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Astronomical Data Deluge…  
 

The SKA1 LOW in brief 

Location:  
Australia 

~130,000 
 antennas 

100 stations 

65 km 

Maximum distance between two 
stations : 

Total raw output : 

157 Tb/s 
Enough to fill up 

350,000 
DVDs per 
second 

!  Modern radio interferometers combine 
many small antennas together in a 
phased array. 

 
!  Data generated by such these 

instruments is enormous !  
 

!  Need to reduce the amount of data sent 
to the central processor. 



Hierarchical Designs 
 

Schematic representation of a 

hierarchical design for modern 

radio telescopes 

!  Antennas are grouped together in 
stations. 
 

!  Data is beamformed at the station 
level before being sent to the central 
processor: 
 
 
 
 
 

!  Strategy currently deployed in LOFAR. 
 

!  But how should we beamform? 

!i :

(
CL ! C,
xi(t) 7! yi(t) = w

H
i xi(t).



Generalized Beamforming 
 

Matched Beamforming 
 

Randomized Beamforming 
 

VS. 
 

Maximize signal power 
 

Maximize sky coverage 
 

? � 
CURRENT IMAGING PIPELINE 

NOT FLEXIBLE ENOUGH ! 
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Classical Data Model 
(No Beamforming) 

S1. Sources lie on an hypothetical 
sphere (celestial sphere) 

S2. Signals can be viewed 
 parallel (far field) 

S3. Narrow band signals 

S4. Signals from different 
 positions in the sky  

are uncorrelated 

!  Signals measured by each antenna  
are correlated: 
 
 
 
  
 

Vi,k := E[xi(t)x
⇤
k(t)] =

ZZ

S2
I(r)e�j2⇡hr,pi�pk

�0
i
dr.

!  For small field of views, almost 2D Fourier transform 
 
 
 
                    
  
 

Vi,k ' e�j2⇡wi,k

ZZ

K⇢R2

I(l,m)e�j2⇡(ui,kl+vi,km),

!  Visibilities can be seen as Fourier samples.                    
  
 



Classical Data Model 
(With Beamforming) 

!  For a sky composed of a single 
source,  
 
 
 

E[yi(t)y⇤i (t)] = |wH
i ai(rq)|2�2

q + kwik2�2
n.

!                            is the beamshape of station i. 
 
   

bi(r) = wH
i ai(r)

Virtual Antenna Assumption: 

Vi,k =

ZZ

K⇢R2

I(l,m)bi(l,m)b⇤k(l,m)Wi,k(l,m)e�j2⇡(ui,kl+vi,km)dldm

!  Hence, the data model for beamformed data is given by 



Current Imaging Pipeline 
 

Sky 

Beamforming 

Correlator 

CLEAN Algorithm 

Estimate 

•  Start from null image, 
•  Residual visibilities, 
•  A-projection, 
•  Extract strongest 

component, 
•  Update sky estimate. 



Typically 
> 10,000 
iterations 

The CLEAN Algorithm 
 

CLEAN as Gradient Descent 

 

 

0 0.5 1 1.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Φ(x)
Gradient
CLEAN

x
(0)

x∗

10 20 30 40 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration n

∥x
(n

) ∥
L
1

 

 
Gradient
CLEAN

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Iteration n
∥x

(n
) ∥

L
1

 

 

Gradient
CLEAN
CLEAN plane

Gradient descent finds a local 
minimum of a function by 

taking steps in the  
opposite direction  

of the gradient. 

!  CLEAN produces “sparse” sky estimates 
 
 
 

!  Nonlinear, and very sensitive on the choice of   . 

Î(n+1) = Î(n) + ⌧ AH(V �AÎ(n)).

⌧

!  Find solution to linear system 

V = AI.

!  Can be seen as an approximate gradient descent. 



The A-projection Algorithm 
 

!  Recall the measurement equation 

 
!  Hence,  
 

Vi,k =

ZZ

K⇢R2

I(l,m)bi(l,m)b⇤k(l,m)Wi,k(l,m)e�j2⇡(ui,kl+vi,km)dldm

V = AI = S F B I.

Sampling kernel 
Cross-Beamshapes 

+w-term 

Fourier transform 



The A-projection Algorithm 
 

!  The A-projection algorithm allows fast multiplication by     or  A AH

AI = SFBI = S
⇣
B̂ ⇤ FI

⌘
.

!  Recall the measurement equation 

 
!  Hence,  
 

Vi,k =

ZZ

K⇢R2

I(l,m)bi(l,m)b⇤k(l,m)Wi,k(l,m)e�j2⇡(ui,kl+vi,km)dldm

V = AI = S F B I.

Sampling kernel 
Cross-Beamshapes 

+w-term 

Fourier transform 

Convolution theorem 



The A-projection Algorithm 
 

!  The A-projection algorithm allows fast multiplication by     or  

�
AHA

��1 AHV '
�
BHB

��1 AHV .

A AH

AI = SFBI = S
⇣
B̂ ⇤ FI

⌘
.

!  Recall the measurement equation 

 
!  Hence,  
 

Vi,k =

ZZ

K⇢R2

I(l,m)bi(l,m)b⇤k(l,m)Wi,k(l,m)e�j2⇡(ui,kl+vi,km)dldm

V = AI = S F B I.

Sampling kernel 
Cross-Beamshapes 

+w-term 

Fourier transform 

Convolution theorem 

!  A-projection can also be used to approximation the pseudoinverse 



A-projection and Fourier 
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!  Interpreted at the continuous level,  applying 
A-projection yields  

F�1

8
<

:
X

i,k

F{b⇤i bk} ⇤ Ṽi,k

9
=

;

Spectrum before A-projection Spectrum after A-projection 

= > 

#SPECTRUM > #VISIBILITIES 
 

#SPECTRUM = #VISIBILITIES 
 

Equivalent Telescope Assumption 
 is a fallacy ! 



The Natural Measurement Equation 

!  Direct correlation computation between two beamformed outputs yields 

Vi,k =

ZZ

S2
I(r)bi(r)b

⇤
k(r)dr.

!  No apparent link with Fourier, so stay on the sphere. 

!  Geometric interpretation 

"  Inner product with periodic functions, 
 

"  Functions given by telescope layout and beamformer. 

#
No Fourier  

Kernel ! 

Vi,k = hI, b⇤i bki = hI,�i,ki.



The Gram-Schmidt Imager 

Gram-
Schmidt
Visibilities

Orthogonal
Basis 
Inversion

Further
processing

Pre-
computation

Gram-Schmidt
orthogonalization
process

New Imaging Pipeline
G

S coefficients

O
rthogonal vectors

Correlator

Station 1

....

Beam-
forming

Station 2
Beam-
forming

Station M
Beam-
forming

....

Data Reduction

Beamshape station i

Legend

Data-dependent
 Computation
Data-independent
Computation

!  Idea: Orthogonalize the instrument, and modify the 
visibilities accordingly 

!  Compute least squares estimate as 

!  For efficiency and stability, use QR-factorization 

ÎLS(r) =
X

i,k

V ?
i,k�

?
i,k(r).

1.  Reconstruction on the sphere 
2.  Valid at the continuous lvl 

3.  Linear in the data  
4.  No gridding/FFT 

5.  Direct Solver 



Comparison with A-projection 
 

A-projection Estimate 
 

Gram-Schmidt Estimate 
 

VS. 
 

Sources not well resolved, 
severely polluted by artifacts 

 

Almost all sources are 
resolved, small artifacts  

 

✖ � 
GRAM-SCHMIDT ESTIMATE 

MORE ACCURATE 
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Case: Matched Beamforming 
 



Comparison with A-projection 
 

A-projection Estimate 
 

Gram-Schmidt Estimate 
 

VS. 
 

Estimate completely 
unreliable 

 

Almost all sources are 
resolved, small artifacts  

 

✖ � 
GRAM-SCHMIDT IMAGER 

MORE FLEXIBLE 
 

Case: Randomized Beamforming 
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Robustness to Noise 
 

Merits of Thresholded Gram-Schmidt 
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1 Least squares imaging and Orthogonalization 51

Algorithm 4: Gram-Schmidt Orthogonalization Process and Modification of the Visibilities (discrete
version)

1: procedure . INPUTS: Family of vectors {�i}i=1,...,J

2: and associated visibilities {Vi}i=1,...,J

3: �

?
1  �1/k�1k2;

4: V ?
1  V1/k�1k2;

5: j  1;

6: for i = 2 to J do
7: �̃i  �i �

Pj�1
k=1h�i,�?

k i�?
k ;

8: if k�̃ik2 6= 0 then . Drop �̃i and Vi if k�̃ik2 = 0

9: j  j + 1;

10: �

?
j  �̃i/k�̃ik2;

11: V ?
j  

⇣

Vi �
Pj�1

k=1h�i,�?
k iV ?

k

⌘

/k�̃ik;

12: end

13: end
14: V? =

⇣

V ?
1 , . . . , V ?

j

⌘T
;

15: B? =

0

B

B

B

@

�

?
1
H

...

�

?
j
H

1

C

C

C

A

;

16: return B? 2 Cj⇥N2 and V? 2 Cj

We will refer to this estimate as the Gram-Schmidt least squares estimate, as a
reference to the orthogonalization procedure on which it relies.

In fig. 4.2 page 52, we compared the Gram-Schmidt estimate eq. (4.12) with the
output after 500 iterations of the gradient descent algorithm used to minimize
�(I) = kV � BIk22. We observe that the two sky estimates appear visually and
structurally very similar, even though the Gram-Schmidt estimate is still a 1000
times more accurate in terms of minimizing �(I).

Equation (2.22) page 29, shows that, for this experiment, the minimum number of
iterations needed to achieve an accuracy comparable to the Gram-Schmidt estimate
with the gradient descent algorithm is 10,890. In contrast, we got the Gram-Schmidt
estimate in one shot.

1.3 Statistical Properties of the Least Squares Estimate
The normalization step 10 in algorithm 4 is nonlinear for the input vectors {�i}i=1,...,J .
Hence, we cannot hope to represent B? in terms of a linear transformation of B.
However, all the steps of algorithm 4 are linear for the visibilities, so that we can
write

V? = GV ,

with G 2 Cj⇥J an appropriate linear operator. In the specific case where the rows

!  GS involves the following steps 

!  For stability, apply thresholding 
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Statistical Testing of the GS Estimate 

GS Estimate 
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Variance Significant Image 
(95%)  

Significant Image 
(99.99%)  

!  In practice, visibilities are estimated. For Gaussian 
samples, we have a Wishart distribution. 

 
 !  Gram-Schmidt estimate is linear on the data                          Hence,    
 
 

ÎLS = BH
? GV̂ .

!  Use asymptotic arguments to build global confidence intervals with 
the Bonferroni method.  

Var
⇣
ÎLS

⌘
=

1

Ns
BH

? G(⌃⌦ ⌃⇤)GHB?.



Sparse Recovery 

!  Systematic approach: penalize the least squares problem. This yields 
the LASSO estimate, given by 

 
 

!  Most of the sky is empty, we would like sparse estimates.  

ÎLASSO = argmini2RN2 kV �BIk22 + �kIk1.

Controls sparsity 
of the estimate 

Controls adequacy 
with the data 

!  Very commonly used in compressed sensing. 
 
 !  Less in radio interferometry: not the usual setup  
 

Compressed Sensing:  Nb of pixels << Nb of measurements 
Radio Interferometry: Nb of pixels ≈ Nb of measurements 

 High noise 



LASSO by Thresholding 
 

GS Estimate 

LASSO from GS 

LASSO (FISTA) 
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!  Assume that the system has been orthogonalized.  
 

!  When             ,        has orthogonal columns and hence 
 
 

ÎLASSO = argminI2RN2 kV? �B?Ik22 + �kIk1.

N2  J B?

ÎiLASSO = sgn
⇣
ÎiLS

⌘✓��ÎiLS

��� �

2

◆+

.

Very 
Cheap! 

!  Constraint on the resolution…  
 
 

LS estimate 

LASSO estimate 



The Point Spread Function 
 
!  Response of the instrument to an impulse signal (single source in the sky). 

The point spread function is determined by the layout of the telescope. 
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Interferometers layouts are chosen 
to optimize the Point Spread Function 



Gram-Schmidt and the PSF 
 
!  Assume that        have been obtained with the Gram-Schmidt procedure. Then, 

we can show that 
 

B?

BH
?B? =

0

BBBBBBBB@

· · · · · · ·
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· · · · · · ·
· · · · · · ·
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Approximate LASSO from Gram-Schmidt 

!  If                                       , then we can approximate the LASSO  BH
?B? ' diag(BH

?B?)

ÎiLASSO '
sgn

⇣
ÎiLS

⌘

µi

✓��ÎiLS

��� �

2

◆+

.
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12 LOFAR stations 24 LOFAR stations 

GS Estimate Average PSF 

LASSO (FISTA) Approx. LASSO 

VS. 
 

GS Estimate Average PSF 

Approx. LASSO LASSO (FISTA) 

~5% ~1.8% 



Comparison with CLEAN 
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Comparative Sensitivity Analysis 
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!  For a given sky, we compared the sensitivity of GS+LASSO and 
CLEAN+A-projection 

GS+LASSO IMAGER 
MORE ROBUST TO THE NOISE 

 

GS+LASSO IMAGER 
ACCURACY INCREASES WITH 

NB OF SAMPLES 
 



Complexity Analysis (LOFAR) 
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(a) Resolution N

2 = 1024⇥ 1024 pixels.
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(b) Resolution N

2 = 8192⇥ 8192 pixels.
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(c) M = 24 stations used for the recovery.
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(d) M = 46 stations used for the recovery.

c

Aproj

/c

GS

Number of Stations

M = 24 M = 38 M = 46

R
es

ol
ut

io
n N2 = 1024⇥ 1024 34.051 13.364 9.0748

N2 = 2048⇥ 2048 15.804 8.6764 4.1174

N2 = 4096⇥ 4096 11.304 4.2796 2.8832

N2 = 8192⇥ 8192 10.239 3.8369 2.579

(e) Ratio cAproj/cGS . One cell of the tabular reads: For a resolution N

2 and a number of stations M ,
Gram-Schmidt + LASSO is x times faster than CLEAN + A-projection (with x the content of the cell).

Figure 5.2: Number of operations for both imaging pipelines for various scenarios. We observe
that for any practical scenario, the new imaging pipeline is at least twice as fast as the classical
imaging pipeline. For some specific (but realistic) scenarios, the new imaging pipeline can be 34 times
faster than the classical one.

2 to 34 
times 
faster 



Complexity Analysis (SKA) 
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Conclusions 
 
!  Beamforming breaks the intimate relationship with Fourier domain: 

cannot interpret visibilities as uv-samples. 
 

!  Performing a QR-decomposition of the system results in a more intuitive, 
natural and flexible imaging pipeline. 
 

!  Even though at a very early stage, the Gram-Schmidt imaging pipeline is 
more accurate and faster than state-of-the-art for LOFAR and many SKA 
scenarios. 
 

!  QR-decomposition is currently oversampled. There is room for 
improvement. 
 

!  Redundancies exist between different time intervals and frequency 
channels. We believe our framework is capable of exploiting such 
redundancies. 
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