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ABSTRACT

The Square Kilometre Array (SKA) will form the largest radio telescope ever built, generating on
the order of one terabyte of data per second. To reduce the data flow sent to the central processor,
hierarchical designs have been proposed: the data is primarily collected in groups of antennas,
and summed coherently by beamforming. Historically, Fourier analysis has played a prominent
role in radio astronomy interferometry, legitimated by the celebrated van Cittert-Zernike theorem.
We show that, in the case of modern hierarchical designs, beamformed data has a less intimate,
and thus more complicated relationship to the Fourier domain. Unsatisfactory attempts have been
proposed to compensate, which implicitly retain the Fourier framework, and are limited to directive
beamforming.
We show that when stepping away from Fourier, we can embed the data in a more natural domain
originating from the telescope configuration and the specific beamforming technique. This leads to a
new, more accurate, imaging pipeline. Standard techniques such as w-projection, and gridding are
no longer needed, as the reconstruction is performed on the celestial sphere.
The proposed imager operates in two steps. First, a preconditioning based on the Gram-Schmidt
orthogonalization procedure is performed, in order to facilitate the computation of the pseudoinverse
sky estimate. Then, from this, the LASSO estimate is approximated very efficiently. The quality
of this approximation is shown to be linked directly to the effective support of the instrument
point spread function. Due to the greater flexibility of this framework, information-maximising
beamforming techniques such as randomised beamforming can be readily incorporated. Moreover,
we use the Bonferroni method to construct global confidence intervals onto the Gram-Schmidt least
squares estimate, and use them to test the statistical significance of each pixel.
The complexity of the proposed technique is assessed and compared to the the state-of-the-art
combined CLEAN and A-projection algorithm. In the case of LOFAR, we show that our algorithm
can be from 2 to 34 times faster. The accuracy and sensitivity of the new technique is also shown, for
simulated data, to be superior.
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1
Introduction

Over the last century, humanity has witnessed both the apogee and the decline of
gigantic single-dish antennas, such as the Arecibo telescope in Puerto Rico, and its
impressive diameter of 305 meters. These disproportionate instruments belong now
to the history of radio astronomy, as they were progressively replaced by a new
generation of telescopes, with higher sensitivity and lower cost. This technological
breakthrough was made possible by efficiently leveraging large numbers of small
antennas. The signals received by the individual antennas were correlated so that
the resulting phased array would form a gigantic interferometer.

To achieve a higher resolution and sensitivity, the number of elements has in-
creased exponentially. While the LOw Frequency ARray (LOFAR) [5], composed
of about 20,000 dipole antennas spread across Europe, was freshly inaugurated,
its successor, the Square Kilometer Array (SKA) was already in planning. This
extraordinary instrument should consist, upon completion of its second stage, of up
to a million antennas [7]. Among the many challenges, the main one is certainly the
unprecedented amount of data generated, on the order of exabytes per day [14].

To reduce the data flow sent to the central processor, the SKA will follow a
hierarchical design, a strategy currently deployed in LOFAR. In this scenario,
antennas geographically close to one another are grouped together in stations. The
data from individual antennas is then summed at the station level, by beamforming
antenna signals. The beamformed data is then sent to the central processor for
further processing [24] (see fig. 1.1 page 8).

There is currently an implicit assumption of an equivalent telescope in the data
model for these hierarchical interferometers. This assumption basically states that
the beamformed output of a station can be seen as coming from a virtual antenna
with a specific beamshape [19]. This point of view, appealing due to the hierarchical
design, allowed astronomers to formulate the problem in the well-known Measure-
ment Equation formalism, in turn inherited from the celebrated van Cittert-Zernike
theorem [20]. In the classical case, without beamforming, this theorem nicely relates
the measurements of an interferometer to some layout-dependent samples of the
2D Fourier transform of the underlying sky image. This embedding of the data
in the Fourier domain not only nicely encapsulates optical telescopes and radio
telescopes in a common framework, but also enables the seductive use of the Fast
Fourier Transform (FFT) and its low complexity in the imaging procedure.

But once beamforming comes into the picture, the relationship with the Fourier do-
main becomes significantly more complicated, and retaining it requires a lot of non-
intuitive algorithm tweaking. Indeed, beamforming induces different beamshapes
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Figure 1.1: Schematic representation of a hierarchical design for modern radio telescopes.
Signals received by individual antennas are beamformed at the station level, before being sent to the
central processor for further processing and imaging.

at each stations, which therefore perceive the sky differently [25]. To account for
these station-dependent beamshapes, the A-projection algorithm [3, 19] has been
proposed. This algorithm essentially modifies the gridding step1 by convolving the
non-uniformly sampled Fourier domain with some beamshape-dependent kernels,
different for each pair of station. In practice, this operation represents a serious
bottleneck for the current imaging pipeline, as it is typically performed at each
iteration of the CLEAN algorithm [10, 17], the most widely used imager in radio
interferometry.

On top of this undesirable computational overhead, A-projection is not robust
to variation in the beamforming strategy. Indeed, the A-projection algorithm is
tailored to the use of matched beamforming, the de facto technique for modern
radio interferometers such as LOFAR [5]. This beamformer can essentially be seen
as a digital spatial filter mimicking the ability of dish antennas to focus at a certain
location in the sky by aligning and summing coherently the signals received by
each antenna from the point of focus [23]. But recent work [14,15] has suggested the

1The interferometer samples non-uniformly the Fourier transform of the sky image. To enable
the use of the FFT, these non-uniform samples need then to be placed onto a uniform grid, an
operation usually referred to as gridding.
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use of more versatile beamforming strategies, such as randomized beamforming,
shown to maximize, in certain cases, the information transferred from station to cor-
relator. Despite their advantages over matched beamforming, these beamforming
techniques require alterations to the current imaging pipeline. Indeed, the lack of
clear focus point in the beamshapes resulting from the use of randomized beam-
forming makes the positioning of the measurements in the Fourier plane ill-defined,
and hence forbids the use of A-projection and other legacy imagers, which heavily
rely on the Fourier domain.

In view of the above, this work strives to bring answers to the following questions:
Is the failure of the classical imaging pipeline witnessed in the case of randomized
beamforming symptomatic of a more fundamental flaw in the current problem for-
mulation? Is the Fourier domain really the natural one for beamformed data? Could
we propose a more general imaging pipeline readily usable with any beamforming
strategy while remaining efficient enough for practical purposes?

We start, in the first two sections of chapter 2, by recalling the classical data model
in its most general form and precisely state the assumptions upon which it is built.
We then present how it is classically extended to the case of beamformed data by
adopting a convenient (but, in our view, inappropriate) perspective on the data. In
all that follows are the contributions of this thesis, summarized thus:
• Chapter 2, section 3: we reformulate the A-projection algorithm by a rigorous

mathematical description, in terms more amenable to the mathematical and
signal processing community.
• Chapter 2, section 4: we show that the CLEAN algorithm can be interpreted

as an approximate gradient descent algorithm, which seeks to minimize the
least squares problem by taking only canonical directions. We leverage this
proximity in order to derive a loose lower bound on the number of iterations
necessary for CLEAN to converge to a certain accuracy. This bound depends
only on the data and the condition number of the problem.
• Chapter 3, section 1: we study the frequency response of the instrument to

show that when beamforming is performed at the station level, the measure-
ments should not be interpreted as samples of the 2D DFT of the underlying
sky image. This result holds for any beamforming technique, and hence in
particular for matched beamforming. Therefore, the inadequacy of the Fourier
domain witnessed in the case of randomized beamforming was in reality not
limited to this specific technique but symptomatic of a more fundamental flaw
in the way beamformed data is currently processed.
• Chapter 3, section 2: we step away from the Fourier domain and propose

a more natural measurement equation to relate beamformed data with the
underlying sky image. This model depends only on the layout of the telescope,
the characteristics of the antennas and the chosen beamforming technique.
We compare this new model with the classical data model in terms of the
accuracy of the reconstructed sky image. We perform this comparison for
various imaging algorithms, and show the superiority of the new model.
• Chapter 4, section 1: we describe a direct solver for the least squares prob-

lem, based on the more general model derived in section 2 of chapter 3. The
algorithm makes extensive use of the Gram-Schmidt orthogonalization pro-
cedure in order to precondition the problem and facilitate the reconstruction
of the sky. In contrast to classical imagers, the reconstruction of the sky is
made on the sphere, which is particularly interesting both for accuracy and
efficiency. From the derived analytical description, we develop a discrete,
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Figure 1.2: The various contributions of this thesis to the field of radio interferometry.

practical, version of the algorithm.
• Chapter 4, section 1.3: we derive meaningful statistics on the least squares

estimate obtained with our new imager. In particular, we compute the co-
variance matrix of the sky estimate and leverage asymptotic properties of
the Wishart distribution to construct global confidence intervals on the sky
estimate using the Bonferroni method. These confidence intervals are used
to perform a statistical test on the sky image, constructing what we call the
significant image.
• Chapter 4, section 2: we present a very efficient scheme to approximate the

LASSO estimate from the Gram-Schmidt least squares estimate, for the case
where the number of pixels is greater than the number of measurements. We
assess the quality of this approximation and show that it depends on the size
of the effective support of the point spread function.
• Chapter 4, section 3: we discuss and demonstrate the robustness of our

imaging pipeline to various experimental conditions, such as the noise level.
Moreover, we show that, in contrast to classical imagers, the proposed method-
ology is readily applicable to any beamforming technique, such as randomized
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beamforming.
• Chapter 5, section 1: we compute the complexity of both the proposed and

the classical imaging pipeline, and compare them in the context of LOFAR
and the SKA. We show the clear superior efficiency of our technique in the
case of LOFAR across the board, and for certain scenarios for the SKA. We
then discuss potential improvements that should make it also faster for all
SKA use cases.
• Chapter 5, section 2: we assess the accuracy and sensitivity of both imaging

pipelines on simulated data. The results of the experiments show the clear su-
periority of our algorithm with respect to the classical CLEAN + A-projection
algorithm.

Finally, the thesis concludes and opens up potential avenues for future work.



2
The Current Imaging Pipeline

1 Basic Data Model
A radio interferometer is composed of antennas that measures a common incom-
ing electromagnetic field at different locations on the ground [23]. The set of
cross-correlations between the time series recorded by the different antennas pro-
vides samples of the spatial coherency of this electromagnetic field. These cross-
correlations are usually referred to as visibility measurements. Provided certain
assumptions on the sky signal, one can build a data model, linking these visi-
bilities with the desired brightness distribution I , also referred to as sky image.
Throughout the thesis, we will assume that the following holds:

Modeling Assumptions — Sky Signal.

S1 Celestial sources are in the far field, and lie on an hypothetical celestial sphere
S2. Hence, the signals reaching the antennas are parallel [14].

S2 Signals emitted by the sources are narrow band, zero mean, circularly symmetric
complex Gaussian processes. This yields the following baseband representation
[23]:

s(t, r) = ŝ(t, r)ej2πf0t, ŝ(t, r) ∼ CN (0, I(r)),

where s : R × S2 → C is a narrow-band signal coming from a direction r ∈ S2

and with center frequency f0 ∈ R.
S3 Signal coming from different directions in the sky are uncorrelated,

E[s(t, r1)s(t, r2)∗] = 0, ∀r1, r2 ∈ S2.

From assumptions S1 and S2, we can write [14] the total signal received by the ith
antenna as

xi(t) = γi
{

S2
α(r)ŝ(t, r)ej2πf0(t−〈r,

pi
c
〉)dr + ni(t), (2.1)

with pi ∈ R3 the antenna’s position on the ground, c the velocity of light, γi ∈ C
a complex gain, α : S2 → C the primary beamshape of the antenna and ni(t) ∼
N (0, σ2

n) additive thermal noise. Aside from the terms γi, α(r) and ni(t), this
equation basically states that the total signal received from the sky by the ith
antenna is the summation over the celestial sphere of the signals s(t, r), with a time
delay (which from assumption S2 is a geometric delay [14]) accounting for the time
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necessary for the signal to reach the antenna. The quantities γi, α(r) and ni(t) are
introduced to model the imperfections of the instruments:
• The complex gains γi ∈ C account for the systematic errors introduced by

the antennas. These gains usually vary slowly with time, and can therefore
be assumed constant over the acquisition time. In practice, a calibration is
performed, in order to estimate and (partially) correct for these gains.
• The primary beamshape α : S2 → C is a known feature of the instruments,

usually uniform across the antennas [25]. It describes the sensitivity of the
instrument towards the different directions on the celestial sphere (see fig. 2.1).
When α(r) = 1, ∀r ∈ S2, we say that the antennas have an omnidirectional
field of view.
• The thermal noise ni(t) ∼ N (0, σ2

n), is a stochastic corruption due to the
electronics of the instruments [23]. The corruptions occurring at two different
stations are assumed independent from one another. Finally, these corruptions
are assumed uncorrelated with the signals coming from the sources.

Remark 1.1 As described in [23], it is possible to add further refinements to 2.1 to account
for ionospheric effects and other types of direction dependent effects. However, for the sake of
simplicity, we voluntary exclude these effects from consideration. Finally, we neglect the
polarization of the signal.

From eq. (2.1) and assumption S3, we can obtain the relation between the visibility
measurements {E[xi(t)xk(t)

∗]}i,k and the desired brightness distribution I(r) :=
V ar(ŝ(t, r)). This relation is known as the measurement equation:

Theorem 2.1 — The Measurement Equation without Beamforming. Let xi(t) ∈ CR+

and xk(t) ∈ CR+ be the signals recorded by two antennas with respective positions
pi,pk ∈ R3, gains γi, γk ∈ C and primary beamshapes α(r) ∈ CS2 . Then, under
assumptions S1, S2 and S3, the cross-correlation Vi,k ∈ C between xi(t) and xk(t)
is given by

Vi,k := E[xi(t)xk(t)
∗],

= γiγ
∗
k

{

S2
I(r)|α(r)|2e−j2π〈r,

pi−pk
λ0
〉
dr + σ2

nδik, (2.2)

where I(r) is the sky image, λ0 = f0/c the wavelength of observation, σ2
n the

variance of the thermal noise at the antennas and δik the Kronecker delta function.

Vocabulary 1.1 — Measurement Equation. In radio astronomy, a measurement equa-
tion is a model that describes the assumed relationship between the measurements of the
telescope, and the underlying sky image. In this thesis, we will present many variations
of measurements equations, with different assumptions used to derive them (some being
more general than others). As always, the choice of working with one measurement equation
rather than the other accounts to making a trade-off between preciseness of the model and
computational convenience of its use. We will see in section 3 that some approximations
made for efficiency reasons can have significant consequences on the resulting sky estimate.
Vocabulary 1.2 — Baseline. The normalized relative difference pi−pk

λ0
is commonly called

a baseline between two antennas with respective positions pi ∈ R3 and pk ∈ R3.
Remark 1.2 — Noise and Autocorrelations. We observe in eq. (2.2) that the autocorrela-
tions Vi,i = E[xi(t)xi(t)

∗] are corrupted by additive noise while the cross-correlations are
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Figure 2.1: Primary beamshape of an HBA element of a LOFAR core station, for f0 = 175 MHz.
An HBA antenna is called a tile and is composed of 16 dually polarized dipoles, which are
beamformed together towards a certain direction of the sky (here the zenith of LOFAR). The primary
beamshape can be seen as the sensitivity of the antenna towards regions of the sky. The antenna
perceives a modified version of the sky, with sources’ intensities magnified according to the
beamshape.

not1. The autocorrelations are thus not used in the imaging process, and we will exclude
them in all that follows.

Assuming a proper calibration and an omnidirectional field of view for the
antennas, eq. (2.2) simplifies to

Vi,k =
{

S2
I(r)e

−j2π〈r,pi−pk
λ0
〉
dr, ∀i 6= k.

The resemblance between the above expression and the 3D Fourier transform is
striking, with integration over the unit sphere instead of R3 . When, as it is often the
case, only a portion of the celestial sphere is of interest, one can project eq. (2.2) onto
the plane tangent to the sphere at the center of the region of interest. This yields the
tangent plane measurement equation without beamforming

Vi,k = γiγ
∗
k

x

K⊂R2

I(l,m)√
1− l2 −m2

|α(l,m)|2W(l,m;wi,k)e
−j2π(ui,kl+vi,km)dldm, (2.3)

with K ⊂ R2 the compact support of I in R2,

W(l,m;wi,k) := e−j2πwi,k(
√

1−l2−m2−1), ∀l,m ∈ R, (2.4)

and
r = le1 +me2 + (

√
1− l2 −m2 − 1)e3,

1This is because the noise corruptions at two different antennas are supposed independent from one
another. In practice though, the estimated cross-correlations will also be affected by the noise as
we can show that the variance of the estimates is increased in the presence of noise.
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pi − pk
λ0

= ui,ke1 + vi,ke2 + wi,ke3.

The vectors e1, e2 ∈ R3 span the tangent plane and e3 ∈ R3 is orthogonal to this
tangent plane, oriented towards the outside of the celestial sphere. When the field
of view is small enough then we haveW(l,m;wi,k) ' 1 and

√
1− l2 −m2 is almost

constant [20]. Therefore, assuming unit gains and an array of antennas with an
omnidirectional field of view, we can re-write eq. (2.3) as

Vi,k ' V(ui,k, vi,k) =
x

K⊂R2

I(l,m)e−j2π(ui,kl+vi,km)dldm, (2.5)

with V : R2 → C, (u, v) 7→ F{I}(u, v), the visibility function, Fourier transform of
the sky image I . This special form of eq. (2.3) is known as the van Cittert-Zernike
theorem [20] (or van Cittert-Zernike measurement equation).

In this specific case, we can interpret the visibilities Vi,k ∈ C as samples of the
Fourier transform of I(l,m). Then, recovering the sky image can be done by taking
the inverse Fourier transform of the non-uniformly sampled visibility function:

ID(l,m) = F−1

∑
i,k

V(u, v)δ(u− ui,k, v − vi,k)

 . (2.6)

The image obtained this way is called the dirty image. It is usually polluted by arti-
facts (called sidelobes) due to our very crude knowledge of the visibility function.
It is then necessary to apply a deconvolution algorithm to the dirty image, to correct
for these artifacts. For point sources, the CLEAN algorithm [10, 17] is one of the
most widely used.

For large fields of view, the approximation in eq. (2.5) breaks down, and a cor-
rection for theW term in eq. (2.3) needs to be performed. The W-projection algo-
rithm [4] is commonly used for this purpose.

2 Beamforming at Stations

For modern radio telescopes such as LOFAR (or in the future the SKA), computing
the correlations between each elements of the telescope is computationally pro-
hibitive. To reduce the amount of data sent to the central correlator, one strategy
is to group the various antennas in stations and beamform the signals from indi-
vidual antennas together at the station level [24]. Then, the measurement equation
previously derived needs updating to take into account the effect of beamforming
on the data.

Let M be the number of stations, each composed of L antennas, with respective
positions on the ground p(i)

l ∈ R3, l = 1, . . . , L. We can concatenate the L signals
collected by the antennas within station i ≤M in a vector time series

xi :

R→ CL,

t 7→ xi(t) :=
(
x

(i)
1 (t), . . . , x

(i)
L (t)

)T
.
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This yields, ∀i ≤M ,

xi(t) =
{

S2
ŝ(t, r)× α(r) (Γi � ai(r)) ej2πf0tdr + ni(t),

with � the element-wise product, Γi =
(
γ

(i)
1 , . . . , γ

(i)
L

)
∈ CL the concatenated

elements’ gains, ni(t) =
(
n

(i)
1 (t), . . . , n

(i)
L (t)

)
∼ CNL

(
0, σ2

nIL
)

some additive noise

and ai : S2 → CL the antenna steering vector defined by

ai(r) :=


e
−j2π〈r,

p
(i)
1
λ0
〉

...

e
−j2π〈r,

p
(i)
L
λ0
〉

 , ∀r ∈ S2. (2.7)

The beamformed output yi : R→ C at each station is then given by

yi(t) = wH
i xi(t), i = 1, . . . ,M,

with wi ∈ CL the beamforming vector used at station i. We finally have the
following expression for yi(t):

yi(t) =
{

S2
ŝ(t, r)× α(r)wH

i (Γi � ai(r)) ej2πf0tdr + wH
i ni(t). (2.8)

The beamforming vector wi in eq. (2.8) can be chosen in many ways [14, 15], de-
pending on the desired properties of yi(t). The most popular strategies in prac-
tice are directive beamforming techniques, such as matched beamforming and
the Minimum Variance Directionless Response (MVDR) beamformer [23]. Both
techniques can be seen as digital spatial filters, that provide the ability to focus
at specific locations on the celestial sphere, by exploiting the telescope layout to
appropriately combine the signals from the different antennas so that to maximize
the contribution of a potential source at the selected location (see fig. 2.2 page 18).

Rather than deriving a new measurement equation by computing explicitly the
correlation existing between two beamformed outputs yi and yk, astronomers prefer
to adopt a different perspective on the data, that permits to bring hierarchically
designed interferometers into the classical setting. This viewpoint is based on the
following assumption:

Modeling Assumptions — Equivalent Telescope Model.
T1 Consider a hierarchically designed interferometer, organized in M stations with

centroids p1, . . . ,pM ∈ R3. Then, the stations’ beamformed outputs yi(t) can be
seen as coming from an equivalent telescope, composed of M virtual antennas
positioned at the centroids of the stations, respectively p1, . . . ,pM ∈ R3. To
account for the effect of beamforming, those virtual antennas are allowed to have
each different beamshapes.

The rationale behind this apparently ad hoc statement comes from the study of an
ideal case, where the sky would only be composed of a single source, with intensity
σ2
q and position rq ∈ S2. In this very simple scenario, the variance of a station’s
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output is given by

E[yi(t)y
∗
i (t)] =wH

i E[xi(t)x
∗
i (t)]wi,

=|α(rq)w
H
i (Γi � ai(rq))︸ ︷︷ ︸
:=bi(rq)

|2σ2
q + ‖wi‖2σ2

n. (2.9)

We observe in eq. (2.9) that the source’s intensity is rescaled by the quantity |bi(rq)|2,
and the thermal noise variance by the quantity ‖wi‖2 . In comparison, the variance
of the signal recorded by a single station’s element is given by

E[x
(i)
k (t)x

(i)∗
k (t)] = |α(rq)|2σ2

q + σ2
n.

It is then very tempting (but wrong, as we show in section 1 of chapter 3) to call
|bi(rq)|2 the beamshape of the ith station, so that we could interpret the station as a
virtual antenna [19], with a virtual thermal noise of variance ‖wi‖2σ2

n.

Definition 2.1 — Station Beamshape. Consider a hierarchical interferometer with M
stations and L antennas per station, with primary beamshape α : S2 → C. Let wi ∈
CL, i = 1, . . . ,M , be the beamforming vectors at each station. Then, the beamshape
bi : S2 → C of station i is defined as

bi :

{
S2 → C,
r 7→ bi(r) = α(r)wH

i (Γi � ai(r)) ,
(2.10)

with Γi ∈ CL the gains of the antennas within station i and ai : S2 → C the antenna
steering vector for station i, as defined in eq. (2.7).

In the case of unitary gains and omnidirectional primary beamshape we get

b̃i(r) = wH
i ai(r), ∀r ∈ S2, i = 1, . . . ,M. (2.11)

The above quantity will be referred to as the ideal beamshape of station i in all that
follows.

Beamshapes from different stations of LOFAR are plotted on fig. 2.2. We observe
that in contrast to the primary beamshape that was identical for every antenna, the
station beamshape varies a lot from one station to the other. Roughly speaking,
this means that each station has a different perception of the sky. We will see that
accounting for this fact in the classical imaging pipeline significantly complicates
sky reconstruction. At this point, we have reformulated the problem in terms of

an equivalent telescope composed of M virtual elements with beamshapes given
in definition 2.1. This change of perspective nicely bring us into the range of
application of the classical measurement equation, and we can straightforwardly
apply theorem 2.1 to obtain
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(a) Beamshape of the second core station of
LOFAR, using matched beamforming towards the
zenith of LOFAR, and a frequency of observation
f0 = 120 MHz.

(b) Beamshape of the eleventh core station of
LOFAR, using matched beamforming towards the
zenith of LOFAR, and a frequency of observation
f0 = 120 MHz.

Figure 2.2: Examples of station beamshapes for LOFAR. It appears than matched beamforming is
effectively reducing the field of view of the station towards the region of interest (main lobe of the
beamshape). However, some undesired portions of the sky also contribute to the measurements,
because of the secondary sidelobes of the beamshape. These sidelobes can be attenuated by the use of
the MVDR beamformer. Finally, we observe that conversely to the primary beamshape, the station
beamshape varies a lot from one station to the other: each station is perceiving the sky differently.

Corollary 2.1 — The Measurement Equation with Beamforming. Let yi(t) ∈ CR+ and
yk(t) ∈ CR+ be the beamformed signals of two stations with centroids pi,pk ∈ R3,
virtual complex gains γi, γk ∈ C and beamshapes bi(r), bk(r) ∈ CS2 . Then, under
assumptions S1, S2, S3 and T1, the cross-correlation Vi,k ∈ C between yi(t) and yk(t)
is given by

Vi,k = γiγ
∗
k

{

S2
I(r)bi(r)b∗k(r)e

−j2π〈r,pi−pk
λ0
〉
dr + ‖wi‖2σ2

nδik, (2.12)

where I(r) is the sky image, λ0 = f0/c the wavelength of observation, σ2
n the variance

of the thermal noise at the antennas, δik the Kronecker delta function and wi ∈ CL the
beamforming vector used to beamform the signals at station i.

Remark 2.1 — Virtual Complex Gains. It can seem surprising to introduce virtual complex
gains in eq. (2.12). Indeed, it seems reasonable to make the virtual elements inherit the
imperfections of the actual antennas forming the station. But when looking back at the
definition 2.1, we observe that the complex gains of the individual elements as well as the
primary beamshape of those elements are already accounted for in the definition of the virtual
elements beamshapes. So why would virtual elements introduce systematic errors in the
measurements ? We can legitimate this by thinking at these complex gains as compensating
for the approximation introduced by assumption T1, and the potential systematic mismatch
that could exist between the true visibilities Vi,k = E[yi(t)y

∗
k(t)] and the visibilities that

actual elements with the same specifications as the virtual elements would actually measure.
Remark 2.2 — Noise & Beamforming. We observe in eq. (2.12) that the thermal noise
variance (that in theory corrupts only the auto-correlations but in practice corrupts also
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Figure 2.3: Block diagram of the A(W)-projection algorithm.

the cross-correlations estimates) is rescaled by the beamforming vector norm. Hence, beam-
forming can be leveraged to increase the signal to noise ratio, by for example magnifying the
sources in the sky while maintaining the noise level unchanged2. However it also means that
if not chosen wisely, the beamforming vector can actually magnify the noise level, resulting
in a more difficult sky reconstruction afterwards.

Often, for convenience, eq. (2.12) is projected onto the tangent plane

Vi,k = γiγ
∗
k

x

K⊂R2

I(l,m)√
1− l2 −m2

bi(l,m)b∗k(l,m)W(l,m;wi,k)e
−j2π(ui,kl+vi,km)dldm,

(2.13)

with K ⊂ R2 the compact support of I , W(l,m;wi,k) and (l,m) as before, and
(uik, vik, wik) being the uvw-coordinates of the baseline (pi−pk)/λ0 between station
i and k. Equation (2.13) will be referred to as the tangent plane measurement
equation with beamforming.

3 Imaging with the A(W)-projection Algorithm
A naive Fourier inversion of the visibility function is no longer satisfactory in the
case of beamformed data. Indeed, we have seen in the previous section that each
station perceives the sky differently. To make sense of these measurements relatively
to one another in the classical formulation, one needs first to apply a correction to
the visibilities. The A(W)-projection algorithm [3, 19] is currently the most widely
used technique for this purpose. It attempts to correct the visibilities for both the
station-dependent beamshapes and theW-term in eq. (2.13), by convolving each
visibility with a compactly supported kernel, specific to the associated baseline (see
fig. 2.3 for an overview of the algorithm). This operation is of course computationally
expensive. Finally, we will see that the accuracy achievable is fundamentally limited,
as the algorithm only partially corrects the visibilities.

2This is in effect what matched beamforming is doing.
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3.1 Reshaping the Measurement Equation

The A-projection algorithm works with a N ×N discrete 2D uniform grid of the
sky portion of interest. Mathematically speaking, this is equivalent as assuming the
following sky model:

I(l,m) =
N∑
i=1

N∑
j=1

σ2
ijδ(l − li,m−mj), ∀(l,m) ∈ K ⊂ R2,

with {(li,mj)}ij ⊂ Z2 forming a N × N uniform grid on the field of view and
σ2
ij ≥ 0 being the intensity (potentially null) of the pixel (i, j). Then, the sky can be

equivalently represented as a matrix Ĩ ∈ RN×N , defined as(
Ĩ
)
i,j

:= I(lj ,mi), i, j = 1, . . . , N.

As it is often convenient to think of the sky image as a vector rather than a matrix,
we need the vec(·) operator to Ĩ .

Definition 3.1 — The vec(·) operator. Let A ∈ KN×M be a matrix, with K a field.
Then, we define the vec(·) operator as

vec : KN×M → KNM , A 7→
(
AT:,1, . . . , A

T
:,M

)T
,

with A:,m ∈ KN denoting the mth column of the matrix A.

This yields I := vec(Ĩ) ∈ RN2
, where the columns of Ĩ are stacked vertically. Then,

we can re-write [19] the data model from eq. (2.13) as a product of linear operators
successively acting on the sky image I :

Vi,k = Gi,kSi,kFDi,kI, i, k = 1, . . . ,M, i 6= k, (2.14)

where Vi,k ∈ CN2
and

• Di,k := diag
(

vec
(
D̃i,k

))
∈ CN2×N2

is a diagonal matrix. This term effec-
tively rescales the brightness distribution I according to the beamshapes of
the two stations, as well as theW-term (see eq. (2.4)). The matrix D̃i,k ∈ CN×N
contains the rescaling factor for each pixel in the sky(

D̃i,k

)
c,r

:= dik(lr,mc), c, r = 1, . . . , N,

with dik(l,m) := bi(l,m)× b∗k(l,m)×W(l,m;wi,k) (see fig. 2.4).
• F ∈ CN2×N2

is the 2D DFT matrix, reshaped by the vec(·) operator. Each
column of F is given by

F:,c = vec(DFT2{Eic,jc}) ∈ CN
2
, c = 1, . . . , N2,

with DFT2 the classical 2D discrete Fourier transform. The matrices Eic,jc ∈
RN×N are given by Eic,jc = eice

T
jc

, with {ei}i ⊂ RN the canonical basis for
RN . Finally, the bijection (ic, jc)↔ c which associates a pixel of the 2D image
to its corresponding position in the vectorized image is described by the
deterministic reordering performed by the vec(·) operator.
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(a) Modulus of d9,7(l,m) for LOFAR, for a
frequency of observation 75 MHz and a field of
view of ∼ 2◦. Stations are steered towards the
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(b) Zoom on the small support of the Fourier
transform of d9,7(l,m).

Figure 2.4: Example of a baseline dependent rescaling function di,k(l,m) for LOFAR. We observe
that this function is rather smooth across the field of view, resulting in a small support in the Fourier
domain.

• Si,k ∈ {0, 1}N
2×N2

is the sampling matrix. It samples the visibility func-
tion at the (gridded) frequencies (u∆

i,k, v
∆
i,k) ∈ ∆, nearest neighbors of the

actual frequencies (ui,k, vi,k) ∈ R2 on the grid ∆ ⊂ R2 of the uv-plane. If
ei,k ∈ {1, . . . , N2} corresponds to the position of the sampled uv-point in the
vectorize version of the visibility function Vi,k = FDi,kI ∈ CN2

, then the
terms of the matrix Si,k are given by

(Si,k)r,c :=

{
1 if r = c = ei,k,

0 otherwise.

• Gi,k := γiγ
∗
k ∈ C models the systematic and direction independent effects for

the given baseline. For simplicity, we will assume that these gains have been
estimated and the visibilities accordingly corrected, so that we have Gi,k ' 1.

Assuming an arbitrary numbering of the baselines, we can then stack eq. (2.14)
vertically, which yields

V =


Si1,k1 0

. . .

0 SiJ ,kJ


︸ ︷︷ ︸

:=S∈{0,1}JN2×JN2


F 0

. . .

0 F


︸ ︷︷ ︸

:=F∈CJN2×JN2


Di1,k1

...
DiJ ,kJ


︸ ︷︷ ︸
:=D∈CJN2×N2

I

= SFDI
= AI, (2.15)

where J is the total number of baselines, V :=
(
V T
i1,k1

, . . . ,V T
iJ ,kJ

)T
∈ CJN2

and

A ∈ CJN2×N2
.

Equation (2.15) conveniently formulates our data model as a linear system linking



22 The Current Imaging Pipeline

the visibilities to the sky image. As such, it is yet another measurement equation (it
is actually the discrete analog of eq. (2.13)). The matrixA is not only rectangular but
also generally ill-conditioned, which translates in a huge sensitivity of the solutions
to potential data corruptions. Various strategies are then available to solve this
linear system, each yielding potentially different estimates of the sky image with
specific properties depending on the chosen algorithm. One intuitive solution to
this linear system least squares, provided by

ID = argmin
I∈RN2‖V −AI‖22.

In the classical case where no beamforming is performed, the dirty image proposed
in eq. (2.6) can be shown to be the least square solution of the problem3. As already
mentioned, this solution is generally corrupted by artifacts, which can mislead
us to wrongly identify a structure within the sky estimate as a source. To mini-
mize these corruptions, one can regularize the problem by biasing (usually with a
L1 penalization) the solution towards the set of sparse sky images4. Compressed
sensing methods can then be used to recover the sky image. But such methods
are usually very computationally demanding, so that astronomers prefer to work
with the dirtier least square solution, cleaned by a deconvolution algorithm such
as the CLEAN algorithm. The least square solution presents indeed a major ad-
vantage over competing solutions as it can be written in closed form using the
pseudoinverse of A,

ID =
(
AHA

)−1AHV , (2.16)

in the specific case where A is full column rank. In practice, because of the size
of A, it is prohibitive [19] to compute exactly the term

(
AHA

)−1, that corrects for
the geometric aberrations in AHV (due to the columns of A not being orthogonal).
A-projection considers then a very rough approximation of eq. (2.16)(

AHA
)−1AHV '

(
DHD

)−1AHV , (2.17)

where AHA is approximated by DHD =
∑J

j=1D
H
ij ,kj

Dij ,kj , average of the direction
dependent effects across all baselines (see fig. 2.5 (c)). Each of the matrices Dij ,kj

being by definition diagonal, the matrix DHD is itself diagonal, and therefore
much easier to invert than the full matrix AHA. The price to pay however for this
computational convenience is high, as the resulting sky estimate can be severely
affected by the remaining geometric artifacts, not fully corrected for (see fig. 2.5 (e)
and (f)).

3.2 Algorithm Description

The A-projection algorithm is essentially an algorithm optimized for computing
the approximate least square solution

ID =
(
DHD

)−1AHV ,

focusing on the computation of the computationally most expensive term, AHV .
Expanding this term we get

3Indeed, the dirty image in eq. (2.6) is by construction the closest approximation of the sky image
within the subspace generated by the family of exponentials {ej2π(ui,kl+vi,km)}i,k=1,...,J .

4With of course the a priori belief that the observed sky is mostly empty.
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(b) Modulus of the visibility
function obtained after
A-projection (sum across all
baselines of independently
corrected components).
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Figure 2.5: Some relevant quantities involved in the A-projection algorithm. We observe that
accounting for the station dependent beamshapes and theW-term permits to identify new sources in
the dirty image, previously undetectable. However, the rough approximation of the pseudoinverse
made in the A-projection algorithm for practical reasons leads to stronger artifacts in the dirty image.
Superimposed white dots correspond to actual sources in the sky.

AHV = DHFHSHV
= DHFHV

=
(
DH
i1,k1

· · · DH
iJ ,kJ

)
N4F−1 0

. . .

0 N4F−1

V

= N4
J∑
j=1

DH
ij ,kj

F−1Vij ,kj .

Therefore, the dirty image is given by:

ID = N4
(
DHD

)−1
J∑
j=1

DH
ij ,kj

F−1Vij ,kj .
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To better understand the above equation, it is worth reinterpreting it as a continuous
system. We get, for every (l,m) ∈ R2,

ID(l,m) =

∑J
j=1 d

∗
ij ,kj

(l,m)×F−1{Ṽij ,kj}(l,m)∑J
j=1 |dij ,kj (l,m)|2

, (2.18)

with F the 2D Fourier transform, Ṽij ,kj (u, v) = Vij ,kjδ(u − uij ,kj , v − vij ,kj ) and
di,k(l,m) = bi(l,m)b∗k(l,m)W(l,m;wi,k).

Equation (2.18) provides us with a recipe to approximately correct for the baseline
dependent effects di,k = bib

∗
kW(·;wi,k).

1 For each baseline, consider the one-sample visibility function Ṽij ,kj (u, v) =
Vij ,kjδ(u− uij ,kj , v − vij ,kj ),
• Compute the inverse Fourier transform of this function.
• Correct for the baseline dependent effects in the image plane by multiply-

ing this function by d∗i,k.
2 Sum these functions across all baselines,
3 Divide by 1/

∑J
j=1 |dij ,kj (l,m)|2 as a first order approximation for

(
AHA

)−1

in eq. (2.16).
This recipe is naive in terms of computational cost, as the correction for the

beamshapes and the W-term are performed in the image plane. Indeed, such a
correction requires the multiplication of two N ×N complex images per baseline,
infeasible for next generation radio telescope, where the number of baselines will
be extremely big.

One can significantly reduce the computational cost of this algorithm by lever-
aging the convolution theorem [19]. Indeed, the functions di,k are usually rather
smooth over the field of view [19] and their 2D Fourier transform have conse-
quently small support in the uv-plane (see fig. 2.4 page 21). We can then compute
equivalently ID with the formula

ID(l,m) =

∑J
j=1F−1{F{d∗ij ,kj} ∗ Ṽij ,kj}(l,m)∑J

j=1 |dij ,kj (l,m)|2
. (2.19)

Because of the small support in the uv-plane of the functions F{d∗ij ,kj}, the convo-

lution F{d∗ij ,kj} ∗ Ṽij ,kj is significantly cheaper to compute than the multiplication

d∗ij ,kj (l,m)F−1{Ṽij ,kj}(l,m) in eq. (2.18), performed in the image plane.
This finally yields the A-projection algorithm, given in algorithm 1.

Remark 3.1 — w-stacking. Though significantly cheaper than the naive algorithm inspired
from eq. (2.18), the implementation of A-projection presented in algorithm 1 can be further
improved by factorising out theW-term from the di,k functions. Indeed this term is only
dependent on wi,k, the vertical coordinate of the considered baseline in the frame attached
to the tangent plane. Because of potential telescope layout redundancy, some baselines can
have identical w-coordinates (or at least close to one another). It can then be interesting to
perform theW correction on groups of baselines rather than on each individual baselines.
This technique is called w-stacking [19]. Depending on the layout of the telescope, this can
significantly reduce the computational cost of the A-projection algorithm, as theW-term is
usually the most expensive to correct for (as it has a larger support in the uv-plane than the
station beamshapes).

Various quantities involved in the A-projection algorithm can be seen in fig. 2.5
page 23. Observe that accounting for the station dependent beamshapes and theW-
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Algorithm 1: The A-projection algorithm (Naive Implementation)

1: procedure A-PROJECTION . INPUTS: visibilities, associated
2: frequencies, station beamshapes
3: andW-term.
4: V(u, v)← 0;
5: for j = 1 : J do . Perform correction for each baseline.
6: Ṽij ,kj (u, v)← Vij ,kjδ(u− uij ,kj , v − vij ,kj );
7: Ṽ corr

ij ,kj
(u, v)←

(
F{d∗ij ,kj} ∗ Ṽij ,kj

)
(u, v); . Cheaper

8: in the uv-plane !
9: V(u, v)← V(u, v) + Ṽ corr

ij ,kj
(u, v); . Add the corrected

10: contributions from each
11: baselines together.
12: end
13: ID(l,m)← F−1{V}(l,m); . 2D Fourier inversion.
14: ID(l,m)← ID(l,m)/

(∑J
j=1 |dij ,kj (l,m)|2

)
; . First order

15: correction for
16: geometric artifacts.
17: return ID(l,m); . OUTPUT: The (approximate)
18: Dirty Image (L2 solution)

term does improve the sky estimate. However, because of the approximation 2.17,
the dirty image is polluted by artifacts, not fully corrected for. For this reason, the
A-projection algorithm is often used in conjunction with the CLEAN algorithm [19].
The expensive correction needs then to be performed at each iteration of the CLEAN
algorithm, making the imaging procedure even more costly.

4 Iterative approach: CLEAN as Gradient Descent
We have seen that dirty images obtained with algorithm 1 can be seriously af-
fected by artifacts, resulting from the rough approximation of the deconvolution
term

(
AHA

)−1. To overcome this issue, a solution is to leverage the A-projection
algorithm in order to design efficient iterative schemes aiming at obtaining an
approximation to the least squares problem

When the sky image under consideration is assumed sparse, it can be advanta-
geous to penalize the above optimization problem, in order to guarantee a reason-
able (depending on the strength of the penalty) sparsity of the solution

ID = argmin
I∈RN2 ‖V −AI‖22 + λ‖I‖1,

with λ ∈ R some penalty parameter, and ‖ · ‖1 the L1 norm.
The CLEAN algorithm is related to both optimization problems. It can be seen as

an approximate gradient descent algorithm, following a constrained path going as
close as possible from the gradient descent algorithm path. Starting from the null
image Î(0) = 0, it iteratively updates the sky estimate according to the following
equation

Î(n+1) := Î(n) + τΨAH(V −AÎ(n)), n ≥ 1, (2.20)
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Figure 2.6: Comparison between the CLEAN algorithm and the gradient Descent Algorithm for
a simple example. In this example, we apply the CLEAN and Gradient Descent algorithm to
estimate the pseudoinverse solution to the linear system Ax = b. A is full column-rank. If not
specified differently, we take ε = 10−4 and τ = 0.1.

with Ψ a nonlinear operator, that filters out every components from the residual
imageAH(V −AÎ(n)) except from the strongest, and τ ∈ R the searching parameter,
that determines how far we must travel along the direction ΨAH(V −AÎ(n)). The
multiplications by A and AH in eq. (2.20) can be performed more efficiently using
the A-projection algorithm. Keeping only the strongest component from the residual
image guarantees that only one component of the sky estimate Î(n) is updated at a
time, with the hope that such an approach will help keeping the L1 norm of the sky
estimate low. The direction ΨAH(V −AÎ(n)) ∈ RN2

can also be seen as the closest
approximation of the steepest descent direction in the canonical basis. Indeed, if we
define

Φ :

{
RN2 → R,
I 7→ ‖V −AI‖22,
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then,

∇Φ(I) =
∂

∂I
‖V −AI‖22

=
∂

∂I

[
IHAHAI − 2IHAHV + VHV

]
= 2AH(AI − V).

The steepest descent at Î(n) ∈ RN2
is then given by

−∇Φ(Î(n)) = 2AH(V −AÎ(n)),

so that ΨAH(V −AÎ(n)) ∝ 〈∇Φ(Î(n)), eimax〉eimax , with

imax = argmax
{
〈∇Φ(Î(n)), ei〉

∣∣∣ i = 1, . . . , N2
}
,

and {ei, i = 1, . . . , N2} ⊂ RN2
the canonical basis. This confirms our previous

claim: the direction followed by the CLEAN algorithm at each iteration is the
steepest descent direction approximated by its main component (see fig. 2.6(a)).
By taking only canonical directions, the CLEAN algorithm attempts to maintain a
certain sparsity in the sky estimate, as only one component (i.e. pixel) is updated at
a time (see fig. 2.6(b)).

Finally, the algorithm is stopped when the residual image goes below a certain
threshold ε ∈ R+, under which the sensitivity of the instrument is not good enough
to discriminate potentially remaining sources from noise artifacts. That translates
into the following stopping criterion:

‖AH(V −AÎ(n))‖∞ = ‖∇Φ(Î(n))‖∞ ≤ ε.

This is a sensible stopping criterion, as when∇Φ(Î) = 0 we have

AHAÎ = AHV ,

Î =
(
AHA

)−1AHV ,

provided that A is full column rank. Hence, when ε = 0, the CLEAN estimate and
the pseudoinverse solution coincide. It also means that the relative sparsity of the
CLEAN estimate can only be maintained for large enough ε, and will eventually
breaks down as ε gets smaller (and the CLEAN estimate converges to the least
squares solution). When A is not full-column rank, then the CLEAN estimate and
the pseudoinverse solution are both a solution to the least squares problem, but do
not coincide anymore (see fig. 2.7).

The CLEAN algorithm is summarized in algorithm 2. The lines 8 to 9 are usually
performed when the CLEAN algorithm is stopped prematurely (large ε). Indeed,
in such scenarios, the estimate Î(n) consists of only a few components. To reduce
this artificially high resolution, the image is convolved with a Gaussian kernel. The
residuals are added to the image [23], as the astronomers might still be interested in
the potential information left in it. The parameter τ in the update equation line 6 is
chosen uniformly across all the iterations, which is suboptimal (in terms of number
of operations needed to converge to the stopping criterion). The choice of this
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Algorithm 2: The CLEAN Algorithm (helped by A-projection)

1: procedure CLEAN . INPUTS: visibilities, ε > 0, τ > 0
2: Î(0) ← 0;
3: while ‖∇Φ(Î(n))‖∞ > ε do . Stopping criterion
4: ∇Φ(Î(n))← 2AH(AÎ(n) − V); . Compute residuals
5: using A-projection
6: Î(n) ← Î(n) − τ

2 Ψ∇Φ(Î(n)); . Update equation

7: end
8: Ires ← AH(V −AÎ(n)); . Residuals at the end
9: Î(n) ← Î(n) ? G; . Convolve with Gaussian kernel

10: Î(n) ← Î(n) + Ires; . Add residuals
11: return Î(n); . OUTPUT: The CLEAN image.

parameter heavily influences the convergence of the CLEAN algorithm [10, 17, 23]
(see fig. 2.6(e)). In comparison, the gradient descent algorithm can optimally select a
searching parameter τ (n) for each iteration. This is done by minimizing with respect
to τ the cost function along the steepest descent direction

τ (n) = argminτ∈R Φ
(
Î(n) − τ

2
∇Φ

(
Î(n)

))
.

Differentiating w.r.t τ yields

τ (n) =
‖∇Φ(Î(n))‖22
‖∇Φ(Î(n))‖2A

, (2.21)

with ‖x‖A :=
√
xHAHAx, ∀x ∈ RN2

.

Hence, the CLEAN algorithm is suboptimal with respect to the gradient descent
algorithm, both in terms of chosen directions and in terms of the choice of the
searching parameter τ . Consequently, the number of iterations required to meet the
stopping criterion ‖∇Φ(Î(n))‖∞ > ε will be necessarily larger for CLEAN algorithm
than for gradient descent, which has the following convergence property [26]:

Theorem 2.2 — Convergence Rate of the Gradient Descent Algorithm. Let f : E → R
be a strictly convex quadratic form on the finite dimensional Euclidean space E.
Let H : E → E be the Hessian of f , and x∗ ∈ E the unique minimum of f . Then,
if we use the gradient descent algorithm to minimize f starting from 0, we have,
∀n ≥ 1

‖x(n) − x∗‖H ≤
(
κ2(H)− 1

κ2(H) + 1

)n
‖x∗‖H ,

with x(n) ∈ E the estimate obtained with the gradient descent algorithm at
iteration n, κ2(H) the condition number of H , and ‖x‖H :=

√
〈Hx,x〉E , ∀x ∈

E.

In our case, Φ is a strictly convex quadratic form, with Hessian given by H :=
AHA. Thus, because CLEAN is suboptimal w.r.t the gradient descent algorithm,
we can bound from below the number of iterations needed to achieve a certain
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(a) Respective paths of the gradient descent (blue)
and CLEAN (orange) across iterations. The
CLEAN estimate is here different from the
pseudoinverse solution. However, the projection of
the CLEAN path onto the subspace generated by
the rows of A converges to the pseudoinverse
solution. The transparent cylinders correspond to
isocontours of the residual sum of squares.
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(b) L1 norm of the estimates across iterations. The
CLEAN estimate has always a smaller L1 norm
(solution sparser) then the gradient descent
estimate.The projection of the CLEAN estimate
onto the subspace generated by the rows of A has a
smaller norm than the Gradient Descent estimate
up to iteration 10.

Figure 2.7: Comparison between the CLEAN algorithm and the gradient Descent Algorithm for
solving the linear system Ax = b, with A is not full-column rank. When A is not full-column rank,
then the CLEAN estimate and the pseudoinverse solution do not coincide anymore even after an
infinite number of iterations. However, they both minimize the residuals, and hence the projection of
the CLEAN estimate onto the subspace generated by the rows of A coincides with the pseudoinverse
solution.

accuracy between the sky estimate I(n) produced by the CLEAN algorithm and the
pseudoinverse solution Î =

(
AHA

)−1AHV . For example, if we require

‖I(n) − Î‖H ≤ ε,

then we know than the number of iterations nCLEAN required to achieve this
accuracy with CLEAN will be bounded from below by the number of iterations
required to achieve this accuracy with the gradient descent algorithm (see fig. 2.6(c)
and (d)):

nCLEAN >
log(ε)− log(‖Î‖H)

log
(
κ2(H)−1
κ2(H)+1

) , (2.22)

provided that κ2(H) > 1. We can see in (e) that (2.22) is not a very tight bound. We
further observe that the convergence rate depends on the condition number κ2(H)
of the matrix AHA: the larger the condition number, the slower the convergence
will be. In the special case where κ2(H) = 1 then the gradient descent algorithm
converges in a single iteration, and the above lower bound becomes less interesting,
as it simply tells us than nCLEAN > 1.



3
Understanding Visibilities

1 Visibilities and Fourier Samples

Interestingly enough, the A-projection algorithm described previously seems to
disagree with the data model it is built upon. Indeed, the algorithm is based on
the equivalent virtual telescope model T1, that permits (rather artificially) bringing
beamformed astronomical data into the scope of the classical measurement equation
formalism. Essentially, this model translates in mathematical terms the belief that,
provided that an adequate correction for the station dependent beamshapes and
theW-term is performed, we can still see the visibilities as samples of the visibility
function at locations given by the stations’ uv-coordinates. But this viewpoint, that
conveniently keeps alive the intimate link that classically binds radio astronomical
data with the Fourier domain, is undermined by the nature of the correction to
be applied to the visibility function. Looking back at figures 2.5 (a) and 2.5 (b),
we can indeed observe that the correction, that consists in convolving individual
components of the visibility function with baseline-dependent kernels, effectively
increases the visibility function’s support. But with this increased support, the
number of visibilities and the cardinality of the sky image spectrum do not match
anymore! This is rather problematic, as it seems to forbid any identification between
visibilities and samples of the visibility function, a fact that directly contradicts our
initial belief.

To try and provide an answer to this observation, we can analyze the frequency
answer of the interferometer. For the sake of simplicity, assume in this section that
the field of view is small enough to neglect the effect of theW-term and assume
an omnidirectionnal field of view for the antennas. We further assume that the
complex gains have been already estimated and accounted for.

For insight, let’s first look at the classical case where no beamforming is performed.
In this scenario, and with the assumptions S1–S3, the van Cittert-Zernike theorem
holds (see eq. (2.5) page 15)

Vi,k =
x

R2

I(l,m)e−j2π(ui,kl+vi,km)dldm, i 6= k.

The simplicity of the above equation helps in attaching a geometrical interpretation
to a visibility. Indeed, the space CR2

of functions from R2 into C is a Hilbert space,
that can be equipped with the standard inner product
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〈f, g〉 :=
x

R2

f(l,m)g∗(l,m)dldm, ∀f, g ∈ CR2
.

With this definition, visibilities can thus be seen as the inner product between the
sky image and elements from the Fourier basis:

Vi,k = 〈I, ej2π(ui,kl+vi,km)〉, i 6= k.

This essentially means that the visibilities contain information about the (linear)
resemblance between the sky image and elements of the Fourier basis, with fre-
quencies . Hence, the set of visibilities {Vi,k}i,k ⊂ C, provides us with a complete
description of the signal within the finite linear subspace spanned by the orthogonal
family {ej2π(ui,kl+vi,km)}i,k ⊂ CR2

. The L2 sky estimate, or dirty image ID, is then
simply the projection of I onto this subset, given by

ID =
∑
i,k

〈I, ej2π(ui,kl+vi,km)〉ej2π(ui,kl+vi,km),

=
∑
i,k

Vi,ke
j2π(ui,kl+vi,km), ∀(l,m) ∈ R2. (3.1)

We observe in eq. (3.1) that the dirty image is a linear combination of sinusoids,
with frequencies determined by the telescope layout. Consequently, the support
Sf ⊂ R2 of the instrument’s frequency response is given by

Sf = supp

F
∑

i,k

ej2π(ui,kl+vi,km)

 ,

= supp

∑
i,k

δ(u− ui,k, v − vi,k)

 ,

=
⋃
i,k

{(ui,k, vi,k)}. (3.2)

From eq. (3.2), we observe that |Sf | = |{Vi,k|i 6= k}| = L(L − 1), with L the total
number of antennas1. This equality in cardinality between the set of evidence
and the set of Fourier elements makes an identification between visibilities and
uv-samples possible.

Analogously, we can compute the support of the frequency response for a hi-
erarchically designed radio telescope. If we do not use the equivalent telescope
formulation T1 but rather directly compute from eq. (2.8) the correlation between
two beamformed outputs yi(t) and yk(t) we obtain an alternative data model

E[yi(t)y
∗
k(t)] =

x

R2

I(l,m)b̃i(l,m)b̃∗k(l,m),∀i 6= k, (3.3)

with b̃i(l,m) the ideal beamshape of station i (defined in eq. (2.11) page 17). Once
again, eq. (3.3) can be written as an inner product between the sky image and some

1Provided that we exclude the autocorrelations from the reconstruction.
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periodic function:

Vi,k = 〈I, b̃∗i b̃k〉 = 〈I, β̃i,k〉,

with β̃i,k := b̃∗i b̃k ∈ CR2
.

To compute the frequency response of the instrument, we need to further develop
the computation of these periodic functions. The ideal beamshape for station i is
given by:

b̃i(l,m) = wH
i ai(l,m),

=
L∑
h=1

ω
(i)
h

∗
e
−j2π

(
u
(i)
h l+v

(i)
h m

)
, ∀(l,m) ∈ R2,

with L the total number of antennas within station i, (u
(i)
h , v

(i)
h ) ∈ R2 the uv-

coordinates of antenna h within station i, and wi =
(
ω

(i)
1 , . . . , ω

(i)
L

)T
∈ CL the

beamforming vector used at station i. Then, the periodic function β̃i,k are given by

β̃i,k(l,m) =

L∑
h=1

L∑
g=1

ω
(i)
h ω(k)

g

∗
e
j2π
[(
u
(i)
h −u

(k)
g

)
l+
(
v
(i)
h −v

(k)
g

)
m
]
,

=

L∑
h=1

L∑
g=1

ω
(i)
h ω(k)

g

∗
e
j2π
[
u
(i,k)
h,g l+v

(i,k)
h,g m

]
, ∀(l,m) ∈ R2,

with (u
(i,k)
h,g , v

(i,k)
h,g ) ∈ R2 are the uv-coordinates of the baseline from antenna h in

station i to antenna g in station k.
Again, the only information we have access to concerns the (linear) resemblance

between the sky signal and the family of periodic functions {β̃i,k|i 6= k} ⊂ CR2
, so

that the dirty image will necessarily be a linear combination of these functions. We
can then compute the support of the frequency response as

Sf = supp

F
∑

i,k

L∑
h=1

L∑
g=1

ω
(i)
h ω(k)

g

∗
e
j2π
[
u
(i,k)
h,g l+v

(i,k)
h,g m

] ,

= supp

∑
i,k

L∑
h=1

L∑
g=1

ω
(i)
h ω(k)

g

∗
δ
(
u− u(i,k)

h,g , v − v
(i,k)
h,g

) ,

=
⋃
i,k

L⋃
h,g=1

{(
u

(i,k)
h,g , v

(i,k)
h,g

)}
.

This time, if M is the total number of stations, we observe that

|Sf | = M(M − 1)L2 > M(M − 1) = |{Vi,k|i 6= k}|.

In conclusion, when beamforming is performed at the station level, the support
of the instrument frequency response has a greater cardinality than the set of
visibilities. This evidently forbids any identification between the two sets, and as a
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result undermines the legitimacy of the equivalent telescope formulation.

2 A New Measurement Equation
The classical measurement equation with beamforming (see eq. (2.12) page 18) was
built on assumption T1, as an attempt to interpret beamformed data into the classical
data model. To compensate for the inadequacy of this model, computationally
expensive corrections need to be performed on the data during the imaging step.
We have seen that performing those corrections in the Fourier domain with A-
projection could, to some extent, reduce this computational overhead.

But maybe we could gain even more if we accepted to step away from the Fourier
domain, and stopped performing expensive corrections on the data to make it fit
in an obsolete framework. Indeed, the analysis carried out in the previous section,
shows (in a very simple scenario) that the link between beamformed data and the
Fourier domain is not as clear and intimate as it used to be. Therefore, rather than
trying to optimize the current imaging pipeline, maybe we should reconsider the
data model on which the imaging algorithms are built and see if we can propose a
more natural framework to work with beamformed data.

In section 2 page 15, we have established a generic expression for the beamformed
signal yi : R→ C of station i:

yi(t) =
{

S2
ŝ(t, r)× α(r)wH

i (Γi � ai(r)) ej2πf0tdr + wH
i ni(t),

=
{

S2
ŝ(t, r)× bi(r)ej2πf0tdr + wH

i ni(t), (3.4)

with the same notations as in section 2. At this stage, rather than wrongfully
changing our viewpoint on the data to make it fall into the scope of the classical
measurement equation, we can decide to let ourself be guided by the equations and
establish our data model from the direct computation of the correlation exisitng
between two beamformed signals yi(t) and yk(t). Using eq. (3.4) and the usual
assumptions S1 to S3 yields

Theorem 3.1 — The Natural Measurement Equation. Let yi(t) ∈ CR+ and yk(t) ∈
CR+ be the beamformed signals of two stations with beamshapes bi(r), bk(r) ∈
CS2 . Then, under assumptions S1, S2 and S3, the cross-correlation Vi,k ∈ C
between yi(t) and yk(t) is given by

Vi,k =
{

S2
I(r)bi(r)b∗k(r) dr + ‖wi‖2σ2

nδik, (3.5)

where I(r) is the sky image, δik the Kronecker delta function and wi ∈ CL the
beamforming vector used to beamform the antennas’ signals from station i.

Remark 2.1 — Comparison with the Classical Measurement Equation. Observe that, in
contrast to the classical measurement equation eq. (2.2) derived under assumption T1,

neither the virtual gains, nor the Fourier kernels e−j2π〈r,
pi−pk
λ0
〉 appear in eq. (3.5).
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Remark 2.2 — Geometric Interpretation. Again, it is possible to interpret eq. (3.5) geo-
metrically. Indeed, if we provide the space CS2 with the appropriate inner product,

〈f, g〉 =
{

S2
f(r)g∗(r)dr, ∀f, g ∈ CS2 ,

then we can see a visibility Vi,k as the inner product between the sky image I ∈ CS2 and
some function βi,k ∈ CS2

Vi,k = 〈I, βi,k〉, i 6= k,

with βi,k(r) := b∗i (r)bk(r) the cross-station beamshapes. Hence, after beamforming,
the interferometer the sky image is no longer sampled in the Fourier basis, but in a family of
functions {βi,k}i,k ⊂ CS2 (which might not necessarily form a basis).

Theorem 3.1 can be more compactly written by regrouping the equations (3.5) for
each visibility in a single equation, by stacking vertically the signals coming from
each station in a vector time series y(t) : R→ CM ,

y(t) =
{

S2
I(r)α(r)WH (Γ� a(r))︸ ︷︷ ︸

:=b(r)

dr + WHn(t),

=
{

S2
I(r)b(r)dr + WHn(t), (3.6)

with b : S2 → CM containing the stations beamshapes stacked vertically, α : S2 → C
the primary beamshape of the antennas, a(r) : S2 → CML, Γ ∈ CML and n(t) :
R → CML respectively the antenna steering vector, the elements complex gains
and the noise corruptions for the group of antennas formed by the entire telescope.
More precisely, we have

a(r) = (a1(r), . . . ,aM (r))T , ∀r ∈ S2,

Γ = (Γ1, . . . ,ΓM )T ,

and
n(t) = (n1(t), . . . ,nM (t))T , ∀t ∈ R,

where a1(r), Γi and ni(t) are the antenna steering vector, complex gains and noise
corruptions for station i ≤M. The matrix W ∈ CML×M is called the beamforming
matrix and is defined by

W :=



w1 0L×1 · · · · · · 0L×1

0L×1 w2
. . .

...
...

. . . . . . . . .
...

...
. . . wM−1 0L×1

0L×1 · · · · · · 0L×1 wM


,

where wi ∈ CL is the beamforming vector for station i.
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Computing the covariance matrix Σ := E[y(t)yH(t)] ∈ CM×M yields

Σ =
{

S2
I(r)b(r)bH(r)dr + σ2

nW
HW. (3.7)

Observe that the elements of Σ are such that (Σ)i,k = Vi,k, ∀i, k = 1, . . . ,M.

Applying the vec(·) operator to eq. (3.7) allows to reformulate this matrix equation
as a linear system

V = BI + ε, (3.8)

where V = vec(Σ) ∈ CM2
, ε = σ2

nvec(WHW ) ∈ CM2
. B : CS2 → CM2

is a linear
operator given by

B :

{
CS2 → CM2

,

I 7→
v

S2 I(r)b∗(r)⊗ b(r)dr,

using the known property [23] vec(xxH) = x∗ ⊗ x, with ⊗ designating the Kro-
necker product.

3 Comparison with the Classical Measurement Equation

Before investigating potential new imaging algorithms that would make computa-
tionally feasible a sky reconstruction based on eq. (3.5), we propose to assess the
performances of this more general model relatively to the classical model eq. (2.12)
page 18. This performance analysis will focus only on the accuracy of the recon-
structed sky image, without addressing (yet) the potential computational overhead
caused by the use of one model rather than the other.

In all that follows, we will call model a linear operatorH ∈ CNV ×N2
, that is said

to describe the link between the true underlying sky image I0 ∈ RN2
and the data

V ∈ CNV available to us

V = HI0. (3.9)

Hence, a given modelH ∈ CNV ×N2
yields an associated measurement equation

eq. (3.9). For the classical measurement equation described in section 2, the model
is given by the matrix A ∈ CJN2×N2

, derived in eq. (2.15) page 21. In this case, we
have NV = JN2, with J the total number of baselines used for the recovery of the
sky.

Alternatively, one can use the more general measurement equation introduced in
section 2. Then, the model is given by the matrix B ∈ CM2×N2

, discrete analog of
the linear operator B in eq. (3.8). For a grid ∆N2 = {r1, . . . , rN2} ⊂ S2 on the field
of view, this matrix is defined as

B := (b∗(r1)⊗ b(r1), . . . , b∗(rN2)⊗ b(rN2)) ,

with b(r) ∈ CM as in eq. (3.6) page 34. In practice, we often work with a reduced
version of B, where we have removed the rows corresponding to auto-correlations,
too severely corrupted by the thermal noise. In all that follows, we will assume that
such a reduction on B has been performed.
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To summarize, we propose to compare and assess the adequacy of the two
concurrent models:

M1: V1 = AI0, vs. M2: V2 = BI0,

where V1 and V2 are two alternative representations of the set of visibilities, re-
shaped according to the operators A and B previously described.

To this end, we investigate the accuracy of various sky estimates, obtained under
the assumption of each model. More specifically, we focus on the least squares,
CLEAN and LASSO estimates.

The two models will be stress-tested for the scenario described in table 3.1. This
scenario was kept simple to insure a more controlled environment that would allow
an easier interpretation of the simulation output, while remaining realistic enough
to illustrate the conceptual differences existing between the two models.

3.1 Simulation Details
We used a custom simulation tool, as classical radio-astronomy packages such as
CASA or OSKAR did not offer the flexibility to (easily) change the model used
for the sky reconstruction. This prototypical tool, built as a MATLAB GUI, per-
forms end-to-end processing of the data resulting from modern hierarchical radio
telescopes: from sky generation and data acquisition to image reconstruction and
cleaning.

In practice, the visibilities are estimated from a finite number of samples Ns of the
stations beaformed outputs yi(t). Hence, we simulated the visibilities according to
the following methodology, inspired from the actual processing chain of a modern
hierarchical radio-telescope such as LOFAR:

1 Generate and sample the time varying sources’ complex amplitudes. This
can be achieved by drawing N independent observations

S := (ŝ(t1), . . . , ŝ(tNs)) ∈ CQ×Ns

from the random vector ŝ(t) ∼ CNQ(0,Σs), with ŝ(t) ∈ CQ a Q-dimensional
random vector containing the complex amplitudes of each sources within the
sky, and Σs = diag(σ2

1, . . . , σ
2
Q) ∈ CQ×Q.

2 Compute samples of the signals measured by each antenna. This can be
achieved by multiplying the previous samples by the antenna steering array
A ∈ CML×Q and corrupt this by some stochastic noise,

x(ti) = ej2πf0tiAŝ(ti) + n(ti), ∀i = 1, . . . , Ns

with n(t1), . . . ,n(tNs) independent observations from the random vector
n(t) ∼ CNML(0, σ2

nIML). The matrix A ∈ CML×Q is given by

A := (a(r1), . . . ,a(rQ)) ,

with a(rq) the antenna steering vector towards the qth source. The samples
can be stored in the empirical matrix defined by

X := (x(t1), . . . ,x(tNs)) ∈ CML×Ns .

We have X = AS +N , with N = (n(t1), . . . ,n(tNs)) ∈ CML×Ns .
3 Apply beamforming to the antenna time-series. Let W ∈ CM×ML be the
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Sky Model
Name Notation Value
Number of sources Q 5
Positions of sources (mq, lq)

T ∈ R2 Uniform distribution
Sources intensities σ2

q Log-normal distribution (µ, σ) = (log(2), 0.7)

Frequency/wavelength of sources f0, λ0 75 MHz
Field of view Θ 0.015 rad ∼ 1◦

Resolution θmin 100 arcsec
Center field of view r0 RA:0H27M28S, DEC:52D54M55S

Antennas
Name Notation Value
Number of antennas per station L 48
Position of antennas p

(k)
j ∈ R3 LOFAR HBA

Thermal Noise Variance σ2
n 500

Stations
Name Notation Value
Beamformer – Matched Beamforming
Number of stations M 12
Position of stations pk ∈ R3 LOFAR HBA Core Stations

Table 3.1: Description of the scenario chosen to assess the accuracy of the two models. The
number of sources in the sky and the size of the field of view can in practice be much larger. This
rather simplified scenario was preferred to more realistic and complex scenarios, as we believe its
simplicity makes it more illustrative for the purpose of understanding the advantages and limitations
of the investigated models.

beamforming matrix for the chosen beamforming technique. Then the cor-
responding samples from the beaformed signals at each station are given
by

y(ti) = WHx(ti), ∀i = 1, . . . , Ns.

The empirical matrix Y is given by

Y = WHX ∈ CM×Ns .

4 Construct an estimate of Σ. We form the classical maximum-likelihood esti-
mate of the covariance matrix:

Σ̂ =
1

Ns
Y Y H =

1

Ns

Ns∑
i=1

y(ti)y(ti)
H ∈ CM×M .

In this very special case, as the mean of y(t) is known, the above estimator is
unbiased [13]. The off-diagonal terms of Σ̂ correspond then to the simulated
visibilities.

For the subsequent experiments, we will assume that this simulation model is
valid.



38 Understanding Visibilities

3.2 Experiment
Recall that the operator H designates either one of the models A or B. The set
of visibilities V is assumed to have been correctly reshaped to agree with the
corresponding model.

Least Squares Imaging
Given a set of visibilities V ∈ CNV and a model H ∈ CNV ×N2, we want to find
the sky estimate ÎLS ∈ RN2

that explains the best the data in the least squares sense:

ÎLS = argmin
I∈RN2‖V −HI‖22. (3.10)

When the operatorH is full-column rank, the unique solution to the least squares
optimization problem eq. (3.10) is given by solving the normal equations

(
HHH

)
ÎLS = HHV ⇔ ÎLS = H†V , (3.11)

whereH† is the Moore-Penrose pseudoinverse, given in this case by

H† =
(
HHH

)−1HH .

As elegant and convenient as eq. (3.11) might be, direct computation is often com-
putationally prohibitive in practice. One can then either approximate eq. (3.11)
to make its computation affordable, or try and use an iterative solver such as the
gradient descent algorithm to solve for the least squares problem eq. (3.10).

The first approach leads to the so-called dirty image

ÎD =
[
diag

(
HHH

)]−1HHV ,

where the matrix HHH has been approximated by its diagonal part. The dirty
images for models M1 and M2 are shown in fig. 3.1. For both, we observe that the
resulting estimate is severely corrupted by artifacts, making difficult the recovery of
actual sources within the image. This is maybe even more problematic for the dirty
image obtained under the assumption of the classical model, whose dynamical
range does not permit the proper discrimination between actual sources and artifacts
(sidelobes have similar intensities as actual sources). In any case, the accuracy of
both estimates is rather unsatisfying for practical purposes, which suggests the use
of iterative solvers to estimate a solution to the least squares problem.

Here, we investigate the use of the gradient descent algorithm as a mean to
approximate the least squares solution to eq. (3.10). Starting from the null image
Î

(0)
LS = 0, the estimate at iteration n ≥ 0 is updated according to the following

equation

Î
(n+1)
LS = Î

(n)
LS − τ

(n)∇Φ
(
Î

(n)
LS

)
,

= Î
(n)
LS + τ (n)HH

(
V −HÎ(n)

LS

)
, (3.12)

with Φ (I) = ‖V −HI‖22 the convex and differentiable functional to minimize. The
parameter τ (n) ≥ 0 is chosen optimally at each iteration according to eq. (2.21).

We run the gradient descent algorithm for both models with the same input
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Figure 3.1: Comparison of the dirty images obtained with the two concurrent models M1 and
M2. For both models, we observe that the dirty image is severely corrupted by artifacts, which
complicates the identification of actual sources within it. This is even more obvious for the classical
model M1 in (a), where we can observe that the dynamical range of the dirty image does not allow to
properly discriminate between artifacts and actual sources.

visibilities estimated from 800 samples from the stations outputs yi(t). The least
squares estimates for selected iterations of the gradient descent algorithm have been
plotted on fig. 3.3 page 42 for the two concurrent models. We observe that the least
squares estimate obtained under the assumption of the classical model exhibits
rather unexpected behavior: the estimate first improves up to iteration 10 and then
gradually starts to deteriorate as the number of iterations grows. In comparison, the
least squares estimate obtained under the assumption of the new model does not
seem to suffer from the same defect (see fig. 3.2). Before jumping to conclusions on
whether or not one model is more adequately describing the problem, one has first
to look at the condition number of the operators A and B. Indeed, it is well known
that a bad conditioning of the modelH can seriously affect the least squares estimate
in the case of noisy data (as small perturbations in the data V can potentially be
magnified importantly by the term

(
HHH

)−1 in the pseudoinverse). Hence, it could
be that the disturbing behavior witnessed on fig. 3.3 for the classical model is only
the consequence of a bad conditioning of the matrix A (an issue that, even though
problematic, can still be addressed by regularizing the least squares problem). When
computing the condition numbers of both models for this specific example we get

κ2 (A) = 166, κ2 (B) = 974.72.

The classical model has a smaller condition number than the new model, and still
the resulting estimate exhibits a much more dramatic deterioration as the number of
iterations increases in the gradient descent algorithm. This suggests that the peculiar
behavior witnessed on fig. 3.3 cannot be reduced to numerical considerations. The
only sensible explanation left to us is then to interpret this deterioration of the
estimate as a fundamental disagreement between the model and the actual sky
image: the sky that would have generated the input set of visibilities according
to the model A is different from the actual sky image. This observation seriously
undermines the ability of the classical model to correctly relate beamformed data
with the underlying sky image. In comparison, under the assumption that the
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Figure 3.2: Accuracy of the least squares estimate with respect to the true sky for both models
and various iterations of the gradient descent algorithm. We observe that the least squares estimate
obtained under the assumption of the classical model exhibits a rather peculiar behavior: it first
improves up to iteration 10 and then gradually starts to deteriorate as the number of iterations grows.
In comparison, the least squares estimate obtained under the assumption of the new model seems not
to suffer from the same defect.

simulation procedure described in section 3.1 is valid, our model seems much more
adequate in this framework, which suggests its use in obtaining higher accuracy in
the reconstructed sky.

The CLEAN Algorithm
In practice, the least squares estimate previously computed is rarely used. Indeed,
this estimate has a tendency to spread the energy across the image plane, producing
a dense sky estimate with extended structures and patterns, when the underlying
sky image is most of the time assumed sparse.

For this reason, the CLEAN algorithm is often preferred in practice, as it usually
produces sparser sky estimates. We have seen that it can be seen as a nonlinear
version of the gradient descent algorithm, aiming at minimizing the optimiza-
tion problem eq. (3.10), while (hopefully) producing a sparse2 sky by taking only
canonical directions (see section 4 for further details on the algorithm).

The number of CLEAN iterations as well as the gain parameter to use for each iter-
ation are heavily application-dependent, and can seriously affect the performances
of the algorithm if poorly chosen. In the lack of knowledge from the considered
case, the rule of thumb is to use a very small value for the gain parameter: this will
significantly reduce the speed of the algorithm, but will prevent it from making
too big steps that could lead to divergence. Here, we chose the default input pa-
rameters for the CLEAN procedure implemented in the CASA package: τ = 0.1
and Niter = 1000. We then ran the algorithm as described in section 4 for both
models M1 and M2, with the same input data. Outputs of various iterations of
the algorithm are available on fig. 3.4 page 43. We can observe that the CLEAN
estimates for both models are sparser than the least squares estimates, with an in-
creased dynamical range: the residual background floor presents a much smoother
structure with reduced sidelobes, and the sources are much better resolved. The

2Understand here an estimate with a low L1 norm.
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CLEAN estimate for the classical model M1 still exhibits a lot of false positives:
many components rise above the background floor with intensities similar to actual
sources. This is very problematic, as it complicates a lot the detection of actual
sources among those wrongly detected sources3. With the model M2, the risk of
confusion in the detection of actual sources is much smaller, as the actual sources
clearly rise above the background floor.

Hence, once again, the model M2 seems to yield better CLEAN estimates than
the classical model, suggesting a better adequacy of our model with beamformed
data.

LASSO Imaging
Even though the CLEAN algorithm usually produces sky images with relatively
smallL1 norms, its performances heavily depend on the choice of the gain parameter
as well as the stopping criterion. Hence, a more systematic approach to obtain sparse
sky images could consist in regularizing the least squares optimization problem
eq. (3.10). One possibility is for example to add a L1 penalty term to the objective
functional [9]. This yields the famous LASSO problem [21].

Given a set of visibilities V ∈ CNV and a model H ∈ CNV ×N2, find the sky
estimate ÎLS ∈ RN2

that explains the best the data in the following sense:

ÎLASSO = argmin
I∈RN2‖V −HI‖22 + λ‖I‖1, (3.13)

with λ ∈ R some penalty parameter. The penalized least squares optimization
problem eq. (3.13) corresponds to the Lagrangian formulation of the constrained
problem:

ÎLASSO = argmin
I∈RN2‖V −HI‖22, such that ‖I‖1 ≤ ε,

where the penalty parameter λ is inversely related to the constraint parameter ε.
The strength of the penalty parameter λ ≥ 0 in eq. (3.13) controls the sparsity of the
resulting sky estimate.

We used the FISTA algorithm (Fast Iterative Shrinkage-Thresholding Algo-
rithm) [2] to solve for the LASSO problem for both models with the same input data.
Outputs of the algorithm for various values of the penalty parameter λ are available
on fig. 3.5. We observe that for any choice of λ, the sky estimate obtained with the
new model M2 is both sparser and more accurate than the sky estimate obtained
with the classical model M1. Moreover, for small values of λ, skies estimated with
the classical model present many false positives, that will one more time complicate
the recovery of actual sources within the images. Finally, sky estimates obtained
with the new model are much better aligned with the actual sources than for the
classical model.

One more time, the new model M2 seems to produce much more accurate esti-
mates of the sky image, which confirms its superiority over the classical model.

3For example we can count on fig. 3.4 (a) approximately 13 potential sources with comparable
intensities, while the sky is only composed of 5 actual sources. Choosing which of these sources
are actual sources is a delicate task!
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Figure 3.3: Gradient descent algorithm applied to both models as a mean to approximate the
least squares solution to eq. (3.10). We observe that the least squares estimate for the classical model
seems to deteriorate as the number of iterations grows. This peculiar behavior does not occur with
the more general model we propose: this seems to suggest a better agreement of the latter with the
beamformed data.
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Figure 3.4: CLEAN algorithm applied to both models with the same input data. We observe that
the identification of actual sources within the image is much easier with the new model M2, as the
sources are better resolved and clearly rise above the residual background. In comparison, the
CLEAN estimate obtained with the classical model model M1 presents many components with
similar intensities as actual sources, increasing the risk of confusion among actual and falsely
detected sources.
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Figure 3.5: Collection of LASSO estimates for both models with the same input data. We
observe that for any choice of penalty parameter λ, the sky estimate obtained with the new model M2
is both sparser and more accurate than the sky estimate obtained with the classical model M1.
Moreover, for small values of λ, the sky estimated with the classical model presents many false
positives, that will very certainly complicate the recovery of actual sources within the image.



4
Towards a New Imaging Pipeline

The results of the various experiments carried out in section 3 seem to indicate
a clear superiority of the new model introduced in section 2 over the classical
model, at least in terms of the accuracy of the recovered sky image for the three
algorithms investigated. However, this preliminary analysis is not complete enough
to legitimate the use of the new model, as it completely eludes the computational
aspect of the problem. Indeed, despite its apparent lack of accuracy, the classical
model still has a serious asset over us: the A-projection algorithm. As we have seen
in section 3.2 page 22, this algorithm is essentially a fast way to apply A or AH ,
by leveraging the convolution theorem as well as the small support of the stations
beamshapes in the Fourier domain. This permits an efficient computation of the
residual image AH (V −AI) that appears at each iterations of both the gradient
descent algorithm and the CLEAN algorithm (see section 4 page 25), and hence
helps in reducing the computational cost of those imaging algorithms.

Unfortunately, the A-projection algorithm cannot be extended to the new model,
as it heavily depends on the convolution theorem and hence on the Fourier domain,
from which we precisely agreed to step away, as we noticed that beamformed data
and the Fourier domain were not as intimately linked as usually claimed. Deprived
from the A-projection algorithm, we could then either try and derive an analog
algorithm tailored to the new model in order to accelerate the multiplication by B
or BH , or we could alternatively try to reduce significantly the number of iterations
required for the classical imagers to converge, so that the computational overhead
introduced by applying B or BH becomes less significant.

In this chapter, we propose a preconditioning of the problem based on the Gram-
Schmidt orthogonalization process, and show that it critically reduces the number
of iterations required for the classical imagers to converge. In particular, we show
that with this preconditioning, the gradient descent algorithm converges in one
iteration and that, under certain conditions, the LASSO solution can be either
directly computed or reasonably well approximated from the least squares estimate.

Finally, we assess the robustness of the method to various variables of the problem:
noise, chosen beamformer and telescope layout.

1 Least squares imaging and Orthogonalization
In the remark remark 2.2 page 34, we proposed a geometric interpretation of the
visibilities in the new model. More specifically, we noticed that, with an appropriate
choice of inner product on the space CS2 , the visibilities could be interpreted as
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inner product between the sky image and some functions:

Vi,k = 〈I, βi,k〉, ∀i 6= k, (4.1)

with βi,k(r) = b∗i (r)bk(r), ∀r ∈ S2, and the inner product in eq. (4.1) given by

〈f, g〉 =
{

S2
f(r)g∗(r)dr, ∀f, g ∈ CS2 . (4.2)

This is a very appealing observation, as it provides a simple and elegant least
squares imager in the specific case where the family of functions {βi,k} form an
orthonormal family with respect to the inner product eq. (4.2). Indeed, in that case,
we can straightforwardly interpret the visibilities as coefficients of the sky image
projected onto the subspace spanned by the basis {βi,k} ⊂ CS2 , and compute this
projection (and thus the least squares estimate) using elementary linear algebra:

ÎLS(r) =
∑
i,k

〈I, βi,k〉βi,k(r) =
∑
i,k

Vi,kβi,k(r). (4.3)

Note that the functions βi,k depend only on the stations beamshapes, which are
entirely determined and independent of the data once the antennas’ gains have
been estimated during the calibration process. In practice, depending on the layout
of the considered telescope, the functions βi,k can be linearly independent, but they
are certainly not orthogonal in general, forbidding the use of eq. (4.3). However, it
is always possible to orthogonalize the family of functions a posteriori, provided
that we accordingly relate the set of visibilities with this new orthogonal family.
This inspires the following strategy (summarized in fig. 4.1):

Starting from the family of functions {βi,k} and the set of visibilities {Vi,k =
〈I, βi,k〉},

1 Orthogonalize the family of functions {βi,k}. This yields a new or-
thogonal family of functions {β⊥i,k}. We have |{β⊥i,k}| ≤ |{βi,k}|, with
equality when the original family of functions {βi,k} is linearly inde-
pendent.

2 Compute from the original set of visibilities {Vi,k = 〈I, βi,k〉} a new
set of visibilities {V ⊥i,k} such that V ⊥i,k = 〈I, β⊥i,k〉, ∀i, k. Again, we have
|{β⊥i,k}| ≤ |{βi,k}|, with equality when the original family of functions
{βi,k} is linearly independent

3 Compute the least squares sky estimate by using eq. (4.3) with the
orthogonal family {β⊥i,k} and the associated modified set of visibilities
{V ⊥i,k}.

An algorithm that would effectively achieve the above recipe can now be designed.
For simplicity, we will drop the double indexes and assume an arbitrary ordering of
the functions and the associated visibilities. The orthogonalization step 1 can easily
be achieved by applying the renowned Gram-Schmidt orthogonalization process.

By analyzing the steps of this procedure, we can then understand how to modify
the set of visibilities accordingly, so that the geometric interpretation in eq. (4.1)
will still be valid for the orthogonalized family. Without loss of generality, assume
for this analysis that the initial family of functions {βi,k} is linearly independent1.

1For a linearly dependent family, drop redundant functions and associated visibilities.
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Figure 4.1: Block diagram of the Gram-Schmidt-based least squares imager.

Then, the Gram-Schmidt orthogonalization process can be described as follows:

• Start with the trivial family composed of only β1 (choice of β1 is arbitrary).
Orthogonalizing a single-element family reduces to a normalization of β1:

β⊥1 =
β1

‖β1‖
, (4.4)

where ‖β1‖ :=
√
〈β1, β1〉 is the norm associated to the inner product defined

in eq. (4.2).
• Increase iteratively the size of the orthogonal family by adding corrected

elements from the input family. More precisely, for a given step i, remove
the potential linear resemblances existing between βi and the i− 1 elements
of the orthogonal family built so far, normalize the residual and add the
resulting corrected element to the orthogonal family. This yields the following
two-steps update equation

β̃i = βi −
i−1∑
k=1

〈βi, β⊥k 〉β⊥k , (4.5)

β⊥i =
β̃i

‖β̃i‖
, (4.6)

with {β⊥k }k=1,...,i−1 the orthogonal family obtained up to iteration i.
• Stop when both families have the same cardinality.

From eqs. (4.4) to (4.6), an iterative scheme that produces a new set of visibilities
such that V ⊥i = 〈I, β⊥i 〉 follows. For the first element β⊥1 ,

V ⊥1 = 〈I, β⊥1 〉
4.4
=

1

‖β1‖
〈I, β1〉 =

V1

‖β1‖
, (4.7)
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where V1 = 〈I, β1〉 the first element of the set of visibilities recorded by the telescope.
After computing V ⊥1 , we can obtain V ⊥2 :

V ⊥2 = 〈I, β⊥2 〉,
4.6
=

1

‖β̃1‖
〈I, β̃1〉,

4.5
=

1

‖β̃1‖

(
〈I, β2〉 − 〈β2, β

⊥
1 〉〈I, β⊥1 〉

)
,

4.7
=

1

‖β̃1‖

(
V2 − 〈β2, β

⊥
1 〉V ⊥1

)
,

where we have used the bi-linearity of the inner product for the third step. We can
then proceed iteratively to obtain the rest of the visibilities:

V ⊥i =
1

‖β̃i‖

(
Vi −

i−1∑
k=1

〈βi, β⊥k 〉V ⊥k

)
. (4.8)

Equation (4.8) depends on the data Vi, the i − 1 new visibilities computed up to
iteration i and the coefficients ‖β̃i‖ and 〈βi, β⊥k 〉 computed during the Gram-Schmidt
process. Hence, all those quantities are available, and the proposed scheme is viable.

The least squares sky estimate then follows from eq. (4.3):

ÎLS(r) =
J∑
i=1

V ⊥i β
⊥
i (r).

The procedure is summarized and extended to the case where the input family is
potentially linearly dependent on algorithm 3 page 49.

1.1 Continuous case

It is interesting to note that, contrarily to any of the classical imagers introduced in
section 3, the previous approach works at the continuous level, at least theoretically.
Indeed, we have the following identity [18, p. 154]

{

S2
ej2π〈r,p〉dr = 4π × sinc (2π‖p‖2) , ∀p ∈ R3, (4.9)

Moreover, using the results derived in section 1 of chapter 3, we see that, in the case
of ideal gains and omnidirectional primary beamshape, we have

βi,k(r) =

L∑
h=1

L∑
g=1

ω
(i)
h ω(k)

g

∗
ej2π〈r,p

(i,k)
h,g 〉, ∀r ∈ S2,

where L is the number of antennas per station, ω(i)
h ∈ C the hth component of the

beamforming vector wi ∈ CL for station i, and p(i,k)
h,g = p

(i)
h − p

(k)
g .

Hence, the functions involved in the various iterations of the Gram-Schmidt
algorithm essentially consist of (potentially very long) sums of complex exponentials
of the form ej2π〈r,p〉. Therefore, we could in principle use eq. (4.9) directly in order
to compute the various inner products and norms involved in the Gram-Schmidt
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Algorithm 3: Gram-Schmidt orthogonalization process and modification of the visibilities

1: procedure . INPUTS: Family of functions {βi}i=1,...,J

2: and associated visibilities {Vi}i=1,...,J

3: β⊥1 ← β1/‖β1‖;
4: E ← {β⊥1 };
5: V ⊥1 ← V1/‖β1‖;
6: j ← 1;

7: for i = 2 to J do

8: β̃i ← βi −
∑j

k=1〈βi, β
⊥
k 〉β⊥k ;

9: if ‖β̃i‖ 6= 0 then . Drop β̃i and Vi if ‖β̃i‖ = 0

10: j ← j + 1;

11: β⊥j ← β̃i/‖β̃i‖;
12: E ← {β⊥k |k = 1, . . . , j − 1} ∪ {β⊥j };
13: V ⊥j ←

(
Vi −

∑j−1
k=1〈βi, β

⊥
k 〉V ⊥k

)
/‖β̃i‖;

14: end

15: end

16: return E = {β⊥i |i = 1, . . . , j} and {V ⊥i |i = 1, . . . , j}

algorithm.

Such an approach sounds particularly appealing, as it would provide us with a
resolution independent least squares imager: all the computations would be per-
formed analytically at the continuous level, and only at the very end we would form
an image by sampling the continuous sky estimate. Unfortunately, this approach
is only nice on paper, but completely infeasible in practice. Indeed, its effective
implementation would involve very long and abominable expressions, that would
very certainly be too costly to store and compute even with a software to perform
symbolic computation: a very quick study of the trivial example of only two stations
and 48 antennas per stations shows that above 5 millions of evaluations of the sinc
function are required to perform the Gram-Schmidt algorithm analytically.

For practical purposes, we need then to sample the basis functions βi,k(r), to
transform them into discrete quantities. This can be achieved in many different
ways, and an efficient strategy still needs to be investigated. In what follows, we
consider a uniform sampling of the basis functions βi,k(r) over the field of view.

1.2 Discrete Case

In keeping with previous methods, we choose to sample the different quantities
involved in the problem on a uniform grid covering the field of view. For a grid
∆N2 = {r1, . . . , rN2} ⊂ S2, we have seen in section 3 page 35 that the data model
could be written as

V = BI0, (4.10)
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where V = (V1, . . . , VJ)T ∈ CJ , B ∈ CJ×N2
and I0 = (I0(r1), . . . , I0(rN2)) ∈ CN2

is
the the underlying sky image. Observe that the jth row of B is given by

(B)j,: = (β∗j (r1), . . . , β∗j (rN2)),

where β∗j (r) = (b∗(r)⊗ b(r))j = b∗ij (r)bkj (r) (see section 2 of chapter 2). In other
words, the rows of B correspond to the conjugate transpose of sampled versions
of the functions βi,k, reordered according to the vec() operator. As is standard, we
exclude from consideration the components of V (and hence the associated rows
of B) that correspond to autocorrelations, thermal noise having rendered them
untrustworthy.

Analogously to the continuous case, we can interpret eq. (4.10) as

V = BI0 =


βH1 I0

...
βHJ I0

 =


〈β1, I0〉

...
〈βJ , I0〉

 ,

with βi = (βi(r1), . . . , βi(rN2))T ∈ CN2
, and 〈·, ·〉 the usual inner product on CN2

.
Hence, if the family of vectors {βi}i=1,...,J ⊂ CN2

formed an orthonormal family,
then we could recover the least squares sky estimate with

ÎLS = BHV =

J∑
j=1

〈βj , I0〉βj . (4.11)

Observe that eq. (4.11) corresponds also to the first iteration of the gradient de-
scent algorithm used to minimize Φ(I) = ‖V −BI‖22 with initial estimate Î(0) = 0:

Î(1) = Î(0) + τ (1)∇Φ(Î(0)),

= 0 + τ (1)BH(V −B0),

= BHV ,

as τ (1) = ‖∇Φ(Î(0))‖22/‖∇Φ(Î(0))‖2B = (V H

=Id︷ ︸︸ ︷
BBH V )/(V H

=Id︷ ︸︸ ︷
BBH

=Id︷ ︸︸ ︷
BBH V ) = 1.

Hence, in the specific case where the rows of B are orthogonal, the gradient descent
converges exactly to the least squares estimate in one single step. This a remark-
able result, as in the non-orthogonal case, an infinite number of iterations would
theoretically be needed to approximate the least squares estimate with arbitrary
precision.

It seems then than applying the same methodology as before in order to or-
thonormalize the family of vectors {βi}i=1,...,J ⊂ CN2

is a sensible thing to do, as it
provides us with the best case scenario for the convergence of the gradient descent
algorithm. The discrete version of algorithm 3 is given by algorithm 4. The least
squares estimate of the sky image can be obtained from the outputs B⊥ ∈ Cj×N2

and V⊥ ∈ Cj of algorithm 4 as follows:

ÎLS = BH
⊥V⊥ =

j∑
i=1

V ⊥i β
⊥
i =

j∑
i=1

〈β⊥j , I0〉β⊥i . (4.12)
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Algorithm 4: Gram-Schmidt Orthogonalization Process and Modification of the Visibilities (discrete
version)

1: procedure . INPUTS: Family of vectors {βi}i=1,...,J

2: and associated visibilities {Vi}i=1,...,J

3: β⊥1 ← β1/‖β1‖2;

4: V ⊥1 ← V1/‖β1‖2;

5: j ← 1;

6: for i = 2 to J do

7: β̃i ← βi −
∑j−1

k=1〈βi,β
⊥
k 〉β⊥k ;

8: if ‖β̃i‖2 6= 0 then . Drop β̃i and Vi if ‖β̃i‖2 = 0

9: j ← j + 1;

10: β⊥j ← β̃i/‖β̃i‖2;

11: V ⊥j ←
(
Vi −

∑j−1
k=1〈βi,β

⊥
k 〉V ⊥k

)
/‖β̃i‖;

12: end

13: end

14: V⊥ =
(
V ⊥1 , . . . , V ⊥j

)T
;

15: B⊥ =


β⊥1

H

...

β⊥j
H

 ;

16: return B⊥ ∈ Cj×N2
and V⊥ ∈ Cj

We will refer to this estimate as the Gram-Schmidt least squares estimate, as a
reference to the orthogonalization procedure on which it relies.

In fig. 4.2 page 52, we compared the Gram-Schmidt estimate eq. (4.12) with the
output after 500 iterations of the gradient descent algorithm used to minimize
Φ(I) = ‖V − BI‖22. We observe that the two sky estimates appear visually and
structurally very similar, even though the Gram-Schmidt estimate is still a 1000
times more accurate in terms of minimizing Φ(I).

Equation (2.22) page 29, shows that, for this experiment, the minimum number of
iterations needed to achieve an accuracy comparable to the Gram-Schmidt estimate
with the gradient descent algorithm is 10,890. In contrast, we got the Gram-Schmidt
estimate in one shot.

1.3 Statistical Properties of the Least Squares Estimate
The normalization step 10 in algorithm 4 is nonlinear for the input vectors {βi}i=1,...,J .
Hence, we cannot hope to represent B⊥ in terms of a linear transformation of B.
However, all the steps of algorithm 4 are linear for the visibilities, so that we can
write

V⊥ = GV ,

with G ∈ Cj×J an appropriate linear operator. In the specific case where the rows
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(a) Gram-Schmidt least squares
estimate obtained using
algorithm 4 and eq. (4.12).
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(d) The accuracy of the sky estimate obtained with the gradient
descent algorithm tends to the accuracy of the Gram-Schmidt
least-squares estimate as the number of iterations grows to infinity.

Figure 4.2: Comparison of the least squares estimates obtained by: (a) performing the
orthogonalization algorithm 4 and using eq. (4.12); (b) by using the gradient descent algorithm to
minimize Φ(I) = ‖V −BI‖22. We observe that after letting run the gradient descent for a sufficient
number of iterations, the two estimates appear visually very similar, even though the Gram-Schmidt
least squares estimate is still more accurate in terms of minimizing the objective function Φ(I).

of B are linearly independent (and thus j = J), G ∈ CJ×J can easily be shown to be
given by

G =

J∏
i=1

Gi,

where Gi ∈ CJ×J and

Gi =



1 0 · · · · · · · · · · · · 0

0
. . . . . .

...
...

. . . 1
. . .

...

− 〈βi,β
⊥
1 〉

‖β̃i‖2
· · · − 〈βi,β

⊥
i−1〉

‖β̃i‖2

1
‖β̃i‖2

. . .
...

0 · · · · · · 0 1
. . .

...
...

. . . . . . 0

0 · · · · · · · · · · · · 0 1


← ith row . (4.13)
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This is particularly interesting for the purpose of assessing statistical properties
of the least squares estimate. Indeed, in practice the visibilities are estimated from
samples of the stations beamformed outputs (see section 3.1 page 36). Hence,
instead of working with the ideal set of visibilities V , we work with a realization of
its estimate V̂ , which is a random vector. As a linear transformation of a random
vector (if computed with eq. (4.12)), the least squares estimate ÎLS will therefore
be itself a random vector. Useful statistics on the sky estimate can then be derived
from our knowledge of the random vector V̂ .

Consider for example the case where V̂ = vec(Σ̂) with Σ̂ given by the classical
maximum-likelihood estimate of the covariance matrix (see section 3.1 page 36)

Σ̂ =
1

Ns
Y Y H =

1

Ns

Ns∑
i=1

y(ti)y(ti)
H ∈ CM×M .

Then, as y(t) is assumed to be a Gaussian random vector, we know [13] the exact
distribution of Σ̂:

NsΣ̂ ∼ W(Ns,Σ, 0),

whereW denotes the Wishart distribution with parameters Ns (number of sam-
ples), Σ (covariance matrix containing the ideal visibilities) and 0 (mean of y(t)). We
can leverage this knowledge in order to built relevant statistics on the least squares
sky estimate.

Variance of the Least Squares Estimate
We can show [16, 23] that the covariance matrix of V̂ = vec(Σ̂) is given by

Var(V̂ ) =
1

Ns
Σ∗ ⊗ Σ ∈ CJ×J .

Hence, the covariance matrix of the least squares estimate can be deduced by noting
that eq. (4.12) can written as a linear transformation of V̂

ÎLS = BH
⊥ GV̂ .

Thus, the variance of the least squares estimate is given by

Var(ÎLS) = BH
⊥ GVar(V̂ )GHB⊥ =

1

Ns
BH
⊥ G (Σ∗ ⊗ Σ)GHB⊥ ∈ CN

2×N2
. (4.14)

In practice, one can estimate the variance of the dirty image by replacing Σ by
its estimate Σ̂ in eq. (4.14). Selected second order moments of the Gram-Schmidt
estimate are available in fig. 4.3.

Confidence Intervals and Significant Image
We can also invoke asymptotic arguments in order to construct confidence intervals
on the sky image. Indeed, under general conditions, it is possible to show that the
following asymptotic distribution holds [13]√

Ns

(
vec(Σ̂)− vec(Σ)

)
Ns→∞∼ NJ2(0,Σ∗ ⊗ Σ).

Therefore we can deduce that each pixel of ÎLS =
(
ÎLS(r1), . . . , ÎLS(rN2)

)T
∈ RN2
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(a) Gram-Schmidt least squares estimate
obtained using algorithm 4 and eq. (4.12).
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(b) Variance of the individual pixels in the
Gram-Schmidt least squares estimate. This
image corresponds to the diagonal of the
covariance matrix Var(ÎLS).
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(c) Correlation structure existing between selected pixels (marked with a pink square with white
borders) and the rest of the sky estimate. Each image correspond to the ith row (or column) of the
correlation matrix Corr(ÎLS) = diag(Var(ÎLS))−1/2Var(ÎLS)diag(Var(ÎLS))−1/2. For example, if ri
denotes the position of the marked pixel in the top left picture, then the corresponding correlation

image is given by Î
(i)
corr(rk) =

(
Corr(ÎLS)

)
i,:

= corr
(
ÎLS(ri), ÎLS(rk)

)
, k = 1, . . . , N2.

Figure 4.3: Second order moments of the Gram-Schmidt least squares estimate.

has the following limiting distribution(
ÎLS(ri)− E[ÎLS(ri)]

)
Ns→∞∼ N1(0, (Var(ÎLS))i,i), ∀i = 1, . . . , N2,

where (Var(ÎLS))i,i denotes the ith diagonal term of the covariance matrix Var(ÎLS) ∈
CN2×N2

given in eq. (4.14). Assuming that the number of samples Ns is sufficiently
large so that this distribution approximately holds, we can then construct confidence
intervals with level 0 ≤ α ≤ 1 on the true value of the intensity of the ith pixel of
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the least squares estimate:

IC
(i)
1−α =

[
ÎLS(ri)− Φ1−α

√
(Var(ÎLS))i,i ; ÎLS(ri) + Φ1−α

√
(Var(ÎLS))i,i

]
, (4.15)

with Φ1−α the 1− α quantile of the standard Gaussian distribution. Then,

P
[
ÎLS(ri) ∈ IC(i)

1−α

]
= 1− α, ∀i = 1, . . . , N2.

For all the pixels to be simultaneously contained in their respective marginal confi-
dence interval with probability at least 0.95, we must choose α = 0.05/N2. Indeed,

P

N2⋂
i=1

{
ÎLS(ri) ∈ IC(i)

1−α

} = 0.95,

⇔P

N2⋃
i=1

{
ÎLS(ri) /∈ IC(i)

1−α

} = 0.05,

and

P

N2⋃
i=1

{
ÎLS(ri) /∈ IC(i)

1−α

} ≤ N2∑
i=1

P
({
ÎLS(ri) /∈ IC(i)

1−α

})
= N2α.

Hence, if α = 0.05/N2, we have

P

N2⋃
i=1

{
ÎLS(ri) /∈ IC(i)

1−α

} ≤ 0.05,

⇔P

N2⋂
i=1

{
ÎLS(ri) ∈ IC(i)

1−α

} ≥ 0.95.

Confidence intervals obtained in this way are called the Bonferroni intervals [8]
(see fig. 4.4). We can use these confidence intervals to perform a statistical test on
each pixel i = 1, . . . , N2,

H0 : ÎLS(ri) = 0, v.s. H1 : ÎLS(ri) 6= 0.

The hypothesis H0 is accepted if 0 ∈ IC(i)
1−α and rejected otherwise. The significant

image is then given by, ∀i = 1, . . . , N2,

Îαsignif (ri) :=

{
0, if 0 ∈ IC(i)

1−α,

ÎLS(ri), otherwise.

Examples of significant images for the Gram-Schmidt estimate from fig. 4.3 (a)
are provided on fig. 4.4. We observe that even with a global significance level of
0.01%, many false positives subsist in the least squares estimate (pixels that are
significantly different from zero and yet do not correspond to an actual source).
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(a) Significant Image for α = 0.05/N2 (pixels for
which 0 does not belong to the 95% Bonferonni
intervals).
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(b) Significant Image for α = 0.001/N2 (pixels for
which 0 does not belong to the 99.99% Bonferonni
intervals).

(c) Gram-Schmidt least squares estimate and its 95% Bonferonni intervals.

Figure 4.4: Examples of significant images and Bonferroni intervals.

2 Solving for the LASSO using the Least Squares Estimate

In section 1, we demonstrated the merits of the orthogonal case in terms of accel-
erating the gradient descent algorithm and achieving higher accuracy in the least
squares estimate. To benefit from those convenient properties, we have described a
procedure based on the Gram-Schmidt algorithm, to orthogonalize the rows of B
and accordingly modify the set of visibilities, so that the geometrical interpretability
of the data was retained in the orthogonalized basis.

Because the proposed procedure was linear in the input data, we could success-
fully measure the uncertainty in the least squares estimate and build meaningful
statistics on it. Among them, we proposed the significance image, that test the global
significance of the image using the Bonferonni method. We could observe that many
false positives remained in the least squares estimate, even with a significance level
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as low as 0.01% (see fig. 4.4). Hence, it seems that the least squares estimate has
some limitations for the purpose of producing sparse estimates of the sky.

To enforce sparsity of the sky image, we can alternatively try and solve the LASSO
problem (see section 3 of chapter 3):

ÎLASSO = argmin
I∈RN2‖V −BI‖22 + λ‖I‖1, (4.16)

for some λ ≥ 0. The L1 penalty on the sky estimate guarantees a relative sparsity
of the LASSO estimate (depending on the strength of λ). Unfortunately, there is
a price to pay in terms of complexity, as the resulting objective function becomes
non-differentiable because of this penalty term, which forbids the use of classical
iterative algorithms that rely on the gradient. Hence, the LASSO problem (4.16) is
usually rather time-consuming to solve for large scale problems. However, in the
blessed case where B has orthogonal columns, we can directly extract the LASSO
estimate from the least squares estimate [21].

Theorem 4.1 — LASSO by Shrinkage-Thresholding of the Least Squares Estimate.
Let V ∈ CJ , I ∈ CN2

and B ∈ CJ×N2
a tall matrix (N2 ≤ J) with orthogonal

columns. Consider the linear system V = BI , and let ÎLS = BHV be the least
squares solution. Then, the LASSO estimate ÎLASSO ∈ CN2

, solution to eq. (4.16)
is given by

ÎiLASSO = sgn
(
ÎiLS

)
×
(∣∣∣ÎiLS∣∣∣− λ

2

)+

, ∀i = 1, . . . , N2, (4.17)

where ÎiLASSO, Î
i
LS ∈ R denote respectively the ith component of ÎLASSO and

ÎLS , λ ≥ 0 is the penalty parameter in eq. (4.16), and

x+ := max(x, 0), ∀x ∈ R.

� Proof 2.1 The objective function to minimize is

ΦLASSO(I) = V HV + ITBHBI − 2ITBHV + λ
N2∑
i=1

|Ii|, (4.18)

where Ii ∈ R denotes the ith pixel of I ∈ RN2

. First, note that the term V HV in eq. (4.18)
can be dropped, as it does not depend on I . Then, we observe that, when B has orthogonal
columns, BHB = Id and BHV = ÎLS . Hence, minimizing eq. (4.18) is equivalent to
minimizing the quantity

‖I‖22 − 2IH ÎLS + λ

N2∑
i=1

|Ii|,

⇔
N2∑
i=1

((
Ii
)2 − 2ÎiLSI

i + λ|Ii|
)
. (4.19)

Now, eq. (4.19) is a sum of N2 objective functions, with no variable in common. Hence,
minimizing eq. (4.19) is equivalent to minimizing each of the terms of the summation:(

Ii
)2 − 2ÎiLSI

i + λ|Ii|, i ∈ {1, . . . , N2}. (4.20)

For a given pixel i, let ÎiLASSO be the minimizer of (4.20) (which exists as (4.20) is a convex
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function). Then two possibilities result:

• Case 1: ÎiLS ≥ 0. Then, we have necessarily ÎiLASSO ≥ 0 otherwise we could always
flip the sign of ÎiLASSO and get a smaller value for (4.20). Hence, there exists a
neighborhood of ÎiLASSO in which the objective function for pixel i is given by(

Ii
)2 − 2ÎiLSI

i + λIi.

Differentiating and equating to zero yields

ÎiLASSO = ÎiLS −
λ

2
= sgn

(
ÎiLS

)(∣∣∣ÎiLS

∣∣∣− λ

2

)+

,

as we have ÎiLS ≥ 0 and ÎiLASSO ≥ 0.
• Case 2: ÎiLS ≤ 0. Then, one more time, necessarily ÎiLASSO ≥ 0 otherwise we could

always flip the sign of ÎiLASSO and get a smaller value for (4.20). Hence, there exists a
neighborhood of ÎiLASSO in which the objective function for pixel i is given by(

Ii
)2 − 2ÎiLSI

i − λIi.

Differentiating and equating to zero yields

ÎiLASSO = ÎiLS +
λ

2
= sgn

(
ÎiLS

)(∣∣∣ÎiLS

∣∣∣− λ

2

)+

,

as ÎiLS ≤ 0 and ÎiLASSO ≤ 0.

In conclusion, in both cases,

ÎiLASSO = sgn
(
ÎiLS

)(∣∣∣ÎiLS

∣∣∣− λ

2

)+

, ∀i = 1, . . . , N2,

which concludes the proof. �

Remark 2.1 The parameter λ belongs to
[
0, 2 ·maxi

{∣∣∣ÎiLS∣∣∣}]. For λ = 0, the LASSO

and least squares estimate coincide. For λ = 2 · maxi
{∣∣∣ÎiLS∣∣∣}, the LASSO estimate is

trivial: ÎiLASSO = 0, ∀i = 1, . . . , N2.
Hence, if B is a tall matrix and we use algorithm 4 to form B⊥ and V⊥, then B⊥

will consist of a square matrix with orthogonal rows (by construction) and hence
orthogonal columns. Then, we can form the Gram-Schmidt least squares estimate
using eq. (4.12) page 50, and extract the LASSO estimate from it by applying theorem
4.1 (see for example fig. 4.5). This is remarkable, as it provides us with a closed
formula for the LASSO estimate, that can be computed at virtually no cost from
the least squares estimate (for which we happen to have an efficient direct imager,
based on algorithm 4). However, this computational convenience comes at a price
in terms of the achievable resolution of the LASSO estimate, as B is required to be a
tall matrix, and hence the number of pixels must be at most as big as the number of
baselines (or more precisely the number of linearly independent vectors on which
we are projecting the sky image).

The SKA is intended to comprise thousands of stations [7] (and hence potentially
millions of baselines). Thus, the maximum achievable resolution would still be rea-
sonable enough so that theorem 4.1 could be used to compute the LASSO estimate.
However, for smaller phased arrays, this constraint on the resolution is more of an
issue, that we would like to overcome without totally losing the advantages of the
previously described strategy.
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(a) Gram-Schmidt estimate obtained with
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(c) Approximation of the LASSO estimate
using theorem 4.1, for λ = 1.314.
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(d) LASSO estimate after 10 iterations of
the FISTA algorithm, for λ = 1.314.

Figure 4.5: Exact computation of the LASSO estimate from the Gram-Schmidt estimate. Here
the field of view is very small and the resolution is kept voluntary low, so that N2 = 400 < J = 553
and we can invoke theorem 4.1 to compute the LASSO estimate. We observe that the LASSO estimate
obtained this way is identical to the one computed with the FISTA algorithm (up to numerical
inaccuracies).

Let see then what happens when B is not a tall matrix anymore (more columns
than rows), but still has orthogonal rows. Then, minimizing eq. (4.16) is equivalent
to minimizing the following quantity

Φ̃(I) = ITBHBI − 2ITBHV + λ
N2∑
i=1

|Ii|,

= IT (BHB)I − IT ÎLS + λ

N2∑
i=1

|Ii|. (4.21)

As the columns of B are not orthogonal, the term BHB is not the identity, and hence
we cannot decompose eq. (4.21) as a sum of independent objective functions as
in proof 2.1. However, if BHB happened to be almost orthogonal, then we could
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in some sense extend the approach of proof 2.1 to obtain, simply, an approxima-
tion of the LASSO estimate from the least squares estimate. Indeed, under the
approximation BHB ' diag

(
BHB

)
, we can approximate eq. (4.21) by

Φ̃(I) ' ITdiag(BHB)I − IT ÎLS + λ
N2∑
i=1

|Ii|,

=
N2∑
i=1

µi
(
Ii
)2 − 2ÎiLSI

i + λ|Ii|, (4.22)

where µi ≥ 0 is the ith diagonal element of BHB. Notice that eq. (4.22) is very
similar to eq. (4.19), in the sense that the objective function can again be decomposed
into a sum of N2 objective functions, that do not share any variable in common.
Hence, we can apply the same methodology as in proof 2.1, to get

Corollary 2.1 Let V ∈ CJ , I ∈ CN2 and B ∈ CJ×N2 a wide matrix (N2 ≥ J)
with orthogonal rows. Further assume that B is such that BHB ' diag(BHB), and
diag(BHB) is positive definite.

Consider then the linear system V = BI , and let ÎLS = BHV be the least squares
solution to this system. Then, the LASSO estimate ÎLASSO ∈ CN2 , solution to eq. (4.16)
can be approximated by

ÎiLASSO '
sgn

(
ÎiLS

)
µi

(∣∣∣ÎiLS∣∣∣− λ

2

)+

, ∀i = 1, . . . , N2, (4.23)

where ÎiLASSO, Î
i
LS ∈ R denote respectively the ith component of ÎLASSO and ÎLS ,

λ ≥ 0 is the penalty parameter in eq. (4.16), and µi > 0 is the ith diagonal element of
the matrix BHB.

Remark 2.2 The quality of the approximation eq. (4.23) will depend on how close the
matrix BHB is from being diagonal.

Assume then that B is a wide matrix with associated visibilities V , that we
provide as inputs to algorithm 4 to form B⊥ and V⊥. Then, B⊥ has (by construction)
orthogonal rows, and we would like to be able to use corollary 2.1 in order to
approximate the LASSO estimate from the least squares estimate. To this end, we
need to assess how close is BH

⊥B⊥ to being diagonal.

First, it is important to note that a priori there is no guarantee that BH
⊥B⊥ will

be close to diagonal for any wide matrix B⊥ with orthogonal rows. Hence, when
it holds it is necessarily specific to the scenario investigated. More specifically, the
validity of the approximation eq. (4.23) depends on the layout of the radio-telescope
under consideration.

To make this assertion precise, note that, when using eq. (4.12) as our least squares
imager, the ith column of BH

⊥B⊥ is nothing else but the impulse response of the
instrument to a single source positioned at pixel i and with unit magnitude. Indeed,
if δi ∈ RN2

is the ith element of the canonical basis (or equivalently the impulse
image with only one bright pixel of intensity one at position ri), then we have
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BH
⊥B⊥δi =

(
BH
⊥B⊥

)
:,i
,=

J∑
j=1

β∗j (ri)βj ,=
J∑
j=1

〈βj , δi〉βj = PSFi,

where PSFi is usually called the point spread function of pixel i. We see that
PSFi is indeed the response of the instrument for an impulse at pixel i, and that
it corresponds to the ith column of BH

⊥B⊥. Hence, understanding the structure of
BH
⊥B⊥ is equivalent to understanding the properties of the individual point spread

functions PSFi.
The nice thing is that, in practice, telescope layouts are designed so that these

functions are well-behaved and with desirable properties [5, 23]. Usually, the
point spread function PSFi of pixel i consists in an extended bell-shaped function,
maximal at pixel i, and decaying quickly as we move away from this pixel. Because
of the tool’s finite sensitivity, the support of this function is virtually finite (see
fig. 4.6). Then, the spread of this function into the image plane will determine our
ability (or inability) to recover point sources: the smaller the support, the better
the recovery. If the layout of the telescope is optimized to maximize the frequency
coverage in the Fourier domain, then we can expect the point spread functions to
have most of its energy contained in a relatively small support.

Translated to the structure of BH
⊥B⊥, it means that the each column of BH

⊥B⊥ will
be sparse, with a maximal positive element on the diagonal (PSFi is maximal at
pixel i) and (hopefully) only a few non-null off-diagonal elements (corresponding
to the close neighbors of pixel i that belong to the support of PSFi). Hence, if the
effective support of the point spread functions PSFi are on average small enough
with respect to the field of view, then we can reasonably neglect the few off-diagonal
terms and approximate BH

⊥B⊥ by its diagonal elements.
In fig. 4.7 and fig. 4.8, we present the LASSO estimate approximated with corollary

2.1 for two different telescope layouts, and compare it to the LASSO estimate
computed with the FISTA algorithm applied to eq. (4.16). In fig. 4.7, only 12 stations
were used for the sky recovery. The corresponding average point spread function
has a non-negligible effective support of about 5% of the field of view. Hence, in that
scenario, the approximate LASSO estimate is not very accurate, asBH

⊥B⊥ is far from
diagonal. In fig. 4.7, we increased the number of stations to 24. With this new layout,
the point spread functions has a much smaller support (on average, around 1.8% of
the total field of view). The accuracy of the LASSO estimate obtained with corollary
2.1 is consequently better, comparing much more with the output of the FISTA
algorithm, which still provides a slightly more precise estimate (nearby sources are
better isolated from one another).

Hence, when the support of the point spread functions is small enough, corollary
2.1 seems to provide, at a very low computational cost, a good enough approximation
to the LASSO estimate. This computational convenience can be leveraged in the
choice of λ. For example, we can compute the estimate for various values of λ,
count the number of connected components in the resulting image and plot it as a
function of λ. Breaks in the slope of this graph can then suggest interesting values of
λ to investigate (see for example fig. 4.5 (b)). Of course, this is not the only possible
criterion.
Remark 2.3 — Gram-Schmidt and CLEAN. We have seen in section 4 page 25 that CLEAN
was also used extensively in practice for the purpose of creating sparser estimates of the
sky image. Thus, we tried to understand if CLEAN would benefit as well from the orthog-
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Figure 4.6: Examples of point spread functions for different positions in the sky (marked by a
white square). Left: theoretical point spread function (ith column of BH⊥B⊥), Right: significant point
spread function (pixels of the point spread function that are significantly different from zero, for the
given experimental conditions). We observe that, for given experimental conditions (noise level,
number of samples), the point spread function has effectively a finite support. If this support is small
enough with respect to the region of interest, we can safely neglect the off-diagonal terms of BH⊥B⊥.
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(a) Gram-Schmidt estimate obtained with 12
LOFAR core stations.
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(b) Average point spread function. The support is
∼ 5% of the field of view.
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(c) Approximation of the LASSO estimate using
corollary 2.1, for λ = 0.08.

 

 

−0.015 −0.01 −0.005 0 0.005 0.01 0.015

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) LASSO estimate after 408 iterations of the FISTA
algorithm, for λ = 0.08.

Figure 4.7: Extracting the LASSO estimate from the Gram-Schmidt estimate: comparison with
the FISTA algorithm. In this example, we are using only 12 LOFAR core stations. We have
J = 132 < N2 = 6724, so we cannot use directly theorem 4.1. However, we can use corollary 2.1 to
approximate the LASSO estimate. For this specific experiment, the approximated LASSO estimate
has poor quality with respect to the LASSO estimate computed with the FISTA algorithm: the
absolute intensities do not correspond, and the sources are poorly resolved (huge blobs). Moreover,
some sources detected by the FISTA algorithm are not detected by the approximated LASSO estimate,
and some false positives pollute the latter. This is because the point spread function has a too wide
support for the given experimental conditions, and hence BH⊥B⊥ cannot be approximated well
enough by its diagonal. Indeed, for a noise level of σ2

n = 500, we observe that point spread function
has an average support of size ∼ 5% of the field of view (too wide).
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(a) Gram-Schmidt estimate obtained with 24
LOFAR core stations.
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(b) Average point spread function. The support is
∼ 1.8% of the field of view.
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(c) Approximation of the LASSO estimate using
corollary 2.1, for λ = 0.15.
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(d) LASSO estimate after 166 iterations of the FISTA
algorithm, for λ = 0.15.

Figure 4.8: Extracting the LASSO estimate from the Gram-Schmidt estimate: comparison with
the FISTA algorithm. In this example, we are using only 24 LOFAR core stations. We have
J = 552 < N2 = 6724, so we cannot use directly theorem 4.1. However, we can use corollary 2.1 to
approximate the LASSO estimate. This time, the quality of both estimates are comparable: the
absolute intensities correspond, and the sources are well resolved. Of course, the LASSO estimate
obtained with the FISTA algorithm is still more precise, but it is also much more costly to compute!
The relatively good accuracy of the approximated LASSO estimate in this example can be explained
by the increased frequency coverage of the telescope, that results in a smaller support for the point
spread function (∼ 1.8% of the field of view). Hence, BH⊥B⊥ can be better approximated by its
diagonal, and corollary 2.1 provides a better approximation of the LASSO estimate.
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onalization procedure. In section 4 page 25, we showed that CLEAN could essentially be
interpreted as an approximate gradient descent algorithm constrained to take only canonical
directions. Hence, because of the merits of the orthogonal case for the gradient descent
algorithm, it would make sense, at least intuitively, that the perfectly conditioned model
B⊥ helps in the convergence of CLEAN. Unfortunately, a precise convergence analysis of
the algorithm is made really difficult by the nonlinear nature of Ψ, as well as the extreme
sensitivity of the method on the gain parameter τ . In the absence of theoretical arguments,
we investigated the question experimentally, but our simulations did not show significant
improvement in the convergence of CLEAN when used in conjunction with B⊥.

3 Robustness
We have already identified the telescope layout as being a determinant factor for the
quality of the LASSO estimate approximation provided by corollary 2.1. But this is of
course not a sufficient condition, as the corollary relies on the availability of a reliable
enough least squares estimate. Thus, in this section we investigate the robustness of
the Gram-Schmidt least squares estimate to various parameters of the model. In
particular, we propose a modification of algorithm 4, that improves the robustness
of the least squares estimate to thermal noise. Then, we investigate the necessity of
station calibration as for estimating antennas’ gains and providing a more accurate
computation of the station beamshapes. We conclude that station calibration does
not improve significantly the sky estimate, and hence we can assume those gains to
be unit gains when computing the beamshape. This is particularly convenient as
it makes the computation of the beamshapes independent from the experimental
conditions. Finally, we demonstrate the greater robustness of the Gram-Schmidt
estimate to more exotic beamforming strategies proposed in the literature [14, 15] to
maximize the information content within the beamformed outputs.

3.1 Improving the Stability of the Gram-Schmidt Estimate
The stability of algorithm 4 is heavily dependent on the conditioning of the input
matrix B. Indeed, if the subspace spanned by the rows of B suffers from mul-
ticollinearity, it could be that one step of the Gram-Schmidt algorithm leads to
numerical cancellation. This could occur when forming the quantity

β̃i ← βi −
i−1∑
k=1

〈βi,β⊥k 〉β⊥k , i = 1, . . . , J.

If the vector βi is almost contained in the subspace spanned by the orthogonal
family {β⊥k | k = 1, . . . i − 1}, then the β̃i will have a very small norm, which
might lead to numerical instabilities. In particular, a very small norm for β̃i could
potentially magnify a lot the noise in the measurements, resulting in a severely
corrupted vector V⊥, and hence in a unreliable sky estimate. Indeed, the visibilities
are modified by the algorithm according to the following equation

V ⊥i ←

(
Vi −

i−1∑
k=1

〈βi,β⊥k 〉V ⊥k

)
/‖β̃i‖, i = 1, . . . , J.

Therefore, the division by the term ‖β̃i‖ in the above equation can severely magnify
the noise in the original measurement set, and as a result affect the estimation of V ⊥i
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Figure 4.9: Results of the test eq. (4.24) for each iteration of algorithm 4. Discarding the vectors
(marked by a yellow square) that fall below the threshold ε = 0.4 (orange line) improves the stability
of the algorithm, as it prevents the noise in the measurements to be magnified.

and all the subsequent visibilities V ⊥j , j ≥ i, whose estimation depends on V ⊥i . This
is particularly problematic in practice, as the visibilities have to be estimated, and
hence exhibit inevitable fluctuations with respect to the true theoretical visibilities.
Hence, to guarantee the stability of our algorithm with respect to those inaccuracies
in the measurements, we added a check after line 7 of algorithm 4. This check
compares ‖β̃i‖with ‖βi‖ and if

‖β̃i‖
‖βi‖

≤ ε, (4.24)

with ε ≤ 1 a given threshold, then the algorithm skips the following steps and
jumps directly to the next iteration: β⊥i is not added to the orthogonal family
{β⊥k | k = 1, . . . i− 1}, and the associated measurement V ⊥i is simply discarded (see
fig. 4.9). Our investigations revealed that ε = 0.4 was good enough for most of the
cases. Figures 4.10 and 4.11 show the evolution of the Gram-Schmidt estimate as
the noise grows, with and without the introduction of the test 4.24 in algorithm 4.
We observe that the introduction of the test significantly improves the stability of
the estimate, that remains reasonably accurate for noise levels as high as σ2

n = 1000.
In comparison, in the absence of the test, the sky estimate quickly becomes totally
unreliable. Hence, we recommend the use of (4.24) in the case of unreliability of the
Gram-Schmidt estimate.

3.2 Sensitivity to Gains
We have so far assumed perfect antennas with unit gains for convenience in the
computation of the station beamshapes. In practice however, the electronic gains
and phases of the receivers are different [23], leading to a complication in computa-
tion of the beamshapes. Indeed, as defined in chapter 2, definition 2.1 page 17, the
beamshape for the ith station of the telescope is given by

bi(r) = α(r)wH
i (Γi � ai(r)) , ∀r ∈ S2, (4.25)

with Γi ∈ CL the gains of the antennas within station i and ai : S2 → C the antenna
steering vector for station i. Hence in theory, one would need to estimate the gains
Γi for all stations in order to compute bi, as those are unknown quantities that
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Figure 4.10: Evolution of the Gram-Schmidt Estimate with the noise level. Here, the test
eq. (4.24) is not performed, which does not guarantee the stability of the sky estimate. We observe
that the latter becomes totally unreliable for high noise levels.
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Figure 4.11: Evolution of the Gram-Schmidt Estimate with the noise level. Here, the test
eq. (4.24) is performed, and hence the sky estimate is much more stable. We observe that the latter
remains reasonably accurate even for high noise levels.
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Figure 4.12: Sensitivity of the Gram-Schmidt Estimate to non uniform gains across antennas.
We observe that the Gram-Schmidt estimate is not very sensitive to the non uniform complex gains
across antennas. Hence, the need for station calibration is questionable, as the improvement in the
sky estimate quality seems not worth the expense of estimating the gains.

vary through time. This estimation procedure is called station calibration, and can
represent a significant computational overhead. However, if the Gram-Schmidt
estimate were robust enough to small fluctuations in the antennas’ gains, then we
could avoid this expensive step and approximate the beamshapes by

bi(r) ' α(r)wH
i ai(r), ∀r ∈ S2. (4.26)

To understand whether or not such an approximation is reasonable, we designed
the following experiment:
• For each antenna, simulate the gains γi ∈ C as follows

γi
i.i.d∼ Rejθ, ∀i = 1, . . . ,MJ,

with R ∼ N (1, 0.3) and θ ∼ U([0, 0.3]). The parameters of both distributions
have been chosen to produce realistic gains for the LOFAR telescope.
• For a given sky, generate samples that would be recorded by each of the

antennas if they had unit gains. Duplicate the dataset and multiply the
samples from each antenna in the second dataset by the associated complex
gains γi previously simulated.
• Add Gaussian thermal noise (say σ2

n = 500 for example), beamform both
datasets with matched beamforming and form two sets of visibilities.
• Choose bi(r) = α(r)wH

i ai(r) for both measurement sets (neglecting that
one has been corrupted by the non uniform gains), compute B and apply
algorithm 4 to both measurement sets to obtain the associated Gram-Schmidt
estimates. For simplicity, we choose a small enough field of view so that
α(r) ' 1.

The results of the experiment are shown on fig. 4.12. Observe that approximating
the beamshapes by (4.26) in the case of non unit gains does not affect much the
Gram-Schmidt estimate. Hence, the imaging pipeline we propose seems not to be
too sensitive to the individual antennas’ gains, and the need for station calibration
is then very questionable, as the improvement in the sky estimate quality it would
bring does not seem worth the expense of estimating the gains.

The robustness of our algorithm to the use of (4.26) instead of (4.25) is particu-
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(a) Beamshape of the third station of LOFAR, using
matched beamforming towards the zenith of
LOFAR and f0 = 75 MHz.

(b) Beamshape of the third station of LOFAR using
randomized beamforming.

Figure 4.13: Matched beamforming vs. randomized beamforming. We observe that matched
beamforming focuses on a small area of the sky and maximize the signal power coming from this
area, while randomized beamforming tries to gather information from all the directions in the sky, to
the price of a reduced sensitivity.

larly convenient as it provides us with an analytical description of the beamshapes
depending only on the telescope layout, the chosen beamforming technique and
the primary beamshapes. As all those quantities are independent from measure-
ments and experimental conditions, it is possible to precompute the orthogonalized
functions, and store them together with the coefficients computed at each iteration.
The visibilities can then be corrected afterwards.

3.3 On the Use of Information-Maximizing Beamforming Techniques
With the increasing number of antennas in modern radio interferometers, beam-
forming was introduced as a technique to reduce the amount of data to be sent to
the central processor. As we have seen previously, the de facto method for what is
effectively distributed lossy data compression is matched beamforming [5]. This
beamforming technique can essentially be seen as a digital spatial filter mimicking
the ability of dish antennas to focus at a certain location in the sky by aligning
and summing coherently the signals received by each antenna from the point of
focus [14, 23]. In terms of information content, this beamformer is maximizing the
information coming from a certain direction in the sky, while keeping unchanged
the noise level. Hence, it will perform optimally for very small field of view with
high measurement noise, but will be less adapted for surveying large portions of the
sky. In some sense, matched beamforming is trading off sky coverage for capturing
more signal power. To assess more generally this trade-off from an information
point of view, more versatile beamforming strategies have been proposed [14, 15],
based on a randomization of the beamforming vectors at each station. The resulting
beams capture information from all directions in the sky, and hence maximize the
information content within the beamformed output (see fig. 4.13). As it stands,
the current imaging pipeline is not ready for such beamforming techniques, as the
computation of the stations uv-coordinates is usually done in the plane attached
to the center of the focus region (in the case of matched beamforming). When
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(a) Dirty image obtained with
A-projection (Randomized
Beamforming).
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Figure 4.14: Robustness of the classical and Gram-Schmidt imaging pipeline to the use of
different beamforming techniques. We observe that, when using randomized beamforming at each
station, the dirty image obtained with A-projection is completely unreliable (not a single source is
aligned with the dirty map, and many artifacts pollute the estimate and forbid sources identification).
With the Gram-Schmidt imaging pipeline however, the least squares estimate is much more accurate,
and resolves most of the sources. For comparison purposes, we provide the sky estimates obtained
with each technique when using matched beamforming. For both, the resulting sky image presents
less dirtiness. However, it is interesting to note that the relative intensities of the sources located on
the outer part of the image are better recovered by randomized beamforming (at least in the case of
the Gram-Schmidt estimate). Because of the reduced sensitivity of random beams, the noise level was
set to zero for this specific experiment.

using randomized beamforming, there is no clear focus region (as we try to capture
as much as possible from the entire field of view) and hence it is less clear how
the uv-coordinates should be computed. This thesis was partially motivated by
the need for a new imaging pipeline that would be robust to any beamforming
technique. Hence, we assessed the performances of the Gram-Schmidt imaging
pipeline with randomized beamforming, and showed that it offers a more robust
environment than the classical imaging pipeline.
More specifically, we investigated the following beamforming strategy [15]:

R1 For each station i = 1, . . . ,M , each component ω(i)
k ∈ C of the beamforming

vector wi ∈ CL is chosen randomly according to

ω
(i)
k ∼ CN (0, 1).

Then, to avoid magnifying the noise variance, the beamforming vector is
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normalized: wi ← wi/‖wi‖2.
On fig. 4.14, we can see that beamforming strategy R1 has terrible consequences

for the accuracy of the dirty image produced with A-projection: the sky estimate
becomes totally unreliable, and polluted by strong artefacts, which forbid any iden-
tification of the actual sources within the dirty map. The Gram-Schmidt estimate
however, is far more robust to the use of random beams, and remains reasonably
accurate in comparison to the sky estimate obtained with matched beamforming. It
is important to note here that when using a single beamshape per station matched
beamforming always performs better than randomized beamforming, as pointed
out in [15]. The benefit of randomized beamforming starts when using two or more
beamshapes per station (i.e., each station produces two beamformed outputs).

4 Gram-Schmidt and the QR-factorization
In all that follows, we will assume that B ∈ CJ×N2

is a wide matrix (N2 ≥ J) with
full-row rank. In section section 1.3, we showed that the output visibilities V⊥ ∈ Cj
of algorithm 4 could be written in terms of a linear transformation of the original
data V ∈ CJ :

V⊥ = GV ,

where G ∈ Cj×J an appropriate linear operator, determined by the various coeffi-
cients appearing in the orthogonalization procedure of the rows of B. When B is
full-row rank, we have j = J and we showed that in that case G could be written as
a product of lower triangular matrices:

G =
J∏
i=1

Gi,

where each of the Gi ∈ CJ×J are defined in eq. (4.13) page 52.
We have then,

V⊥ = B⊥I,

⇔ GV = B⊥I,

⇔ V = G−1B⊥I,

where the first equality hold by construction of V⊥ and B⊥ and the last equality
is valid as G is the product of invertible matrices (obvious when looking at the
definition of the Gi’s).

But we also have V = BI , and hence,

B = G−1B⊥.

If we transpose this equation we get

BT = (B⊥)T
(
G−1

)T
. (4.27)

To simplify, we define Q1 := (B⊥)T ∈ CN2×J and R1 :=
(
G−1

)T ∈ CJ×J . By
construction, the columns of Q1 form an orthonormal family, and hence we can
complement this family in an orthogonal basis that spans the entire space CN2

. We
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can then expand Q1 in a square unitary matrix Q ∈ CN2×N2
by filling in the N2 − J

additional columns by the complementary orthonormal family Q2 ∈ CN2×(N2−J):

Q = (Q1 Q2) .

Moreover, as G is a lower triangular matrix, then G−1 is a lower triangular matrix
as well and R1 is consequently an upper triangular matrix. Let call R ∈ CN2×J the
matrix defined by

R :=

(
R1

0

)
,

with 0 ∈ C(N2−J)×J the null matrix. Then, we can rewrite eq. (4.27) as

BT = QR = (Q1 Q2)

(
R1

0

)
. (4.28)

We recognize here a QR-factorization of the tall matrix BT (Q is unitary and R1

upper triangular). Equation (4.27) can then be interpreted as the thin or reduced
QR-factorization [22]. Hence, the Gram-Schmidt least squares estimate could
equivalently be produced proceeding as follows:

• Compute the reduced QR-factorization of BT . That yields BT =
Q1R1, and hence

V = RT1 Q
T
1 I.

• Compute V⊥ as

V⊥ =
(
RT1
)−1

V .

The matrix RT1 being lower triangular,V⊥ can be efficiently computed
by forward substitution (very low complexity).
• Compute the Gram-Schmidt least squares estimate as

ÎLS = Q∗1V⊥.

The above procedure, summarized in algorithm 5, is, in linear algebra terms, equiv-
alent toalgorithm 4 (see fig. 4.15). However, the QR approach is particularly promis-
ing, as there are means to compute the QR factorization of a matrix more efficiently
than with the naive Gram-Schmidt procedure. For example, the Householder algo-
rithm computes the QR-factorization of a matrix BT ∈ CN2×J in ∝ 2N2J2 − 2

3J
3

flops while Gram-Schmidt takes ∝ 2N2J2 flops [22]. Moreover, the Householder al-
gorithm involves only multiplications by unitary matrices, and hence the algorithm
is numerically stable [22]. For those reasons, we recommend the use of the above
procedure in practice rather than the direct, classical Gram-Schmidt process.
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Algorithm 5: Gram-Schmidt Imaging using the QR-factorization of BT .

1: procedure . INPUTS: A tall, full-row rank matrix B ∈ CJ×N2

2: and a set of visibilities {Vi}i=1,...,J

3: [Q1, R1]← QR_economic(BT ); . Compute the reduced

4: QR-factorization of BT .

5: R← RT1 ;

6: for i = 1 to J do . Forward substitution

7: V ⊥i ←
(
Vi −

∑i−1
k=1Ri,kV

⊥
k

)
/Ri,i;

8: end

9: V⊥ =
(
V ⊥1 , . . . , V ⊥J

)T
;

10: ÎLS = Q∗1V⊥;

11: return ÎLS .
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(a) Least squares estimate obtained with
Gram-Schmidt.
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Figure 4.15: Comparison between the least squares estimates obtained with Gram-Schmidt and
the QR-factorization. We observe that up to numerical accuracies, the two estimate are the same.
However, the use of the QR-factorization is computationally more efficient.



5
Comparison to State of the Art

In this chapter, we compare the imaging pipeline introduced in chapter 4 to the
classical imaging pipeline, both in terms of number of operations, accuracy and
sensitivity of the resulting sky estimates. More precisely, we investigate the cost of
computing the least squares estimate and the approximate LASSO estimate by using
algorithm 5 and corollary 2.1. We compare it to the cost of the CLEAN algorithm
used in conjunction with the A-projection algorithm (see section 4 page 25), and
identify realistic scenarios for which our imaging pipeline uses fewer operations
than the classical imaging pipeline. Finally, we investigate the quality of the sky
estimates obtained with both techniques on simulated data. We show that, when
applicable, corollary 2.1 provides an approximate LASSO estimate with higher
quality than the classical CLEAN estimate.

1 Complexity Analysis
The subsequent derivations are based on the following assumptions:
• Adding, multiplying, subtracting or dividing two real numbers takes a con-

stant time 1.
• Evaluating trigonometric functions (sinus, cosinus) or square roots for a given
x ∈ R takes a constant time 1.
• Logical tests between two real numbers take constant time 1.
• The Fast Fourier transform of a vector of size N2 has cost 5N2log2

(
N2
)
−

10N2 + 16 (radix-2 FFT algorithm [11, 12]).
Finally, we will use extensively the following results:
• Adding, or subtracting two complex numbers α, β ∈ C has cost 2.
• Multiplying two complex numbers α, β ∈ C has cost 6.

1.1 Complexity of the New Imaging Pipeline
For this complexity analysis, we use the following notation:
• L antennas per stations.
• M stations.
• J baselines.
• N2 pixels.

To simplify the computation, we decompose the operations count into the follow-
ing independent steps:
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1 Sample the M stations beamshapes {bi(r), i = 1, . . . , J} over a uniform grid
of size N2 covering the field of view.

2 Form the J rows of B ∈ CJ×N2
by pairwise multiplying the sample

beamshapes with one another. The jth row of B is given by βj =(
β∗j (r1), . . . , β∗j (rN2)

)
∈ C1×N2

, with β∗j (r) = b∗ij (rn)b∗kj (r).

3 Compute the reduced QR-factorization of the tall matrix BT ∈ CN2×J .
4 Compute V⊥ ∈ CJ by forward substitution.
5 Compute the least squares estimate by evaluating Q∗1V⊥.
6 Extract the approximate LASSO estimate by using corollary 2.1 page 60.

The computational cost of each of is detailed below.

Step 1: Sampling the Stations Beamshapes
The beamshape of station i ≤M is given by

bi(r) =

L∑
h=1

ω
(i)
h

∗
e−j2π〈r,p

(i)
h 〉, ∀r ∈ S2.

Hence, to evaluate the beamshape for a given point r1 on the sphere we need 8+6
operations for each summation term, so in total we have to perform 14L+ 2(L− 1)
operations to compute each of the summation terms and sum them together. As we
have to repeat this operation for each pixel and station, the total cost of sampling
the J beamshapes is given by

cb = (14L+ 2(L− 1))MN2 = 16LMN2 − 2MN2.

Step 2: Computing the rows of B

The jth row of B is given by βj =
(
β∗j (r1), . . . , β∗j (rN2)

)
∈ C1×N2

, with β∗j (r) =

b∗ij (rn)b∗kj (r). Hence, computing one row of B involves the pairwise multiplication
of two N2 complex vectors, or N2 multiplications of two complex numbers. The
total number of operations required to form the J rows of B is then given by

cB = 6JN2.

Step 3: Computing the reduced QR-factorization of BT

The complexity of the Householder algorithm to compute the reduced QR-factorization
of a N2 × J matrix, with N2 ≥ J , is given by [1, 22]

cQR = 8N2J2 − 8

3
J3 + 22N2J − 8J2 +

32

3
J.

Step 4: Computing V⊥ by forward substitution
The ith component of V⊥ ∈ CJ is given by

V ⊥i ←

(
Vi −

i−1∑
k=1

Ri,kV
⊥
k

)
/Ri,i.

Hence, the computation of V ⊥i requires 6(i−1)+2(i−2)+2+2 operations. Summing
this for i going from 1 to J we get the total cost of computing V⊥ ∈ CJ :
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cV =

(
J∑
i=2

6(i− 1) + 2(i− 2) + 4

)
+ 2,

= 6
J−1∑
i=1

i+ 2
J−2∑
i=1

i+ 4(J − 1) + 2,

= 10(J − 1) + 8

J−2∑
i=1

i+ 2,

= 10(J − 1) + 8
(J − 2)(J − 1)

2
+ 2,

= 4J2 − 2J + 4.

Step 5: Computing the Least Squares Estimate
From algorithm 5, we have that

ÎLS = Q∗1V⊥.

For efficiency, the reduced QR-factorization does not explicitly compute the matrix
Q1. It is possible to compute the above product implicitly (see [22]). The number of
operations required to compute ÎLS is then given by

cLS = 18JN2 − 9J2 − 11J.

Step 6: Extract the Approximate LASSO Estimate
Here, the worst case is for N2 ≥ J . From corollary 2.1 we see that the approximate
LASSO estimate is then given by

ÎiLASSO '
sgn

(
ÎiLS

)
µi

(∣∣∣ÎiLS∣∣∣− λ

2

)+

, ∀i = 1, . . . , N2.

The term µi is given by µi =
∑J

j=1 βj(ri)β
∗
j (ri). The computation of this term

requires 4J − 1 operations. Hence, the cost of computing one pixel is 4J + 6, and
the total cost to form the image is

cLASSO = 4JN2 + 6N2.

Total Cost
Summing the number of operations necessary for each step, we get:

cGS = 8N2J2 − 8

3
J3 + 50N2J + (16L− 2)MN2 + 6N2 − 13J2 − 7

3
J + 4. (5.1)

The leading term is 8N2J2 − 8
3J

3. Observe that the total number of operations
behaves linearly with the number of pixels and quadratically with the number of
visibilities. In fig. 5.1, we can see that the QR-factorization of BT is clearly the
most expensive step of the algorithm (∼ 92% of the total number of operations for
this specific example). Then come the computation of the basis elements (∼ 6.4%),
the least squares estimate (∼ 1.5%), the LASSO estimate (∼ 0.3%) and finally the
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(a) Relative cost of the individual
steps of the algorithm with respect
to the total cost.

(b) Relative cost of the individual
steps of the algorithm with respect
to the total cost minus the cost of the
QR-factorization (zoom on the left
upper-part of (a)).

Figure 5.1: Contribution of the different steps involved in the new imaging pipeline to the total
cost eq. (5.1). For this example, we chose a small number of stations M = 12, so that the
QR-factorization cost does not completely dominate the other steps and make the chart unreadable.
The size of the image is N2 = 1000× 1000 pixels. We observe that the QR-factorization is clearly the
most expensive step of the algorithm (∼ 92% of the total number of operations for this specific
example). Then, comes the computation of the basis elements (∼ 6.4%), the least squares estimate
(∼ 1.5%), the LASSO estimate (∼ 0.3%) and the massaging of the visibilities by forward substitution
(very cheap ∼ 0.0004%).

computation of the new set of visibilities V⊥ by forward substitution (by far the
cheapest step, only ∼ 0.0004% of the total cost).

1.2 Complexity of the Classical Imaging Pipeline

For comparison, we provide here a simplified complexity analysis of the CLEAN+A-
projection algorithm (see algorithm 2). We exclude from consideration w-stacking
(see remark 3.1), as it is very dependent on the telescope layout and the specific
experimental conditions (pointing direction). A more complete and general deriva-
tion of the complexity of the A-projection algorithm can be found in [19]. For this
analysis, we use the following notation:
• L antennas per stations.
• M stations.
• J baselines.
• N2 pixels.
• Beamshape kernels of size N2

s . For typical LOFAR observations, N2
s = 11× 11

pixels (see [19]).
• Average size of the w-kernels: N2

w. For typical LOFAR observations, N2
w =

30× 30 pixels (see [19]).
• Oversampling parameter O (for nearest neighbors interpolation). Usually, we

take O = 9.
• Size of the synthesized beam (convolution after the CLEAN iterations): N2

B .
Typically, we set N2

B = 5× 5.
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• Niter CLEAN iterations, typically in the range 104 to 106 (see [9, 19]).
Let’s first address the cost of the CLEAN algorithm, independently from the cost

of the A-projection algorithm.

Cost of the CLEAN algorithm
The CLEAN algorithm (see algorithm 2 page 28) performs at each iteration the
following steps:

1 Compute the residual image,

∇Φ(Î(n))← AH(AÎ(n) − V),

2 Find the strongest component in the residual image and update the corre-
sponding component in the CLEAN image

Î(n) ← Î(n) − τΨ∇Φ(Î(n)),

3 Compute the quantity ‖∇Φ(Î(n))‖∞ and compare it to the threshold ε > 0
(stopping criterion).

The first step involves two multiplication by the matrix A and its conjugate trans-
pose. This is performed efficiently by applying twice the A-projection algorithm.
We denote for now by cAproj the computational cost of applying the A-projection
algorithm, and will compute later this cost. Apart from these two operations, we
have J complex subtractions to perform, to form the residual visibilities. Hence,
the cost of forming the residual image for a given iteration is given by

cres = 2cAproj + 2J.

Finding the strongest component in the residual image requires N2 logical tests.
The update of the CLEAN estimate requires one real multiplication and one real
addition. Finally, the computation and testing of the stopping criterion requires
N2 + 1 logical tests. Hence, in total, each loop of the CLEAN algorithm involves the
following number of operations

cloop = 2cAproj + 2J + 2N2 + 3.

Once the stopping criterion has been met, two steps are performed by the algo-
rithm: the CLEAN estimate is convolved with the synthesized beam (typically a
truncated Gaussian kernel) to correct for the artificial high resolution in the estimate,
and the residual image for the last estimate is compute one last time and added to
the CLEAN estimate in background. Here, because the synthesized beam is very
small, the convolution step is more efficiently performed by direct computation
rather than by the use of the convolution theorem and the FFT algorithm. The
convolution step involves then N2(2N2

B − 1) arithmetic operations. Hence, the
computational cost of the post-processing steps is given by

cpost = N2(2N2
B − 1) + cres +N2 = N2(2N2

B − 1) + 2cAproj + 2J +N2.

Finally, if the CLEAN algorithm has performed Niter loops, we have a total cost
for the algorithm of
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cCLEAN = Niter

[
2cAproj + 2J + 2N2 + 3

]
+N2(2N2

B − 1) + 2cAproj + 2J +N2.

It remains now to compute the number of operations required to apply A-projection,
and the complexity analysis will be complete.

Cost of the A-projection algorithm
The cost of multiplying by A or AH is the same. Hence, here we will discuss only
the number of operations required to apply AH to a set of visibilities, as we have
developed this case before (see algorithm 1). The algorithm operates as follows:

1 For each baseline (i, j) between station i and j,
• Compute the beamshapes bi, bj and the w-termWi,j ,
• Form the Fourier kernel associated to the baseline. This can be done by

multiplying the beamshapes and w-term together in the image plane,
and then taking the Fourier transform of it: F{b∗i bjW∗i,j}.
• Convolve with the one-sample visibility function of the corresponding

baseline Ṽi,j(u, v) = Vi,jδ(u− ui,j , v − vi,j).
2 Sum the corrected contributions F{b∗i bjW∗i,j}∗ Ṽi,j from each baseline together.
3 Take the 2D inverse FFT of the result.

The computation of the beamshapes and the w-term requires the sampling of
those continuous quantities on a regular grid. Because we are only interested
in the spectral properties of these quantities, each of them are sampled at their
corresponding Nyquist rate. For the beamshapes, it can be shown [19] that this rate
is inversely proportional to the station diameter (normalized by the wavelength of
observation). Because each LOFAR core station has the same diameter, we end up
with M images with identical resolution N2

s (with typically, Ns = 11). Using the
first step of the new imaging pipeline analysis, we see that the computation of those
M images involves the following number of operations:

cb = 16LMN2
s − 2MN2

s .

The Nyquist rate for the w-term depends on the w-coordinate of the specific
baseline under consideration. For simplicity, we assume here that each of the w-
terms are sampled at the same rate, resulting in J complex images with resolution
N2
w (with typically Nw = 30). The w-term for baseline (i, k) is given by:

W(l,m;wi,k) = e−j2πwi,k(
√

1−l2−m2−1).

Hence, for each pixel (l,m) we have to perform 4 real multiplications, 3 additions,
1 real square root and two evaluations of trigonometric functions. This results in 10
arithmetic operations per pixel, and finally

cw = 10JN2
w.

To multiply in the image plane the beamshapes and w-term of a specific baseline,
we need to have them at the same resolution. As Nw > Ns, we can simply use
zero-padding and FFT to interpolate the beamshapes at the resolution N2

w:

bNwi = (SNw)−1F−1
{
ZNwNs F{S

Nsbi}
}
,
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with ZNwNs the zero-padding operator and SNs the prolate spheroidal at resolu-
tion N2

s , a window function used to avoid aliasing due to sharp edges [19]. This
operation has a cost of

cinterp = 2N2
s + cFFT (N2

s ) + (N2
w −N2

s ) + cFFT (N2
w) + 2N2

w,

= N2
s + 3N2

w + 10
(
N2
s log2 (Ns)−N2

s +N2
wlog2 (Nw)−N2

w

)
+ 32.

Once this interpolation step has been performed, we can straightforwardly com-
pute the Fourier kernel by multiplying the beamshapes and the w-term together
and take the FFT of the result. For later use, this FFT is computed at the higher
resolution O2N2

w (by zero-padding), which has cost

ckernel = 12N2
w + (O2N2

w −N2
w) + (10O2N2

wlog2 (ONw)− 10O2N2
w + 16).

Because Ṽi,j consists of a rescaled Dirac function, the convolution F{b∗i bjW∗i,j} ∗
Ṽi,j is simply a rescaling and shifting of the Fourier kernel at the uv-coordinates
of the corresponding baseline. In practice, as the uv-coordinates do not fall on the
grid, they are first shifted to their nearest grid neighbors. To minimize the effect
of this shift on the sky estimate, this nearest neighbor interpolation is performed
on an oversampled grid of size O2N2. The convolution is then performed on that
oversampled grid which is finally downsampled to its original size N2. Neglecting
the cost of the nearest neighbor interpolation, we get a total cost of

cconv = 6O2N2
w +N2.

The above operations are repeated for each of the J baselines and the resulting
visibilities functions are summed together and Fourier transformed. That yields the
following cost for A-projection:

cAproj = J (2cinterp + ckernel + cconv) + 2(J − 1)N2 + (5N2log2

(
N2
)
− 10N2 + 16).

(5.2)
The terms cb and cw have not been included in eq. (5.2), as they do not actually con-
tribute to each call of the A-projection algorithm. Indeed, in practice the beamshapes
and w-terms are computed once and saved in memory, and hence the corresponding
costs of those operations should only contribute once to the total cost of CLEAN +
A-projection. We finally get the total cost for CLEAN + A-projection:

cCLEAN = Niter

[
2cAproj + 2J + 2N2 + 3

]
+N2(2N2

B−1)+2cAproj+2J+N2+cb+cw,
(5.3)

with cAproj given in eq. (5.2). Replacing quantities Ns, Nw, NB and Niter by their
typical values for LOFAR helps in understanding better the leading term of eq. (5.3).
If we choose Ns = 11, Nw = 30, NB = 5 and Niter = 104, we obtain

cAproj '
N2
[
60 · 103J + 200 · 103log2(N)− 219 · 103

]
+ 115 · 109J + 1936LM − 242M + 3.5 · 105.
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For that specific choice of parameters, we observe that the leading term of eq. (5.3) is
approximatelyN2

[
60 · 103J + 100 · 103log2(N2)

]
. Hence, the CLEAN+A-projection

algorithm grows as N2log2(N2) with the number of pixels, and linearly with the
number of baselines J .

1.3 Comparison of the Computational Efficiency of both Imaging Pipelines
In this section, we use eq. (5.1) and eq. (5.3) to compare the computational efficiency
of both imaging pipelines. We first perform this comparison for the LOFAR telescope
and then investigate the scalability of both imaging pipelines to very large radio
telescope such as the SKA.

Comparison for LOFAR
Recall that LOFAR is composed of M = 46 stations each composed of L = 48
elements (for the HBA stations). Moreover, for a typical LOFAR observation we
have the following [19]:
• N2

s = 11× 11 pixels,
• N2

w = 30× 30 pixels,
• O = 9,
• N2

B = 5× 5,
• Niter = 104.

As it is conceptually easier to think in terms of stations rather than in terms of
baselines, we transformed the dependency of eq. (5.1) and eq. (5.3) on J in a
dependency on M (the number of stations), by using the relation J = M(M − 1).
Figure 5.2 shows the evolution of the number of operations for both algorithms,
with respect to the resolution of the output image and the number of stations used
for the recovery. We can see that for every practical case, the Gram-Schmidt imaging
pipeline is computationally more efficient than the current one. In table (e) of fig. 5.2,
we see that the Gram-Schmidt imaging pipeline can be 2 to 34 times faster than
CLEAN + A-projection, depending on the scenario investigated.

Comparison for the SKA
The SKA will have different characteristics from LOFAR, which we need to account
for in our analysis. The construction of the telescope is organized in two phases
(SKA1 and SKA2), with the first phase SKA1 starting in 2018. As the design for
SKA2 has not been decided yet, we will take here the specifications for the SKA1
LOW as a reference [6]:
• Dipole Antennas: The SKA1 LOW will be composed of ∼ 130, 000 dipole

antennas, spread between 500 stations. This gives us an average of L = 260
antennas per stations.
• Stations: The SKA1 LOW will be composed of M = 500 stations, with a

diameter of approximately a 100 meters. This is twice the size of the largest
LOFAR HBA stations (international stations have a radius of 56.5 meters). The
sampling rate of the stations’ beamshapes being inversely proportional to the
stations’ diameters, the SKA stations’ beamshapes will have to be sampled
at twice the rate of the LOFAR stations’ beamshapes. For LOFAR, we had
typically Ns = 11, hence for SKA1 LOW we choose Ns = 22.
• Collecting area: The SKA1 will have a total collecting area of 419, 000 square

meters. This is approximately 8 times more than the 52, 000 square meters of
LOFAR. To achieve a similar collecting area, the distance between the stations
of LOFAR should be multiplied by ∼ 2.8. Hence, because the average size Nw
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(a) Resolution N2 = 1024× 1024 pixels.
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(b) Resolution N2 = 8192× 8192 pixels.
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(c) M = 24 stations used for the recovery.
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(d) M = 46 stations used for the recovery.

cAproj/cGS
Number of Stations

M = 24 M = 38 M = 46

R
es

ol
ut

io
n N2 = 1024× 1024 34.051 13.364 9.0748

N2 = 2048× 2048 15.804 8.6764 4.1174

N2 = 4096× 4096 11.304 4.2796 2.8832

N2 = 8192× 8192 10.239 3.8369 2.579

(e) Ratio cAproj/cGS . One cell of the tabular reads: For a resolution N2 and a number of stations M ,
Gram-Schmidt + LASSO is x times faster than CLEAN + A-projection (with x the content of the cell).

Figure 5.2: Number of operations for both imaging pipelines for various scenarios. We observe
that for any practical scenario, the new imaging pipeline is at least twice as fast as the classical
imaging pipeline. For some specific (but realistic) scenarios, the new imaging pipeline can be 34 times
faster than the classical one.
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Figure 5.3: Operational Zones of both imaging pipelines for the SKA. To construct this plot we
took the difference between cAproj and cGS . In the blue zone, we have cAproj − cGS < 0, which
means that the Gram-Schmidt imaging pipeline is more expensive than the classical imaging pipeline.
In the green zone, we have cAproj − cGS > 0, which means that the Gram-Schmidt imaging pipeline
is less expensive than the classical imaging pipeline. Finally the blue line correspond to points
(N2,M) for which both imaging pipelines are equally expensive.

of the w-kernel is proportional to the average of the w-term across baselines,
we can expect Nw to be bigger for SKA1. Here, we estimate Nw to be 2.8
times larger than for LOFAR. That yields Nw = 2.8× 30 = 84. This is a rather
speculative value, and one would need to investigate in more details the exact
layout of SKA1 to come up with a more reliable estimate.
• Sensitivity: The sensitivity of SKA1 LOW will be approximatively 8 times

higher than that of LOFAR. This means that the threshold for CLEAN will be
potentially 8 times lower than for LOFAR (for equivalent experimental condi-
tions). In order to meet such an accuracy, the number of CLEAN iterations are
likely to increase significantly. To fix the ideas we choose Niter = 1.5× 105, or
15 times more iterations than we previously assumed for LOFAR.
• Resolution: The SKA1 LOW should have a resolution 1.2 times superior to

LOFAR. Hence the size NB of the synthesized beam will be reduced (indeed,
the size of the synthesized beam is usually chosen according to the minimal
achievable resolution). Here, we take NB = 5/1.2 ' 4.

With the above choice of parameters, we investigated the relative efficiency of
both imaging pipelines at the scale of the SKA. Figure 5.3 presents the operational
zones of both imaging algorithms. We can see that for a number of stations be-
low 300, the Gram-Schmidt imaging pipeline is faster thant the classical imaging
pipeline, for any resolution. From 300 to 500 stations, the Gram-Schmidt imaging
pipeline remains faster for low resolutions (< 10 Mega Pixels), but becomes too
expensive for high resolution images. In this area, the CLEAN + A-projection al-
gorithm is faster. Of course, these results are strongly dependent on the various
approximations made in order to extend the analysis to the SKA telescope. Still,



84 Comparison to State of the Art

this preliminary analysis reveals that without any optimization of the new imaging
pipeline, there might exist scenarios for which the CLEAN + A-projection imager
remains cheaper to perform in the case of the SKA. This could become even more
problematic with SKA2, where the number of stations should be further increased.

However, the Gram-Schmidt imaging pipeline is still at a very early stage, and we
are very confident that it can be greatly optimized. In particular, the sampling and
orthogonalization of the basis elements are currently done at the same resolution as
the final sky estimate, which represents a huge computational overhead. It would
then be interesting to try and perform those steps at a lower resolution, if possible.
Finally, the previous analysis considers only the specific case where the sky image
is reconstructed from a single set of visibilities, estimated during a certain time
interval. In practice, to reduce noise, many set of visibilities estimated during
different time intervals are combined to produce more reliable sky images [23].
Because of the rotation of the earth, the layout of the telescope relatively to the
direction of observation is different from one time interval to the other. However,
because of the deterministic nature of the earth rotation, we believe that there is a lot
of redundancy in the basis corresponding to each time intervals, that could certainly
be exploited in order to accelerate our estimation procedure. Similarly, one could
also try to exploit the redundancies existing between different frequency channels,
when the sky is surveyed at different frequencies simultaneously. Currently, none
of those redundancies and structures are exploited by the classical imagers. We
believe that our framework is better suited to exploit such redundancies, and hence
could become significantly cheaper than the classical imaging pipeline, and this
even for a very large number of stations such as in the SKA.

2 Comparative Accuracy and Sensitivity Analysis
In this section, we investigate the accuracy of the sky estimates obtained with both
imaging pipelines, as well as their sensitivity to the various experimental conditions,
such as the thermal noise variance σ2

n as well as the number of samples Ns used
for the estimation of the visibilities. For those experiments, the 24 HBA stations
from LOFAR were used, and the frequency channel of observation was chosen at
f0 = 120 MHz. Different skies were randomly generated, and the corresponding
visibilities were simulated according to the methodology described in section 3.1 of
chapter 3.

For each experiment, two sky estimates were produced with the same input data.
The first was obtained by applying classical CLEAN+A-projection. The second
was produced by approximating the LASSO estimate from the Gram-Schmidt least
squares estimate, as described in section 2 of chapter 4. For CLEAN, we took
τ = 0.1 and chose a custom stopping criterion based on a statistical test, to free
ourselves from the arbitrariness of the choice of a uniform threshold. At each
iteration, the pixels within the residual image are tested (as described in section 1.3
of chapter 4). If no pixel can be declared significantly different from zero with a
level α = 1%, then the algorithm is stopped (as the potential remaining sources
within the residuals could anyway not be distinguished from noise for the given
experimental conditions). Moreover, we did not add the residuals to the CLEAN
estimate after the last iteration, to facilitate the comparison with the approximate
LASSO estimate obtained with the new imaging pipeline. For the computation of
the approximate LASSO estimate, we used strategies such as in fig. 4.5 page 59 to
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help in the choice of the penalty parameter.
The first experiment was to evaluate the sensitivity of both estimates to the

noise variance and the number of samples used for estimating the visibilities. As a
measure of the estimate quality, we used the root mean squared error, given by

RMSE(Î) = E
[
‖Î − I0‖2

]
, (5.4)

with Î ∈ RN2
a given sky estimate, and I0 ∈ RN2

the true underlying sky image
(available to us as we are simulating). This metric is commonly used to assess the
bias-variance trade-off. For each experimental conditions, we estimated eq. (5.4) by
simulating three1 different sets of visibilities, producing the associated estimates,
and finally taking the average of the individual root squared errors.

Figure 5.4 shows the results of the sensitivity analysis. The underlying sky image
used for simulating the data is given in (a). Examples of sky estimates obtained with
Gram-Schmidt + LASSO and CLEAN + A-projection are respectively available in
(b) and (c). In fig. 5.4 (d), we reported the evolution of the root mean squared error
as a function of the number of samples, for both estimates and a fixed noise level of
σ2
n = 1000. There are many interesting observations to make from this plot. To begin

with, notice that the Gram-Schmidt + Lasso estimation procedure produces much
more accurate sky estimates than CLEAN + A-projection for the chosen metric (on
average 1.5 times more accurate). Moreover, observe that, while the Gram-Schmidt
+ LASSO estimate is clearly improving with the number of samples, this is less
obvious for the CLEAN + A-projection estimate, whose RMSE hardly decays with
the number of samples. This seems to suggest that the CLEAN + A-projection
algorithm is not able to fully exploit this increased accuracy in the measurements in
order to produce better sky estimates. However, this behavior could also be due to
the choice of metric, which might not properly capture the evolution of the CLEAN
+ A-projection estimate with the number of samples. Indeed, two sky estimates can
appear very different visually, but still have comparable quality in terms of the root
mean squared metric2. Hence, to validate the above observation, one would need to
repeat the experiment with different metrics (peak signal-to-noise ratio, structural
similarity, entropy...), and see if similar conclusions can still be drawn.

In fig. 5.4 (e), we investigated the sensitivity of both estimation procedures to the
noise variance σ2

n for a fixed number of samples Ns = 800. Once again, observe
that the Gram-Schmidt + LASSO estimation procedure produces much more ac-
curate sky estimates than the CLEAN + A-projection imager, for every noise level
tested. Moreover, we observe that Gram-Schmidt + LASSO is more robust to the
noise variance, as the RMSE of the estimates obtained for various noise levels are
extremely comparable. In comparison, the CLEAN + A-projection algorithm is
more affected by the noise level, as it can be seen that the RMSE of the estimates
produced with this imager increases with the noise variance (although the increase
is not dramatic). Once again, one would need to repeat the experiment for different
metrics to validate those observations.

Finally, we also provide in fig. 5.5 the sky estimates obtained with both estimation
procedures for five different skies. For each, observe that the range of the Gram-

1This is evidently too few a number of simulations for a good estimate of RMSE, but because of the
time constraints we could not afford to run more simulations.

2For example, consider a sky estimate polluted by a false positive at a certain position. If we
artificially change the position of the false positive in the estimate we still have the same root mean
squared error, while the two skies might appear structurally very different for a human observer.
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Schmidt + LASSO estimate is closer to the actual range of the underlying sky image.
Moreover, a visual inspection of the images reveals that the CLEAN + LASSO
estimates are more conservative than the CLEAN + A-projection estimates: they
sometimes miss faint sources, but have far less false positives.

From those experimental conditions at least, we can safely claim that, when
applicable, the new imaging pipeline presented in this document produces more
accurate, reliable and robust sky estimates than the classical imaging pipeline.
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(d) Root mean squared error for both imaging pipelines as a
function of the number of samples. The noise level is set at
σ2
n = 1000.
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(e) Root mean squared error for both imaging pipelines as a
function of the noise level. The number of samples is set at
Ns = 800.

Figure 5.4: Accuracy of the sky estimates obtained with both imaging pipeline for various
experimental conditions. We observe that the sky estimates obtained with the new imaging pipeline
are more accurate and less sensitive to the noise (if we choose the root mean squared error as a
measure of the quality of the sky estimate). Moreover they have less false positives then the sky
estimates obtained with CLEAN and the A-projection algorithm.
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Figure 5.5: Accuracy of the sky estimates obtained with both imaging pipeline for various skies.
We observe that the sky estimates obtained with the new imaging pipeline are more accurate (in
terms of absolute intensities) and less polluted by false positives than the estimates obtained with the
classical imaging pipeline. For all the experiments, we chose Ns = 800 and σ2

n = 500.



6
Conclusions

We started off by investigating how to integrate randomized beamforming into the
existing imaging chain for radio interferometry. This was prompted by a criticism
that the technique was fine but there was no way to place the correlation output
onto the “uv-plane" (Fourier domain). By studying the frequency response of the
instrument, we noticed that there was no way either for de-facto beamforming.
This explains why striving to retain the appealing Fourier domain has resulted in
cumbersome work-arounds, which also turn out to be less accurate and introduce
computational overhead.

It became attractive to examine the problem from an orthogonal perspective,
literally. This amounts to a QR-decomposition of the system to result in a more
natural basis. The whole chain is then more intuitive, linear, and flexible. It allows,
for example, in statistical confidence in the resultant image, and incorporation of
general beamforming.

The QR-decomposition is currently over-sampled, and does not exploit redun-
dancy in calculation across the basis elements and observation times. Yet it still
manages to outperform the state-of-the-art for the LOFAR telescope, and many
scenarios for SKA1. We are quite confident that with optimization, the technique
will perform much faster than presently implemented.

Another possible direction for future work would be to modify the beamforming
to help in the orthogonalization step. Finally, orthogonalization at an earlier stage,
for complexity reasons, on the antenna time-series samples is also a promising
avenue of research.

Acknowledgments
I would like to express my sincere gratitude to my academic advisors Profs. Vic-
tor Panaretos and Martin Vetterli, as well as to the entire DOME WP6 team in
IBM Zurich, for having offered me the incredible opportunity to work on that
passionating subject.

On the EPFL side, I would like to thank specifically Victor for his brilliant guid-
ance and very insightful advice throughout the thesis.

On the IBM side, my warmest greetings go to Dr. Paul Hurley, for his day-to-day
support and his incommensurable help, as much for technical inquiries than for the
actual writing of this thesis. In addition to his precious advice, he has always been
very available and enthusiastic about my work, which I sincerely appreciated. It was
very pleasing for me to work among the DOME WP6 team, in such an stimulating



90 Conclusions

environment. A special thought goes to Dr. Sanaz Kazemi, that welcomed me and
greatly helped me during my stay in ASTRON (the Netherlands Institute for Radio
Astronomy).



Bibliography

[1] Abhishek Awasthi, Rohit Guttal, Naofal Al-Dhahir, and Poras T Balsara. Com-
plex QR decomposition using fast plane rotations for MIMO applications.
Communications Letters, IEEE, 18(10):1743–1746, 2014.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–
202, 2009.

[3] S Bhatnagar, U Rau, and K Golap. Wide-field wide-band interferometric
imaging: The WB A-projection and hybrid algorithms. The Astrophysical Journal,
770(2):91, 2013.

[4] Tim J Cornwell, Kumar Golap, and Sanjay Bhatnagar. The noncoplanar base-
lines effect in radio interferometry: The W-projection algorithm. Selected Topics
in Signal Processing, IEEE Journal of, 2(5):647–657, 2008.

[5] Marco De Vos, Andre W Gunst, and Ronald Nijboer. The LOFAR telescope:
System architecture and signal processing. Proceedings of the IEEE, 97(8):1431–
1437, 2009.

[6] P Dewdney, W Turner, R Millenaar, R McCool, J Lazio, and T Cornwell. Ska1
system baseline design. Document number SKA-TEL-SKO-DD-001 Revision, 1,
2013.

[7] Peter E Dewdney, Peter J Hall, Richard T Schilizzi, and T Joseph LW Lazio.
The square kilometre array. Proceedings of the IEEE, 97(8):1482–1496, 2009.

[8] Olive Jean Dunn. Estimation of the medians for dependent variables. The
Annals of Mathematical Statistics, pages 192–197, 1959.

[9] Hugh Garsden, JN Girard, Jean-Luc Starck, S Corbel, C Tasse, A Woiselle,
JP McKean, AS van Amesfoort, J Anderson, IM Avruch, et al. LOFAR sparse
image reconstruction. Astronomy & Astrophysics, 575:A90, 2015.

[10] JA Högbom. Aperture synthesis with a non-regular distribution of interferom-
eter baselines. Astronomy and Astrophysics Supplement Series, 15:417, 1974.

[11] Steven G Johnson and Matteo Frigo. A modified split-radix fft with fewer
arithmetic operations. Signal Processing, IEEE Transactions on, 55(1):111–119,
2007.



92 Bibliography

[12] Douglas L Jones. Decimation-in-time (dit) radix-2 fft. The Connexions Project.
http://cnx. org, 2006.

[13] Robb J Muirhead. Aspects of multivariate statistical theory, volume 197. John
Wiley & Sons, 2009.

[14] Orhan Ocal. Data Reduction Algorithms for Radio Astronomy Antenna Sta-
tions. Master’s thesis, EPFL, Lausanne, Switzerland, 2014.

[15] Orhan Ocal, Paul Hurley, Giovanni Cherubini, and Sanaz Kazemi. Collabora-
tive randomized beamforming for phased array radio interferometers. arXiv
preprint arXiv:1411.4002, 2014.

[16] Björn Ottersten, Petre Stoica, and Richard Roy. Covariance matching estimation
techniques for array signal processing applications. Digital Signal Processing,
8(3):185–210, 1998.

[17] UJ Schwarz. Mathematical-statistical description of the iterative beam remov-
ing technique (method CLEAN). Astronomy and Astrophysics, 65:345, 1978.

[18] Elias M Stein and Guido L Weiss. Introduction to Fourier analysis on Euclidean
spaces, volume 1. Princeton university press, 1971.

[19] Cyril Tasse, S van der Tol, J van Zwieten, Ger van Diepen, and S Bhatnagar.
Applying full polarization A-Projection to very wide field of view instruments:
An imager for LOFAR. Astronomy & Astrophysics, 553:A105, 2013.

[20] Greg B Taylor, Chris Luke Carilli, and Richard A Perley. Synthesis imaging
in radio astronomy II. In Synthesis Imaging in Radio Astronomy II, volume 180,
1999.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[22] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam,
1997.

[23] Alle-Jan van der Veen and Stefan J Wijnholds. Signal processing tools for radio
astronomy. In Handbook of Signal Processing Systems, pages 421–463. Springer,
2013.

[24] MCH Wright. A model for the ska. Technical report, SKA memo 16, 2002.

[25] Sarod Yatawatta. LOFAR beamshapes and their use in calibration and imaging.
Technical report, ASTRON, Tech. Report, 2007., 2009.

[26] Ya-xiang Yuan. A short note on the Q-linear convergence of the steepest descent
method. Mathematical programming, 123(2):339–343, 2010.


	Introduction
	The Current Imaging Pipeline
	Basic Data Model
	Beamforming at Stations
	Imaging with the A(W)-projection Algorithm
	Reshaping the Measurement Equation
	Algorithm Description

	Iterative approach: CLEAN as Gradient Descent

	Understanding Visibilities
	Visibilities and Fourier Samples
	A New Measurement Equation
	Comparison with the Classical Measurement Equation
	Simulation Details
	Experiment


	Towards a New Imaging Pipeline
	Least squares imaging and Orthogonalization
	Continuous case
	Discrete Case
	Statistical Properties of the Least Squares Estimate

	Solving for the LASSO using the Least Squares Estimate
	Robustness
	Improving the Stability of the Gram-Schmidt Estimate
	Sensitivity to Gains
	On the Use of Information-Maximizing Beamforming Techniques

	Gram-Schmidt and the QR-factorization

	Comparison to State of the Art
	Complexity Analysis
	Complexity of the New Imaging Pipeline
	Complexity of the Classical Imaging Pipeline
	Comparison of the Computational Efficiency of both Imaging Pipelines

	Comparative Accuracy and Sensitivity Analysis

	Conclusions
	Bibliography

