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Astronomical Data Deluge...

® Modern radio interferometers combine
many small antennas together in a
phased array.

® Data generated by such these
instruments is enormous !

® Need to reduce the amount of data sent
to the central processor.

in brief

~130,000
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Location: :
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Maximum distance between two
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Total raw output :

‘A’«?&%ﬁ’ 157 Tb/s

Enough to fill up

350,000

= DVDs per
S second

BB




Hierarchical Designs

® Antennas are grouped together in
stations.

® Data is beamformed at the station

level before being sent to the central
processor:

Ct — C,

U (1) (1) = wHx ().

®© Strategy currently deployed in LOFAR.

But how should we beamform?
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Generalized Beamforming

Matched Beamforming

Maximize signal power Maximize sky coverage
v

CURRENT IMAGING PIPELINE
NOT FLEXIBLE ENOUGH !
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S1. Sources lie on an hypothetical

Classical Data Model ‘;;;jf:_fi sphere (celestial sphere)
(NO Beamforming) / S2.Signals can be viewed

(.,) (c)) parallel (far field)

S3.Narrow band signals

®© Signals measured by each antenna

are correlated: S4. Signals from different

positions in the sky

_ P; Pk are uncorrelated
Vig =Bl // 725 g,
SQ

® For small field of views, almost 2D Fourier transform

L~ J2Twg —j27(u; pl4vi xm)
Vik>~e I(l,m)e :
KCR?2

coordinate — €1
vectors

® Visibilities can be seen as Fourier samples. \
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Classical Data Model
(With Beamforming)

® For a sky composed of a single
source,

Elyi (t)y; ()] = [wi'ai(rg) o + [[will*oy.

® bi(r) = Wflaz'(l“) Is the beamshape of station /.

Virtual Antenna Assumption:

® Hence, the data model for beamformed data is given by

Vig = / / 1L 1m)s (L )b (1, 1) Wi (1, )27 0 g
KCR?2



Current Imaging Pipeline

amforming

EAN Algorithm

Start from null image,

Residual visibilities,

A-projection,

Extract strongest
rrelator component,

Update sky estimate. timate




- Gradient descent finds a local
The CLEAN AlgOrlthm minimum of a function by
taking steps in the
opposite direction

® Find solution to linear system

V= Al

of the gradient.

A
6“,17/4/0
® CLEAN produces “sparse” sky estimates &R

D) — fn) 4 T\IJAH(V _ Aj(n)).
Typically
® Nonlinear,and very sensitive on the choice of 7. > 10,000

© Can be seen as an approximate gradient descent. Iterations

CL t Descent
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The A-projection Algorithm . .. ...
tw-term Sampling kernel

® Recall the measurement equation

Y // I(L )i (L, m)b (1 m)Wi (1, m a2l tvim g g,
KCR?

® Hence, Fourier transform




The A'pI'OJECtIOHAlgOI'Ithm , Cross-Beamshapes
tw-term Sampling kernel

® Recall the measurement equation

Y // I( )i (L m)bi, (1, m)Wo i (1, m o2 v gl gy
KCR?

® Hence, Fourier transform
v = A1 =[s][H[8] 1.

® The A-projection algorithm allows fast multiplication by A or A"

Al = SFBI = S (B*}"I) |
| N

Convolution theorem




The A-projection Algorithm ' .~
tw-term Sampling kernel

® Recall the measurement equation

Y // I( )i (L m)bi, (1, m)Wo i (1, m o2 v gl gy
KCR?

® Hence, Fourier transform
v = A1 =[s][H[8] 1.

® The A-projection algorithm allows fast multiplication by A or A"
Al = SFBI =S (B*}"I) .

Convolution theorem

® A-projection can also be used to approximation the pseudoinverse

(ATA) " ATy ~ (BEB) T AH Y.



A-projection and Fourier Equivalent Telescope Assumption
is a fallacy !

® Interpreted at the continuous level, applying
A-projection yields

FHOY F{bibe} * Vig
1,k

Spectrum before A-projection Spectrum after A-projection

#SPECTRUM = #VISIBILITIES #SPECTRUM > #VISIBILITIES



The Natural Measurement Equation

® Direct correlation computation between two beamformed outputs yields
No Fourier
Vie = //S2 (r)dr. Kernel !

® No apparent link with Fourier, so stay on the sphere.
® Geometric interpretation
Vike = (L, bibg) = (I, Bi k)
» Inner product with periodic functions,

» Functions given by telescope layout and beamformer.



1. Reconstruction on the sphere

The Gram-Schmidt Imager

2. Valid at the continuous Lvl
5. Linear in the data

4. No gridding/FFT

5. Direct Solver

® Idea: Orthogonalize the instrument,and modify the
visibilities accordingly

® Compute least squares estimate as
Z Vik

® For efficiency and stability, use QR-factorlzatlon

ILS

re . Gram-Schmidt n
Eomputat - ﬁ k( ) = bi (fr)bj (’r‘) g~ orthogonalization 5i,k (T‘)

process
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New Imaging Pipeline
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Data-dependent
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> Data Reduction
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Comparison with A-projection Case: Matched Beamforming

Sources not well resolved, Almost all sources are
severely polluted by artifacts v resolved, small artifacts

GRAM-SCHMIDT ESTIMATE
MORE ACCURATE




Comparison with A-projection Case: Randomized Beamforming

é’

-0.015 1 —-0.005 0.005 0.01 0. 015 . —-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Estlmate completely Almost all sources are
reliable M resolved, small artifacts

GRAM-SCHMIDT IMAGER
MORE FLEXIBLE




Merits of Thresholded Gram-Schmidt
Classical GS Thresholded GS

Robustness to Noise

® GS involves the following steps
for: =2toJ do
Bi + Bi — Zi;ll (Bi, Bi5) B
if ||,é@||2 75 0 then

] g+1;
ﬁjL <_Iéi/||/éi||2;'
© - (vi-stssw i
end

end

® For stability, apply thresholding

18:11/118:l
s = = = o o
) 1) S o = ~

60 i 80
Iteration %




Statistical Testing of the GS Estimate

0.054% o/

® In practice, visibilities are estimated. For Gaussian ./
samples, we have a Wishart distribution.

® Gram-Schmidt estimate is linear on the data Is = Bfgf/. Hence,
. 1
Var (I1s) = —BIG(xex)g" BL.

® Use asymptotic arguments to build global confidence intervals with
the Bonferroni method.

GS Estimate Variance Significant Image Significant Image
(95 %) (99.99%)
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Sparse Recovery

® Most of the sky is empty, we would like sparse estimates.

® Systematic approach: penalize the least squares problem. This yields
the LASSO estimate, given by

jLASSO — argminieRNQ ||V - BI||% + AHIHl-

Controls adequacy Controls sparsity
with the data of the estimate

® Very commonly used in compressed sensing.

® Less inradio interferometry: not the usual setup

Compressed Sensing: Nb of pixels << Nb of measurements
Radio Interferometry: Nb of pixels = Nb of measurements

High noise




LASSO by Thresholding el

\O‘ L d =
® Assume that the system has been orthogonalized. | 1 g O
. D . 8. 4
. o §
I A550 :argminIeRNQHVJ_ —BJ_IHg + )\HIHl 2
® When N? < J, B, has orthogonal columns and hence LASSO from GS
. . . AN\ T
I 4550 = 88N (IZLS) (’IES} - 5) :

LS estimate

LASSO (FISTA)

® Constraint on the resolution...




The Point Spread Function

® Response of the instrument to an impulse signal (single source in the sky).
The point spread function is determined by the layout of the telescope.

ue Sky

y as seen by
the telescope

F of the telescope e

Interferometers layouts are chosen
to optimize the Point Spread Function



Gram-5chmidt and the PSF
® Assume that B, have been obtained with the Gram-Schmidt procedure. Then,
we can show that

Non negligible \/ ° : ‘ . . . . \

\. [ J ([ ]
° ° ° . . . AlmOSt
BBy =| - || < | = || - Diagonal

PN :
Negligible/ SR I R I I el
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Approximate LASSO from Gram-Schmidt

® If BYB, ~ diag(BY B,),then we can approximate the LASSO
Sjeail (IAES> . A\ T
< It s| — 5) .

i
LOFAR stations LOFAR stations

y N
ILASSO —

Average PSF

Approx. LASSO LASSO (FISTA) Approx. LASSO LASSO (FISTA)



Comparison with CLEAN

True Sky GS + LASSO CLEAN + A-projection




Comparative Sensitivity Analysis

® For a given sky,we compared the sensitivity of GS+LASSO and
CLEAN+A-projection
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Complexity Analysis (LOFAR)
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Complexity Analysis (SKA)

CLEA
faster

> Gram-Schmidt + LASSO
Approximation faster

50 100 150 200 250
Resolution N? (MegaPixels)

GS+LASSO IMAGER IS FASTER FOR
MANY SKA PRACTICAL CASES



Conclusions

O)

Beamforming breaks the intimate relationship with Fourier domain:
cannot interpret visibilities as uv-samples.

Performing a OR-decomposition of the system results in a more intuitive,
natural and flexible imaging pipeline.

Even though at a very early stage, the Gram-Schmidt imaging pipeline is
more accurate and faster than state-of-the-art for LOFAR and many SKA
scenarios.

QR-decomposition is currently oversampled. There is room for
improvement.

Redundancies exist between different time intervals and frequency
channels. We believe our framework is capable of exploiting such
redundancies.
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