need to define some variables.

3.5.1 Definitions

For a certain node or group of nodes, an encounter is a period of time during which the

environment of the node is stable, meaning that it has the same neighbors. As our dataset

is sparse enough, and to simplify the computation, we will consider complete graphs for

modeling the encounters on this dataset. In other words, if node A sees node B then node

B sees node A and the same for larger groups by applying transitivity. This is a reasonable

assumption as the detection distance is pretty small (a few meters) compared to the field of

experiment (tens of kilometers) and so there is a very low chance of creating a long chain1.

Considering that, we build the matrix E of all encounters and the vector L for the durations,

defined as:

E j ,i =
1 if ni is in encounter j

0 otherwise
(3.7)

L j = duration of encounter j (3.8)

Further we define the matrix A, which is similar to E but contains the contribution (in terms of

number of measurements shared) of node i during the encounter j . Finally let Oe and On be

vectors filled with 1’s with a length of the number of encounters and respectively the number

of nodes. The total error from Formula 3.1 using the continuous definition from Formula 3.5

1This was tested on our dataset, but is not always true
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can now be expressed with these matrices as

E =
(

L

2
∗

(
L

A.On
+Oe

))>
.E .On (3.9)

and the total cost in Formula 3.1 is written

C =O>
e .A.On +δ ·

(
L

2
∗

(
L

A.On
+Oe

))>
.E .On (3.10)

where the divisions and the multiplication (∗) are done element-wise on the vectors.

This defines a non-linear minimization under constraints problem:

min C (A) (3.11)

subject to

{A j ,i }

= 0 if E j ,i = 0

>= 0 otherwise
(3.12)

As devices usually have a limited total energy available, for example when using batteries,

it also makes sense to rewrite the optimization by setting the budget to a fixed value B and

minimizing only the error.

min E (A) (3.13)

subject to

(O>
e .A)>−B = 0 (3.14)

{A j ,i }

= 0 if E j ,i = 0

>= 0 otherwise
(3.15)

Both these problems are considered for our evaluation.

46



3.5. Theoretical Optimum

3.5.2 Competitive analysis

In this section, we evaluate the performance of our algorithm when an opponent with the

goal of maximizing the error could decide the next input, i.e. the encounters of the nodes.

The competitive analysis shows the ratio in a worst case scenario between the considered

algorithm and an optimal (usually offline) one, which would have complete knowledge of

future encounters. For this analysis, all the sensing nodes will run our protocol. We do not

consider misbehaving nodes here.

First we consider the case when the nodes meet less than the threshold R (as defined in

Section 3.4.3) in any possible window of length W , both nodes will take measurements at a

regular rate of B/T , where T is the total time of the experiment and B the initial budget. The

total error is then (n/2) ·T · (T /B +1) for n nodes. The best that can be achieved by an offline

algorithm when a maximum (still below the threshold) of encounters are properly distributed

is to alternatively sample and share the resulting measurements. If R is smaller than B/T ,

the remaining measurement are also distributed evenly for both nodes at the same time, the

sampling rate being doubled compared to the shared part. The resulting error is:

n

2
·T ·

(
T(

B + (n −1) ·mi n
(
B , R·T

n

)) +1

)
. (3.16)

The mi n(B , (R ·T )/n) represents the number of measurements that can be shared. For this

case, the ratio of online algorithm to the offline algorithm is upper-bounded by n when n

nodes are meeting.

Then we consider the case when the nodes have enough encounters, the W and R parameters

playing an important role. Indeed as long as the number of encounters in the last W steps is

at least R ·W , a node with a lower budget will rely on the last encountered node to provide

it with the measurements. Therefore the strategy of the opponent will be to make the node

with the lowest budget wait for a measurement from another node for as long as possible, but

having enough encounters to be above the threshold. This scenario is shown on Figure 3.4,

where R_T is the remaining time and R_B is the remaining budget.

Added Error 

R_T/R_B 

(1-R) W 

Node 1 

Node 2 

Takes measurement 

Receives measurement 

Encounters 

W

Figure 3.4: Worst scenario when two nodes try to collaborate.
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This waiting time is defined by (1−R) ·W and the added error compared to the case where the

sharing of the measurement would have happened immediately is marked in red on the Figure.

Node 2, with a lower budget was planning to take a measurement at time (R_T/R_B), but as it

met Node 1 right before, with a larger budget, it waited (at most (1−R) ·W steps) to receive the

measurement from it. This can then be repeated with Node 1 and 2 inverted, as Node 1 may

have decreased its budget now. To match the necessary number of encounters to reach the

ratio R in the window, some encounters can be added before the measurement time, like the

dashed arrows on the Figure. In this scenario, by shifting the sampling times slightly earlier,

the optimal algorithm would be able to reach at least the same error as in the previous case,

the "added error" being the lower bound on the difference between both algorithms. From

the Figure 3.4 we can see that we have at most a proportional overhead of (n −1)(1−R) ·T for

an experience of length T and thus a ratio bounded by 1+2 · (1−R), which is always smaller

than the upper bound found in the first case, except for two nodes.

To summarize our competitive analysis, we have shown that the competitive ratio although

determined by the parameters B and R can be upper-bounded by n, or 1+2 · (1−R) if n = 2.

The worst case scenario being when the nodes are always together, but have just not enough

encounters for triggering the collaboration. A good choice of parameters can help to guarantee

tighter bounds, but as we will see on the evaluation on the real-world dataset, the results are

already far below this upper-bound.

3.6 Evaluation

3.6.1 Dataset descriptions

Nokia dataset

First, we investigated the large Nokia Data Collection Campaign dataset [135] to asses the

scalability of our algorithm and the potential impact of collaboration. From this dataset, we

selected one year of data and took the Bluetooth scanning tables. Over the 166 users, the

average time spent with another user in the neighborhood according to the Bluetooth scans is

8%, with one third of the users over 10% as shown on the Figure 3.5. For this evaluation, we only

consider the encounters within the community of 166 users, representing 22% of all Bluetooth

scans. This would be the typical case if only a few people with some social connections2 were

running a continuous sensing software and using our protocol for collaborative sensing. Latter

results can of course be improved a lot if the protocol is deployed at larger scales or in denser

communities. The distribution of the length of the encounters and intervals between them

are shown in Figures 3.6 and 3.7.

As the data was recorded on mobile phones, a smart scheduling of the sensors was imple-

mented to avoid draining the battery too fast. But this non-uniform measurement rate,

2Recruitment of participants to the Nokia collection campaign was done by asking group of friends, co-worker,
etc using a snow-ball effect.
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Figure 3.5: Percentage of time with another of the 166 user in the BT vicinity

responsible for the irregularities on Figure 3.6 also slightly affected our simulation by missing

surrounding BT devices every now and then. To avoid that, the W parameter was set to 4 and

R to 75%, thus flattening a bit the small intervals.

Figure 3.6: Distribution of the intervals between two encounters.

The simulation of our strategy was run over this dataset with the two objective functions de-

scribed in Section 3.5, namely minimizing both the error and the sensing cost and minimizing

the error with a fixed budget. For the first one, our strategy is directly used, but for the second

one, small modifications are needed on Algorithm 1, namely on line 6 the defined budget

is taken instead of computing it and on line 36, sensing is only performed if the remaining

budget is greater than 0.

During the simulations, the input matrices needed for Equations 3.9 and 3.10 were also gen-

erated and in a second time given to Octave3 for solving the minimization problem using

3http://www.gnu.org/software/octave/index.html
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Figure 3.7: Distribution of the duration of the encounters. Removing the intervals smaller than
4 minutes reduces by one order of magnitude the total number of encounters.

sequential quadratic programming. The computation was done on continuous values as Oc-

tave does not provide an integer version for this kind of solver. As the budget was reinitialized

every day (as if the users were charging their devices every night), the problem was also cut

into 365 independent subproblems and it took around 1 day on a 12 cores @ 2.3Ghz server to

compute the optimal values.

Paléo dataset

In this section we show in more detail the performances of our strategy on a dataset collected

during an experiment run by Naini et al. [198] during the Paléo Festival4 with 10 users over 10

hours. The scanning software was recording the Bluetooth physical addresses every minute

and GPS was turned on when the user was moving. The motion of the user was detected

using the accelerometer and GPS location when available, similar to the scheduling algorithm

presented in Section 6.4.2.

4http://www.paleo.ch/
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The timeline, in Figure 3.8, shows when GPS location was available and other devices’ blue-

tooth were detected. The green and yellow slots both indicate that the device had a GPS fix, but

for green no neighboring devices were detected. The red slots indicate when the device had no

GPS fix and could have received its location from another nearby device if it had sent it. Finally

the blue slots indicate when other devices are detected, but no one has a GPS fix. In total, 411

times a user’s phone detected another user’s phone. As users 3 and 7 were having trouble with

the Bluetooth detection, they were not considered in the later evaluation. From the timeline,

we can already see that users 2 and 10 (resp. 4 and 5) were together during a significant part of

the evening and therefore have a large potential for collaboration and energy saving.

Figure 3.8: Timeline from the Paléo dataset showing when GPS (Green and Yellow) and Blue-
tooth encounters (Red, Blue and Yellow) are available. Red means that a GPS location is
included in the BT beacon, whereas Blue is when there is no location. (for B&W printing, from
darker to lighter: red, blue, green, yellow)

The evaluation was done by emulating our strategy over this dataset and comparing it to

two baselines, one using only the base strategy and collaborating when possible and another

without the collaboration. The parameters W and R were directly optimized using grid search

during the experiment. But looking at the histogram of the interval and duration of encounters,

see Figure 3.9, we can already tell that the encounters were rather short, and may have had

small interruption of a few minutes.

3.6.2 Results

Nokia dataset

When optimizing for both error and energy consumption, the optimal offline computation is

able to reduce the objective function by 5% compared to our baseline without collaboration.

With a δ of 0.8 it represents a reduction of cost of 10% and 3.25% of energy. Interestingly the

distribution among the users is not uniform, as shown on Figure 3.10, and while half of the

users do not seem to be able to benefit from collaboration, some of them are able to save more

than 10% of energy. This can be explained by the distribution of the encounters themselves,

from Figure 3.5.

At δ= 0.5, our online strategy is able to reach 25% of the optimal strategy compared to the

baseline. As we will see later, the online algorithm is always penalized by short encounters
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Figure 3.9: Histogram of the time between two consecutive Bluetooth encounters and encoun-
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Figure 3.10: Distribution of energy and total cost saving for all users using the optimal solution.

which often generate duplicate measurements like the one we can see on Figure 3.3-C.

When fixing the budget and minimizing only the error, we get similar results. As shown on

Figure 3.11, the optimal offline error reduction compared to not collaborating is varying

between 8% and 23%, depending on the initial budget. With a low budget, the value of

each measurement is higher and a good scheduling and sharing scheme can help a lot. Our

online strategy is not able to performs as well because of the short length of most encounters

compared to the base sampling rate (roughly one sample per hour for a budget of 30). Indeed
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it would need to predict the next encounters for the next hour. In the middle, with a base

sampling period between 2 and 5 minutes the online algorithm is around 50% as good as the

optimal offline one. The high values on the high budget side for the offline algorithm are due

to the aliasing effect of computing the optimal schedule with continuous values. Indeed, with

a budget of 1200 and an experiment of 1440 steps continuous divisions are much more regular

than discrete ones.
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Figure 3.11: Error reduction induced by collaboration and measurement exchanges, showing
the offline optimal solution and our online algorithm.

From Figure 3.12 we can see that introducing the concept of synchronization between nodes

and keeping track of previous encounters can divide by three the number of duplicates

compared to the baseline illustrated on Figure 3.3-B.

Based on these encouraging results, we analyzed in more detail the behavior of our strategy

on the smaller Paléo Festival dataset.

Paleo dataset

First our strategy was simulated with different values of W and R, performing a grid search to

find the optimal combination. As W ·R was anyway rounded to an integer, we directly chose

the values of R that gave integers. On the Figure 3.13 we can see that a good choice of values

are W = 6 with R = 5/6.

Using these parameters we compared our strategy to the baseline with and without informa-

tion exchange. As shown on Table 3.2, by transmitting their last measurements, the nodes were

able to reduce the total cost of the baseline by 3%, but with a lot of duplicated measurements.

Our strategy was able to improve the total cost by 3 percent more and at the same time divided

the duplicate measurements by 3 (from 505 to 141) and reduced the budget used by 1/3 . The
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Figure 3.13: Heatmap of the total cost with δ= 0.2 according to the R and W parameters

fairness was also improved by distributing more evenly the sensing costs over the nodes. The

experiments using fixed budget showed a similar behavior.

Strategy Budget used Total Error Total cost Duplicates Fairness
Baseline 1640 5720 2784 - -

Baseline+communication 1640 5354 2711 505 0.39
Collaborative 1072 7723 2617 141 0.72

Table 3.2: Performance comparison between the baseline (regularly sampling) with and
without communication, and our collaborative strategy.
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3.7 Conclusion

In this chapter, we explored a new strategy to implement energy-efficient collaborative sens-

ing in a completely ad-hoc manner, among multiple agents with uncontrolled mobility. Its

evaluation showed the reduction of energy budget of smartphone users and at the same time a

satisfactory level of sensing accuracy. We also expressed the offline optimal solution as a non-

linear optimization problem under constraints and computed its numerical approximation.

With sampling periods between 2 and 5 minutes, our online strategy showed experimentally

an cost saving ratio of 2 compared to the offline optimum. The evaluation was then performed

on two real-life datasets.
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4 Optimal Sampling

4.1 Introduction

As we have seen in the previous chapter, mobility is key. Not only it does allow the sensing

devices to collaborate but they can also cover much larger areas than static sensors. This chap-

ter introduces optimizations for such mobile sensing devices, by determining the sampling

policy in the case of a mobile environmental sensor device.

Traditional wireless sensor networks (WSN) based environmental monitoring systems (like

SensorScope [117] and MacroScope [279]) typically deploy sensors at some pre-selected

positions, monitor these fixed sensors continuously, and analyze their measurements. These

traditional static WSN with fixed sensors have however a couple of obvious limitations, e.g.

(a) the system is inflexible for monitoring location-varying environment; (b) it is expensive

to deploy and maintain a large set of static sensors; (c) for a very large area needing to be

monitored, it is impossible to get enough static sensors to cover the complete area.

To overcome such limitations, researchers recently start to build WSN with mobile sensors.

There are a lot of emerging mobile sensing platforms, e.g.,: (a) the OpenSense project in

Switzerland builds sensors and puts them on public transport, like buses and trams [2];

(b) the floating sensor network project at UC Berkeley builds a water monitoring system

using drift sensors to analyze water contamination [278]; (c) mobile phones are used to

establish a community seismic network to detect earthquakes and rare events [82]. The

mobility of sensors today stimulate substantial research and poses technical challenges for

the communication and information systems infrastructure, to scale up from isolated well

controlled systems to an open and scalable infrastructure.

In the OpenSense project, the use case of this chapter, we deployed environmental sensors

on moving buses to monitor air quality (using sensors to measure CO2, CO, NO2, etc.). The

mobility of the sensing node implies that the sensing policy has to be adapted to the varying

environment, as a single time series model would not be able to capture accurately all the

different locations visited. Defining the time or the place to take measurements is similar
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to the more traditional problem of sensor placement in static deployments. Therefore we

designed a two-tier framework, where the first tier takes care of partitioning the time series in

segments which can be modeled with a single model and the second tier defines the sampling

strategy.

4.2 Related Work

We seek to design an optimal mobile sensing strategy, which provides an appropriate balance

between “sensing coverage maximization” and “sensing cost (sampling) minimization” of an

individual moving sensor. There are three main topics related to this goal: (1) optimal sensor

placement in static WSN; (2) mobile sensing; and (3) time series segmentation.

4.2.1 Sensor Placement in WSN

Determining an optimal sensing placement in an arbitrary sensor field is a kind of art gallery

problem, which is NP-hard [156] and requires near-optimal solutions like the submodularity

method [141]. A couple of efficient near-optimal algorithms are also provided [72, 142, 164].

In the work of Krause et al. [142], a greedy solution is designed by using mutual information

when selecting the next sensor point, which has better performance than traditional random

solution or other basic entropy-based sensor selection. In [164], the sensor placement is

modeled as a min-max optimization problem, and a simulated annealing based algorithm

is provided. In [72], the method supports imprecise sensor detection like terrain properties,

which can support sensor placement with probabilistic guarantee in a polynomial time. All

of these works are not designed for mobile sensors. Nevertheless, relevant optimization

formulation and greedy solutions can be adopted in our framework.

4.2.2 Sensing from Mobile Sensors

Recently, a number of mobile sensing applications have been emerging, particularly in ur-

ban computing, such as OpenSense for air quality monitoring [2] or floating sensors for

water contaminants analytics [278]. One work similar to our optimal sensing strategy for the

OpenSense project is the Ear-Phone [238], which provides an end-to-end participatory urban

noise mapping system and generates a noise map from a small set of sensor readings in a

sparse spatio-temporal sensing field. This is similar to our objective in OpenSense,in which a

small number of moving buses are used with environmental sensors (e.g., CO2). However, our

work in OpenSense has additional challenges: (a) the monitoring area in OpenSense is a 2D

map, or even a 3D one, not a 1D road line like in Ear-Phone; and (b) OpenSense is real mobile

sensing that deploys sensors on moving buses, whilst Ear-Phone fixes mobile phones beside

the road.
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4.2.3 Time series segmentation

Segmenting time series is an important topic in many areas such as data mining, signal pro-

cessing, and applications of financial and environmental data. According to well-known time

series segmentation studies like [108, 132, 133], the segmentation methods can be divided

into three categories, i.e., sliding window, top-down and bottom-up. Sliding window algo-

rithms can work online and efficiently, but the results are poor and sensitive to parameters;

whilst top-down and bottom-up methods have better segmentation results but cannot be

directly used in real-time applications. To balance both offline high-accuracy and online

efficient-computation, a couple of combination algorithms are proposed, such as SWAB (Slid-

ing Window And Bottom-up) by Keogh et al. [132], piecewise linear segmentation (mixing

both constant and linear function) [158], FSW (Feasible Space Window) & SFSW (Stepwise

FSW) [172], SwiftSeg (a polynomial approximation of a time series in either sliding or growing

windows) [85]. In this project, we study different types of segmentation methods, and evaluate

them with the combination of different sampling strategies to achieve optimal sensing for

mobile sensors.

4.3 Two-Tier Optimal Mobile Sensing

This section presents our two-tier optimal mobile sensing framework, named OptiMoS, and

its problem formulation. Figure 4.1 sketches the framework of OptiMoS for achieving the

optimal sensing, as well as the data flow in this procedure.

Sensor 
Readings 

Optimal 
Segmentation 

Optimal 
Sampling 

S1 S2 S3 S4 S5 

Layer	  I.	  Op+mal	  Segmenta+on	  
(Modeling	  by	  Linear,	  Polynomial,	  SVM	  Regression,	  ARIMA	  modeling	  etc.	  )	  

Layer	  II.	  Op+mal	  Sampling	  
(Op?mal	  sampling	  on	  each	  segment)	  

Figure 4.1: OptiMoS’s two-tier optimal sensing framework

In the lower tier of OptiMoS, the initial input is the raw sensor readings collected by moving

sensors, i.e., multiple dimensional spatio-temporal time series data. Each reading record is

the “×” symbol in Figure 4.1 (i.e., Ri = 〈t , l , x1, · · · , xm〉), which includes sensing time t , sensing

location l , and environmental measurements x1 to xm .

The objective of this tier is to find the optimal (or near-optimal) segmentation based on data
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modeling on these raw readings. OptiMoS supports all kinds of modeling methods, e.g., simple

linear regression, polynomial regression, SVM (Support Vector Machine) based regression,

time series ARIMA (Auto-Regressive and Moving Average) modeling. As the result of the first

tier, we can achieve an optimal (or near optimal) segmentation.

In the upper tier of OptiMoS, we focus on studying individual optimal segments, computed

from the lower tier. For each segment, the objective is to find the best sampling from the mobile

sensor readings, i.e., to select only a subset of sensor readings (“×” symbols in Figure 4.1) that

can keep enough modeling information for regression of the whole segment and interpolation

of non-selected sensor readings.

4.3.1 Problem Statement

The problem can be formulated as follows:

Given a sequence of initial mobile sensor readings R = {R1, · · · ,RN } of size N from continuously

moving sensors, where each record Ri = 〈t , l , x1, · · · , xm〉 consists of M types of sensor readings

(from x1 to xm) together with the timestamp (t) and the location (l = 〈 longitude, latitude,

altitude 〉), the objective of OptiMoS is to identify the best sampling of such sequences of sensor

readings that can guarantee the majority of sensor reading information (i.e., sensor coverage

maximization) at the minimum sampling rate (i.e., energy cost minimization).

As shown in Figure 4.1, our solution to this problem is to provide a two-tier optimization

framework. We also compare it with traditional one-tier mobile sensor sampling without

segmentation (see the experiment in Section 4.4).

4.3.2 Near-Optimal Segmentation

A model M on a segment Ri can be linear, polynomial, SVM regression, ARIMA etc. In this

project, we study linear and SVM regression (we use the LibSVM package [45]), and evaluate

their performances. We apply the RSS (Residual Sum of Squares) to quantify the error for

modeling a sequence R = {R1,R2, · · · ,RN } (see Formula 4.1). The residual r es(Ri ) is computed

using R̂i which is the approximation of Ri by the learned model M (R).

RSS(M (R)) =
N∑

i=1
(r es(Ri ))2 =

N∑
i=1

(|Ri − R̂i |)2

where R̂i =M (R)|Ri (4.1)

Finding the best K segments is equivalent to identifying the best K -1 division points: Rd1 ,

Rd2 , · · · , RdK−1 ; then, for each segment Ri , we have a sub sequence of readings between two

division points, i.e, Ri = {Rdi−1 ,Rdi−1+1, · · · ,Rdi }. For the first segment (R1), Rd0 indicates

60



4.3. Two-Tier Optimal Mobile Sensing

the first reading R1. This optimal segmentation problem is an unconstrained optimization

problem. Ideally, the segment number (K ) is not known in advance, and needs to be discovered

automatically as a part of the optimization problem, as shown in Formula 4.2.

ar g mi n
K ,d1,d2,··· ,dK−1

K−1∑
i=1

RSS(M ({Rdi−1 , · · · ,Rkdi
})) (4.2)

For simplicity, in the first step of this work, we can assume K is given and we will test a

reasonably small set of different K values (e.g., K ≤ 10 in our experiment), to analyze the

convergence and achieve a near-optimal segmentation.

Optimal approach

The segmentation problem in Formula 4.2 has an optimal solution that can be found using

an exhaustive search, where the algorithm is recursively searching the best point to divide i

segments into i +1 segments. This can be computed by dynamic programming (DP) [23, 108],

with the complexity of O(K N 2) where K is the segment number and N is the number of points

in R. With such quadratic complexity, DP is impractical for segmenting real-life large scale

time series. Nevertheless, we can apply DP to segment a short sequence using small K (≤ 5),

and evaluate other segmentation methods comparing with the optimal modeling error from

DP.

It is worth noting that our objective is to find a segmentation that is not only the optimal one

for the training sequence, but also applicable to other similar sequences (as testing data). The

segmentation result on one day of Bus-line-1 should be generally consistent with sensing data

from other days on the same line. Therefore, the optimal segmentation from the training day

might not be the best for testing days. This is the over-fitting issue which needs to be avoided

in OptiMoS. In the experiment, we show such experimental evidence.

Top-down Binary Segmentation

As the optimal segmentation by DP is impractical for real-life long sequence of mobile sensing

data because of its high complexity, researchers proposed many greedy segmentation methods,

such as the top-down binary split method [132]. The idea is to hierarchically split the sequence

with maximum error into two sub-sequences, until the number of segments reaches K . We

call this traditional top-down binary segmentation algorithm Binary.

In Binary, the algorithm always chooses a segment with the maximum model-based regression

error (RSS) to make further segmentation, which may cause the division only in one segment

and its subsegments. As a result, the segmentation result could be totally unbalanced. To

overcome this problem, we design an extended algorithm of Binary, called Binary+.
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Algorithm 2: segmentDP (R, i , j ,k)

Input :R = {R1,R2, · · · ,RN } //mobile sensor readings

i , j //to make next segmentation in 〈Ri ,R j 〉
k //the number of segments

Output :optimalRSS //model error by optimal segmentation

1 /* find the optimal segment */
2 if k = 1 and j > i then
3 print i, j ; //print optimal sub-segments

4 return RSS(R, i , j ); //compute model error RSS 〈Ri ,R j 〉
5 /* impossible to find the optimal segment */
6 if j − i < k then
7 return ∞;

8 /* recursive segmentation (from k to k-1) */
9 optimalRSS ←∞; //initialize the optimal RSS found so far

10 foreach i d ∈ [i +1, j −1] do
11 firstSegRSS ← RSS(R, i , i d);
12 restSegRSS ← segmentDP (R, i d , j ,k −1);
13 totalRSS ← firstSegRSS + restSegRSS ;
14 optimalRSS ← min{optimalRSS, totalRSS};

15 return optimalRSS ;

In Binary+, we modified the RSS error measurement to include two types of penalties to

prevent Binary from always choosing the top RSS error and making segments that are too

short: a negative penalty according to how much error can be reduced after such segmentation;

and a positive one proportional to the length of the new segments:

�RSS = RSS(M (R))− (RSS(M (Rl e f t ))+RSS(M (Rr i g ht )))+λ× leng th (4.3)

Heuristic Segmentation

The Binary and Binary+ methods only consider the middle point of a segment as the cutting

point, but this is not always the optimal solution. Therefore, we additionally design an error-

based greedy method that uses the model residual of each record to identify segment division.

The residual is computed with Formula 4.1. For this heuristic method, our simple greedy

strategy is using the top error point as the division point for the segmentation. Recursively, we

recompute the new models for new segments, and find the next top error point as the new

division point, until we reach K segments. This segmentation is called “Heuristic”.

Similar to Binary this method can be biased by some outliers and produce extremely short

segments. Thus, we design an extended version called “Heuristic+” that also uses the penalty
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Algorithm 3: segmentBinary+ (R,K )

Input :R = {R1,R2, · · · ,RN } //mobile sensor readings

K //the number of segments

Output :segQueue //list of segments

1 segQueue ← Ø; //initial priority queue

2 segQueue.push(R,1, N ); //insert the first segment into the priority queue

3 foreach k ∈ [2,K ] do
4 /* retrieve & remove top error segment from the queue */
5 topErrorSeg ← segQueue.pop();
6 /* divide the segment into two subsegments */
7 S1 ← (R, topErrorSeg.begin, topErrorSeg.division);
8 S2 ← (R, topErrorSeg.division, topErrorSeg.end);
9 /* add the two new sub segments into two the sorted list*/

10 calculate �RSS for S1 and S2;
11 segQueue.push(S1);
12 segQueue.push(S2);

13 return segQueue ;

function from Binary+ to avoid two division points being too close, i.e., the segment is too

short. In addition, Heuristic+ does not look for the largest error, but for the longest contiguous

sequence of errors exceeding a certain threshold (e.g. the error median) and then randomly

choosing one of its endings. This way it can isolate segments that have a bias in M (R).

The Binary and Binary+ methods focus on finding the best segment to divide; whilst the

Heuristic and Heuristic+ methods focus on finding the best division points to apply the seg-

mentation. The last segmentation method we propose in OptiMoS, named B+H+, combines

Binary+ and Heuristic+. The idea is to consider both “the maximum error segment to divide”

but also “the maximum error subsequence to apply the division”. The combination is done as

follows: the segment to divide is chosen by Binary+ and then, inside this segment, Heuristic+

is applied to find the segmentation point. This way we ensure that the segments have a better

distribution, like in Binary+, but also that the segmentation points are put in regions where the

current model has its worst performance and thereby a certain improvement can be expected.

4.3.3 Near-Optimal Sampling

After getting the optimal segmentation, OptiMoS needs to identify the best sampling of mobile

sensor readings for each individual segment. To quantify whether a sampled reading sequence

Rsub is good or not, we define the “information loss”, L (R,Rsub), i.e., the RSS increase ratio

between Rsub and the complete readings R.
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L (R,Rsub) = RSS(M (Rsub →R))−RSS(M (R))

RSS(M (R))
×100[%]

=

N∑
i=1

(Ri −M (Rsub)|Ri )2 −
N∑

i=1
(Ri −M (R)|Ri )2

N∑
i=1

(Ri −M (R)|Ri )2

(4.4)

where, RSS(M (Rsub → R)) means the RSS error for the approximation of the complete

sequence R by using the model M (Rsub) that learned from the sub sequence Rsub .

Similar to reformulating the sensor placement problem in static WSN, we chose to define

the optimal sampling problem in OptiMoS by: Given a limited sampling rate δ, find the

best sampling set Rsub that has minimum information loss L (R,Rsub), as presented in the

Formula 4.5. For the experimentation we chose δ from the set {1,1/2,1/3,1/4,1/5}.

ar g mi n
Rsub

L (R,Rsub) such that |Rsub |/|R| ≤ δ (4.5)

Optimal approach

The optimal sensor placement (or sampling) in an arbitrary sensing field is an NP hard prob-

lem [72, 142, 164]. For a simplified problem with a limited number of mobile sensing points

(N ), the optimal sampling at the sampling rate δ requires an exhaustive search amongst all

possible subsets of readings. This needs to consider all combinations of δN points from the

initial N points, which has the complexity of O(NδN ) and is still NP-complete. Therefore, we

look for near-optimal greedy solutions for optimal sampling in OptiMoS.

Distribution based Sampling

Intuitive greedy solutions for sampling the mobile sensor readings for each individual segment

are using some statistical distributions, e.g., uniform and normal. In this project, we evaluate

the uniform sampling and the random sampling.

• Uniform Sampling – To uniformly select the δ percentage of mobile reading points in the

segment, the algorithm selects the sensing point at each interval δN . We can apply such

uniform sampling δN −1 times, each time with a different offset. The final accuracy of

the uniform sampling is the average of several trials.

• Random Sampling – In this method, we select randomly, with a uniform distribution,

δN points from the segment, and make a certain number of trials. Similar to the uniform
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sampling, the final accuracy of random sampling is the average of several trials.

Entropy based Heuristic Sampling

In distribution based sampling, selecting sensing points only considers position distribu-

tion. There is no bias in general and it is not taking into account the relevance of a certain

measurement for the model.

To provide better sampling, we design an error-based entropy sampling. Similar to the heuristic

segmentation methods using modeling errors, we first applied the residual r es(Ri ) as the

entropy for the selection of sensor readings, and kept only the points with the highest error.

But this was too sensitive to outliers and bias of the model. So we designed an entropy

approximation using a relative residual rather than the absolute value. The idea is using a

leave-one-out basic model to approximate the residual and check how large the gap is between

real residual and the approximated one (see Formula 4.6). To approximate the residual of

point Ri , the leave-one-out model uses the residuals of nearby points (in window size 2w ,

i.e. w for left and w for right) and builds simple interpolation (e.g., using basic mean, linear,

Gaussian).

ˆr es(Ri ) = r es(Ri )− leaveOneOutAppr(Ri , w) (4.6)

Mutual Information based Heuristic Sampling

Both the absolute error res and the relative error ˆres in the entropy based sampling are calcu-

lated using the first computed Model. However, the relevance of sampling points are actually

varying after each sampling step. Such information change can be modeled using the mutual

information that can measure the mutual dependence of two random variables (in our case

the candidate point to be selected and the points already selected).

Mutual information can reduce information dependency, therefore it has been extensively

used in many topics such as feature selection [219] and traditional static sensor placement [142].

Therefore, we additionally designed a mutual information based sampling method in OptiMoS.

We defined a loop procedure that recursively recomputes the new r̃es of the candidate sensor

readings. Such new r̃es needs to remove the mutual information from sensor readings already

selected (see Formula 4.7).

r̃es(Ri ;Rsub) = ˆr es(Ri |Rsub)− ˆres(Ri ) (4.7)

where, Rsub is a set of sampling points already selected so far, Ri is a candidate reading
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for adding to Rsub , ˆr es(Ri |Rsub) is the relative residual computed only using the selected

readings Rsub , and ˆr es(Ri ) is the relative residual computed by all of the sensor readings R

without sampling.

The first point is taken using the relative error based entropy; then, we recursively compute

the mutual information between the candidate data reading and the selected data readings,

and choose the sensing point with the maximum new residual that removes the redundancy

from existing sampling points. This procedure is stopped when it reaches the final sampling

rate.

Algorithm 4: samplingMutualInfo (R,δ)

Input :R = {R1,R2, · · · ,RN } //mobile sensor readings

δ //the sampling rate (ratio of samples to keep)

Output :Rsub //sampling set, with size δN
1 /* initialization */
2 Rsub ← Ø; //initial empty sampling set

3 M ← r ound(δN ); //the size of the final sampling set

4 /* get the first sample with only entropy */
5 foreach Ri ∈R do
6 compute the entropy ˆr es(Ri ); //by Formula 4.6

7 firstSample ← ar g max
Ri

ˆr es(Ri );

8 Rsub ←Rsub ∪firstSample ;
9 /* get the following samples with mutual information */

10 while |Rsub | < M do
11 foreach Ri ∈R−Rsub do
12 compute r̃ es(Ri ;Rsub); //by Formula 4.7

13 nextSample ← ar g max
R j

r̃ es(R j );

14 Rsub ←Rsub ∪nextSample ;

15 return Rsub ;

4.4 Experimental Evaluations

This section presents the experimental results of our two-tier optimal mobile sensing frame-

work,OptiMoS. We evaluate OptiMos’ different segmentation strategies and various sampling

methods using real-life environmental data from mobile sensors from OpenSense [2]. All the

input data (e.g., CO2 values) were linearly scaled to [0,1] for normalization. The algorithms

were implemented in Java using the API provided by Weka [98] for building the models (SVM

regression and linear).
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4.4.1 Segmentation Results

To evaluate the various segmentation methods proposed in Section 4.3.2 and make a com-

parison, we define a metric for quantifying the model error reduction by segmentation (from

the initial non-segment sensor readings R to the K segments Ri ), i.e., the ratio of modeling

errors called “RSS_Ratio”.

RSS_Rati o =
∑K

i=1(RSS(Ri ))

RSS(R)
×100[%] (4.8)

The Figure 4.2a presents the RSS_Ratio achieved using SVM regression on one-day mobile

sensing as the training data. The six segmentation methods (i.e., Binary, Binary+, Heuristic,

Heuristic+, B+H+, and Optimal) are tested with different segment numbers, from 2 to 10.

Clearly, with more segments (i.e., larger K ), the error ratio can be reduced. Initially, such error

reduction is significant at small K , but later it becomes more stable when K becomes larger.

For individual segmentation methods on the training RSS_Ratio errors, we observed that the

Heuristic+ and B+H+ methods are better than other segmentation methods. We additionally

compared them with the optimal solution (Optimal) using dynamic programming for small

numbers of segments (i.e., K ≤ 5). We omitted the optimal solution for larger K , as the

computation time was too expensive. The RSS_Ratio achieved by the Heuristic+ and B+H+

methods are closer to the optimal solution compared to other methods. Therefore, the error-

based heuristic methods are well suited for model-driven segmentation.

To further evaluate the segmentation results learned from one day training data, we tested

them on mobile sensing data from other days on the same bus line. This test can evaluate the

robustness of our segmentation results. Fig. 4.2b shows the testing errors as RSS_Ratio. We

observed that Heuristic+ is clearly better than other methods, and even better than the Optimal

for most cases (K = 3,4,5). This is the over-fitting problem, i.e., the optimal segmentation for

training data is not necessarily the best for the testing data.

Figures 4.2a and 4.2b present the segmentation results using the SVM regression model. For

linear regression, we observe similar trends amongst different segmentation methods. Addi-

tionally, the optimal segmentation using linear model in the training data works even worse

on the testing data. The linear model has more prominent over-fitting problems compared to

the SVM modeling.

The Figure 4.3 shows the regression values with segmentation (obtained from Heuristic+ when

K =5). We observe better regression results by using segmentation, particularly at the duration

of 0am-10am. In terms of the concrete modeling errors, RSS(M (R)) using SVM regression

is 0.070 and RSS(M (R)) by linear model is 0.081; the two models respectively have model

error decreased by 12.7% and 19.3% compared to their modeling errors without segmentation.
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(a) Training on Day-1 (b) Testing on Day-2

Figure 4.2: Results using SVM-inferred segments from the training set applied on the testing
set

Therefore, segmentation can help more in reducing the error for a simple model (e.g., linear)

compared to an advanced one (e.g., SVM).
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Figure 4.3: Regression in segments (Heur i st i c+, K = 5)

4.4.2 Sampling Results

To evaluate the different sampling methods that we presented in Section 4.3.3, we adapted

the RSS_Ratio formula to compute the RSS from the model built with the sampled measure-

ments, as shown in Formula 4.9. Those definitions, 4.8 and 4.9, can then easily be merged for

evaluating combinations of segmentation and sampling as presented in the next section.
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RSS_Ratio = RSS(M (Rsub →R))

RSS(M (R))
×100[%]

=
∑N

i=1(Ri −M (Rsub)|Ri )2∑N
i=1(Ri −M (R)|Ri )2

(4.9)

Figure 4.4 presents the experimental results when using four sampling methods, i.e., Uni-

form, Random, Entropy and Mutual_Information, with various sampling rates (i.e., δ =
1/2,1/3,1/4,1/5). In the plot, the RSS_Ratio from the Uniform and Random sampling methods

are the average over 10 runs. It is interesting to notice that the uniform sampling on the average

has better performance than the random sampling. Both Entropy and Mutual_Information

sampling methods have quite good results. There is almost no error increase compared to the

original data sequence when using Entropy and Mutual_Information based samplings at high

sampling rate (δ≥ 1/4). Their RSS_Ratio are almost 100%. However, at sampling rate δ= 1/5,

we clearly see that Mutual_Information performs better than Entropy.

Figure 4.4: RSS Ratio by different sampling methods (SVM)

To further study the performance of Entropy and Mutual_Information methods at smaller

sampling rate (δ< 1/5), Fig. 4.5 shows the results of sampling using a linear model. We observe

a similar trend with the SVM model in Fig. 4.4 at δ≥ 1/5, i.e. Mutual_Information is the best

for all cases. It is worth noting that Entropy has a better performance at high sampling rate

(δ≥ 1/5), almost the same as Mutual_Information when (δ≥ 1/4), but it becomes significantly

worse when the sampling rate is too small (δ < 1/5). This is because Entropy sampling is

always choosing the top-ranking error points, without consideration of currently selected

points. This can work well for large sampling rates, but for small sampling rates, the data

points will have more bias and thus a decreased performance.

We have already seen with sampling rate δ ≥ 1/4 in Figure 4.5 and 4.4, both Entropy and

Mutual_Information sampling methods can guarantee almost 100% RSS ratio, i.e., minimal
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Figure 4.5: RSS Ratio by different sampling methods (Linear)

informational loss using sampling data compared to using the complete data. To compute

how many samples are needed for achieving such a minimal informational loss, we study

the convergence of RSS_Ratio w.r.t. the sampling rate. The Figure 4.6 shows the RSS_Ratio

convergence for sampling the one-day mobile sensing measurement (1440 points in total

for 24 hours with one record per minute). We observe that both linear and SVM regression

can achieve almost 100% RSS_ratio from 128 sampling points, i.e., the sampling rate at δ=
128/1440 ' 1/11. In such case, the sampling rate at 1/11 can guarantee almost zero information

loss modeling (around 110% RSS ratio), which is a very effective sampling.
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Figure 4.6: RSS Ratio convergence using Mutual-Information sampling
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4.4.3 Near-Optimal Combination

The final experiment is to study the exhaustive strategies of mobile sensing in OptiMoS, i.e.,

combining different segmentation and sampling methods. To keep the graph readable, we

do not show all possible combinations, but select the ones that showed good performance

in the previous experimental results, while having an efficient implementation. For the

segmentation, B+H+ and Optimal are not shown and for sampling, the performance of

Entropy based sampling is as good as Mutual_Information when sampling rate is reasonably

high (δ≥ 1/4), while being more efficient to compute. Therefore, Figure 4.7 shows the 4×3

mobile sensing strategies in OptiMoS, i.e., combining four segmentation methods (Binary,

Binary+, Heuristic, and Heuristic+) with three sampling methods (Uniform, Random, and

Entropy) using SVM regression.
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Figure 4.7: RSS Ratio for different combinations of segmentation and sampling (SVM)

For each combination in Figure 4.7, the plot shows the convergence of RSS_Ratio w.r.t. the

number of segments (K ) at different sampling rates (δ). All the plots show a decreased trend

of RSS_Ratio with more segments (from 1 to 10), and with larger sampling ratio (from 1/4 to

1/1). The Entropy sampling with heuristic segmentation (both Heuristic and Heuristic+) show

the best convergence when segment number K ≤ 3; for K ≥ 4, the combination of Entropy and

Heuristic still keeps the best RSS_Ratio convergence.

4.5 Conclusion

In this chapter, we defined a novel and complete two-tier framework, namely OptiMoS, that

enables an optimal mobile sensing strategy. We studied both segmentation and sampling of
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mobile sensor readings, and designed several methods for segmentation (Optimal, Binary,

Binary+, Heuristic, Heuristic+, and B+H+) and sampling (Uniform, Random, Entropy, and

Mutual_Information). We analyzed real-life environmental monitoring sensors on moving

mode of transport, built exhaustive experimental studies to validate our optimal mobile

sensing strategy, and showed its good performance.
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5 State identification

5.1 Introduction

As described in the previous chapter, mobile devices can have clearly defined states, in which

the sensed data can be well approximated by a single model, such systems will be later on

called stateful systems. The specific pattern signature of the states could be, for example, used

for annotating the measurement time series with contextual information. We present in this

chapter an algorithm for finding those stable subsequences in time series, in an online fashion,

while optimizing for devices with limited computational resources.

Stateful systems are not limited to smartphones but they also include computer systems,

whose states can be observed through various metrics and smart-meters. The latter can

monitor the power consumption from a single appliance to the whole household with a

very high temporal resolution [220]. Their integrated storage and computational capabilities

enables them to predict their own future states or usage patterns; this could be useful, e.g.,

for participating in a demand response program [303], or if electricity prices follow real-time

dynamic pricing schemes, then drawing/storing energy from the grid when the price is cheap

and using it later when the price is expensive could save money [191, 289].

States, in the case of smartphone sensors, can take on various semantic meanings. For

example, repeated accelerometer patterns can reflect the activities of the user and the GPS

patterns would reveal her daily routine. Putting these together would make it possible to

forecast the behavior of the user and to adapt recommendations about the clothes to wear.

Knowing the habits of a user can also help in detecting when she deviates from it and would

be a case for helping her in this new and unknown situation, like proposing places to visit in

a new city. In other systems, these deviations are good indicators of unusual operation and

anomalies. For smart-meters , e.g. unusually long on states detected on an appliance could

mean that the owner forgot to turn the appliance off. Detecting this unintended event leads to

energy and cost savings. Another example is an atypical power consumption pattern, which

could mean that the device requires maintenance or indicate an imminent failure.
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However, the data generated by all these sensors (from buildings, public infrastructure, smart-

phones, smart electronic appliances), is big data in every dimension: big volume, big velocity

and big variety. A centralized approach typically involves communicating data from sensors

to a central server for processing. Most of the today’s popular location-based services are

examples of centralized solutions, i.e. GPS information from a mobile phone is communicated

to a central server, computation for the service requested is performed on that server and the

result is sent back to the phone. Similar processes are envisioned for participatory sensing

scenarios. Additionally, since sensor data contain sensitive personal information, this solution

is susceptible to breach of privacy. It also requires vast data storage and incurs significant

computation and communication costs. With an increasing number of sensors, scalability

becomes a serious issue. Furthermore, the high cost of large storage requirements could

potentially cause sensor data processing to be dominated by a few big players (Big Brothers

holding most of our data).

Therefore, identifying the states would also help in reducing the storage needs for the time

series, by allowing a higher level representation, but also making the further processing of the

time series faster by removing some of the noise and working on smaller data. This enables

the devices to work in a decentralized way, where we store and process the data as close

to the sensors as possible. Since only a little data (usually aggregated) leaves the sensor or

smartphone, privacy is preserved, communication costs are greatly reduced and the whole

system is more scalable. However, the advantages of a decentralized approach require that

other challenges be solved: smart devices (such as smart appliances and smartphones) only

have limited storage and computational power. Solving these challenges means processing

big (streaming) data as efficiently as possible while maintaining data usability.

Moreover, to be able to handle such a variety of systems, we need an unsupervised algorithm

as it would be too tedious to generate the sets of potential states for each different system and,

as their environment may change, new states can appear that would not be recognizable in a

supervised framework, if they weren’t present in the training phase.

To this end, the solution should satisfy the following requirements:

1. For more efficient processing, streaming sensor data should be processed online (effi-

ciently, some limited delay can be tolerated);

2. For more efficient storage, data can be transformed into another representation. How-

ever, it should allow efficient processing of data mining algorithms, without “reverting”

the representation; Encoding can be lossy, but the states must be preserved as much as

possible;

3. Since a sensor is able to measure different thing, the solution should be able to handle

multidimensional time series;

4. Since not all states can be observed apriori, the solution should be able to learn in an

unsupervised way.
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Figure 5.1: An overview of our solution. We start with the initial symbolization process (Spclust,
see Section 5.3). Next, we repeatedly compress the representation using run-length encoding
(RLE) and recognize states using StateFinder (see Section 5.4). The output is then used in
various applications (see Section 5.5 and 5.6).

5. Since the length of states might vary, the solution should also be able to find states of

various lengths. Thus, algorithms that assume a fixed/predefined length of states (or

sequence or sliding windows) might not be suitable.

5.1.1 Solution overview

Hitherto, there is no solution in the literature which fulfills all the requirements above (see

our literature review in Section 5.2). This work fills the gap and proposes a framework which

satisfies them (see Figure 5.1).

Figure 5.1 shows the overview of our framework. First, we start with the initial symbolization

process (Spclust), i.e. we transform sensor data (time series) into a symbolic representation.

This step is useful for handling multidimensional time series while also reducing the data

size. Simple methods such as median or uniform segmentation [301], or other clustering

techniques, such as KMeans, can also be used. Although in principle, any segmentation or

clustering method can be used in this step, one should bear in mind the requirements above.

Second, we repeatedly recognize states and convert them into symbolic representations. We

assume that a system is more likely to maintain its current state rather than to change to

another. Thus, in order to have a more compact representation, we apply run-length encoding

(RLE) on the resulting symbols. Our algorithm StateFinder is then used on the symbolic

representation to find the system’s states.

By looking back at the two steps of our framework OptiMoS, in Chapter 4, we can generalize

the second one, namely sampling, as a kind of encoding. Indeed, we tried to obtain a represen-

tation of the time series segment with a subset of its points such that the decoding function

would perform some regression to approximate all the original points.

We maintain these principles here, with some variations. First we redefine the objective

function for the segmentation, by using a Markovian model and looking for states (see the
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definition of a state in Section 5.4). Second, we encode the states by mapping the model

parameters, in this case a transition matrix, to new symbols. Also we only consider the

segments which satisfy our definition of a state and do not encode the transitions between

them. These can for example be the anomalies.

Then the sequences of symbols which are recognized as a state are converted into another

(higher level) symbol, with similar states most likely being converted into the same symbol.

The next iterations of RLE and StateFinder are applied until there are no more states to be

found or a predefined level is reached. The entire process is performed in an online and

unsupervised way. Finally, the end result is a stream of symbols of greatly reduced size

compared to the original stream, and each symbol represents a state of the system.

5.2 Related Work

To the best of our knowledge, our work is most similar to that of Wang et al. [292], as they

include segmentation and clustering of the segments and where the clusters represent states of

a Markov Chain. But the similarity stops there. Their time series subsequences are defined by

line segments, they model the process with a Hidden Markov Chain and require an extended

Viterbi algorithm to find the optimal state sequence. After the initial segmentation, a second

refinement step is needed, which makes the algorithm less suitable for online processing.

All segments are associated with a state, and they do not discards transition phases and

meaningless phases. Other related works can be separated into the following three categories

depending on their primary goal, which of course does not mean that they do not apply the

other processes.

5.2.1 Time series segmentation

For identifying the start and end of a state, segmentation has to be carried out. The different

approaches are all specific to the properties of the state they have to delimit. But all these

methods assume that every part of the time series must belong to a state or a segment. On the

contrary, we want to keep the transitional part, as well as the rare sequences and anomalies,

as raw symbols so as to lose less information.

Complementing the works presented in Section 4.2.3, a large family of methods for segment-

ing time series aim to summarize them based on piecewise approximations using different

functions [158], rather like our first step of the symbolization process. Segmentation points are

found either by minimizing the model’s fitting error or at regular intervals, as with the Piece-

wise Aggregate Approximation [130]. Other methods [59] map a predefined set of patterns onto

the time series to identify the segments dynamically and more advanced schemes [96] directly

use a set of approximation functions to select the best adapted models for each segment. In

the latter, precision and recall are also used as metrics for evaluating the fitness of a model.
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Other methods, meanwhile, aim more specifically at identifying the system’s operating modes.

Srinivasan et al. [271] use the process state itself in a feedback loop, as contextual information

to classify the patterns in the time series. The classification’s output labels then allow the time

series to be segmented into the operating process’s different states. For the same purpose,

but using HMM and a modified Viterbi algorithm, Kohlmorgen and Lemm [139] presented an

online algorithm for segmenting time series based on probability density.

5.2.2 Online frequent pattern mining

In addition to segmentation, online processing has also been pushed into the field of mining

frequent patterns. But there is a fundamental difference between our definition of state and

what is referred to as patterns in the following papers: patterns are characterized by their

length, whereas states are by their dynamics. Moreover a specific pattern can appear in

different states, depending on the time series dynamics.

In their survey, Han et al. [99] (Chapter 5.3) present some methods for online frequent pattern

mining of data streams, but the algorithms actually focus on frequent itemsets. Mueen and

Keogh [196] also applied their algorithm maintaining exact motifs over a time-window to do a

summarization or compression of a time series. But like the other more recent works [47, 275],

and those mentioned in the survey by Aggarwal [6], all these algorithms show size-dependent

pattern identification.

5.2.3 Time series subsequences clustering

Ramoni et al. [236] present a clustering algorithm, namely BCD, which is able to cluster time

series subsequences, using “event markers” (simultaneous changes on at least 3 sensors) as

segment separators. Each segment is then represented as a transition matrix of a first order

Markov chain. These transition matrices can be averaged with a background knowledge

sample matrix. Then the clustering algorithm partitions the matrix set using the probability

of partition, given the data. Matrices are merged recursively with the nearest ones, accord-

ing to their symmetrized Kullback-Leibler distance, until the marginal likelihood cannot be

improved.

In the work by Denton et al. [67], time series subsequence clustering is done using a kernel-

density-based algorithm. The subsequences are extracted using a sliding time window of

fixed length. Comparing their distribution in feature space with random walk data allows for

outliers to be discarded and only clusters the more frequent patterns. However, the size of the

subsequences has to be predefined and only similar ones can be compared, as they use the

Euclidean distance.

In [148], the authors use the SAX encoding for a 2-level scheme clustering whole time series.

They use DTW (dynamic time wrapping) for aligning patterns and CAST for clustering, using

affinity between points to decide if they should belong to a cluster. But CAST, like DBSCAN,
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also need a threshold for the similarity. In our case, we do not need to perform a costly DTW,

because representing the subsequence as a transition matrix removes the notion of absolute

position of the symbols. They also use Euclidian distance between the timeseries, thus the

need for DTW. They had to redefine the distance to apply it on SAX symbols, defining them

equidistantly. On the first level they cluster symbolized whole time series and then within

each cluster, they again apply clustering, but on raw data.

Rakthanmanon et al. [235] introduced the idea, which we also applied, that not all the data

should be clustered and transition phases should be ignored. They developed a clustering

algorithm working on discrete time series, based on the Minimum Description Length prin-

ciple. Motifs are clustered recursively for as long as the description length of the time series

can be reduced, using Euclidean distance between subsequences and entropy to compute the

description length. However, the external motif discovery algorithm used needs to know the

length of the motifs beforehand, or it must try all possibilities.

Overall, these clustering algorithms are offline as they either use information from the whole

time series or need several passes through the time series before assigning the final cluster

label to a segment. On the contrary, our algorithm only needs one pass and is designed to

require only a limited amount of memory. In the case of multiple levels of StateFinder, they

can be performed one after the other in a pipeline and thus only needing one pass.

5.2.4 Time series features extraction

Alternative representations of time series can be generated by extracting features from the

time series, usually using a sliding window [5]. But one can also use an infinite window with

an exponential decay or define each window instance by first segmenting the time series.

Fulcher and Jones [86] presented in their work an extensive list of the feature extraction

methods used in various area of research such as particle physics, meteorology, finance or

medicine. Combining with various preprocessing methods and varying the parameters allows

the generation of a very large amount of different features. The presented features can be

grouped into general categories:

• Basic Statistics: this group includes the min, max, average variance and other moments,

but also zero-crossing, range, auto-correlation and automutual information among

others. They are widely used and fast to compute, but taken separately, they are weak

classifiers.

• Frequency Domain: this group uses the same basic statistics but after applying a Fourier

transformation to the time series. It includes also the wavelet based features. They are

also relatively fast to compute, but are more meaningful in the case of an oscillating

time series.

• Model-Based: this group uses various models to fit the distribution or the time series

and the features can be the models parameters or residuals. Depending on the model
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these features can be costly to compute, but would tell a lot about the underlying time

series if the model matches well.

• Entropy-Based: this group contains the methods to approximate the time series entropy,

such as the Approximate Entropy [93], Sample Entropy [245], distribution entropy,

Lempel-Ziv complexity,etc. They are slower to compute than the basic statistics and are

not specific to any kind of time series.

• Domain Specific: this group includes the computation of the fractal dimension and

related values, but also hypothesis testing on the time series, and ECG specific heart rate

variability features. They are usually slow to compute and make strong assumptions

about the kind of time series.

Our approach can be classified among the Model-Based ones, using a Markovian model which

represents the dynamics of our states. But by using two steps, namely segmentation and

encoding, we make it faster to compute by selecting the relevant segments before mapping

them to symbols. The choice of a fading factor instead of the sliding window allows us to deal

with arbitrary time scales of the time series, as we will see later.

5.3 State-Preserving Symbolic Representation

In this section, we outline an initial step needed to deal with noisy n-dimensional time series.

Definition 1. We define an n-dimensional time series formally as S = {s1, s2, s3, . . .}. Each si ∈ S

is a tuple (ti ,~Vi ), where ti is a timestamp and ~Vi ∈ Rn is a vector of measurements. We have

i < j iff ti is earlier than t j .

Next, we explain how we learn to map measurement vectors (or measurements) onto symbols

to reduce data granularity and process it more efficiently, while preserving system’s states as

much as possible. This process can also be viewed as a preprocessing step (see Figure 5.1).

The learning algorithm below, Spclust, can be run either during the sensor calibration phase or

on top of historical data that capture the measurement distribution. As similar measurement

vectors are converted to the same symbol, the symbolization process can also be thought of as a

clustering process, where measurement vectors are replaced by their cluster labels. We assume

that the initial data used to build the direct mapping between symbols and measurements is

representative of the measurement distribution of the whole time series.

5.3.1 State Preservation Index

Measurements which are more likely to belong to the same state, should be converted into the

same symbols. Thus, we consider the following two principles when developing our symbolic

representation: (i) measurements with similar values are more likely to belong to the same

state, and (ii) a system is more likely to stay in its current state than change to another state.
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Let C = {c1, . . . ,c|C |} be a cluster configuration (a set of clusters), where each cluster c ∈C is an

n-polytope. Since a measurement ~V is essentially a point in an n-dimensional space, we write
~V ∈ c if the point ~V lies in the n-polytope c . We express the existence of a connection between

clusters c1 and c2 through si as a binary function:

is_conn(c1,c2, si ) =
{

1 if ~Vi ∈ c1 ∧~Vi+1 ∈ c2

0 otherwise

}
, (5.1)

and its distance as:

dist_conn(c1,c2, si ) =
{

dist(~Vi ,~Vi+1) , if ~Vi ∈ c1 ∧~Vi+1 ∈ c2

0 , otherwise

}
. (5.2)

In our experiments (see Section 4.4), we use the Euclidean distance. However, any distance

metric for two vectors could also be used here.

We define the number of connections between c1 and c2 as

#conn(c1,c2) = ∑
si∈S

is_conn(c1,c2, si ). (5.3)

And, for a cluster c, we define its diameter, diam(c), as the farthest distance between any two

measurements in c. We measure how compact the clusters in configuration C are by:

intra_coeff (C ) = ∑
c∈C

#conn(c,c)

diam(c)
, (5.4)

i.e., the higher the intra_coeff value, the more compact the clusters are. Note that, the division

by the cluster diameter is needed, so that the measure is cluster-size invariant.

We define the average connection length between two clusters, c1 and c2, as:

avgConnLen(c1,c2) =
∑

si∈S dist_conn(c1,c2, si )

#conn(c1,c2)
.

Then, we measure the connection density between clusters in configuration C as:

inter_coeff (C ) = ∑
c1∈C

[ ∑
c2∈C ,
c2 6=c1

#conn(c1,c2)

avgConnLen(c1,c2)

]
, (5.5)

i.e., the fewer the connections between clusters and the farther apart the connections between

them, the lower the inter_coeff value. As we prefer to have clusters which are separated as

far as they possibly could be, and with fewer connections between them, lower inter_coeff is
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Algorithm 5: Spclust

Input: n-dimensional measurement space M , grid size G , threshold T
Output: cluster configuration

1 quantize M into n-dimensional hypercubes of length G
2 forall the hypercubes h do
3 count measurements in h
4 if count ≥ T then
5 density(h) ← 1

6 else
7 density(h) ← 0

8 find connected component (clusters) on all hypercubes h, where density(h) = 1
9 assign distinct label to each cluster

10 enlarge the clusters incrementally to include hypercubes h with density(h) = 0 until all
hypercubes are clustered

11 return clusters

preferred in general.

Given a cluster configuration C , we design a scoring function, state preservation index, which

aims to measure how good the configuration is in preserving the system’s state transition:

spi(C ) = intra_coeff (C )

inter_coeff (C )
, (5.6)

For a cluster configuration C , the higher its spi value, the better. That is, we prefer clusters

with the following properties: compact, densely intra-connected, well separated and sparsely

inter-connected.

5.3.2 The Spclust Algorithm

In general, finding the best cluster configuration for a time series (which maximizes spi) is

intractable. In order to approximate it, we propose Spclust (see Algorithm 5), which is based on

a spatial clustering algorithm, Wavecluster [261]. This algorithm detects clusters of arbitrary

shape; it is fast, designed for large databases and insensitive to noise. In contrast to Waveclus-

ter, which uses wavelet transformation, Spclust uses a simple step function transformation

(see line 3-7).

Then, it expands the resulting clusters to include hypercubes with zero density (see line 10). In

Wavecluster, those hypercubes are not clustered since they are translated into noise or white

space. In our context, however, we need to partition the space of measurements, as we might

encounter these values in the future. To this end, we borrow the idea from maximum margin

classifiers to enlarge the resulting clusters incrementally until all hypercubes are clustered.

81



Chapter 5. State identification

Next, from a set of possible grid size, G , and threshold, T , we select G∗ ∈G and T ∗ ∈T that

maximize the spi value of the resulting configuration. Finally, we transform each measurement

in the n-dimensional time series S with its cluster labels and obtain a symbolic time series Ŝ.

We define a symbolic time series formally as follows.

Definition 2. Let A be our alphabet or a set of symbols. We define a symbolic time series as

Ŝ = {ŝ1, ŝ2, ŝ3, . . .}, where each ŝi ∈ Ŝ is a tuple (ti , ai ), ti is a timestamp, and ai ∈A is a symbol.

Additionally, ti is earlier than t j iff i < j .

5.3.3 Run Length Encoding

The first processing step, symbolization, as explained in the previous section, generates a time

series of symbols. These can be seen as representing a certain low level state of the measured

system. As these symbols are taken from a small set, they have a tendency to repeat themselves.

To improve storage space and access efficiency, we apply a run length encoding compression

algorithm over symbolic time series. As our input time series contains only timestamp-value

tuples, we assume that a measurement stays valid until the next one. However, special care

was taken, in the experiments, so that no huge gap (sensor down-time) was filled this way.

Definition 3. Let {ŝ1, ŝ2, ŝ3, . . .} be a symbolic time series, where each element is a tuple (ti , ai ),

as defined earlier. The output of RLE is a sequence of {s̄1, s̄2, s̄3, . . .}, with each element being a

triple (t b
j , t e

j , ā j ) which is defined as the shortest sequence of triples such that:

RLE : (R,R)n 7→ (R,R,R)m

RLE({ŝ1, ŝ2, ŝ3, . . .}) := {s̄1, s̄2, s̄3, . . .}

where ∀i ∈ [1,n],∀ j ∈ [1,m], if ti ∈ [t b
j , t e

j ), then ā j = ai .

This lossless process transforms a sequence of symbols into a single triple composed of a

starting time t b , ending time t e and a symbol. The semantic being that the state of the

measured system is represented by the symbol from the time t b (included) to the time t e

(excluded). Hereafter, unless stated otherwise, we represent time series as RLE compressed

triples.

5.4 The StateFinder Algorithm

5.4.1 Overview

We define a state as a consecutively repeating pattern of symbols that has several (significant)

occurrences along the time series. In previous works, the term pattern can be found termed as

primitive shape [62], frequent temporal pattern [114] and motif [53], and what we call states is

more similar to the definition of the operating modes [139] or process states [271] (illustrated

in Figure 5.2). Finding states at various scales in an online manner, however, is not trivial.

Additionally, the complete list of system states might be unknown beforehand. Thus, the

solution must find the states in an unsupervised manner. However, current solutions in the
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Figure 5.2: Illustration: several consecutive occurrences of a pattern indicate that the system
is in a certain state.

Figure 5.3: We apply the Spclust algorithm to the raw data (sensor measurements) to produce
the symbolic time series. After applying RLE to the symbolic time series (not visible in this
figure), we apply StateFinder to find the states. The StateFinder algorithm can be applied
several times to build a multi-level state representation. The raw data is displayed using the
horizon graph [106].

literature (see Section 5.2) aim to find either some predefined patterns or patterns (which can

also be extended into states) of a fixed length only.

Our goal here is to find states of various lengths in an online and unsupervised way, and

replace them with new symbols (hence reducing the overall data size, see Figure 5.3 for an

illustration), while allowing various inferences to be performed on top of the symbolic-state

representation (see application examples in Section 5.5 and 5.6). Additionally, more complex

patterns can be found by applying multi-pass StateFinder, e.g., 1st pass of the StateFinder is

applied to RLE triples, 2nd pass of the StateFinder is applied to the outcome of the 1st pass,

and so on.

The StateFinder algorithm consists of two steps: (1) identifying subsequences with a repeating

pattern, (2) clustering relevant subsequences and assigning a (new) symbol to them. We

explain the steps in more detail below.

5.4.2 Segmentation

One straightforward option is to take all possible subsequences and cluster them to directly

separate the repeating ones from others, seen as noise. However, it has been shown by Keogh

et al. [131] that this approach does not actually work and produces meaningless output.
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Therefore, we first need to isolate the potential subsequences that show a regular pattern.

Since the patterns that we are interested in are characterized not by their length, but by their

dynamics, we use a Markov model as the basis of our approach below.

We use a first-order Markov chain, but higher orders can also be used to identify more complex

states. In our case, the use of a first-order Markov chain as a model for the underlying process

is a low-cost and generic approximation and does not imply that the process itself has such

properties. If it is known that the time series’ processes are of higher order and enough

computational resources are available, then it is possible to use higher order Markov chains.

But the improvement will only be visible for complex patterns.

Length-frequency set. For each symbol transition, we define an iteratively updated frequency

of the next symbol length.

Definition 4. Let āu−1 and āu be the symbol of the u −1th and the uth entry of the RLE repre-

sented input. Additionally, let λ ∈ [0,1) be a fading factor. For j ∈A and k ∈N, we denote the

(decaying) length-frequency of symbol j with length k following symbol i , as hk
i , j , and update

it over time:

hk
i , j (0) := 0

hk
i , j (u) :=



hk
i , j (u −1) ·λ+1 , if i = āu−1 ∧ j = āu ∧

k = t e
u − t b

u

hk
i , j (u −1) ·λ , if i = āu−1

hk
i , j (u −1) , otherwise.

Hereafter, we refer to the set of all hk
i , j s as the length-frequency set.

In the definition above, we use the fading factor, λ, to forget the old entries instead of using

the sliding window approach, since the searched patterns could have different lengths. Thus,

setting a predefined window length would be problematic, as a too small window would fail to

capture long patterns and conversely, a too big window would fail to capture short patterns.

Segments. When the underlying process generating the symbols is in a stationary state,

the elements of the length-frequency set tend to be stationary as well, whereas between the

states, they may change a lot. In general, the length-frequency set can be used to predict

the next symbol (and its length). To give a “smooth” estimation of the likelihood of the uth

entry of the RLE triples, we compute Pr(u) the probability that symbol āu of length t e
u − t b

u

follows āu−1 using the Gaussian Kernel Density Estimation (KDE). Let i = āu−1, j = āu , and

Bi , j (u) = {k | hk
i , j (u) > 0} be the set of symbol j ’s lengths, following symbol i , with non-zero
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(decaying) frequency. Then, we have:

Pr (u) :=

∑
k∈Bi , j (u−1)

(
hk

i , j (u −1) ·e
− ((te

u−t s
u )−k)2

2·σi , j (u−1)2

)
∑
α∈A

[ ∑
k∈Bi ,α(u−1)

hk
i ,α(u −1)

] , (5.7)

where A is the (symbol) alphabet set and σi , j (u) = 0.9An−1/5 is the kernel bandwidth com-

puted using the Silverman’s rule of thumb [270]. That is, n = |Bi , j (u)| and A = min(sd, IQR
1.34 ),

where sd and IQR are the standard deviation and the inter-quartile range of the set {hk
i , j (u) | k ∈

Bi , j (u)}, respectively. The gaussian term in the numerator is useful in smoothing the symbol

length estimation, while the denominator normalizes it over all symbols (and symbol lengths)

that occur after āu−1. Note that, in the Gaussian KDE above, we omit the usual normalization

factor ( 1
σi , j (u−1)

p
2π

) so that the maximum value of Pr(u) is 1, and is independent from σi , j .

This allows us to use a single threshold, as defined below. After computing Pr(u), we define

the prediction error as:

E (u) := 1−Pr(u). (5.8)

Then, a segment is a predictable subsequence of RLE triples:

Definition 5. A subsequence of m contiguous RLE triples starting at the uth entry is a segment,

denoted as S̃(u,m) = {(t b
j , t e

j , ā j )}, iif t e
j = t b

j+1 and E ( j ) < p for all u ≤ j ≤ u +m −1, where

p ∈ [0,1] is a threshold parameter. A maximum segment is a segment that cannot be lengthened

by adding the preceding or following symbols. By definition, maximum segments are non-

overlapping.

Hereafter, whenever the context is clear, we omit the parameters u and m and refer to a

segment simply as S̃. Figure 5.4 shows an example on how segments are formed.

Complexity. To analyze the time complexity of processing each RLE triple, we need to

consider both the time to update the length-frequency set (Definition 4) and the time to

compute the prediction error (Equation 5.8). Both of them iterate over the set of non-zero

length-frequencies, namely, at the uth entry, we iterate over the set H āu−1 (u) = {hk
i , j (u) | k ∈

Bi , j (u), i = āu−1} for j ∈ A and k ∈ N. We refer to this set as H for brevity. This gives us

O (|H |) time complexity. Below, we show that |H | is bounded.

Lemma 1. Let λ be the fading factor in updating the length-frequency set and ε be the smallest

representable positive value greater than zero (either predefined or limited by machine precision),

i.e., for a value v where 0 ≤ v ≤ ε, we have v = 0. Then, |H | ≤ logλ ε.
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Figure 5.4: Illustration on how segments are formed, using the data from the bird call dataset
in [235]. The dashed line shows the (three) symbols at level 0, plotted as values 0.0, 0.1, and
0.2, the thin solid line is the prediction error over time, and the thick solid line is the threshold
parameter p = 0.9. The gray areas show the segments.

Proof. Since for a given (StateFinder-) pass the size of the alphabet set is constant, H can only

grow (linearly) when we process an RLE triple by adding a new value for k that has never been

seen before for a given transition. In the worst case scenario, each incoming triple has a new

length k. If this happens, however, the value of the oldest element in H would be λ|H |, since

we apply a fading factor when updating the length-frequency set. That is, when |H | > logλ ε,

the oldest value would be less than ε, thus keeping |H | ≤ logλ ε.

Therefore, we have O (logλ ε) time complexity, which is essentially O (1), since ε is a constant.

Regarding the space complexity, at any uth entry, following Lemma 1, we need to store |H i (u)|
entries for each i ∈A . Thus, we have space complexity O (|A | · logλ ε), which is also O (1).

5.4.3 Clustering

Following the definition of segments, we represent a segment as a transition matrix of its

symbols, i.e., the Segment Transition Matrix.

Definition 6. The Segment Transition Matrix of segment S̃ is an n ×n matrix M(S̃) = {mi , j (S̃)},

where n = |A | is the size of the alphabet and mi , j (S̃) is defined as follows, using x as a temporary

variable for better readability:

xi , j (S̃) := ∑
(t b

k ,t e
k ,āk )∈S̃


t e

k − t b
k −1 , if i = j = āk

1 , if i = āk ∧ j = āk+1

0 , otherwise

mi , j (S̃) := xi , j (S̃)∑n
q=0 xi ,q (S̃)
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The row i , column j of the resulting matrix contains the probability to have a transition from

symbol i to j , the diagonal being the probability to stay on that symbol. As our notation

excludes the ending time (t e
k ) from the interval, we need to subtract 1 in the top case.

To select which maximum segments are relevant and will be replaced by new symbols, we

group them into clusters. The clustering algorithm should: (1) be able to run online (as in the

segmentation step), thus limiting its computational needs, (2) make no assumption about

the number of clusters in advance, as it may increase over time, (3) be consistent, i.e., once a

segment is assigned to a cluster, it should not change its assignation in future iterations. To

satisfy all the requirements above, we adapt the clustering algorithm described in [139] by

computing the distance between two segments S̃a and S̃b , using the cosine distance of their

vectorized transition matrices:

δ(S̃a , S̃b) =

n∑
i=1

n∑
j=1

mi , j (S̃a) ·mi , j (S̃b)√
n∑

i=1

n∑
j=1

(mi , j (S̃a))2 ·
√

n∑
i=1

n∑
j=1

(mi , j (S̃b))2

(5.9)

Note that, this distance measure does not need to know the ordering of symbols and distance

between them, which are undefined in most cases.

When a new segment is identified, the algorithm assigns it to the nearest cluster within a

maximum distance dmax ∈ [0,1]. If there is no cluster within dmax, then a new cluster for

the segment is created. Each cluster is associated with a distinct “higher level” symbol (see

also Figure 5.3). If a segment is associated with an already existing cluster (within dmax), it

is replaced with a new (higher level) RLE triples as follows. Let S̃(u,m) be the segment to be

replaced and ∆ be the symbol of the cluster associated with the segment S̃(u,m). Then, we

replace S̃(u,m) with a single triple (t b
u , t e

u+m−1,∆). Finally, we call the clustered segment a

state.

5.4.4 Improving segmentation accuracy

As Figure 5.4 shows, there is a delay before a state is detected. This is due to the history implic-

itly contained in the length-frequency set, which influences the prediction-error computation.

Thus, only after a few occurrences of the pattern, does the prediction error pass below the

threshold. If we are able to keep in memory a short sliding window of the previously seen

data points, then it is possible to look back to when the beginning of a segment is detected,

in order to identify the real start of the segment. This is done by recomputing the prediction

errors backwards from the start of the segment, with the transition matrix computed from the

current symbols in the segment. For a fully online system, this would add the fixed delay of

the length of the added window. So this is a trade-off between delay and accuracy, which can

be specific to the application.
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Algorithm 6: StateFinder

Input: s̄ = (t b , t e , ā) //RLE compressed symbol

Output: Ø | s | [s1, s2, ...] //nothing, one symbol or several symbols

Global: H ← Ø //the length-frequency set, initially empty

B ← Ø //a buffer, initially empty

C ← Ø //the clusters, initially empty

last_symbol ← s̄ //last processed symbol, initially the first symbol

1 e ← 1−Pr (s̄|H); //from Formula 5.7

2 r ← Ø; //by default return nothing

3 update(H |last_symbol, s̄); //from Definition 4

4 if e ≤ threshold then
5 B.append(s̄);

6 else if |B | <min_size then
7 r ← B ;
8 B ← Ø ; //flush the buffer

9 else
10 m ← to_matrix(B); //from Definition 6

11 /* get the nearest cluster if it exists within the defined radius */
12 c ← find_cluster(C ,m);
13 update(C |m);
14 if c is not null then
15 r ← c;

16 else
17 r ← B ;
18 B ← Ø ; //flush the buffer

19 last_symbol ← s̄;
20 return r ;

5.4.5 Reverting States

One of the goals of Spclust and StateFinder is to produce a symbolic time series to support

higher level applications, without converting it back to the sensor’s original measurement

values. Since a symbolic time series is much shorter than its original version, this property is

desirable, especially due to the limited sensor storage and computational power. However, for

the sake of completeness, we illustrate below how one can revert a symbolic time series back

to its original values.

Converting symbols (level 0) generated by Spclust to its original values In this case, we can

simply use the cluster centroids to approximate the original values of the symbols. Note that,

using Spclust, we have a one-to-one mapping between clusters and symbols.

Converting RLE compressed triples to non-compressed triples. Each symbol is repeated n

times with n = (te − ts)/r , where r is the sampling rate of the original data. As sensors may
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have a variable sampling rate or some gaps, this transformation could produce more/less

triples than the original time series.

Converting symbols from level 1 or higher to one level lower. The main idea, is to use the

Segment Transition Matrix representing the cluster associated to this symbol and follow its

transitions. To find the starting symbol in the case where this one is not available, we use an

heuristic that aims to find a symbol that has the lowest incoming transition probability and a

positive outgoing transition probability. Formally, we take the symbol i where the sum of the

elements in the i th row, except the diagonal, is greater than 0 and the sum of the elements on

the i th column, except the diagonal, is minimal. Then according to the transition probability

to the next symbol, we build a sequence. Even though we might produce a slightly different

sequence from the original one, it will eventually have the same symbol distribution.

5.5 Applications

In this section, we show how various higher level applications can be built on top of our state

representation without converting it back to the original values, i.e., state forecasting, anomaly

detection, and compression. Additionally, since state recognition is a “natural” capability of

StateFinder, we refer the readers directly to Section 5.6.2.

5.5.1 State Anomaly Detection

As the normal behavior of the system (i.e., things sensed by the sensors, such as human

or natural phenomena) is characterized by some stability, it would be converted to higher

level symbols (or states) by the StateFinder algorithm. An anomaly, however, would not be

converted and its symbols preserved through the system. In other words, a capability to

detect anomalies is also implicitly built into the symbolic conversion. This makes the anomaly

detection task using our symbolic representation rather straight-forward, without reverting

them to their original values.

Additionally, RLE triple representation and StateFinder also make the whole process more

efficient since the normal behavior is now much shorter (see also Figure 5.3 for an illustration).

To detect anomalies, we adapt the algorithm from Wei et al. [297], where the authors use the

distribution of symbol occurrences in the whole training set (in the supervised case), or in

the previous time window (in the unsupervised case) as the normal reference. Unfortunately,

this does not work in our case, since human behavior is daily periodical. Thus, instead of

using the whole training set or only the previous time window, we use the behavior of the

same time of day/week (in the training set) as the normal reference. In addition, the Segment

Transition Matrix implicitly contains the symbol distributions and thus can be directly used

for estimating them.

More formally, let r be a time duration (e.g. 15, 30, or 60 minutes), as our detection resolution.

89



Chapter 5. State identification

We assume that the system of interest inherits daily periodical behavior. We then divide the

a day into time intervals {R1, . . .Rn}, each of length r . Then, we compute, over the entire

training set, {D1, . . .Dn}, the distribution of symbol lengths which occur within each time

interval, where Di is the symbol length distribution within Ri . We also compute {D ′
1, . . . ,D ′

n},

the distribution of symbol lengths in the test set for each time interval. Next, the anomaly

score of time interval Ri in the test set is computed as the dissimilarity between D ′
i and Di .

The less similar D ′
i is to Di , then the more likely Ri in the test set contains anomalous behavior.

Moreover, setting r differently allows us to see anomalies with a different granularity.

5.5.2 State Forecasting

The algorithm is inspired by the pattern-based forecasting in [187, 194, 262]. It consists of

three steps: clustering, pattern similarity search, and prediction. Below we give an overview

of the algorithm. Let us assume that we have a symbolic time series Ŝ = {ŝ1, . . . , ŝt } available

as the training set, a forecast horizon h, and window length w . Our goal is to forecast Ŝ∗ =
{ŝt+1, . . . , ŝt+h}, i.e., sensor values up to h time periods following Ŝ.

Clustering Divide Ŝ into a set of symbolic time series, S = [Ŝ1, ...Ŝl ], where each Ŝi ∈S has

length h, and if i < j , then Ŝi is a series preceding Ŝ j . Cluster the symbolic time series in S ,

and let c(Ŝi ) be the cluster label of Ŝi .

Pattern similarity search Find all matching sequences of length w , {Ŝi , . . . , Ŝi+w−1}, where

i ≤ l −w and [c(Ŝi ), . . . , c(Ŝi+w−1)] = [c(Ŝl−w+1), . . . ,c(Ŝl )].

Prediction Let {Ŝi1+w , . . . , Ŝik+w } be the predictor set, i.e., the set of series following the match-

ing sequences. The predicted series, Ŝ∗, is obtained by aggregating the predictor set.

For the clustering step, we used the KMedoids algorithm. Note that, any other unsupervised

learning techniques can also be used here. As in other unsupervised learning techniques,

however, given different parameter settings, we are often uncertain which setting delivers the

best cluster configuration. This holds even if the parameters are very intuitive, such as k in

KMedoids, which is the number of clusters to be created. To select the best configuration,

we use similar techniques to [187, 302]. We perform the clustering step several times using

different configurations, i.e. different k, and evaluate the resulting configurations using the

Silhouette, Dunn and Davies-Bouldin indices. The best cluster configuration is chosen by

majority voting over the three indices.

5.5.3 Data Compression

Because symbolization is a kind of time series summarization technique, StateFinder can also

be used for compressing the time series. By adapting the parameters at each iteration, it is pos-

sible to trade the accuracy of the high level symbols with a better compression. Compressing a

completely random time series, however, would not work with this method.
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Figure 5.5: Complete microwave dataset, showing one month of usage (top) and one hour of
microwave oven usage (bottom), showing different power levels.

5.6 Experiments

In this section, we demonstrate the applications of our approach to real-world datasets. To

show the versatility of StateFinder, we deliberately use datasets from various domains, such

as household energy usage, human activity recognition, and location tracking. Unless stated

otherwise, we use the fading factor λ= 0.9 to update the length-frequency set (Definition 4).

According to Papadimitriou et al. [212], a value around 0.96 is reasonable for a stationary time

series, however as we are dealing with switching between several stationary states, a lower

value is preferred.

5.6.1 State Preservation Index

In this experiment, we use the REDD dataset [140], containing smart meter readings for 6

houses, divided by appliances, with a 3-second sampling rate. We show here the result from

channel 11 of house 1 which represents the microwave oven, since (compared to others) it

contains more heterogeneous states and has fewer missing values. The time series plotted in

Figure 5.5a has 745,878 values, representing one month of data. Figure 5.5b represents one

hour of this same time series. On the left of the Figure, when the microwave oven is not set on

full power, as it is on the right, there are distinguishable heating cycles.
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(a) State preservation indices of Spclust using different
grid size and threshold The higher the better.

(b) Power to symbol mapping of different
methods.

(c) State preservation indices of different meth-
ods. The higher the better.

Figure 5.6: Evaluation of symbolic representation of the microwave dataset. In (a) the highest
eval value is achieved using grid size=20 and threshold=100, 200, or 300. Next, for (b) and (c),
we set Spclust grid size to 20 and threshold to 200. The alphabet size of uniform, median, and
distinct median is set to 3. For KMeans, we set k=3.

Figure 5.6 shows the state preservation indices (or spi, see also Equation 5.6) of different

symbolization methods. For Spclust, Figure 5.6a shows that the highest state preservation

index is obtained using grid size=20 and thresholds equal to 100, 200, or 300. In addition,

we also compare the symbolization results from Spclust using other symbolization methods,

i.e uniform, median, distinct median [301] and KMeans clustering. Figure 5.6b shows how

Spclust and the other symbolization methods map the microwave power usage into symbols.

In this case, Symbol 1 can be interpreted as encoding the off or standby states, Symbol 3

encodes the on state, whereas Symbol 2 encodes the intermediary state. Spclust appears to be

the most suitable method to perform the symbolization since it has the highest spi value (see

Figure 5.6c).

Driven by the fact that Spclust significantly outperforms other methods, while having rather

similar power-to-symbol maps, we carefully analyzed the mapping and the dataset. There are

some small power usages around 30 watts which are put in the off state by almost all methods

(except median). This power reading appears only once in a while, and in a short period (3

or 4 seconds) between the off states. Thus, it makes sense to assume that it indeed belongs
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to the off state. We also observe that there are some intermediary power usages around 60

watts. Unlike the 30 watt power usages, these 60-watt power usages last longer (around 20

or 30 seconds) and systematically between the on states (see e.g., Figure 5.7A). While other

methods include these usages in Symbol 1 (off or standby states, which is not the case), Spclust

includes them in Symbol 2 (intermediary state, which confirms our insight). After consulting

our colleagues from the Electrical Engineering department, they confirmed that Figure 5.7A

indeed shows how a microwave works when it is set to a medium power. Rather than emit the

exact medium power, it emits high power intermittently (proportional to the power setting).

The 60-watt power usages are used for lighting, rotating the plate, and (possibly) turning on its

fan.

5.6.2 State Recognition

As StateFinder is designed to extract states in the input data, state recognition is the most direct

use of its output. The resulting states can then be mapped to a specific semantic for example,

using classification if one already has a model. For instance, we show below how StateFinder

is able to identify different heating levels of a microwave oven.

Using Spclust grid size=20 and threshold=200, we extracted the states using StateFinder on

the same dataset as in Section 5.6.1. Figure 5.7 shows the prototypes of each state found, by

reverting the transition matrix to raw power value. The four heating levels that were used

during the experiment, are noticeable as the states A, B, C and D, while the other states show

different microwave usage patterns. Overall, Figure 5.7 also shows that StateFinder is able

to identify states of various length or time scales (e.g., seconds, minutes, hourly). Note that,

the capability to automatically discover appliances’ states in an unsupervised way is crucial,

especially since there are countless new electrical appliances released every day. For instance,

a good smart home or energy management system should be able to learn and recognize

the states of an appliance that is newly bought by the home owner. In this case, supervised

learning might not work very well, since it would fail to recognize states that it has never seen

before.

In addition, our algorithm is not specific to one domain, but rather to a certain definition of the

searched states. In the next experiment, we illustrate another use-case involving mobile phone

accelerometer data. We use the dataset provided on the UCI Machine Learning Repository by

Anguita et al. [11].

The data of user 6 is particularly interesting since the patterns are clearly distinguishable by

eye, and therefore make it possible to validate the output of our algorithm. In the Figure 5.8

(top) we show the tBodyGyro-mean()-X feature which, as its named implies, represents the

X axis of the gyroscope with the 50Hz data being smoothed over a sliding window of 128

readings. The data is first symbolized using 3 symbols and then given to the StateFinder.

Different darkness levels indicate the different symbols: 0 to 2 for the symbol level 0, and 3

to 4 for the symbol level 1, which represent the states generated by the StateFinder. To better
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Figure 5.7: Prototypes of the states, generated from the transition matrices of the microwave
time series in Figure 5.5a.

understand the state identification, Figure 5.8 (bottom) shows on the y-axis symbols level 0.

The states found can be matched to the user’s activity. From the ground truth, provided with

the dataset, we are able to associate a semantic with the two identified states, namely symbols

3 and 4. The first is “going upstairs” while the second one is “going downstairs”. As other labels

like “sitting” or “standing” are not linked to any specific pattern on this axis of the gyroscope,

no state is linked to them.

5.6.3 State Forecasting

For this experiment, we use GPS traces from the Nokia Lausanne Data Collection Campaign

dataset [155]. The ten users having the largest number of location records during the first 6

months of the study were selected to minimize the gaps in the resulting time series and to

avoid the users who were not carrying their phones with them all the time. In this experiment,

we aim for next-hour forecasting, i.e. h is 1 hour. We compute the prediction result, Ŝ∗, as the

medoid of the predictor set.

The symbolization is achieved through Spclust and results in 9 to 34 symbols, depending

on the mobility of the users. The first level symbols mostly represent the places visited by

the users, dividing the regions like a Voronoi diagram. On average, 24% of the symbols at

level 0 are converted to symbols at level 1 (states), which can be seen as the routes taken by

the users in their daily routines. Pattern-based forecasting is evaluated by taking the first

80% of the dataset as a training set (from 0 to t) and testing it on the next hour (t +1). Then
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Figure 5.8: Gyroscope value on x-axis, recorded on a smartphone while the user was perform-
ing different activities. Below is the symbolized version using 3 symbols and the color indicates
the state detected by the StateFinder.
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Figure 5.9: Comparison of the 1-hour forecasting accuracy using both data representations,
symbols (level 0) and states.

we repeat the experiment by forecasting t + 2 after including t + 1 to the training set. We

run the forecasting algorithm at different symbolization levels and for each of them, the

forecasting accuracies are averaged over all users and iterations. Figure 5.9 shows the accuracy

of forecasting before and after running StateFinder. Using the time series of states (symbols

level 1) allows predictions that are as good as with the symbols (level 0), showing that the

states are consistently found and replaced by higher level symbols. As the reverting of the sates

(using the Segment Transition Matrix) also introduces some error, the third bar illustrates the

accuracy when comparing the reverted predicted values to the original time series, but this

result depends a lot on the reverting function which still has room for improvement.

The running time for the forecasting algorithm, shown on Figure 5.10, is strongly related to

the data size, thus giving advantage to more compressed data representation (higher level

symbols). Additionally, the time for computing RLE and the StateFinder are some orders of

magnitude lower, making them good candidates to be run on low power devices.
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Figure 5.10: Timing for the pattern-based forecasting algorithm, on top of different data, and
the processing steps for generating those data.

Figure 5.11: Anomaly detection on states and symbols generated from the microwave dataset.
The top plot shows the raw data including the anomaly around hour 30. The bottom plot
shows the anomaly probability computed from the the StateFinder output symbols.

5.6.4 State Anomaly Detection

We run our anomaly detection algorithms on symbols at level 1, using the same smart-meter

dataset and symbolization process as in Section 5.6.2. For this experiment, we add a synthetic

anomaly, as if the microwave oven was left running for around 2 hours. In Figure 5.11, the top

plot shows the raw data where the anomaly was added in the first quarter. The bottom plot,

which shows the output of our anomaly detection algorithm that indicates the probability of

an anomaly happening at any given time, clearly shows a peak at the time when the anomaly

happened.

5.6.5 Running Time

To assess the impact of the time series size and show that StateFinder can be run on infinite

stream, we measured the time needed to process time series of various lengths on a server

with a CPU @ 2.30GHz. We used the same datasets as for the forecasting experiment (GPS

traces) and the microwave power from the state identification experiment. The third one is a

random time series where symbols (between 0 and 7) and their duration (between 1 and 1000)

where chosen uniformly at random. Figure 5.12 shows the processing time of StateFinder with
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Figure 5.12: Processing time for running StateFinder on different datasets and dataset sizes.

regard to the size of the time series. Time series that were too short were repeated to match the

length of the largest. It clearly shows that the processing time grows linearly with the data size,

thus having a constant processing time per element. The different slopes can be explained by

the number of symbols and the randomness of the data. The larger the number of different

symbols in the time series, the more time it will take to process, but the more predictable and

repetitive they are, the faster StateFinder will be. In this case, with only 3 different symbols

and a lot of identifiable states, the microwave power time series allows a very fast processing,

below 0.1 seconds for 50’000 values. Whereas a completely random time series with 8 symbols

is even slower than the GPS trace time series with 64 symbols.

5.7 Conclusion

In this chapter, we presented an online and unsupervised state recognition algorithm, namely

StateFinder, that is able to detect and identify states in symbolic time series. Since initial

symbolization determines StateFinder performances, we proposed a state preservation index to

assess how good a symbolic representation is at preserving systems’ state transitions. We also

proposed the Spclust algorithm to build the initial symbolization, also for multidimensional

time-series. In addition, learning on top of higher level symbols is faster, requires much less

space, and produces comparable accuracy. It also enable us to perform analytics locally on

smart devices and appliances, which have limited computational and storage capabilities.

However, further refinement should be done for non-stationary time series. Additionally, since

Spclust and StateFinder preserve interesting events and reduce data size, they could be used

to complement Round Robin Database, i.e., to store data further in the past given the same

amount of space available.
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6 Application example: Air pollution
exposure estimation for personalized
health

6.1 Introduction

This chapter presents a concrete example of a context-based application that was developed

throughout my thesis. It is a real world example of an end-to-end implementation of a mobile

sensing application fusing data from various sources.

According to the World Health Organization1, indoor and outdoor air pollution causes 7

million premature deaths annually worldwide, the large majority being due to cardiovascular

diseases. The pollutants considered to create a risk by the European Environment Agency2

are carbon monoxide (CO), Nitrogen dioxide(NO2), Sulfur dioxide (SO2), Ozone (O3) and

Particulate Matter (PM). Except for the latter, all these pollutants are found in a gaseous state

at room temperature and cannot be seen with the naked eye. PM can also go unnoticed at

low concentrations, but usually its sediments can be seen [30]. Therefore, to enable people to

sense the invisible and to detect hazardous concentrations, artificial sensors are needed.

The most noticeable effects of air pollution on health come from inhalation. Therefore, an

estimation of the exposure must take into account the breathing rate and volume. These can

be monitored using specialized sensor belts, on the chest, or approximated by identifying the

user’s activity. Indeed, the intensity of the activity is directly related to the calories burned

and the oxygen needs, acquired through breathing [125]. Moreover the immediate breathing

microenvironment, or context, needs to be taken into consideration. While being at the same

location, studies have shown that someone in a car with closed windows is less exposed to

fine particles than someone biking [33].

The goal of this application is to provide the users with an estimation of the amount of air

pollutant they have been exposed to during the time they were carrying the device. It has

been shown by several studies that even limited exposure to certain air pollutants can have

1http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
2http://www.eea.europa.eu/publications/environmental_monograph_2006_5
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noticeable effect on someone’s health[284, 285]. Therefore, this application can be used as a

diagnostic helper, by providing the doctors with more accurate information on their patients’

environment, or in a preventive fashion, helping the users to understand if some of their

habits could be changed to reduce their exposure.

To this purpose, we use the contextual information from a personal device, such as its location,

activity and - when available - environmental parameters, and combine them with globally

collected data from an aggregation server. More precisely we consider the air quality data col-

lected by sensing nodes installed on the roofs of buses3. The scenario can be expanded by also

propagating back information sensed by the mobile devices to the aggregation server, opening

the door to all the community sensing challenges, such as privacy and trust management.

Our application comprises of two components: the personal devices and an aggregation server.

Smartphones, in the role of the personal devices, are in charge of continuously collecting the

data from their sensors and also providing an interface for interacting with the user. They are

equipped with an external sensor platform for expanding their sensing capabilities. On the

server side, the Global Sensor Networks [1] streaming middleware is deployed for managing

the data streams from the various sources and maintaining a model of the air quality over the

covered region.

6.2 Related Work

6.2.1 Assessing pollution exposure

The usual pollutant concentration values used in epidemiological studies or related expo-

sure estimation projects are either based on dispersion models or using expensive personal

monitors, which are typically bulky and need to be processed offline after the study.

In the first category, we find the platform developed by Mun et al. [197], named PIER, Personal

Environmental Impact Report. They use a mobile application, recording the location of the

user to identify the transportation mode (stationary, walking, driving) and upload this data

to an aggregation server. The exposure, but also the carbon footprint, are computed on the

server using PM 2.5 models. The CalFit mobile application from de Nazelle et al. [65] also

records the GPS traces, but, in addition, uses the accelerometer for classifying the activity. The

processing of data and exposure estimation is done offline with a dispersion model for NO2.

In their previous work, the same authors describe a general framework for integrating activity

and especially its intensity into the exposure estimation [64], based on the computation of the

Metabolic Equivalent of Task (MET) [124]. But this was only using simulations as inputs.

In their review of human exposure to air pollution, Steinle et al. [272] show the transition from

static sensors and models toward personal exposure devices in epidemiological studies. They

also emphasize the increased usage of GPS traces to complement the time-activity diary. For

3see the OpenSense project description: http://opensense.epfl.ch
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example, Morabia et al. [192] used personal exposure monitors for their studies, combining

GPS and the diary to compute the MET for assessing the exposure to fine particles in private

cars and public transportation. But the complete replacement of written diaries (sometimes

on electronic devices) by automated context identification from mobile devices is not yet

topical.

6.2.2 Personal monitoring devices

In the context of the Internet of Things and participatory sensing, some pollution monitoring

platforms have been developed, including various air quality sensors. They also include the

option for uploading the data to a centralized server and visualizing the traces, but they do

not provide a complete exposure estimation that would include the activity of the user as well.

The N-Smart project [113], later continued within the Common Sense project [78], prototyped

a Bluetooth extension that could be attached to the back of a smartphone and also an external

device for measuring various pollutant concentrations in addition to the deployment of sen-

sors on street sweepers. Built on the MetroSens architecture, Bikenet [80] is a complete sensor

deployment on a bike, covering the whole biking experience, including CO2 concentration. As

an example of the Mobsens platform, the PollutionSpy application connects via Bluetooth to a

sensor data logger, monitoring CO, CO2, NOx and SO2. The citisense project [16] also proto-

typed an external Bluetooth sensor box with electrochemical sensors, continuously mapping

the measured values with their coordinates, efficiently using the GPS. The TECO Envboard,

developed by Budde et al. [37] is an external device that includes a lot of different sensors for

air quality (VOC, O3, CO, NOx ), but also for recognizing the activity (accelerometer, gyroscope)

and location with the GPS. The same authors also built a prototype of a dust sensor using the

camera and flash of mobile phones, based on the reflection on particulate matter [38]. The

Node+ commercial product was used by Devarakonda et al. [69] in their participatory sensing

deployment to assess the difference between the carbon monoxide concentration inside and

outside a car. Finally, within the OpenIoT project, Podnar Zarko et al. [222] implemented

an external sensor board for CO, NO2 and O3 to showcase their publish-subscribe back-end

infrastructure.

Our work is the follow up on the first OpenSense mobile prototype [103], integrating the

pollution sensors with activity and other contextual information. It lies at the intersection

of the fields of pollution exposure modeling, usually simulated, and mobile environmental

sensing, usually only collecting data. Therefore, it is the first prototype of a complete system

that includes an activity-based air pollution exposure estimation as well as an on-device air

quality sensor and a large back-end of mobile sensors covering a whole city.
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Figure 6.1: System Block Diagram

6.3 System architecture

The general architecture of our system is shown in Figure 6.1. The main data source for the

air pollution concentration is the OpenSense Lausanne deployment (1). Around ten buses

are equipped with a sensor box on their roof and regularly send their measurements to the

GSN back-end, through the GSM network. The measurements from the various sensors (CO2,

CO, NO2, PM) have their own data streams and therefore have to be joined with the GPS

stream to geo-locate them (2). The stream join is performed by mapping the pollution sensor

streams onto the GPS one, interpolating on the location. Then, a Virtual Sensor takes care

of computing the pollution indexes (3), either by thresholding with the official scales or with

regards to a relative scale compared to a reference year. Finally, the data is output to real-time

air quality models through a special kind of virtual sensor (see Section 6.5)(4). The current

implementation of the models includes a nearest-neighbor one and a static yearly model (5).

These are chained and the one with the lowest uncertainty is automatically chosen at query

time. The mobile version of GSN, called tinyGSN (6), is used by the participants to get the

pollution concentration data from GSN. Two mechanisms have been implemented for this

purpose (7): either it does a single query on the RESTful API or it registers a continuous query

and gets the data through push notifications (in this case Google Cloud Messaging). TinyGSN

is also used for managing the local sensors, including the accelerometer, GPS and air quality
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sensors, and is able to push its measurements back to GSN (8), to be used to improve the

pollution models. The following sections give more details on the implementation for each

module.

6.4 Personal Sensing Device

6.4.1 Hardware

In addition to the smartphone itself, in this case a Samsung Galaxy S2, we used a home-made

sensor extension to allow us to measure the temperature, humidity and some parameters

about the air quality, namely the ozone and volatile organic compounds (VOC). This extension

is in the form of a small printed circuit board, connected to the phone through its USB port. It

uses the capability of the phone to act as a USB host and to provide the external devices with

power. A converter (FTDI USB to RS232 UART Serial Converter) takes care of converting the

signal sent from the micro-controller to the USB port, by emulating a serial port. Figure 6.2

shows the electrical circuit of the sensor board and how it connects to the smartphone.
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Figure 6.2: Air Quality extension for smartphones

The sensors selected for this prototype are metal-oxide sensors, that operate by heating a

sensitive layer and measuring its resistance. They were chosen because of their very small size

and the ozone sensor was already validated in the OpenSense project for reporting accurate

values after calibrating them [104]. The second sensor, measuring VOCs, was selected for its

relevance to indoor air quality. Moreover, a temperature and humidity sensor was added for

calibrating purposes. Except for the latter, the sensors have no factory calibration and the

resistance of their sensitive layer was varying from one to another. Therefore, once built, the

extensions first had to be calibrated, following the indications given on their data-sheets and

103



Chapter 6. Application example: Air pollution exposure estimation for personalized
health

then regularly re-calibrated to avoid drifts [259].

The other sensors used as input are the ones from the smartphone. The accelerometer,

gyroscope, GPS and Wi-Fi were triggered by the continuous location monitoring module,

moreover the accelerometer’s output was also fed to the activity recognition module.

6.4.2 Software

On the smartphone we ran the tinyGSN application, a lightweight version of GSN, that was

adapted for this scenario. We implemented a smart scheduler for adapting the sensor sampling

and reducing the energy consumption for the continuous location tracking module and added

an activity recognition virtual sensor.

The principles of tinyGSN, following the ones of GSN, are to present the users with a zero-

programming way of setting up complex data-stream processing pipelines. For this purpose,

the usual xml configuration files heavily used in GSN were moved to the local database and

can be modified from the user interface, thus allowing the user to quickly create new virtual

sensors and connect them together. The wrappers for most of the local sensors are part of the

base version of tinyGSN and new wrappers can easily be added. For example, we implemented

a wrapper for gathering data from the USB device presented above. The wrappers’ design is

following the best practices for continuous sensing on the Android platform, by running as

IntentServices being regularly woken up by the AlarmManager. Proceeding this way allows

the operating system to optimize the scheduling of various background processes and gives

the CPU more sleeping time.

The virtual sensor processing classes can also be easily extended and can be almost directly

copied from the GSN server. The activity recognition task has been implemented in such

a class and has a parameter to define the classification model to use. The various models’

implementations are taken from the WEKA [98] data mining toolkit. The models are trained

offline, from the WEKA graphical user interface and exported in files, which are then loaded

by tinyGSN according to its parameters.

As the wrappers are running as services, they have to be defined as singletons, providing

data to several virtual sensors through queue data structures, themselves encapsulated in

StreamSources instances. Each queue is subscribing to the data stream of a wrapper and

applies the sliding window aggregation. Its results are then pushed to the corresponding

virtual sensor. This flexibility allows streams to be split and merged without any redundant

pieces. A specific wrapper takes care of reading the output of a virtual sensor and allows them

to be chained.

A scheduler has also been implemented as a separate service and, according to predefined

rules on the sensor output, can selectively change their duty cycles. The scheduler is able

to gracefully degrade its performance if some sensors are not available or no virtual sensors

are attached and running. Since one of the constraints of the system was being able to
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run over 24 hours without recharging the battery, we also designed an adaptive sampling

scheme for the location tracking part, following the sensor triggering mechanism presented

in Chapter 2.2.1. This scheme was implemented through the scheduler and affects the duty

cycle of the accelerometer, GPS and Wi-Fi scanning (see Section 6.6.2).

6.5 Aggregation Server

To manage and process the streams of data coming from all the sensors and to run point and

continuous queries from the mobile application, the Global Sensor Networks (GSN) [1] server

is used. It is able to acquire data from various sources and to deploy new processing classes

on-the-fly, allowing fast development of new features. Several improvements to the original

GSN server are detailed further in this section (See the GSN documentation for details about

its implementation and architecture4).

Without getting too much into the details, GSN is based on wrappers and virtual-sensors.

Wrappers abstract the different sources, as, for example sensors or files, and propagate every

new piece of data into the system to the connected virtual-sensors. On their side, virtual-

sensors are the processing classes: they can store and process data items before forwarding

them to the next virtual-sensor, if any. A DataDistributer is responsible for forwarding the data

items to the virtual-sensors internally, but also externally using a push mechanism.

We have made several additions to GSN, the main ones being the following: support for

models, improved asynchronous communication and an internal monitoring system.

The first modification to GSN is the support of models directly in the virtual-sensors. We de-

veloped a Modeling Virtual Sensor which is in charge of a list of models, extending the abstract

Java class AbstractModel. Every time the virtual sensor receives new data, it propagates it to

all its models, allowing them to stay up-to-date. It also allows direct queries on the models, by

using the REST API or by registering a continuous query to the ModelDistributer, an extension

of the DataDistributer. An example of usage of such a module is the generation of a pollution

map from the reports of some mobile sensor nodes. For demonstration purposes, we imple-

mented a nearest neighbor model, which returns the geographically closest measurement

point, within a defined time window. But much more complex models can also be used.

The second improvement to the GSN server relates to its internal and external communication.

Previously, the communication between virtual sensors was implemented through the local,

remote and remote-rest wrappers. The local and remote wrapper registered a query with

the DataDistributer and the latter was responsible for pushing any new stream elements

to the local virtual sensor or as an xml file through the HTTP protocol to a remote GSN

instance. Whereas the remote-rest wrapper was based on the pull paradigm, regularly polling

the remote server to check if any new data was available, again using xml encoding over the

HTTP protocol. The weaknesses of this system were manifold. First the local wrapper was

4https://github.com/LSIR/gsn/wiki/Documentation
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Figure 6.3: Internal and external communication, based on ØMQ

running on the same thread as the DataDistributer, which was also running all the local virtual

sensors’ processing classes, thus preventing parallelization of the stream processing. Secondly,

the remote wrappers were not optimized for efficiently serializing the stream elements and

the overhead of the HTTP protocol was also limiting the processing rate. Moreover, remote

disconnections were sources of instability, sometimes blocking the whole process.

Therefore, we based our new communication system on the concept of message queues,

unifying internal and external communications. In this scheme, the DataDistributer is only

responsible for publishing the new stream elements to the corresponding queues. Then

either a local or remote wrapper subscribes to the queue and processes the data in its own

thread, this way having at least one thread per virtual sensor. We chose the ØMQ (zeromq)5

implementation for the queues as it was the only one not relying on an external broker and

providing the needed functionalities. More precisely, we used the PUB, SUB, XPUB and XSUB

endpoints for publishing and subscribing to the queues, and REQ and REP for providing the

virtual sensors’ metadata, as shown in Figure 6.3.The queue implementation takes care of the

transport protocol, transparently providing both endpoints for publishing and subscribing.

For serialization, we decided to use Kryo6, as it appeared to be more efficient according to

our experiments (see Section 6.7). An interesting side effect of these modifications is that a

virtual sensor can now be moved from one GSN instance to another, without any change in its

configuration.

Finally the last major improvement of GSN relates to the monitoring of its own resources.

5http://zeromq.org/
6https://github.com/EsotericSoftware/kryo
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When running hundreds of virtual sensors and parallel data-flows, one may want to under-

stand which one is using which proportion of the system’s resources, either for identifying

malfunctioning virtual sensors, memory leaks or for helping to design the data streams across

several servers and distribute the load. We can also imagine a system that is able to automati-

cally scale when the load increases and move virtual sensors to new machines as necessary.

Monitoring is also needed to detect anomalies and processing errors, like parsing the sensor

measurements or detecting when a sensor goes faulty. Currently, we implemented a moni-

toring end-point on GSN that allows external tools such as Munin or collectd7 to gather data.

Virtual sensors and wrappers then register their probes with this end point and get polled

regularly. We have implemented probes for the input and output data rate, out-of-order items,

processing errors, and configurable data anomalies.

6.6 Sensor Fusion

6.6.1 Activity and breathing

Activity recognition is performed on top of the accelerometer output, using WEKA’s implemen-

tation of the Random Forest classifier. We chose six different activities that represented the

various intensity of action one may perform during a typical day: sitting, standing, walking,

biking, climbing stairs, and running. To reduce the battery consumption, the accelerometer

was sampled at 16Hz, which has been shown to be the optimal choice for most activities [310],

every ten seconds, for a duration of two seconds.

Our estimation of pollution exposure is based on pNEM [125], a probabilistic Exposure Model

from the National Ambient Air Quality Standards, and especially its step 4: "Estimate the

pollutant concentration, alveolar ventilation rate, and physiological indicator (if applicable)

associated with each exposure event."[125, p. 2-1]

VA is the alveolar ventilation rate, expressed as a number of liters of air breathed per minutes.

We assume it is constant during an activity period, where ∆t is the activity duration and

defined as:

VA(∆t ) = 19.63 ·min(ECF ·MET ·RMR,NVO2max ·BM · (1.212−0.14 · ln(∆t ))) , (6.1)

where ECF is the Energy Conversion Factor(∼= 0.21), MET is the Metabolic Equivalent of Task,

RMR is the resting metabolic rate, NVO2max is the maximum oxygen uptake rate per kg and BM

is the body mass. The MET values, only depending on the activity performed, were obtained

from the Compendium of Physical Activities [9], and averaged for the few activity categories

recognized by our classifier. The RMR can be computed as a linear function of the weight,

7http://munin-monitoring.org/ and https://collectd.org/
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using coefficients from a table based on age and gender. Finally the NVO2max can also be

obtained from a table summarizing experimental results with various populations (age and

gender). Both of these tables can be found in Section 5-5 of the report of Johnson et al. [125].

The alveolar ventilation rate is directly proportional to the oxygen uptake which is itself limited

by the body capacity. Indeed, the circulatory system can carry a limited amount of oxygen to

the muscles and if they need more energy, they will switch from an aerobic to an anaerobic

process, producing energy without oxygen. Therefore in Formula 6.1 we take the minimum

between the oxygen uptake rate computed from the activity and the maximum oxygen uptake

rate given the duration of the activity, which decreases logarithmically with the duration. In

practice, we should also take into account consecutive activities and have sliding windows

for limiting the maximum oxygen uptake rate, but for our implementation, we mostly use

this limit to avoid unrealistic exposures during short term activities, considering that our

participants will not run a triathlon during the experiment.

VA is then computed on the activity recognition virtual sensors’ output, given the parameters

entered by the participants, namely gender, weight and age.

6.6.2 Location

The continuous location tracking part is based on a state machine which reflects the high level

user’s state, along two orthogonal dimensions: moving/stationary, and indoor/outdoor. In

addition, an additional state is used when the device is lost, meaning that it does not have

enough information to infer its location. Then, based on the current state and possible transi-

tions, a defined set of sensors are enabled with a specific duty cycle. The rules determining the

transitions and duty cycles are implemented inside the scheduler of tinyGSN. The stationary

states can be triggered when the GPS location is not changing for a few minutes, the visible

Wi-Fi fingerprint is stable enough or the accelerometer values indicate no movement. The

reason for entering the state also defines the trigger for exiting it, like a change in Wi-Fi finger-

print or for the GPS and accelerometer, a sudden change in accelerometer activity. Once in the

stationary state, the GPS is shutdown and only the sensors needed for detecting a state change

are sampled, at low rate. While being moving outdoors, the GPS is used for obtaining the

location, whereas for indoor location, we rely on Wi-Fi fingerprints. The latter can be learned

over time by associating the latest GPS location with each Wi-Fi access point and estimating

its actual location, or simply by using the Android Location API and relying on Google’s online

database.

6.6.3 Pollution concentration

As the external ozone and VOC sensors only have a limited reliability, we try to mostly rely

on the interpolation generated from the OpenSense deployment for outdoor pollutants con-

centration. For indoors, however, we have to rely on the attached sensors. Therefore, we use
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the time spent outdoors to collect data from the device and the OpenSense deployment to

compute calibration parameters that we will then use when going indoors. At the GSN server

level, the modeling virtual sensor is used to host the model. In our case the preliminary tests

were done on a nearest neighbor model and a static yearly model, but more recently land-use

regression models were also built within the OpenSense project and will also be integrated.

6.6.4 Pollution exposure

To estimate the actual exposure to pollution, we fuse the data from the alveolar ventilation

rate and the pollutant concentration in the air. As different pollutants cause different kinds

of chemical reactions within the lungs, we do not consider here the actual body absorption

or derived chemical reactions in our simplified model, but only estimate the quantity of

pollutants that were inhaled over a certain period. For that, we transform the concentration,

sometimes given in parts per billion (ppb) or ppm (parts per million) of volume into micro-

grammes per cubic meter (µg /m3) and multiply it by VA ·∆t
1000 to obtain the quantity of pollutant

in micro-grammes inhaled for a given activity. By summing the activities of the day, we obtain

the daily exposure.

6.7 Experiments

6.7.1 GSN server

To evaluate the performance of the new communication system, we deployed GSN on 24

virtual machines, provisioned with 2 cores and 3GB of RAM. Each GSN server had 25 virtual

sensors: one generating data every 10 ms and 24 connected to the other instances, including

itself. The storage was kept in memory using the H2:mem database to reduce the disk writing

overload. In the first experiment, the remote wrapper was used to connect the 24 virtual

sensors, whereas in the second one the zeromq wrapper was used with xml serialization and

finally in the last experiment zeromq was using the Kryo serialization. Each experiment lasted

around 20 minutes, during which two snapshots were taken. One after a few minutes to ensure

that all the connections had been established and one 15 minutes later. These snapshots

contained the number of elements processed by each of the 24 virtual sensors.

On Figure 6.4, we can see that with the remote wrapper, the production of stream elements is

almost able to work at its maximal rate, but due to the overhead of the communication and

serialization protocols, consumers are not able to receive the data fast enough. Changing

the communication to the zeromq wrapper seems to reduce the production rate, the CPU

being the bottleneck. This is because now the communication being faster, it needs more

resources to deserialize the stream elements and starts competing with the computational

resources of the producer. Finally, the Kryo serialization reduces again the time needed to

process one element, increasing the incoming data rate and thus also reducing the resources

available for the producer. Interestingly in this last experiment, stream element production
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Figure 6.4: comparison of elements produced and consumed per second for the 3 scenarios:
using remote wrapper, using zeromq wrapper with xml serialization or Kryo serialization

sitting standing walking biking climbing stairs running class
28 2 0 0 0 0 sitting
1 35 1 2 2 1 standing
0 2 14 0 2 1 walking
0 1 0 31 2 0 biking
0 4 2 3 9 1 climbing stairs
1 2 0 0 1 25 running

Table 6.1: Confusion matrix for the Random Forest activity classifier

and consumption reached an equilibrium, meaning that the serialization process is no longer

the bottleneck. It should be noted that the figures are computed per virtual sensor and thus

the actual number of items processed per second is around 900.

6.7.2 tinyGSN

Various experiments have been conducted with tinyGSN. The first one was to evaluate the

activity recognition module. The data was recorded by three volunteers during one hour. They

were instructed to perform a predefined sequence of activities and were taking notes of the

starting and ending times. The features were generated over the 2 second window of duty

cycled accelerometer values. They included statistics over the time and frequency domains,

but focused on the ones that were fast to compute. Among the different classifiers tested (C4.5,

Random Forest, Naive Bayes, Logistic and Multi Layer Perceptron), the Random Forest showed

the best results on a 10-fold cross validation with an F-Measure of 0.82 and an ROC Area of

0.94. The confusion matrix is show in Table 6.1.

The second experiment evaluated the battery duration while continuously recording the

location. With the scheduler taking care of enabling and disabling the sensors, we also

removed all unneeded applications from the phone and set it to flight safe mode. During 4

days, a volunteer carried the phone everywhere she went and was asked to let the battery
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Calcul1 Seconde.  La couleur affiche des détails associés au/à la Calcul2.Figure 6.5: The dots on the map represent the GPS points collected, colored by day, whereas
the timeline at the bottom shows the various states of the system on the first day. (blue: lost,
orange: GPS moving, light gray: stationary by accelerometer, dark gray: stationary by Wi-Fi)

completely deplete before charging again. In average, it lasted around 26 hours.

From the Figure 6.5, we can seen that some points are missing on the trajectory, either due to

the unavailability of GPS, like in the metro or by wrongly detecting a stationary state with the

accelerometer, for example when the user was driving, but interpolating the points could be

a solution. The timeline indicates that most of the time was spent in a low power stationary

state and that the GPS needed some time to start, being inefficient for short periods of motion.

The system is currently used as part of a cohort study at the Centre Hospitalier Universitaire

Vaudois (CHUV), linked to the OpenSense project and we expect to get the results soon,

demonstrating the complete system at work.

6.8 Discussion

In this chapter, we presented an end-to-end system, fusing the data collected locally on

the smartphone, through the accelerometer, GPS and Wi-Fi, with global air quality data

gathered by a mobile sensor network, mounted on public transportation. We showed how the

combination of different data sources allows us to extract more information, improving the

utility of the system. For example, the continuous location tracking part, takes advantage of

the GPS, Wi-Fi and accelerometer measurements for reducing its needs and allows us to run

an experiment of 24 hours. The activity, inferred from the accelerometer is also fused with

the local pollution concentration to produce a realistic exposure estimation. Finally, the local

and global air quality sensing systems complement each other to provide outdoor as well as
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indoor air pollution information.

However, this prototype has some weaknesses. To make the extension board small enough

so that it can be attached directly to the smartphone, we had to choose Metal Oxide Sensors.

On the downside, those sensors are less suited for precise measurement and are usually used

for threshold detection in places where the gas concentration can vary over several orders

of magnitude. Even if it has been shown that it is possible to calibrate them to obtain valid

measurements, we don’t reach the same level of accuracy, mostly because we have no control

over the position and placement of the sensor (pocket, table, wind,... ) and for the next

prototypes iterations, we would suggest using bigger sensors that are also more accurate.

On the software side, the GSN platform, including the mobile application tinyGSN, is well

suited for a rapid development of such prototypes, but shows significant limitations when

used under heavy load. We found a way to overcome those limitations, at least to support

the OpenSense back-end requirements. For a larger participatory sensing scenario, it may be

required to rethink GSN from scratch, building from the lessons learned.
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7 Conclusion

In this thesis we explored different approaches that could enable continuous context sensing

on smartphones in a way that would preserve the scarce resources available on the mobile

platforms. The challenges we faced were trading off the battery life with the accuracy and

latency of the context inference.

We presented a generic mobile device sensing architecture, composed of the sensors, the sen-

sor abstraction layer, the sensor management modules, and the context extraction framework.

We used this architecture to put in context the contributions of this thesis, related to device

collaboration, sensor scheduling, and stream data processing.

The first approach we presented in Chapter 3 related to the use of local communications

to exchange sensing information with neighboring devices. Indeed, proximity, location and

environmental sensing can be offloaded to nearby external sensors, which can also be the

smartphones themselves. In the latter case, as the devices can send and receive measurements,

we designed a protocol for synchronizing the exchanges and fairly distribute the sensing tasks.

We showed both theoretically and experimentally, by running a simulation over two real-world

datasets, that it can indeed reduce the energy needed in the case where devices spend enough

time in the vicinity.

The second approach, in Chapter 4, focused on the way to schedule mobile sensors, optimizing

for both the accuracy and energy needs. We formulated the optimal sensing problem as a

decision problem and proposed a two-tier framework for approximating the solution, called

Optimos. The first tier is responsible for segmenting the sensor measurement time series.

The segments produced are optimized to reduce the approximation error of a model, like

a linear or SVM regression. The second tier takes care of estimating the optimal sampling,

selecting the measurement times that contribute the most to the model accuracy. We provided

near-optimal heuristics for both tiers of our framework and evaluated their performances

using environmental sensor traces.

The third approach, described in Chapter 5, was based on the principle that sensor data is in-

herently noisy and redundant. Therefore, we proposed an online algorithm, called StateFinder,
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that identifies repeated patterns in time series and produces a compressed symbolic output.

The first symbolic transformation, called spClust, applies clustering on the raw sensor data,

and the subsequent iterations encode repetitive sequences of symbols into new symbols. We

also presented a metric to evaluate how good a symbolization method is at preserving the state

information in time series and showed that spClsut outperforms other clustering methods. We

also showed that the output of StateFinder can be used directly for various data mining tasks,

such as classification or forecasting, without impacting much on the accuracy, but reducing

greatly the complexity and running time.

In the last Chapter, we presented an example of an application, called ExposureSense, that

demonstrated the many opportunities to enhance contextual information when fusing sensor

data from different sources. We developed a complete ecosystem for assessing the exposure of

the users to air pollutants in their daily lives. On one side we gather fine grained air quality

information from mobile sensor deployments, for example on the roofs of buses and aggregate

them in an interpolation model and on the other side, we continuously capture the user’s

context, including location, activity and surrounding air quality with a home-made sensor

board. We also presented the various models used for fusing location, activity, and local and

global air quality information in order to produce the exposure estimation.

7.1 Future directions

The research in mobile sensing is technology driven, in the same way that recent technological

developments, such as Google Glass or the Apple Watch, have highly influenced research

directions, bringing new challenges to be solved. These new sensors and sensor platforms

enable new sensing modalities, new interactions with the users and further integration into

our daily lives. But also many of the technologies presented in our survey (see Chapter 2) and

in the thesis itself are ready for the technology transfer and may reach the market soon, closing

the loop.

When changing the scale, from the individual, as in the approach of this thesis, to the pop-

ulation at large, a very important aspect, orthogonal to our research, relates to the issues of

privacy and trust. Indeed, locally collecting sensor information for the user’s own usage only

has a limited impact. Similar to the advantages of fusing data from various sensors, fusing data

from individuals also increases its utility and benefits to everyone. But are we ready to trade

our data for these advantages, up to what point and with whom? Whether the population

decides or not to adopt this new paradigm, the most important point remains that it must be

with full knowledge of the facts.

In addition to the user’s context, on which we focused in this thesis, sensing devices also

benefit from being aware of their own context. Even if the resources available on smartphones

may make some of the resource optimization discussed in this thesis useless, numerous much

smaller devices, sometimes referred to as smart-dust, will benefit from them and become

smarter by understanding their context. In the same way, after giving them the possibility to
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sense their environment, the connected and smart things will also want to understand it and

take action.

Finally, sensors are massive producers of data and greatly contributed to the Big Data era.

While researchers are putting a great deal of effort in supporting the storage and processing of

such huge amount of data in datacenters, the solution could actually come from the network

edges. Indeed, the cumulated distributed resources available at the data producers’ side is

very often neglected. However, those resources could be used to pre-process the data, extract

information or even actively participate in the retrieval process.
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