Towards More Accurate and Efficient Beamformed Radio

 Interferometry Imaging
MASTER THESIS

Author:

Matthieu Simeoni, EPFL
Supervisors:
Dr. Paul Hurley, IBM Research, Zürich
Prof. Victor Panaretos, SMAT, EPFL
Prof. Martin Vetterli, LCAV, EPFL

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Astronomical Data Deluge...

© Modern radio interferometers combine many small antennas together in a phased array.
© Data generated by such these instruments is enormous !
© Need to reduce the amount of data sent to the central processor.

The SKA1 LOW in brief

Maximum distance between two stations :

Enough to fill up 350,000 DVDs per second

Hierarchical Designs

© Antennas are grouped together in stations.
© Data is beamformed at the station level before being sent to the central processor:

$$
\omega_{i}:\left\{\begin{array}{l}
\mathbb{C}^{L} \rightarrow \mathbb{C} \\
\mathbf{x}_{i}(t) \mapsto y_{i}(t)=\mathbf{w}_{i}^{H} \mathbf{x}_{i}(t)
\end{array}\right.
$$

© Strategy currently deployed in LOFAR.
© But how should we beamform?

Generalized Beamforming

Matched Beamforming
Randomized Beamforming

Maximize signal power

Maximize sky coverage

CURRENT IMAGING PIPELINE NOT FLEXIBLE ENOUGH!

Table of Contents

Classical Data Model (No Beamforming)

\bigcirc Signals measured by each antenna are correlated:

S1. Sources lie on an hypothetical sphere (celestial sphere)

S2. Signals can be viewed parallel (far field)
S3. Narrow band signals
S4. Signals from different positions in the sky

$$
V_{i, k}:=\mathbb{E}\left[x_{i}(t) x_{k}^{*}(t)\right]=\iint_{\mathbb{S}^{2}} I(\mathbf{r}) e^{-j 2 \pi\left\langle\mathbf{r}, \frac{\mathbf{p}_{i}-\mathbf{p}_{k}}{\lambda_{0}}\right\rangle} d \mathbf{r}
$$

© For small field of views, almost 2D Fourier transform

$$
V_{i, k} \simeq e^{-j 2 \pi w_{i, k}} \iint_{K \subset \mathbb{R}^{2}} I(l, m) e^{-j 2 \pi\left(u_{i, k} l+v_{i, k} m\right)}
$$

© Visibilities can be seen as Fourier samples.

Classical Data Model (With Beamforming)

© For a sky composed of a single source,

$$
\mathbb{E}\left[y_{i}(t) y_{i}^{*}(t)\right]=\left|\mathbf{w}_{i}^{H} \mathbf{a}_{i}\left(\mathbf{r}_{q}\right)\right|^{2} \sigma_{q}^{2}+\left\|\mathbf{w}_{i}\right\|^{2} \sigma_{n}^{2} .
$$

$\odot b_{i}(\mathbf{r})=\mathbf{w}_{i}^{H} \mathbf{a}_{i}(\mathbf{r})$ is the beamshape of station i.

Virtual Antenna Assumption:

© Hence, the data model for beamformed data is given by

$$
V_{i, k}=\iint_{K \subset \mathbb{R}^{2}} I(l, m) b_{i}(l, m) b_{k}^{*}(l, m) \mathcal{W}_{i, k}(l, m) e^{-j 2 \pi\left(u_{i, k} l+v_{i, k} m\right)} d l d m
$$

Current Imaging Pipeline

The CLEAN Algorithm

© Find solution to linear system

$$
\mathcal{V}=\mathcal{A} I
$$

○ CLEAN produces "sparse" sky estimates

$$
\hat{\boldsymbol{I}}^{(n+1)}=\hat{\boldsymbol{I}}^{(n)}+\tau \Psi \mathcal{A}^{H}\left(\mathcal{V}-\mathcal{A} \hat{\boldsymbol{I}}^{(n)}\right)
$$

$\odot \quad$ Nonlinear, and very sensitive on the choice of τ.
© Can be seen as an approximate gradient descent.
Gradient descent finds a local minimum of a function by taking steps in the opposite direction of the gradient.

The A-projection Algorithm

\bigcirc Recall the measurement equation

$$
V_{i, k}=\iint_{K \subset \mathbb{R}^{2}} I(l, m) b_{i}(l, m) b_{k}^{*}(l, m) \mathcal{W}_{i, k}(l, m) e^{-j 2 \pi\left(u_{i, k} l+v_{i, k} m\right)} d l d m
$$

© Hence,

$$
\mathcal{V}=\mathcal{A} I=\mathcal{S} \mathcal{B} I .
$$

The A-projection Algorithm

© Recall the measurement equation

$$
V_{i, k}=\iint_{K \subset \mathbb{R}^{2}} I(l, m) b_{i}(l, m) b_{k}^{*}(l, m) \mathcal{W}_{i, k}(l, m) e^{-j 2 \pi\left(u_{i, k} l+v_{i, k} m\right)} d l d m
$$

\bigcirc Hence,

$$
\mathcal{V}=\mathcal{A} I=\mathcal{S} \mathcal{B} I .
$$

© The A-projection algorithm allows fast multiplication by \mathcal{A} or \mathcal{A}^{H}

$$
\mathcal{A} \boldsymbol{I}=\mathcal{S F B} \mathcal{B}=\mathcal{S}(\underbrace{\hat{\mathcal{B}} * \mathcal{F} \boldsymbol{I}}_{\text {Convolution theorem }}) .
$$

The A-projection Algorithm

\bigcirc Recall the measurement equation

$$
V_{i, k}=\iint_{K \subset \mathbb{R}^{2}} I(l, m) b_{i}(l, m) b_{k}^{*}(l, m) \mathcal{W}_{i, k}(l, m) e^{-j 2 \pi\left(u_{i, k} l+v_{i, k} m\right)} d l d m
$$

\bigcirc Hence,
Fourier transform

$$
\mathcal{V}=\mathcal{A} \boldsymbol{I}=\mathcal{S} \mathcal{\mathcal { B }} I .
$$

© The A-projection algorithm allows fast multiplication by \mathcal{A} or \mathcal{A}^{H}

$$
\mathcal{A I}=\mathcal{S F} \mathcal{B I}=\mathcal{S}(\underbrace{\hat{\mathcal{B}} * \mathcal{F} \boldsymbol{I}}_{\text {Convolution theorem }}) .
$$

© A-projection can also be used to approximation the pseudoinverse

$$
\left(\mathcal{A}^{H} \mathcal{A}\right)^{-1} \mathcal{A}^{H} \mathcal{V} \simeq\left(\mathcal{B}^{H} \mathcal{B}\right)^{-1} \mathcal{A}^{H} \mathcal{V}
$$

A-projection and Fourier

○ Interpreted at the continuous level, applying A-projection yields

$$
\mathcal{F}^{-1}\left\{\sum_{i, k} \mathcal{F}\left\{b_{i}^{*} b_{k}\right\} * \tilde{V}_{i, k}\right\}
$$

Spectrum before A-projection \#SPECTRUM = \#VISIBILITIES

Spectrum after A-projection \#SPECTRUM > \#VISIBILITIES

The Natural Measurement Equation

© Direct correlation computation between two beamformed outputs yields

$$
V_{i, k}=\iint_{\mathbb{S}^{2}} I(\boldsymbol{r}) b_{i}(\boldsymbol{r}) b_{k}^{*}(\boldsymbol{r}) d \boldsymbol{r} . \quad \begin{aligned}
& \text { No Fourier } \\
& \text { Kernel }!
\end{aligned}
$$

$\odot \quad$ No apparent link with Fourier, so stay on the sphere.
\odot Geometric interpretation

$$
V_{i, k}=\left\langle I, b_{i}^{*} b_{k}\right\rangle=\left\langle I, \beta_{i, k}\right\rangle .
$$

$>$ Inner product with periodic functions,
> Functions given by telescope layout and beamformer.

The Gram-Schmidt Imager

- Idea: Orthogonalize the instrument, and modify the visibilities accordingly
© Compute least squares estimate as

$$
\hat{I}_{L S}(\boldsymbol{r})=\sum_{i, k} V_{i, k}^{\perp} \beta_{i, k}^{\perp}(\boldsymbol{r})
$$

○ For efficiency and stability, use QR-factorization

Legend
\square $b_{i}(\boldsymbol{r})$ Beamshape station i

Comparison with A-projection

Case: Matched Beamforming

A-projection Estimate

Sources not well resolved, severely polluted by artifacts

Gram-Schmidt Estimate

Almost all sources are resolved, small artifacts

Comparison with A-projection

Case: Randomized Beamforming

A-projection Estimate

GRAM-SCHMIDT IMAGER MORE FLEXIBLE

Gram-Schmidt Estimate

Robustness to Noise

Merits of Thresholded Gram-Schmidt

\bigcirc GS involves the following steps

$$
\text { for } i=2 \text { to } J \text { do }
$$

$\tilde{\boldsymbol{\beta}}_{i} \leftarrow \boldsymbol{\beta}_{i}-\sum_{k=1}^{j-1}\left\langle\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{k}^{\perp}\right\rangle \boldsymbol{\beta}_{k}^{\perp} ;$
if $\left\|\tilde{\boldsymbol{\beta}}_{i}\right\|_{2} \neq 0$ then

$$
j \leftarrow j+1 ;
$$

$$
\boldsymbol{\beta}_{j}^{\perp} \leftarrow \tilde{\boldsymbol{\beta}}_{i} /\left\|\tilde{\boldsymbol{\beta}}_{i}\right\|_{2} ;
$$

Classical GS

Thresholded GS

Statistical Testing of the GS Estimate

○ In practice, visibilities are estimated. For Gaussian samples, we have a Wishart distribution.

\odot Gram-Schmidt estimate is linear on the data $\hat{\boldsymbol{I}}_{L S}=B_{\perp}^{H} \mathcal{G} \hat{\boldsymbol{V}}$. Hence,

$$
\operatorname{Var}\left(\hat{\boldsymbol{I}}_{L S}\right)=\frac{1}{N_{s}} B_{\perp}^{H} \mathcal{G}\left(\Sigma \otimes \Sigma^{*}\right) \mathcal{G}^{H} B_{\perp} .
$$

© Use asymptotic arguments to build global confidence intervals with the Bonferroni method.

GS Estimate

Variance

Significant Image
195\%)

Significant Image
(99.99\%)

Sparse Recovery

© Most of the sky is empty, we would like sparse estimates.
© Systematic approach: penalize the least squares problem. This yields the LASSO estimate, given by

$$
\hat{\boldsymbol{I}}_{\text {LASSO }}=\operatorname{argmin}_{\boldsymbol{i} \in \mathbb{R}^{N^{2}}}\|\boldsymbol{V}-B \boldsymbol{I}\|_{2}^{2}+\lambda\|\boldsymbol{I}\|_{1} .
$$

© Very commonly used in compressed sensing.
© Less in radio interferometry: not the usual setup

> Compressed Sensing: Nb of pixels $\ll \mathrm{Nb}$ of measurements Radio Interferometry: Nb of pixels $\approx \mathrm{Nb}$ of measurements
> High noise

LASSO by Thresholding

GS Estimate

$$
\hat{I}_{L A S S O}^{i}=\operatorname{sgn}\left(\hat{I}_{L S}^{i}\right)\left(\left|\hat{I}_{L S}^{i}\right|-\frac{\lambda}{2}\right)^{+}
$$

○ Constraint on the resolution...

The Point Spread Function

© Response of the instrument to an impulse signal (single source in the sky). The point spread function is determined by the layout of the telescope.

True Sky

PSF of the telescope

Sky as seen by the telescope

Interferometers layouts are chosen to optimize the Point Spread Function

Gram-Schmidt and the PSF

© Assume that B_{\perp} have been obtained with the Gram-Schmidt procedure. Then, we can show that

Approximate LASSO from Gram-Schmidt

© If $B_{\perp}^{H} B_{\perp} \simeq \operatorname{diag}\left(B_{\perp}^{H} B_{\perp}\right)$, then we can approximate the LASSO

$$
\hat{I}_{L A S S O}^{i} \simeq \frac{\operatorname{sgn}\left(\hat{I}_{L S}^{i}\right)}{\mu_{i}}\left(\left|\hat{I}_{L S}^{i}\right|-\frac{\lambda}{2}\right)^{+}
$$

12 LOFAR stations

Approx. LASSO
LASSO (FISTA)

Comparison with CLEAN

True Sky
CLEAN + A-projection

Comparative Sensitivity Analysis

© For a given sky, we compared the sensitivity of GS+LASSO and CLEAN+A-projection

GS+LASSO IMAGER MORE ROBUST TO THE NOISE

GS+LASSO IMAGER ACCURACY INCREASES WITH NB OF SAMPLES

Complexity Analysis (LOFAR)

$c_{\text {Aproj }} / c_{G S}$		Number of Stations		
		$M=24$	$M=38$	$M=46$
	$N^{2}=1024 \times 1024$	34.051	13.364	9.0748
	$N^{2}=2048 \times 2048$	15.804	8.6764	4.1174
	$N^{2}=4096 \times 4096$	11.304	4.2796	2.8832
	$N^{2}=8192 \times 8192$	10.239	3.8369	2.579

Complexity Analysis (SKA)

Conclusions

© Beamforming breaks the intimate relationship with Fourier domain: cannot interpret visibilities as uv-samples.
© Performing a QR-decomposition of the system results in a more intuitive, natural and flexible imaging pipeline.
© Even though at a very early stage, the Gram-Schmidt imaging pipeline is more accurate and faster than state-of-the-art for LOFAR and many SKA scenarios.

○ QR-decomposition is currently oversampled. There is room for improvement.
\bigcirc Redundancies exist between different time intervals and frequency channels. We believe our framework is capable of exploiting such redundancies.

Contributions

