Towards More Accurate and Efficient Beamformed Radio Interferometry Imaging

MASTER THESIS

Author:

Matthieu Simeoni, EPFL

Supervisors:

Dr. Paul Hurley, IBM Research, Zürich Prof. Victor Panaretos, SMAT, EPFL Prof. Martin Vetterli, LCAV, EPFL

Astronomical Data Deluge...

- Modern radio interferometers combine many small antennas together in a phased array.
- Data generated by such these instruments is **enormous** !
- Need to reduce the amount of data sent to the central processor.

Hierarchical Designs

- Antennas are grouped together in stations.
- Data is **beamformed** at the station level before being sent to the **central processor**:

$$\omega_i: \begin{cases} \mathbb{C}^L \to \mathbb{C}, \\ \mathbf{x}_i(t) \mapsto y_i(t) = \mathbf{w}_i^H \mathbf{x}_i(t). \end{cases}$$

- Strategy currently deployed in **LOFAR**.
- But **how** should we beamform?

Generalized Beamforming

Matched Beamforming **Randomized Beamforming** VS. Maximize signal power Maximize sky coverage

CURRENT IMAGING PIPELINE NOT FLEXIBLE ENOUGH !

Classical Data Model (No Beamforming)

• Signals measured by each antenna are correlated:

$$V_{i,k} := \mathbb{E}[x_i(t)x_k^*(t)] = \iint_{\mathbb{S}^2} I(\mathbf{r}) e^{-j2\pi \langle \mathbf{r}, \frac{\mathbf{p}_i - \mathbf{p}_k}{\lambda_0} \rangle} d\mathbf{r}.$$

• For small field of views, almost 2D Fourier transform

$$V_{i,k} \simeq e^{-j2\pi w_{i,k}} \iint_{K \subset \mathbb{R}^2} I(l,m) e^{-j2\pi (u_{i,k}l + v_{i,k}m)},$$

• Visibilities can be seen as Fourier samples.

S1. Sources lie on an hypothetical sphere (celestial sphere)

- S2. Signals can be viewed parallel (far field)
 - S3. Narrow band signals
- S4. Signals from different positions in the sky are uncorrelated

MODELING ASSUMIDITONS

 r_0

 p_k

coordinate vectors

 p_i

baseline

Classical Data Model (With Beamforming)

- For a sky composed of a single source,
 - $\mathbb{E}[y_i(t)y_i^*(t)] = |\mathbf{w}_i^H \mathbf{a}_i(\mathbf{r}_q)|^2 \sigma_q^2 + \|\mathbf{w}_i\|^2 \sigma_n^2.$
- $b_i(\mathbf{r}) = \mathbf{w}_i^H \mathbf{a}_i(\mathbf{r})$ is the **beamshape** of station *i*.

• Hence, the data model for beamformed data is given by

$$V_{i,k} = \iint_{K \subset \mathbb{R}^2} I(l,m) b_i(l,m) b_k^*(l,m) \mathcal{W}_{i,k}(l,m) e^{-j2\pi(u_{i,k}l + v_{i,k}m)} dl dm$$

Current Imaging Pipeline

The CLEAN Algorithm

• Find solution to linear system

 $\mathcal{V} = \mathcal{A}I.$

• **CLEAN** produces "sparse" sky estimates

 $\hat{\boldsymbol{I}}^{(n+1)} = \hat{\boldsymbol{I}}^{(n)} + \tau \Psi \mathcal{A}^{H} (\boldsymbol{\mathcal{V}} - \mathcal{A} \hat{\boldsymbol{I}}^{(n)}).$

- Nonlinear, and very sensitive on the choice of τ .
- Can be seen as an approximate **gradient descent**.

Gradient descent finds a local minimum of a function by taking steps in the opposite direction of the gradient.

REMINDER

CLEAN as Gradient Descent

 \odot Hence,

 $\mathcal{V} = \mathcal{A}I = \mathcal{S} \mathcal{F} \mathcal{B} I.$

 \odot Hence,

$$\mathcal{V} = \mathcal{A}I = \mathcal{S} \mathcal{F} \mathcal{B} I.$$

The **A-projection** algorithm allows fast multiplication by \mathcal{A} or \mathcal{A}^{H} (\bullet)

$$\mathcal{A}I = \mathcal{SFBI} = \mathcal{S}\left(\hat{\mathcal{B}} * \mathcal{F}I\right).$$

• Hence,

Fourier transform

$$\mathcal{V} = \mathcal{A}I = \mathcal{S} \mathcal{F} \mathcal{B} I.$$

• The **A-projection** algorithm allows fast multiplication by \mathcal{A} or \mathcal{A}^H

$$\mathcal{A}I = \mathcal{SFBI} = \mathcal{S}\left(\hat{\mathcal{B}} * \mathcal{F}I\right).$$

• A-projection can also be used to approximation the **pseudoinverse**

$$\left(\mathcal{A}^{H}\mathcal{A}
ight)^{-1}\mathcal{A}^{H}\mathcal{oldsymbol{\mathcal{V}}}\simeq\left(\mathcal{B}^{H}\mathcal{B}
ight)^{-1}\mathcal{A}^{H}\mathcal{oldsymbol{\mathcal{V}}}.$$

A-projection and Fourier

Interpreted at the continuous level, applying
 A-projection yields

 $\mathcal{F}^{-1}\left\{\sum_{i,k}\mathcal{F}\{b_i^*b_k\}*\tilde{V}_{i,k}\right\}$

Spectrum before A-projection #SPECTRUM = #VISIBILITIES

Spectrum after A-projection
#SPECTRUM > #VISIBILITIES

Equivalent Telescope Assumption is a fallacy !

The Natural Measurement Equation

• Direct correlation computation between two beamformed outputs yields

$$V_{i,k} = \iint_{\mathbb{S}^2} I(\mathbf{r}) b_i(\mathbf{r}) b_k^*(\mathbf{r}) d\mathbf{r}.$$
 So Fourier Kernel !

- No apparent link with Fourier, so stay on the sphere.
- Geometric interpretation

$$V_{i,k} = \langle I, b_i^* b_k \rangle = \langle I, \beta_{i,k} \rangle.$$

- Inner product with periodic functions,
- Functions given by telescope layout and beamformer.

The Gram-Schmidt Imager

- Idea: Orthogonalize the instrument, and modify the visibilities accordingly
- Compute least squares estimate as

$$\hat{I}_{LS}(\boldsymbol{r}) = \sum_{i,k} V_{i,k}^{\perp} \beta_{i,k}^{\perp}(\boldsymbol{r}).$$

• For efficiency and stability, use **QR-factorization**

Reconstruction on the sphere
2. Valid at the continuous lvl
3. Linear in the data
4. No gridding/FFT
5. Direct Solver

TOLANTACKS

Comparison with A-projection

Case: Matched Beamforming

A-projection Estimate

Gram-Schmidt Estimate

Sources not well resolved, severely polluted by artifacts

GRAM-SCHMIDT ESTIMATE MORE ACCURATE

Almost all sources are resolved, small artifacts

Comparison with A-projection

Case: Randomized Beamforming

Gram-Schmidt Estimate

Almost all sources are resolved, small artifacts

Robustness to Noise

• GS involves the following steps

for i = 2 to J do

 $\tilde{\boldsymbol{\beta}}_i \leftarrow \boldsymbol{\beta}_i - \sum_{k=1}^{j-1} \langle \boldsymbol{\beta}_i, \boldsymbol{\beta}_k^{\perp} \rangle \boldsymbol{\beta}_k^{\perp};$ if $\|\tilde{\boldsymbol{\beta}}_i\|_2 \neq 0$ then

 $j \leftarrow j + 1;$ $\beta_{j}^{\perp} \leftarrow \tilde{\beta}_{i} / \|\tilde{\beta}_{i}\|_{2};$ $V_{j}^{\perp} \leftarrow \left(V_{i} - \sum_{k=1}^{j-1} \langle \beta_{i}, \beta_{k}^{\perp} \rangle V_{k}^{\perp}\right) / \|\tilde{\beta}_{i}\|;$ end

end

• For stability, apply thresholding

Merits of Thresholded Gram-Schmidt

Classical GS

-20 dB

No Noise

-20 dB

Statistical Testing of the GS Estimate

In practice, visibilities are estimated. For Gaussian samples, we have a Wishart distribution.

• Gram-Schmidt estimate is linear on the data $\hat{I}_{LS} = B_{\perp}^{H} \mathcal{G} \hat{V}$. Hence,

$$\operatorname{Var}\left(\hat{I}_{LS}\right) = \frac{1}{N_s} B_{\perp}^H \mathcal{G}(\Sigma \otimes \Sigma^*) \mathcal{G}^H B_{\perp}.$$

• Use asymptotic arguments to build global confidence intervals with the **Bonferroni method**.

- Most of the sky is empty, we would like sparse estimates.
- Systematic approach: penalize the least squares problem. This yields the LASSO estimate, given by

$$\hat{I}_{LASSO} = \operatorname{argmin}_{i \in \mathbb{R}^{N^2}} \|V - BI\|_2^2 + \lambda \|I\|_1.$$
Controls adequacy
with the data
Controls sparsity
of the estimate

- Very commonly used in **compressed sensing**.
- Less in radio interferometry: not the usual setup

Compressed Sensing: Nb of pixels << Nb of measurements Radio Interferometry: Nb of pixels ≈ Nb of measurements

High noise

LASSO by Thresholding

 \odot

• Assume that the system has been orthogonalized.

$$\hat{\boldsymbol{I}}_{LASSO} = \operatorname{argmin}_{\boldsymbol{I} \in \mathbb{R}^{N^2}} \|\boldsymbol{V}_{\perp} - \boldsymbol{B}_{\perp} \boldsymbol{I}\|_2^2 + \lambda \|\boldsymbol{I}\|_1$$

• When $N^2 \leq J$, B_{\perp} has orthogonal columns and hence

GS Estimate

LASSO (FISTA)

The Point Spread Function

Response of the instrument to an impulse signal (single source in the sky).
 The point spread function is determined by the layout of the telescope.

True Sky

Gram-Schmidt and the PSF

• Assume that B_{\perp} have been obtained with the Gram-Schmidt procedure. Then, we can show that

Approximate LASSO from Gram-Schmidt

• If $B_{\perp}^{H}B_{\perp} \simeq \operatorname{diag}(B_{\perp}^{H}B_{\perp})$, then we can approximate the LASSO

$$\hat{I}_{LASSO}^{i} \simeq \frac{\operatorname{sgn}\left(\hat{I}_{LS}^{i}\right)}{\mu_{i}} \left(\left|\hat{I}_{LS}^{i}\right| - \frac{\lambda}{2}\right)^{+}$$

12 LOFAR stations

24 LOFAR stations

Comparison with CLEAN

True Sky GS + LASSO **CLEAN + A-projection** 0.18 \bigcirc 2.5 4.5 \bigcirc 0.16 \bigcirc \bigcirc 0.14 3.5 \bigcirc 0.12 \bigcirc \bigcirc 1.5 \bigcirc \bigcirc 0.1 2.5 \bigcirc 0.08 0 0.06 1.5 \bigcirc 0.04 0.5 \bigcirc \bigcirc 0.02 0.5 \bigcirc 0.35 \bigcirc 0 \bigcirc 0.3 5 3.5 \bigcirc 0.25 \bigcirc 3 ()4 \bigcirc OC 2.5 \bigcirc 0.2 3 \bigcirc 00 2 \bigcirc 0.15 \bigcirc \bigcirc 1.5 2 0.1 1 1 0.05 0.5 \bigcirc \bigcirc 0

Comparative Sensitivity Analysis

• For a given sky, we compared the sensitivity of GS+LASSO and CLEAN+A-projection

Complexity Analysis (LOFAR)

c_{Aproj}/c_{GS}		Number of Stations		
		M = 24	M = 38	M = 46
Resolution	$N^2 = 1024 \times 1024$	34.051	13.364	9.0748
	$N^2 = 2048 \times 2048$	15.804	8.6764	4.1174
	$N^2 = 4096 \times 4096$	11.304	4.2796	2.8832
	$N^2 = 8192 \times 8192$	10.239	3.8369	2.579

2 to 34 times faster

Complexity Analysis (SKA)

MANY SKA PRACTICAL CASES

- Beamforming breaks the intimate relationship with Fourier domain: cannot interpret visibilities as *uv*-samples.
- Performing a **QR-decomposition of the system** results in a more *intuitive*, *natural* and *flexible* imaging pipeline.
- Even though at a very early stage, the Gram-Schmidt imaging pipeline is more accurate and faster than state-of-the-art for LOFAR and many SKA scenarios.
- QR-decomposition is currently oversampled. There is room for improvement.
- Redundancies exist between different time intervals and frequency channels. We believe our framework is capable of exploiting such redundancies.

