
Proactively Accountable Anonymous Messaging in Verdict

Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford

Yale University

Abstract

Among anonymity systems, DC-nets have long held at-

traction for their resistance to traffic analysis attacks, but

practical implementations remain vulnerable to internal

disruption or “jamming” attacks, which require time-

consuming detection procedures to resolve. We present

Verdict, the first practical anonymous group communi-

cation system built using proactively verifiable DC-nets:

participants use public-key cryptography to construct

DC-net ciphertexts, and use zero-knowledge proofs of

knowledge to detect and exclude misbehavior before dis-

ruption. We compare three alternative constructions for

verifiable DC-nets: one using bilinear maps and two

based on simpler ElGamal encryption. While verifiable

DC-nets incur higher computational overheads due to the

public-key cryptography involved, our experiments sug-

gest that Verdict is practical for anonymous group mes-

saging or microblogging applications, supporting groups

of 100 clients at 1 second per round or 1000 clients at

10 seconds per round. Furthermore, we show how exist-

ing symmetric-key DC-nets can “fall back” to a verifiable

DC-net to quickly identify misbehavior, speeding up pre-

vious detections schemes by two orders of magnitude.

1 Introduction

A right to anonymity is fundamental to democratic cul-

ture, freedom of speech [3, 46], peaceful resistance

to repression [39], and protecting minority rights [45].

Anonymizing relay tools, such as Tor [18], offer practi-

cal and scalable anonymous communication but are vul-

nerable to traffic analysis attacks [4, 34, 38] feasible for

powerful adversaries, such as ISPs in authoritarian states.

Dining cryptographers networks [13] (DC-nets)

promise security even against traffic analysis attacks,

and recent systems such as Herbivore [24, 44] and Dis-

sent [14, 52] have improved the scalability of DC-net-

style systems. However, these systems are still vulner-

able to internal disruption attacks in which a misbehav-

ing member anonymously “jams” communication, either

completely or selectively. Dissent includes a retrospec-

tive blame procedure that can eventually exclude disrup-

tors, but at high cost: tracing a disruptor in a 1,000-

member group takes over 60 minutes [52], and the pro-

tocol makes no communication progress until it restarts

“from scratch.” An adversary who infiltrates such a

group with f colluding members can “sacrifice” them

one at a time to disrupt all communication for f con-

tiguous hours at any time—long enough time to cause a

communications blackout before or during an important

mass protest, for example.

Verdict, a novel but practical group anonymity sys-

tem, thwarts such disruptions while maintaining DC-

nets’ resistance to traffic analysis. At Verdict’s core lies

a verifiable DC-net primitive, derived from theoretical

work proposed and formalized by Golle and Juels [25],

which requires participating nodes to prove proactively

the well-formedness of messages they send. The first

working system we are aware of to implement verifiable

DC-nets, Verdict supports three alternative schemes for

comparison: a pairing scheme using bilinear maps simi-

lar to the Golle-Juels approach, and two schemes based

on ElGamal encryption in conventional integer or ellip-

tic curve groups. Verdict incorporates this verifiable core

into a client/server architecture like Dissent’s [52], to

achieve scalability and robustness to client churn. As

in Dissent, Verdict maintains security as long as at least

one of the participating servers is honest, and participants

need not know or guess which servers are honest.

Due to their reliance on public-key cryptography, ver-

ifiable DC-nets incur higher computation overheads than

traditional DC-nets, which primarily use symmetric-key

cryptography (e.g., AES). We expect this CPU cost to

be acceptable in applications where messages are usually

short (e.g., chat or microblogging), where costs are dom-

inated by network delays, or in groups with relatively

open or antagonistic membership where disruption risks

may be high. Under realistic conditions, we find that

Verdict can support groups of 100 users while maintain-
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ing 1-second messaging latencies, or 1000-user groups

with 10-second latencies. In a trace-driven evaluation

of full-system performance for a microblogging applica-

tion, Verdict is able to keep up with symmetric-key DC-

nets in groups of up to 250 active users.

In contrast with the above “purist” approach, which

uses expensive public-key cryptography to construct all

DC-net ciphertexts, Verdict also implements and evalu-

ates a hybrid approach that uses symmetric-key DC-nets

for data communication when not under disruption at-

tack, but leverages verifiable DC-nets to enable the sys-

tem to respond much more quickly and inexpensively

to disruption attacks. Dissent uses a verifiable shuf-

fle [36] to broadcast an accusation anonymously; this

shuffle dominates the cost of identifying disruptors. By

replacing this verifiable shuffle with a verifiable DC-nets

round, Verdict preserves the disruption-free performance

of symmetric-key DC-nets, but reduces the time to iden-

tify a disruptor in a 1000-node group by two orders of

magnitude, from 20 minutes to 26 seconds.

This paper’s primary contributions are:

• the first working implementation and experimental

evaluation of verifiable DC-nets in a practical anony-

mous communication system,

• two novel verifiable DC-nets constructions using stan-

dard modular integer and elliptic curve groups, offer-

ing an order of magnitude lower computational cost

than the original pairing approach [25],

• a hybrid system design that preserves performance

of symmetric-key DC-nets, while reducing disruption

resolution costs by two orders of magnitude, and

• experimental evidence suggesting that verifiable DC-

nets may be practical for realistic applications, such as

anonymous microblogging.

Section 2 introduces DC-nets and the disruption prob-

lem. Section 3 outlines Verdict’s architecture and adver-

sary model, and Sections 4 and 5 describe its messaging

protocol and cryptographic schemes. Section 6 presents

application scenarios and evaluation results, Section 7

describes related work, and Section 8 concludes.

2 Background and Motivation

This section first introduces the basic DC-nets concept

and known generalizations, then motivates the need for

proactive accountability.

2.1 Anonymity with Strong Adversaries

To make the need for traffic-analysis-resistant anonymity

systems more concrete, consider a political journalist

who obtains some important secret government docu-

ments (e.g., the Pentagon Papers) from a confidential

source. If the journalist publishes these documents un-

der her own name, the journalist might risk prosecution

Figure 1: The basic DC-nets algorithm

or interrogation, and she might be pressured to reveal the

source of the documents.

To reduce such risks, a number of political journalists

could form a Verdict communication group. Any partic-

ipating journalist may then anonymously broadcast the

documents to the entire group of journalists, such that

no member of the group can determine which journal-

ist sent the documents. With Verdict, even if a govern-

ment agency plants agents within the group of journalists

and observes all network traffic during a protocol run, the

agency remains unable to learn the source of the leak.

Existing systems such as Tor, which are practical

and scalable but vulnerable to known traffic analysis at-

tacks [16, 18, 32], cannot guarantee security in this con-

text. For example, if a US journalist posts a leak to a US

website, via a Tor connection whose entry and exit relays

are in Europe, then an eavesdropper capable of moni-

toring transatlantic links [31] can de-anonymize the user

via traffic analysis [18, 35]. Prior anonymity systems at-

tempting to offer resistance to traffic analysis, discussed

in Section 7, suffer from poor performance or vulnera-

bility to active denial-of-service attacks.

2.2 DC-nets Overview

DC-nets [13] provide anonymous broadcast within a

group of participants, who communicate lock-step in a

series of rounds. In a given round, each group member

contributes an equal length ciphertext that, when com-

bined with all other members’ ciphertexts, reveals one or

more cleartext messages. All group members know that

each message was sent by some group member—but do

not know which member sent each message.

In its simplest form, illustrated in Figure 1, we assume

one group member wishes to broadcast a 1-bit message

anonymously. To do so, every pair of members flips a

coin, secretly agreeing on the random outcome of that

coin flip. An N-member group thus flips N(N − 1)/2

coins in total, of which each member observes the out-

come of N − 1 coins. Each member then XORs to-

gether the values of the N − 1 coins she observes, ad-

ditionally the member who wishes to broadcast the 1-bit
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message XORs in the value of that message, to produce

that member’s DC-nets ciphertext. Each group member

then broadcasts her 1-bit ciphertext to the other mem-

bers. Finally, each member collects and XORs all N

members’ ciphertexts together. Since the value of each

shared coin is XORed into exactly two members’ cipher-

texts, all the coins cancel out, leaving only the anony-

mous message, while provably revealing no information

about which group member sent the message.

2.3 Practical Generalizations

As a standard generalization of DC-nets to communicate

L-bit messages, all members in principle simply run L in-

stances of the protocol in parallel. Each pair of members

flips and agrees upon L shared coins, and each member

XORs together the L-bit strings she observes with her

optional L-bit anonymous message to produce L-bit ci-

phertexts, which XOR together to reveal the L-bit mes-

sage. For efficiency, in practice each pair of group mem-

bers forms a cryptographic shared secret—via Diffie-

Hellman key agreement, for example—then group mem-

bers use a cryptographic pseudo-random number gener-

ator (PRNG) to produce the L-bit strings.

As a complementary generalization, we can use any

finite alphabet or group in place of coins or bits, as long

as we have: (a) a suitable combining operator analogous

to XOR, (b) a way to encode messages in the chosen al-

phabet, and (c) a way to generate complementary pairs

of one-time pads in the alphabet that cancel under the

chosen combining operator. For example, the alphabet

might be 8-bit bytes, the combining operator might be

addition modulo 256, and from each pairwise shared se-

cret, one member of the pair generates bytes B1, . . . ,Bk

from a PRNG, while the other member generates corre-

sponding two’s complement bytes −B1, . . . ,−Bk.

2.4 Disruption and Verifiable DC-nets

A key weakness of DC-nets is that a single malicious in-

sider can easily block all communication. An attacker

who transmits arbitrary bits—instead of the XORed ci-

phertext that the protocol prescribes—unilaterally and

anonymously jams all DC-net communication.

In many online venues such as blogs, chat rooms, and

social networks, some users may have legitimate needs

for strong anonymity—protest organizers residing in an

authoritarian state, for example—while other antagonis-

tic users (e.g., secret police infiltrators) may attempt to

block communication if they cannot de-anonymize “un-

approved” senders. Even in a system like Dissent that

can eventually trace and exclude disruptors, an adver-

sary with multiple colluding dishonest group members

may still be able to slow or halt communication for long

enough to ruin the service’s usability for honest partici-

pants. Further, if the group’s membership is open enough

to allow new disruptive members to join more quickly

than the tracing process operates, then these infiltrators

may be able to shut down communication permanently.

Verifiable DC-nets [25] leverage algebraic groups,

such as elliptic curve groups, as the DC-nets alphabet.

Using such groups allows for disruption resistance, by

enabling members to prove the correctness of their ci-

phertexts’ construction without compromising the se-

crecy of the shared pseudo-random seeds. Using a hybrid

approach that combines a traditional DC-net with a veri-

fiable DC-net, Verdict can achieve the messaging latency

of a traditional XOR-based DC-net while providing the

strong disruption-resistance of verifiable DC-nets.

3 Verdict Architecture Overview

In this section, we describe the individual components of

Verdict and how they combine to form the overall anony-

mous communication system.

3.1 Deployment and Adversary Model

Verdict builds on Dissent [51, 52] and uses the multi-

provider cloud model illustrated in Figure 2 (a) to

achieve scalability and resilience to ordinary node

and link failures. In this model, a communication

group consists of mostly unreliable clients, and a few

servers we assume to be highly available and well-

provisioned. Servers in a group should be administered

independently—each furnished by a different anonymity

provider, for example—to limit risk of all servers be-

ing compromised and colluding against the clients. The

servers may be geographically or topologically close,

however—possibly even hosted in the same data center,

in locked cages physically and administratively accessi-

ble only to separate, independent authorities.

Clients directly communicate, at a minimum, with a

single upstream server, while each server communicates

with all other servers. This topology, shown in Fig-

ure 2 (b), reduces the communication and computation

burden on the clients, and enables the system to make

progress regardless of client churn. In particular, clients

need not know which other clients are online at the time

they submit their DC-net ciphertexts to their upstream

server; clients only assume that all servers are online.

To ensure anonymity, clients need not assume that any

particular server is trustworthy—a client need not even

trust its immediately upstream server. Instead, clients

trust only that there exists at least one one honest

server, an assumption previously dubbed anytrust [51,

52], as a trust analog to anycast communication.

Verdict, like Dissent, achieves security under the

anytrust assumption through the DC-nets key-sharing

model shown in Figure 2 (c). Each client shares a se-

cret with every server, rendering client ciphertexts in-

decipherable without the cooperation of all servers, and
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(a) Multi-provider cloud model [52] (b) Communication topology (c) DC-nets secret sharing

Figure 2: Verdict/Dissent deployment model, physical communication topology, and DC-nets secret sharing

hence protecting a client’s anonymity even if its immedi-

ately upstream server is malicious. Each client ultimately

obtains an anonymity set consisting of the set of all hon-

est clients, provided that the anytrust assumption holds,

and provided the message contents themselves do not in

some way reveal the sender’s identity.

A malicious server might refuse to service honest

clients, but such refusal does not compromise clients’

anonymity—victims can simply switch to a different

server. Although not yet supported in our Verdict pro-

totype, Section 4.6 discusses how one might use thresh-

old secret sharing to tolerate server failures, at the cost of

requiring that we assume multiple servers are honest.

3.2 Security Goals

Verdict’s goal is to offer anonymity and disruption resis-

tance in the face of a strong adversary who can poten-

tially monitor all network links, modify packets as they

traverse the network, and compromise a potentially large

fraction of a group’s participating members. We say that

a participant is honest if it follows the protocol exactly

and does not collude with or leak secret information to

other nodes. A participant is dishonest otherwise. Dis-

honest nodes can exhibit Byzantine behavior—they can

be arbitrarily incorrect and can even just “go silent.”

The system is designed to provide anonymity among

the set of honest participants, who remain online and un-

compromised throughout an interaction period, and who

do not compromise their identity via the content of the

messages they send. We define this set of honest and

online participants as the anonymity set for a protocol

run. If a group contains many colluding dishonest par-

ticipants, Verdict can anonymize the honest participants

only among the remaining subset of honest members:

in the worst case of a group containing only one hon-

est member, for example, Verdict operates but can offer

that member no meaningful anonymity.

Similarly, Verdict does not prevent long-term inter-

section attacks [28] against otherwise-honest participants

who repeatedly come and go during an interaction pe-

riod, leaking information to an adversary who can corre-

late online status with linkable anonymous posts. Rea-

soning about anonymity sets generally requires making

inherently untestable assumptions about how many group

members may be dishonest or unreliable, but Verdict at

least does not assume that the honest participants know

which other participants are honest and reliable.

Finally, Verdict’s disruption-resistant design addresses

internal disruption attacks by misbehaving anonymous

participants, a problem specific to anonymous commu-

nication tools and particularly DC-nets. Like any dis-

tributed system, Verdict may be vulnerable to more gen-

eral network-level Denial-of-Service (DoS) attacks as

well, particularly against the servers that are critical to

the system’s availability and performance. Such attacks

are important in practice, but not specific to anonymous

communication systems. This paper thus does not ad-

dress general DoS attacks since well-known defenses ap-

ply, such as server provisioning, selective traffic block-

ing, and proof-of-life or proof-of-work challenges.

4 Protocol Design

Verdict consists of two major components: the messag-

ing protocol, and the cryptographic primitive clients and

servers use to construct their ciphertexts. This section de-

scribes the Verdict messaging protocols, and the follow-

ing section describes the cryptographic constructions.

4.1 Core Verdict Protocol

Figure 3 summarizes the steps comprising a normal-case

run of the Verdict protocol. This protocol represents a

direct adaptation of the DC-nets scheme (Section 2.2) to

the two-level communication topology illustrated in Fig-

ure 2 (b), and to the client/server secret-sharing graph in

Figure 2 (c). As in Dissent, Verdict’s anonymity guar-

antee relies on Chaum’s original security analysis [13],

in which an honest node’s anonymity set consists of the

set of honest nodes that remain connected in the secret-

sharing graph after removing links to dishonest nodes.

Since each client shares a secret with every server, and

we assume that there exists at least one honest server, this

honest server forms a “hub” connecting all honest nodes.

This anonymity property holds regardless of physical

communication topology, which is why the clients need

not trust their immediately upstream server.

The ciphertext- and proof-generation processes as-

sume that communication in the DC-net is broken up into

time slots (akin to TDMA), such that only one client—
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1. Client Ciphertext Generation. Each client i gen-

erates a client ciphertext, and submits this cipher-

text to client i’s upstream server. If client i is the

anonymous owner of the current slot, the client com-

putes and submits a slot owner ciphertext using her

pseudonym secret key and her plaintext message m.

2. Client Set Sharing. After receiving valid client

ciphertexts from its currently connected downstream

clients, each server j broadcasts to all servers its set

C j of collected client ciphertexts.

3. Server Ciphertext Generation. After receiving

client ciphertext sets from all servers, each server j

computes C =
⋃

k Ck, the set of client ciphertexts col-

lected by all servers. Server j then uses C to compute

a server ciphertext corresponding to the set of submit-

ted client ciphertexts. Server j broadcasts this server

ciphertext to all other servers.

4. Plaintext Reveal. After receiving a server cipher-

text from every other server, each server j combines

the |C| client ciphertexts and M server ciphertexts to

reveal the plaintext message m. Server j signs m and

broadcasts its signature σ j to all servers.

5. Plaintext Sharing. After receiving valid signa-

tures from all servers, server j sends the plaintext

message m and the M signatures σ1, . . . ,σM (one from

each server) to its downstream clients.

6. Client Verification. Upon receiving the plaintext

m and M valid signatures from its upstream server,

client i accepts the plaintext message and considers

the messaging round to have completed successfully.

All messages sent over the network include a session

nonce and are signed with the sender’s long-term

well-known (non-anonymous) signing key.

Figure 3: Core Verdict messaging protocol

the slot’s owner—is allowed to send an anonymous mes-

sage in each time slot. The owner of a slot is the client

who holds the private key corresponding to a pseudonym

public key assigned to the slot. To maintain the slot

owner’s anonymity, no one must know which client owns

which transmission slot. Section 4.3 below describes the

assignment of pseudonym keys to transmission slots.

Figure 4 shows an example DC-net transmission

schedule with three slots, owned by pseudonyms A, B,

and C. Each slot owner can transmit one message per

messaging round, and the slot ordering in the schedule

remains the same for the duration of the Verdict session.

4.2 Verifiable Ciphertexts in Verdict

While Verdict’s anonymity derives from the same prin-

ciples as Dissent’s, the key difference is in the “alpha-

Figure 4: Example DC-net transmission schedule, where

anonymous authors A, B, and C transmit in each round.

bet” with which Verdict generates DC-net ciphertexts,

and in the way Verdict combines and checks those ci-

phertexts. Dissent uses a symmetric-key cryptographic

pseudo-random number generators (PRNG) to generate

shared secrets, and uses bitwise XOR to combine them

and later to reveal the plaintext message. While efficient,

the symmetric-key approach offers no way to check that

any node’s ciphertext was generated correctly until the fi-

nal cleartext messages are revealed. If any node corrupts

a protocol round by sending an incorrect ciphertext, Dis-

sent can eventually identify that node only via a complex

retroactive blame procedure.

Verdict, in contrast, divides messages into chunks

small enough to be encoded into elements of algebraic

groups, such as Schnorr [42] or elliptic curve groups,

to which known proof-of-knowledge techniques apply.

Section 5 later outlines three particular ciphertext gen-

eration schemes that Verdict implements, although Ver-

dict’s architecture and protocol design is agnostic to the

specific scheme. These schemes may be considered anal-

ogous to “pluggable” ciphersuites in SSL/TLS.

Thus, any Verdict ciphertext is generated on behalf of

the holder of some particular pseudonym keypair. While

the details of a ciphertext correctness proof depend on

the particular scheme, all such proofs have the general

form of an “either/or” knowledge proof, of the type sys-

tematized by Camenisch and Stadler [11]. In particular,

a ciphertext correctness proof attests that either:

• the ciphertext is an encryption of any message, and the

producer of the ciphertext holds the private part of the

pseudonym key for this slot, OR

• the ciphertext is an encryption of a null cover message,

which, when combined with other cover ciphertexts

and exactly one actual encrypted message ciphertext,

will combine to reveal the encrypted message.

Only the pseudonym key owner can produce a correct-

ness proof for an arbitrary message following the first al-

ternative above, while any node can generate an “honest”

cover ciphertext—and the proof by construction reveals

no information about which alternative the proof gener-

ator followed. We leave discussion of further details of

this process to Section 5, but merely note that such “ei-

ther/or” proofs are pervasive and well-understood in the

cryptographic theory community.
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In Verdict, each client computes and attaches a crypto-

graphic correctness proof to each ciphertext it sends to its

upstream server, and each server in turn attaches a cor-

rectness proof to the server-side ciphertext it generates

in Phase 3 of each round (Figure 3). In principle, there-

fore, each server can immediately verify the correctness

of any client’s or other server’s ciphertext it receives, be-

fore “accepting” it and combining it with the other ci-

phertexts for that protocol round. As in Dissent, Verdict

achieves resilience to client churn by (optionally) requir-

ing clients to submit their ciphertexts before a certain

“deadline” in each messaging round. We describe this

technique in Section 4.5.

While Verdict nodes can in principle verify the cor-

rectness of any received ciphertext immediately, actually

doing so has performance costs. These costs lead to de-

sign tradeoffs between “eager” and “lazy” verification,

both of which we implement and evaluate later in Sec-

tion 6. Lazy verification enables the critical servers to

avoid significant computation costs during rounds that

are not disrupted, at the expense of making a round’s out-

put unusable if it is disrupted. Even if a lazily-verified

round is disrupted, however, the fact that Verdict nodes

always generate and transmit signed ciphertext correct-

ness proofs greatly simplifies and shortens the retroactive

blame process with respect to Dissent.

Verdict currently treats server-side failures of all

types, including invalid server ciphertexts, as “major

events” requiring administrative action, and simply halts

the protocol with an alert until such action is taken. Sec-

tion 4.6 later discusses approaches to make Verdict re-

silient against server-side failures, but we leave imple-

menting and evaluating such mechanisms to future work.

Such server-side failures affect only availability, how-

ever; anonymity remains protected as long as at least one

(not necessarily online) server remains uncompromised.

4.3 Scheduling Pseudonym Keys

To assign ownership of transmission slots to clients in

such a way that no one knows which client owns which

slot, Verdict applies an architectural idea from Dis-

sent [52]. At the start of a Verdict session, each of the

N clients secretly submits a slot owner pseudonym key

to a verifiable shuffle protocol [36] run by the servers.

The public output of the shuffle is the N pseudonym keys

in permuted order—such that no one knows which node

submitted which pseudonym key other than their own.

Verdict participants then use each of these N pseudonym

keys to initialize N concurrent instances of the core Ver-

dict DC-net with each instance becoming a slot in a ver-

ifiable DC-net transmission schedule.

Scheduling Policy Not every client will necessarily

want to transmit an anonymous message in every mes-

saging round. In addition, clients may want to transmit

messages of different lengths. To make Verdict more ef-

ficient in these cases, Verdict allows clients to request a

change in the length of their messaging slot (e.g., so that

a client can send a long message in a single messaging

round) and to temporarily “close” their transmission slot

(if a client does not expect to send a message for several

rounds). Clients issue these requests by prepending a few

bits of control data to the anonymous message they send

in their transmission slot.

4.4 Hybrid XOR/Verifiable DC-Nets

While the verifiable DC-net design above may be needed

in scenarios in which disruptions are frequent, the public-

key cryptography involved imposes a much higher com-

putational cost than traditional XOR-based DC-nets. To

offer better performance in groups with fewer or less fre-

quent disruptions, Verdict has a “hybrid” mode of opera-

tion that uses the fast XOR-based DC-net when there are

no active disruptors in the group, and reverts to a verifi-

able DC-net in the presence of an active disruptor. This

hybrid Verdict DC-net marries the relatively low com-

putational cost of the XOR-based DC-net with the low

accountability cost of the verifiable DC-net.

To set up a hybrid DC-net session, all protocol partici-

pants first participate in a pseudonym signing key shuffle,

as described above in Section 4.3. At the conclusion of

the shuffle, all nodes initialize two DC-net slots for each

of the N clients: one traditional Dissent-style DC-net,

and one verifiable Verdict DC-net.

When the group is not being disrupted, clients trans-

mit in their Dissent DC-net slot, allowing nodes to take

advantage of the speed of Dissent’s XOR-based DC-net.

When nodes detect the corruption of a message in the

Dissent DC-net, the client whose message was corrupted

reverts to transmitting in its verifiable DC-net slot. This

client can use the verifiable slot to transmit anonymously

the “accusation” necessary to identify the disruptor in the

Dissent accusation process [52, Section 3.9]. The Verdict

DC-net replaces the expensive verifiable shuffle neces-

sary for nodes to exchange the accusation information in

Dissent. In this way, Verdict offers the normal-case ef-

ficiency of XOR-based DC-nets while greatly reducing

the cost of tracing and excluding disruptors.

4.5 Client Churn

In realistic deployments clients may go offline at any

time, and this problem becomes severe in large groups

of unreliable clients exhibiting constant churn. To pre-

vent slow or unresponsive clients from disrupting com-

munication, the servers need not wait in Phase 2 for

all downstream clients to submit ciphertexts. Instead,

servers can wait for a fixed threshold of t ≤ N clients

to submit ciphertexts, or for some fixed time interval τ .

Servers might also use some more complicated window
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closure policy, as in Dissent [52]: e.g., wait for a thresh-

old of clients and then an additional time period before

proceeding. The participants must agree on a window

closure policy before the protocol run begins.

There is an inherent tradeoff between anonymity and

the system’s ability to cope with unresponsive clients. If

the servers close the ciphertext submission window too

aggressively, honest but slow clients might be unable to

submit their ciphertexts in time, reducing the anonymity

of clients who do manage to submit messages. In con-

trast, if the servers wait until every client has submitted

a ciphertext, a single faulty client could prevent protocol

progress indefinitely. Optimal policy choices depend on

the security requirements of the application at hand.

4.6 Limitations and Future Enhancements

This section outlines some of Verdict’s current limita-

tions, deployment issues, and areas for future work.

Group Evolution Verdict’s architecture assumes that,

at the start of the protocol, group members agree to

a “roster” of protocol participants—essentially a list of

public keys defining the group’s membership. The cur-

rent prototype simplistically assumes that this group ros-

ter is a static list, and that the session nonce is a hash

of a file containing this roster and other group policy in-

formation. This design trivially ensures that all nodes

participating in a given group (uniquely identified by its

session nonce) agree upon the same roster and policy.

Changing the group roster or policy in the current pro-

totype requires forming a new group, but we are explor-

ing approaches to group management which would allow

for on-the-fly membership changes. For now, we simply

note that Verdict’s security properties critically depend

on group membership policy decisions, which affect how

quickly adversarial participants can infiltrate a group. We

consider group management policy to be orthogonal to

this paper’s communication mechanisms.

Sybil Attacks If it is too easy to join a group, dishon-

est participants might flood the group with Sybil identi-

ties [19], giving an anonymous slot owner the impression

that she has more anonymity than she actually does. The

current “static group” design shifts the Sybil attack pre-

vention problem to whomever formulates the group ros-

ter. Dynamic group management schemes could leverage

existing Sybil prevention techniques [47, 53, 54], but we

do not consider such approaches herein.

Membership Concealment Verdict considers the

group roster, containing the public keys of all partici-

pants, to be public information: concealing participation

in the protocol is an orthogonal security goal that Verdict

currently does not address. We are exploring the use

of anonymous authentication techniques [22, 29, 41] to

enable Verdict clients to “sign on” and prove member-

ship in the group without revealing to the Verdict servers

(or to the adversary) which specific group members are

online at any given time. Further, we expect that Ver-

dict’s design could be composed with other techniques to

achieve membership concealment [33, 49], but we leave

such enhancements to future work.

Unresponsive Servers Verdict currently assumes that

the servers supporting a group are well-provisioned and

highly reliable, and the system simply ceases communi-

cation progress in the face of any server’s failure. Any

fault-masking mechanism would be problematic, in fact,

in the face of Verdict’s assumption that only one server

might be honest: if that one honest server goes offline

and the protocol continues without it, then the remaining

dishonest servers could collude against all honest users.

If we assume that there are h > 1 honest servers,

however, a currently unimplemented variation of Verdict

could allow progress if as many as h− 1 servers are un-

responsive. Before the protocol run, every server uses

a publicly verifiable secret sharing scheme [43], to dis-

tribute shares of its per-session secret key. The scheme

is configured such that any quorum of M − h+ 1 shares

is sufficient to reconstruct the secret. Thus, at least one

honest server must remain online and contribute a share

for a secret to be reconstructed. (Golle and Juels [25] also

use a secret-sharing scheme, but they rely on a trusted

third-party to generate and distribute the shares.)

If a server becomes unresponsive, the remaining on-

line servers can broadcast their shares of the unrespon-

sive server’s secret key. Once a quorum of servers broad-

casts these shares, the remaining online servers will be

able to reconstruct the unresponsive server’s private key.

Thereafter, each server can simulate the unresponsive

server’s messages for the rest of the protocol session.

Blame Recovery The current Verdict prototype can

detect server misbehavior, but it does not yet have a

mechanism by which the remaining servers can collec-

tively form a new group “roster” with the misbehaving

nodes removed. We expect off-the-shelf Byzantine Fault

Tolerance algorithms [12] to be applicable to this group

evolution problem. Using BFT to achieve agreement,

however, requires a stronger security assumption: in a

group with f dishonest servers, there must be at least

3 f + 1 total servers. We sketch a possible BFT-based

group evolution approach here.

The BFT cluster’s shared state in this case is the group

“roster,” containing the session nonce and a list of all ac-

tive Verdict clients and servers, identified by their public

keys. The two operations in this BFT system are:

• EVOLVE GROUP(nonce, node index, proof), a

request to remove a dishonest node (identified by

node index) from the group roster. BFT servers
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remove the dishonest node from the group if the proof

is valid, yielding the new group roster.

• GET GROUP(), which returns current the group roster.

If, at some point during the Verdict session, a Ver-

dict node concludes that the protocol has failed due to

the dishonesty of node d, this honest node makes an

EVOLVE GROUP request to the BFT cluster and waits for

a response. The honest BFT servers will agree on a

new group roster with the dishonest node d removed

and the Verdict servers will begin a new instance of the

Verdict protocol with the new group roster. Clients use

GET GROUP to learn the new group roster.

5 Verifiable DC-net Constructions

The Verdict architecture relies on a verifiable DC-net

primitive that has many possible implementations. In this

section, we first describe the general interface that each

of the cryptographic constructions must implement—

which could be described as a “Verdict ciphersuite

API”—then we describe the three specific experimental

schemes that Verdict currently implements.

All three schemes are founded on standard, well-

understood cryptographic techniques that have been for-

mally developed and rigorously analyzed in prior work.

As with most practical, complex distributed systems with

many components, however, we cannot realistically offer

a rigorous proof that these cryptographic tools “fit to-

gether” correctly to form a perfectly secure overall sys-

tem. (This is true even of SSL/TLS and its ciphersuites,

which have received far more cryptographic scrutiny

than Verdict but in which flaws are still found regularly.)

We also make no claim that any of the current schemes

are “the right” ones or achieve any particular ideal; we

merely offer them as contrasting points in a large design

space. To lend some informal credibility to their secu-

rity, we note that our pairing-based scheme is closely

modeled on the verifiable DC-nets scheme that Golle and

Juels already developed formally [25], and the extended

version of this paper [15] sketches a security argument

for the third and most computationally efficient scheme.

5.1 Verifiable DC-net Primitive API

The core cryptographic primitive consists of a set of six

methods. Each of these six methods takes a list of proto-

col session parameters (e.g., group roster, session nonce,

slot owner’s public key) as an implicit argument:

• Cover Create: Given a client session secret key, return

a valid client ciphertext representing “cover traffic,”

which do not contain actual messages.

• Owner Create: Given a client session secret key, the

slot owner’s pseudonym secret key, and a plaintext

message m to be transmitted anonymously, return a

valid owner ciphertext that encodes message m.

• Client Verify: Given a client public key and a client

ciphertext, return a boolean flag indicating whether the

client ciphertext is valid.

• Server Create: Given a server private key and a set of

client ciphertexts, return a valid server ciphertext.

• Server Verify: Given a server public key, a set of valid

client ciphertexts, and a server ciphertext, return a flag

indicating whether the server ciphertext is valid.

• Reveal: Combine N client ciphertexts and M server

ciphertexts, returning the plaintext message m.

However these methods are implemented, they must

obey the following security properties, stated informally:

• Completeness: An honest verifier always accepts a

ciphertext generated by an honest client or server.

• Soundness: With overwhelming probability an hon-

est verifier rejects an incorrect ciphertext, such as an

owner ciphertext formed without knowledge of the

owner’s pseudonym secret key.

• Zero-knowledge: A verifier learns nothing about a ci-

phertext besides the fact that it is correctly formed.

• Integrity: Combining N valid client ciphertexts,

including one ciphertext from the anonymous slot

owner, and M valid server ciphertexts, reveals the slot

owner’s plaintext message.

• Anonymity: A verifier cannot distinguish a client ci-

phertext from the anonymous slot owner’s ciphertext.

The extended version of this paper [15] offers a game-

based definition of anonymity.

In practice, each of our current implementations of

this verifiable DC-nets primitive achieve these security

properties in the random-oracle model [5] using non-

interactive zero-knowledge proofs [26].

5.2 ElGamal-Style Construction

The first scheme builds on the ElGamal public-key cryp-

tosystem [20]. In ElGamal, a public/private keypair has

the form 〈B,b〉= 〈gb,b〉,1 and plaintexts and ciphertexts

are elements of an algebraic group G.2 We refer to this

as the “ElGamal-style” construction because its use of an

ephemeral public key and encryption by multiplication

structurally resembles the ElGamal cryptosystem. Our

construction does not exhibit the malleability of textbook

ElGamal encryption, however, because a proof of knowl-

edge of the secret ephemeral public key is attached to

every ciphertext element.

Client Ciphertext Construction Given a list of server

public keys 〈B1, . . . ,BM〉, a client constructs a ciphertext

1 We do not require that a trusted third party generate participants’

keypairs, but we do require participants to prove knowledge of their

secret key at the start of a protocol session, for reasons described in the

extended version of this paper [15].
2 Throughout, unless otherwise noted, group elements are members

of a finite cyclic group G in which the Decision Diffie-Hellman (DDH)

problem [6] is assumed computationally infeasible, and g is a public

generator of G.
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by selecting an ephemeral public key Ri = gri at random

and computing the ciphertext element:

Ci = m
(

ΠM
j=1B j

)ri

If the client is the slot owner, the client sets m to its secret

message, otherwise the client sets m = 1.

To satisfy the security properties described in Sec-

tion 5.1, the client must somehow prove that the ci-

phertext tuple 〈Ri,Ci〉 was generated correctly. We

adopt the technique of Golle and Juels [25] and use

a non-interactive proof-of-knowledge of discrete loga-

rithms [11] to prove that the ciphertext has the correct

form. If the slot owner’s pseudonym public key is Y ,

the client’s ephemeral public key is Ri, and the client’s

ciphertext element is Ci, the client generates a proof:

PoK{ri,y :
(

Ri = gri ∧Ci = (ΠM
j=1B j)

ri
)

∨Y = gy}

In words: the sender demonstrates that either it knows

the discrete logarithm ri of the ephemeral public key Ri,

and the ciphertext is the product of all server public keys

raised to the exponent ri; or the sender knows the slot

owner’s secret pseudonym key y, in which case the slot

owner can set Ci to a value of her choosing. The extended

version of this paper [15] details how to construct and

verify this type of non-interactive zero-knowledge proof.

Note that a dishonest slot owner can set Ci to a mali-

ciously constructed value (e.g., Ci = 1). The only effect

of such an “attack” is that the slot owner compromises

her own anonymity. Since a dishonest slot owner can

always compromise her own anonymity (e.g., by pub-

lishing her secret keys), a dishonest slot owner achieves

nothing by setting Ci maliciously.

The tuple 〈Ri,Ci,PoK〉 serves as the client’s cipher-

text. As explained in Section 4.1, all participants sign

the messages they exchange for accountability.

Server Ciphertext Construction Given a server pub-

lic key B j = gb j and a list of ephemeral client public keys

〈R1, . . . ,RN〉, server j generates its server ciphertext as:

S j =
(

ΠN
i=1Ri

)−b j

The server proves the validity of its ciphertext by creating

a non-interactive proof of knowledge that it knows its

secret private key b j and that its ciphertext element S j

is the product of the ephemeral client keys raised to the

exponent −b j:

PoK{b j : B j = gb j ∧S j = (ΠN
i=1Ri)

−b j}

Message Reveal To reveal the plaintext message, a

participant computes the product of N client ciphertext

elements and M server ciphertext elements:

m =
(

ΠN
i=1Ci

)(

ΠM
j=1S j

)

Each factor grib j , where ri is client i’s ephemeral secret

key and b j is server j’s secret key, is included exactly

twice in the above product—once with a positive sign in

the client ciphertexts and once with a negative sign in the

server ciphertexts. These values therefore cancel, leaving

only the plaintext m.

Drawbacks Since the clients must use a new

ephemeral public key for each ciphertext element, send-

ing a plaintext message that is L group elements in length

requires each client to generate and transmit L ephemeral

public keys. The proof of knowledge for this construc-

tion is L+O(1) group elements long, so a message of L

group elements expands to 3L+O(1) elements.

5.3 Pairing-Based Construction

A major drawback of the ElGamal construction is that,

due to the need for ephemeral keys, every ciphertext is

three times as long as the plaintext it encodes. Golle

and Juels [25] use bilinear maps to eliminate the need for

ephemeral keys. Our pairing-based construction adopts

elements of their technique, while avoiding their reliance

on a trusted third party, a secret-sharing scheme, and a

probabilistic transmission scheduling algorithm.

A symmetric bilinear map ê maps two elements of

a group G1 into a target group G2—ê : G1 × G1 →
G2. A bilinear map has the property that: ê(aP,bQ) =
ê(P,Q)ab.3 To be useful, the map must also be non-

degenerate (if P is a generator of G1, ê(P,P) is a gen-

erator of G2) and efficiently computable [8]. We assume

that the decision bilinear Diffie-Hellman assumption [7]

holds in G1.4

Since pairing allows a single pair of public keys to

generate a sequence of shared secrets, clients need not

generate ephemeral public keys for each ciphertext ele-

ment they send. This optimization leads to shorter ci-

phertexts and shorter correctness proofs.

Client Ciphertext Construction For a set of server

public keys 〈B1, . . . ,BM〉, a public nonce τ ∈ G1 com-

puted using a hash function, and a client public key

Ai = gai , a pairing-based client ciphertext has the form:

Ci = mê(ΠM
j=1B j,τ)

ai

As before, if the client is not the slot owner, the client sets

m= 1. Each client can produce a proof of the correctness

of its ciphertext by executing a proof of knowledge simi-

lar to one used in the ElGamal-style construction above:

PoK{ai,y : (Ai = gai ∧Ci = ê(ΠM
j=1B j,τ)

ai)∨Y = gy}

While the ElGamal-style scheme requires 3L+O(1)
group elements to encode L elements of plaintext, a

3 Since G1 is usually an elliptic curve group, the generator of G1

is written as P (an elliptic curve point) and the repeated group opera-

tion is written as aP instead of ga. We will use the latter notation for

consistency with the rest of this section.
4 Note that the decision Diffie-Hellman problem is easy in G1, since

given g,ga,gb,gc ∈ G1, a DDH tuple will always satisfy ê(ga,gb) =
ê(g,gc) if c = ab mod q.
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pairing-based ciphertext requires only L+O(1) group el-

ements to encode an L-element plaintext.

Server Ciphertext Construction Using a server pub-

lic key B j = gb j , a public round nonce τ , and client public

keys 〈A1, . . . ,AN〉, a server ciphertext has the form:

S j = ê(ΠN
i=1Ai,τ)

−b j

The server proof of correctness is then:

PoK{b j : B j = gb j ∧S j = ê(ΠN
i=1Ai,τ)

−b j}

Message Reveal To reveal the plaintext, the servers

take the product of all client and server ciphertexts:

m = (ΠN
i=1Ci)(Π

M
j=1S j)

Drawbacks The main downside of this construction is

the relatively high computational cost of the pairing oper-

ation. Computing the pairing operation on two elements

of G1 can take an order of magnitude longer than a nor-

mal elliptic curve point addition in a group of similar se-

curity level, as Section 6.2 below will show.

5.4 Hashing-Generator Construction

Our hashing-generator construction pursues a “best of

both worlds” combination of the ElGamal-style and

pairing-based constructions. This construction has

short ciphertexts, like the pairing-based construction,

but avoids the computational cost of the pairing-based

scheme by using conventional integer or elliptic curve

groups. To achieve both of these desired properties, the

hashing-generator construction adds some protocol com-

plexity, in the form of a session set-up phase.

Set-up Phase In the set-up phase, each client i es-

tablishes a Diffie-Hellman shared secret ri j with every

server j using their respective public keys gai and gb j by

computing ri j =KDF(gaib j) using a key derivation func-

tion KDF. Clients publish commitments to these shared

secrets Ri j = ĝri j using another public generator ĝ.

The hashing-generator construction requires a process

by which participants compute a sequence of generators

g1, . . . ,gL of the group G, such that no participant knows

the discrete logarithm of any of these generators with

respect to any other generator. In other words, no one

knows an x such that gx
i = g j, for any i, j pair. In prac-

tice, participants compute this sequence of generators by

hashing a series of strings, (e.g., the round nonce con-

catenated with “1”, “2”, “3”, . . . ), to choose the set of

generating group elements.

At the end of the set-up phase, every client i can

produce a sequence of shared secrets with each server

j using their shared secret ri j and the L generators:

g
ri j

1 , . . . ,g
ri j

L . In the ℓth message exchange round, all par-

ticipants use generator gℓ as their common generator.

Client Ciphertext Construction To use the hashing-

generator scheme to create a ciphertext, the client uses its

shared secrets ri1, . . . ,riM with the servers, and generator

gℓ for the given protocol round to produce a ciphertext:

Ci = mg
(∑M

j=1 ri j)

ℓ

As before, m = 1 if the sender is not the slot owner.

To prove the validity of a ciphertext element, the client

executes the following proof of knowledge, where Y is

the slot owner’s pseudonym public key, ri =∑M
j=1 ri j, and

Ri j is the commitment to the secret shared between client

i and server j:

PoK{ri,y : ((ΠM
j=1Ri j) = ĝri ∧Ci = g

ri

ℓ )∨Y = gy}

Server Ciphertext Construction Server j’s ciphertext

for the ℓth message exchange round is similar to the

client ciphertext, except with negated exponents:

S j = g
(−∑N

i=1 ri j)

ℓ

The server proves correctness of a ciphertext by execut-

ing a proof of knowledge, where r j = ∑N
i=1 ri j:

PoK{r j : (ΠN
i=1Ri j) = ĝr j ∧S j = g

−r j

ℓ }

Message Reveal The product of the client and server

ciphertexts reveals the slot owner’s plaintext message m:

m = (ΠN
i=1Ci)(Π

M
j=1S j)

Failed Session Set-up A dishonest client i might try

to disrupt the protocol by publishing a corrupted com-

mitment R′
i j that disagrees with server j’s commitment

Ri j to the shared secret ri j = KDF(gaib j). If the commit-

ments disagree, the honest server can prove its innocence

by broadcasting the Diffie-Hellman secret ρi j = gaib j

along with a proof that it correctly computed the Diffie-

Hellman secret using its public key B j and the client’s

public key Ai.

PoK{b j : ρi j = A
b j

i ∧B j = gb j}

If the server is dishonest, the client can produce a simi-

lar proof of innocence. Any user can verify this proof,

and then use gaib j to recreate the correct commitment

Ri j. Once the verifier has the correct commitment Ri j,

the verifier can confirm either that the client in question

published an invalid commitment or that the server in

question dishonestly accused the client.

Since the session set-up between client i and server

j will only fail if either i or j is dishonest, there is no

security risk to publishing the shared secret gaib j after a

failed set-up—the dishonest client (or server) could have

shared this secret with the adversary anyway.

Long Messages The client and server ciphertext con-

structions described above allow the slot owner to trans-

mit a plaintext message m that is at most one group el-

ement in length in each run of the protocol. To encode
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longer plaintexts efficiently, participants use a modified

proof-of-knowledge construction that proves the validity

of L ciphertext elements (Ci,1 through Ci,L) at once:

PoK{ri,y : ((ΠM
j=1Ri j = ĝri)∧ (∧L

ℓ=1Ci,ℓ = g
ri

ℓ ))∨Y = gy}

Servers can use a similarly modified proof of knowledge.

This modified knowledge proof is surprisingly compact:

the length of the proof is constant in L, since the length

of the proof is linear in the number of proof variables

(here, the only variables are ri and y). The total length of

the tuple 〈~Ci,PoK〉 using this proof is L+O(1).

Lazy Proof Verification In the basic protocol, every

server verifies the validity proof on every client cipher-

text in every protocol round. To avoid these expensive

verification operations, servers can use lazy proof veri-

fication: servers check the validity of the client proofs

only if they detect, at the end of a protocol run, that the

anonymous slot owner’s message was corrupted. For rea-

sons discussed in the extended version of this paper [15],

lazy proof verification is possible only using the pairing-

based or hashing-generator ciphertext constructions.

Security Analysis Since the hashing-generator

scheme is the most performant variant, we sketch an

informal security proof for the hashing-generator proof

construction in the extended version of this paper [15].

6 Evaluation

This section describes our Verdict prototype implemen-

tation and summarizes the results of our evaluations.

6.1 Implementation

We implemented the Verdict protocol in C++ using the

Qt framework as an extension to the existing Dissent pro-

totype [52]. Our implementation uses OpenSSL 1.0.1 for

standard elliptic curve groups, Crypto++ 5.6.1 for big in-

teger groups, and the Stanford Pairing-Based Cryptogra-

phy (PBC) 0.5.12 library for pairings [48]. Unless other-

wise noted, the evaluations use 1024-bit integer groups,

the 256-bit NIST P-256 elliptic curve group [37], and

a pairing group in which G1 is an elliptic curve over a

512-bit field (using PBC’s “Type A” parameters) [30].

We collected the macrobenchmark and end-to-end eval-

uation results on the DeterLab [17] testbed.

The source code for our implementation is available at

https://github.com/DeDiS/Dissent.

6.2 Microbenchmarks

To compare the pure computational costs of the differ-

ent DC-net schemes, Figure 5 shows ciphertext gener-

ation and verification throughput measured at a variety

of block sizes, running on a workstation with a 3.2 GHz

Intel Xeon W3565 processor. These experiments involve

no network activity, and are single-threaded, thus they do

not reflect any speedup that parallelization might offer.

Figure 5: Ciphertext generation and verification through-

put for the three verifiable DC-net variants and the XOR-

based scheme.

The hashing-generator construction, which is the

fastest scheme tested, encrypts 20 KB of client plaintext

per second. The slowest, paring-based construction en-

crypts around 3 KB per second. The fastest verifiable

scheme is still over an order of magnitude slower than

the traditional (unverifiable) XOR-based scheme, which

encrypts 600 KB of plaintext per second. The hashing-

generator scheme performs best because it needs no pair-

ing operations and requires fewer group exponentiations

than the ElGamal construction.

Figure 5 shows that ciphertext verification is slightly

faster than ciphertext generation. This is because gener-

ating the ciphertext and zero-knowledge proof requires

more group exponentiations than proof verification does.

The three constructions also vary in the size of ci-

phertexts they generate (Figure 6). While the pairing-

based scheme and the hashing-generator schemes en-

crypt length L plaintexts as ciphertexts of length L +
O(1), the ElGamal-style scheme encrypts length L

plaintexts as length 3L + O(1) ciphertexts. As dis-

cussed in Section 5.2, for every plaintext message ele-

ment encrypted, ElGamal-style ciphertexts must include

an ephemeral public key and an additional proof-of-

knowledge group element. Since the hashing-generator

scheme is the fastest and avoids the ElGamal scheme’s

ciphertext expansion, subsequent experiments use the

hashing-generator scheme unless otherwise noted.

6.3 Accountability Cost

Figure 7 presents three graphs: (a) the time it takes to set

up a transmission schedule via a verifiable shuffle, prior

to DC-net communication, (b) the time required to exe-

cute a single DC-net protocol round in each scheme, and

(c) the time required to identify a disruptor. The graphs

compare four protocol variants: Dissent, Verdict, Verdict
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Figure 7: Time required to initialize a session, perform one messaging round, and to identify a disruptor.

Figure 6: Ciphertext expansion factor (overhead) using

the integer ElGamal-style, pairing-based, and hashing-

generator protocol variants.

with lazy proof verification, and the Dissent+Verdict hy-

brid DC-net. We ran this experiment on DeterLab using

8 servers and 128 clients. To scale beyond 128 clients,

we ran multiple client processes on each client machine.

Session setup time measures the time from session start

to just before the first DC-net messaging round.

The one-time session setup time for Verdict is longer

than for Dissent because the verifiable shuffle imple-

mentation Dissent uses is heavily optimized for shuffling

DSA signing keys. Shuffling Verdict public keys, which

are drawn from different group types, requires using a

less-optimized version of the verifiable shuffle. We do

not believe this cost is fundamental to the Verdict ap-

proach, and in any case these setup costs are typically

amortized over many DC-net rounds.

The Dissent+Verdict hybrid DC-net is just as fast as

Dissent in the normal case, since Dissent and the hy-

brid DC-net run exactly the same code if there is no ac-

tive disruptor in the group. Network latency comprises

the majority of the time for a messaging round when

using the Dissent and the hybrid Dissent+Verdict DC-

nets—messaging rounds take between 0.6 and 1.4 sec-

onds to complete in network sizes of 8 to 1,024 clients.

In contrast, Verdict becomes computationally limited at

64 clients, taking approximately 2.5 seconds per round.

Verdict (lazy) improves upon this by becoming compu-

tationally limited at 256 clients, requiring approximately

3 seconds per messaging round.

Verdict incurs the lowest accountability (blame) cost

of the four schemes. Verdict’s verifiable DC-net checks

the validity of each client ciphertext before processing it

further, so the time-to-blame in Verdict is equal to the

cost of verifying the validity proofs on N client cipher-

texts. “Verdict (lazy)” uses the lazy proof verification

technique described in Section 5.4—servers verify the

client proofs of correctness only if they detect a disrup-

tion. Lazy proof verification delays the verification op-

eration to the end of a messaging phase, so the time-to-

blame is slightly higher than in pure Verdict.

Dissent, which has the highest time-to-blame, has an

accountability process that requires the anonymous client

whose message was corrupted to submit an “accusation”

message to a lengthy verifiable shuffle protocol, in which

all members participate. This verifiable shuffle is the rea-

son that Dissent takes the longest to identify a disruptor.

The hybrid Dissent+Verdict DC-net (Section 4.4) avoids

Dissent’s extra verifiable shuffle by falling back instead

to a verifiable DC-net to resolve disruptions.

As Figure 7 shows, the messaging round time in the

hybrid Dissent+Verdict DC-net is as fast as in Dissent,

but the hybrid scheme reduces Dissent’s time to detect

misbehavior by roughly two orders of magnitude.

6.4 Anonymous Microblogging

Verdict’s ability to tolerate many dishonest nodes makes

it potentially attractive for anonymous microblogging in

groups of hundreds of nodes. In Twitter, messages have a

maximum length of 140 bytes, which means that a single

tweet can fit into a few 256-bit elliptic curve group ele-

ments. Twitter users can also tolerate messaging latency
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Figure 8: Rate at which various anonymity schemes pro-

cess tweets, for varying numbers of active users.

of tens of seconds or even a few minutes, which would

be unacceptable for interactive web browsing.

This experiment evaluates the suitability of Verdict for

small-scale anonymous microblogging applications, giv-

ing users anonymity among hundreds of nodes, e.g., for

students microblogging on a university campus. To test

Verdict in this scenario, we recorded 5,000 Twitter users’

activity for one-hour and then took subsets of this trace:

the smallest subset contained only the Tweets of the 40

most active users, and the largest subset contained the

Tweets of the 1,032 most active users. We replayed each

of these traces through Dissent and through Verdict, us-

ing each of the three ciphertext constructions.

We ran our experiment on DeterLab [17], on a test

topology consisting of eight servers connected to a 100

Mbps LAN with 10 ms of server-to-server latency, and

with each set of clients connecting to their upstream

server over a shared 100 Mbps link with 50 ms of latency.

Scarcity of testbed resources limited the number of avail-

able delay links, but our experiment attempts to approxi-

mate a wide-area deployment model in which clients are

geographically dispersed and bandwidth-limited.

Figure 8 shows the Tweet-rate latency induced by the

different anonymity systems relative to the baseline (no

anonymity) as the number of active users (and hence, the

anonymity set size) in the trace increases. Both Dissent

and the Dissent+Verdict hybrid systems can keep pace

with the baseline in a 1,000-node network—the largest

network size feasible on our testbed. The pure Verdict

variants could not keep pace with the baseline in a 1,000-

node network, while hashing-generator variant of Verdict

runs almost as quickly as the baseline in an anonymity

set size of 264. These results suggest that Verdict might

realistically support proactively accountable anonymity

for microblogging groups of up to hundreds of nodes.

Figure 8 also compares Verdict to a mix-net cascade

(a set of mix servers) in which each mix server uses a

Neff proof-of-knowledge [36] to demonstrate that it has

performed the mixing operation properly. Like Verdict,

this sort of mix cascade forms a traffic-analysis-resistant

anonymity system, so it might be used as an alternative

to Verdict for anonymous messaging. Our evaluation re-

sults demonstrate that the hashing-generator variant of

Verdict outperforms the mix cascade at all network sizes

and that the Tweet throughput of the Dissent+Verdict hy-

brid is more than 6× greater than the throughput of the

mix cascade at a network size of 564 participants.

6.5 Anonymous Web Browsing

Dissent demonstrated that accountable DC-nets are fast

enough to support anonymous interactive Web browsing

in local-area network deployments [52]. We now evalu-

ate whether Verdict is similarly usable in a web brows-

ing scenario. Our experiment simulates a group of nodes

connected to a single WLAN network. This configura-

tion emulates, for example, a group of users in an Inter-

net café browsing the Internet anonymously.

In our simulation on DeterLab [17], 8 servers and 24

clients communicate over a network of 24 Mbps links

with 20 ms node-to-node latency. To simulate a Web

browsing session, we recorded the sequence of requests

and responses that a browser makes to download home

page content (HTML, CSS files, images, etc.) from the

Alexa “Top 100” Web pages [2]. We then replayed this

trace with the client using one of four anonymity over-

lays: no anonymity, the Dissent DC-net, the Verdict-

only DC-net, and the Dissent+Verdict hybrid DC-net.

The simulated client sends the upstream (request) traf-

fic through the anonymity network and servers broadcast

the downstream (response) traffic to all nodes.

Figure 9 charts the time required to download all home

page content using the four different network configura-

tions. The median Web page took one second to load

with no anonymity, fewer than 10 seconds over Dissent,

and around 30 seconds using Verdict only (Figure 10).

Notably, the hybrid Dissent+Verdict scheme exhibits per-

formance nearly identical to that of Dissent alone, since it

it falls back to the slower verifiable Verdict DC-net only

when there is active disruption. The Verdict-only DC-net

is much slower than Dissent because every node must

generate a computationally expensive zero-knowledge

proof in every messaging round.

These experiments show that Verdict adds no overhead

to Dissent’s XOR-based DC-net in the absence of disrup-

tion. In addition, these experiments illustrate the flexi-

bility of verifiable DC-nets, which can be used either as

a “workhorse” for anonymous communication or more

selectively in combination with traditional XOR-based

DC-nets; we suspect that other interesting applications

will be discovered in the future.
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Figure 9: Time required to download home page context

for Alexa “Top 100” Web sites (with linear trend lines).

Figure 10: CDF of time required to download home page

context for Alexa “Top 100” Web sites.

7 Related Work

Chaum recognized the risk of anonymous disruption at-

tacks in his original formulation of DC-nets [13], and

proposed a probabilistic tracing approach based on traps,

upon which Waidner and Pfitzmann expanded [50].

Herbivore [24, 44] sidestepped the disruption issue by

forming groups dynamically, enabling nodes to leave dis-

rupted groups and form new groups until they find a

disruption-free group. Unfortunately, the likelihood that

a group contains some malicious node likely increases

rapidly with group size, and hence anonymity set, lim-

iting this and related partitioning approaches [1] to sys-

tems supporting small anonymity sets. Further, in an ana-

log to a known attack against Tor [9], an adversary might

selectively disrupt only groups he has only partially but

not completely compromised. With a powerful adversary

controlling many nodes, after some threshold a victim

becomes more likely to “settle into” a group that works

precisely because it is completely compromised, than to

find a working uncompromised group.

k-anonymous message transmission [1] also achieves

disruption resistance by partitioning participants into

small disruption-free groups. A crucial limitation of the

k-anonymity system is that an honest client is anony-

mous only among a small constant (k) number of nodes.

In contrast, Verdict clients in principle obtain anonymity

among the set of all honest clients using the system.

Dissent [14, 52] uses verifiable shuffles [10, 36] to

establish a transmission schedule for DC-nets, enabling

groups to guarantee a one-to-one correspondence of

group members to anonymous transmission slots. The

original Dissent protocol [14] offered accountability but

limited performance. A more recent version [52] im-

proves performance and scalability, but uses a retrospec-

tive “blame” protocol which requires an expensive shuf-

fle when disruption is detected.

Golle and Juels [25] introduced the verifiable DC-net

concept and formally developed a scheme based on bilin-

ear maps, forming Verdict’s starting point. To our knowl-

edge this scheme was never implemented in a work-

ing anonymous communication system, however, and we

find that its expensive pairing operations limit its practi-

cal performance.

Crowds [40], LAP [27], Mixminion [16], Tarzan [21],

and Tor [18], provide anonymity in large networks, but

these systems cannot protect against adversaries that ob-

serve traffic [4, 35] or perform active attacks [9] on a

large fraction of network links. Verdict maintains its se-

curity properties in the presence of this type of strong ad-

versary. A cascade of cryptographically verifiable shuf-

fles [23, 36] can offer the same security guarantees that

Verdict does, but these shuffles generally require more

expensive proofs-of-knowledge.

8 Conclusion

Verdict is a new anonymous group messaging system

that combines the traffic analysis resistance of DC-nets

with disruption resistance based on public-key cryptog-

raphy and knowledge proofs. Our experiments show that

Verdict may be suitable for messaging in groups of hun-

dreds to thousands of users, and can be combined with

traditional XOR-based DC-nets to offer good normal-

case performance while reducing the system’s vulnera-

bility to disruption events by two orders of magnitude.
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