Tryptophan-to-heme electron transfer in ferrous myoglobins

It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin pi [Fe-II(porph(.-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.


Published in:
Proceedings Of The National Academy Of Sciences Of The United States Of America, 112, 18, 5602-5606
Year:
2015
Publisher:
Washington, National Academy of Sciences
ISSN:
0027-8424
Keywords:
Laboratories:




 Record created 2015-09-28, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)