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Motivated by recent experimental progress in the context of ultracold multicolor fermionic atoms in optical
lattices, we have investigated the properties of the SU (N ) Heisenberg chain with totally antisymmetric irreducible
representations, the effective model of Mott phases with m < N particles per site. These models have been studied
for arbitrary N and m with non-Abelian bosonization [I. Affleck, Nucl. Phys. B 265, 409 (1986); 305, 582 (1988)],
leading to predictions about the nature of the ground state (gapped or critical) in most but not all cases. Using
exact diagonalization and variational Monte Carlo based on Gutzwiller projected fermionic wave functions, we
have been able to verify these predictions for a representative number of cases with N � 10 and m � N/2, and
we have shown that the opening of a gap is associated to a spontaneous dimerization or trimerization depending
on the value of m and N . We have also investigated the marginal cases where Abelian bosonization did not lead
to any prediction. In these cases, variational Monte Carlo predicts that the ground state is critical with exponents
consistent with conformal field theory.
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I. INTRODUCTION

The possibility to load ultracold fermionic atoms in optical
lattices opens new perspectives in the investigation of lattice
models of strongly correlated systems[1,2]. When the optical
lattice is deep enough, and when the fermionic atoms have an
internal degree of freedom that can take N values (coming
for instance from the nuclear spin in alkaline earths), the
appropriate model takes the form of a generalized Hubbard
model:

ĤHub = −t
∑
〈i,j〉

N∑
α=1

(â†
iαâjα + H.c.) + U

2

∑
i

(∑
α

n̂iα

)2

,

where â
†
iα and âiα are creation and annihilation fermionic

operators, n̂iα = â
†
iαâiα , t is the hopping integral between pairs

of nearest neighbors 〈i,j 〉, and U is the on-site repulsion.
When the average number of atoms per site m is an integer,

and for large enough U/t , the system is expected to be in a
Mott insulating phase [3]. Fluctuations induced by the hopping
term in the manifold of states with m fermions per site start at
second order in t/U , and the processes that appear at this order
consist in exchanging particles between pairs of neighboring
sites, leading to the effective Hamiltonian

Ĥeff = 2t2

U
Ĥ (1)

with

Ĥ =
∑
〈i,j〉

N∑
α,β=1

â
†
iαâiβ â

†
jβ âjα. (2)

In the case of electrons with spin ↑ or ↓, this Hamiltonian has
SU (2) symmetry, and it is equivalent to the Heisenberg model
with coupling constant 4t2/U thanks to the identity∑

α,β=↑,↓
â
†
iαâiβ â

†
jβ âjα = 2�Si · �Sj + 1

2
n̂i n̂j

and to the fact that n̂i n̂j is a constant in the manifold of states
with one particle per site.

More generally, when the number of degrees of freedom is
equal to N > 2, Mott phases can be realized for all integer
values of m < N . The effective model now has SU (N )
symmetry. This can be made explicit by introducing the
generators

Ŝαβ = â†
αâβ − m

N
δαβ,

which satisfy the SU (N ) algebra

[Ŝαβ,Ŝμν] = δμβŜαν − δανŜμβ,

thanks to the identity

N∑
α,β=1

Ŝi
αβ Ŝ

j

βα =
N∑

α,β=1

â
†
iαâiβ â

†
jβ âjα − m2

N
.

In the SU (N ) language, working with m fermions per
site corresponds to working with the totally antisymmetric
irreducible representation (irrep) that can be represented by a
Young tableau with m boxes in one column. For any allowed
m, there is a conjugate equivalent representation: a system
with m = k particles per site is equivalent to a system with
m = N − k particles per site.

The model Eq. (2) captures the low-energy physics of
multicolor ultracold atoms in optical lattices, systems for
which remarkable progress has been recently achieved on
the experimental side. For instance, the SU (N ) symmetry
has been observed in an ultracold quantum gas of fermionic
128Yb [4] or 87Sr [5]. Another example [6] is the realization of
one-dimensional quantum wires of repulsive fermions with a
tunable number of components.

The SU (N ) Heisenberg model with the fundamental
representation at each site (m = 1), which corresponds to the
Mott phase with one particle per site, has been investigated in
considerable detail over the years. In one dimension, there
is a Bethe ansatz solution for all values of N [7], and
quantum Monte Carlo simulations free of the minus sign
problem have given access to the temperature dependence of
correlation functions [8,9]. In two dimensions, a number of
simple lattices have been investigated for a few values of N
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with a combination of semiclassical, variational and numerical
approaches, leading to a number of interesting predictions at
zero temperature [10–25].

In comparison, the case of higher antisymmetric irreps
(m > 1) has been little investigated. In 2D, there is a mean-field
prediction that chiral phases might appear for large m provided
N/m is large enough [26,27], and some cases of self-conjugate
irreps such as the six-dimensional irrep of SU (4) have been
investigated with quantum Monte Carlo simulations [28–31]
and variational Monte Carlo [32]. In 1D, apart from a few
specific cases [32–40], including more general irreps than
simply the totally antisymmetric ones, the most general results
have been obtained by Affleck quite some time ago [41,42].
Applying non-Abelian bosonization to the weak coupling limit
of the SU (N ) Hubbard model, he identified two types of
operators that could open a gap: umklapp terms if N > 2 and
N/m = 2, and higher-order operators with scaling dimension
χ = N (m − 1)m−2 allowed by the ZN/m symmetry if N/m

is an integer strictly larger than 2. This allowed him to make
predictions in four cases: (i) N/m is not an integer: the system
should be gapless because there is no relevant operator that
could open a gap; (ii) N > 2 and N/m = 2: the system should
be gapped because umklapp terms are always relevant; (iii)
N/m is an integer strictly larger than 2 and χ < 2: the system
should be gapped because there is a relevant operator allowed
by symmetry. This case is only realized for SU (6) with m = 2;
(iv) N/m is an integer strictly larger than 2 and χ > 2: the
system should be gapless because there is no relevant operator
allowed by symmetry. The only case where the renormalization
group argument based on the scaling dimension of the operator
does not lead to any prediction is the marginal case χ = 2,
which is realized for two pairs of parameters: [SU (8) m = 2]
and [SU (9) m = 3]. These predictions are summarized in
Table I. Finally, in all gapless cases, the system is expected
to be in the SU (N )k=1 Wess-Zumino-Witten universality
class [41,43], with algebraic correlations that decay at long
distance with a critical exponent η = 2 − 2/N .

To make progress on the general problem of the SU (N )
Heisenberg model with higher antisymmetric irreps, it would
be very useful to have flexible yet reliable numerical methods
that would allow to test these predictions in a systematic way.
In particular, the methods should not be limited to 1D, or
to cases such as self-conjugate irreps, for which there is a
minus-sign free quantum Monte Carlo algorithm. In this paper,
we have decided to test the potential of Gutzwiller projected

TABLE I. (Color online) Summary of the predictions of
Refs. [41,42] for a representative range of SU (N ) with m particles per
site. Note that models with m = k and m = N − k are equivalent up
to a constant. Therefore the light gray shaded region can be deduced
from the other cases and does not need to be studied.

N = 3 4 5 6 7 8 9 10 N/m /∈ N

Gaplessm = 1 m = 1
m = 2 χ > 2
m = 3 χ = 2 ?
m = 4 χ < 2

Gappedm = 5 N/m = 2

wave functions by a systematic investigation of the 1D case
discussed by Affleck using variational Monte Carlo (VMC).
There are two main reasons for this choice. First of all, these
wave functions have been shown to be remarkably accurate in
the case of the SU (4) Heisenberg chain with the fundamental
representation by Wang and Viswanath [15], who have in
particular shown that they lead to the exact critical exponent
in that case. Besides, this approach can be easily generalized
to higher dimensions, as already shown for the fundamental
representation in a number of cases [24,44]. Moreover, it
has been used by Paramekanti and Marston [32] for the
self-conjugate representation in one and two dimensions.

In parallel, exact diagonalizations based on the extension
of a recent formulation by two of the present authors [45] will
be used whenever possible to benchmark the VMC approach
on small clusters and, in some cases, to actually confirm the
physics on the basis of a finite-size analysis.

As we shall see, the combination of these approaches
leads to results that agree with Affleck’s predictions whenever
available, and to the identification of the symmetry breaking
pattern in the gapped phases. In addition, it predicts that the
marginal cases are gapless with algebraic correlations.

The paper is organized as follows. The next section
describes the methods, with emphasis on the variational wave
functions that will be used throughout. The third section is
devoted to a comparison of the results obtained using the
simplest wave functions (with no symmetry breaking) with
those of the Bethe ansatz solution for the m = 1 case, with
the conclusion that the agreement is truly remarkable. The
fourth section deals with the cases where umklapp processes
are present (N > 2, N/m = 2), while the fifth one deals with
the case where there is no umklapp process but a relevant
operator [SU (6) m = 2]. The marginal cases are dealt with
in the sixth section, and the case where N/m is an integer
without relevant nor umklapp operators in the seventh section.
Finally, the critical exponents are computed and compared to
theoretical values for all gapless systems in the eighth section.

II. THE METHODS

A. Gutzwiller projected wave functions

The variational wave functions investigated in the present
paper are obtained from fermionic wave functions that have on
average m particles per site by applying a Gutzwiller projector
P̂ m

G that removes all states with a number of particles per site
different from m:

P̂ m
G =

n∏
i=1

∏
p �=m

n̂i − p

m − p
, (3)

where n is the number of sites, and where the product over p

runs over all values from 0 to N except p = m.
In the present paper, we will concentrate on simple

fermionic wave-functions that, before projection, correspond
to the ground state of trial Hamiltonians that contain only
hopping terms. For SU (2), the inclusion of pairing terms has
been shown to lead to significant improvements [46], but the
generalization to SU (N ) is not obvious because one cannot
make an SU (N ) singlet with two sites as soon as N > 2. In
addition, in the case of the fundamental representation where
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Bethe ansatz results are available for comparison, these simple
wave functions turn out to lead to extremely precise results as
soon as N > 2.

In practice, the construction of a Gutzwiller projected wave
function starts with the creation of a trial Hamiltonian T̂ that
acts on n sites and is written with fermionic operators âiα and
â
†
iα . When different colors are involved in T̂ , and as long as

there is no term mixing different colors, the Hamiltonian can
be rewritten as a direct sum: T̂ = ⊕N

α=1 T̂α . Then, for each
color, there will be one corresponding unitary matrix Uα that
diagonalizes T̂α . So the new fermionic operators are given by

ĉiα =
n∑

j=1

U
α†
ij âjα, ĉ

†
iα =

n∑
j=1

Uα
ji â

†
jα,

and the trial Hamiltonian can be written in a diagonal basis

T̂ =
N⊕

α=1

n∑
i=1

ωiαĉ
†
iαĉiα

with ωiα < ωi+1α .
In the Mott insulating phase, the system possesses nm/N

particles of each color and exactly m particles per site. By
filling the system with the nm/N lowest energy states of
each color, the resulting fermionic wave function contains nm

particles,

|	〉 =
N⊗

α=1

nm/N∏
i=1

ĉ
†
iα|0〉 =

N⊗
α=1

mn/N∏
i=1

n∑
j=1

Uα
ji â

†
jα|0〉, (4)

in terms of which the variational wave function is given by

|	G〉 = P̂ m
G |	〉. (5)

Since the Heisenberg model exchanges particles on neigh-
boring sites, the simplest trial Hamiltonian that allows the
hopping of particles and its corresponding Gutzwiller pro-
jected wave function are

T̂ Fermi
α =

n∑
i=1

(â†
iαâi+1α + H.c.) → ∣∣	Fermi

G

〉
.

In cases where a relevant or umklapp operator is present, the
ground state is expected to be a singlet separated from the first
excited state by a gap, and to undergo a symmetry breaking
that leads to a unit cell that can accommodate a singlet. In
practice, this means unit cells with d = N/m sites. To test for
possible instabilities, we have thus used wave functions that
are ground states of Hamiltonians that creates d-merization:

T̂ ti
α =

n∑
i=1

(ti â
†
iαâi+1α + H.c.) → ∣∣	d

G(δ)
〉
.

Assuming that the mirror symmetry is preserved, the wave
functions |	d

G(δ)〉 for dimerization (d = 2) and trimerization
(d = 3) have only one allowed free parameter δ, and the
hopping amplitudes in a unit cell are given by

ti = 1 − δ if i = d,

ti = 1 otherwise.

To test for a possible tetramerization for SU (8) m = 2, since
the unit cell contains four sites, one additional free parameter is

TABLE II. Comparison between the ED and VMC energies per
site. The incertitudes on the VMC data are smaller than 10−4. The
relative error is always smaller than 0.35%.

N m n ED VMC error [%]

4 2 16 − 1.6971 − 1.6916 − 0.33
4 2 18 − 1.6925 − 1.6866 − 0.35
6 2 15 − 2.7351 − 2.7287 − 0.23
6 3 12 − 4.0295 − 4.0261 − 0.08
6 3 14 − 4.0162 − 4.0123 − 0.10
8 2 12 − 3.1609 − 3.1587 − 0.07
8 2 16 − 3.1857 − 3.1828 − 0.09
9 3 9 − 6.0960 − 6.0810 − 0.25
9 3 12 − 6.1162 − 6.0980 − 0.30
10 2 15 − 3.3992 − 3.3919 − 0.21

allowed (still assuming that the mirror symmetry is preserved
in the ground state). Therefore we have used the wave function
|	4

G(δ1,δ2)〉 with hopping amplitudes defined by

ti = 1 − δ1 if i = 2,

ti = 1 − δ2 if i = 4,

ti = 1 otherwise.

This method is always well defined for periodic boundary
conditions when N/m is even. But when N/m is odd, the
ground state is degenerate for periodic boundary conditions
if the translation symmetry is not explicitly broken, and
one has to use antiperiodic boundary conditions for |	Fermi

G 〉,
|	d

G(0)〉(d = 2,3) and |	4
G(0,0)〉.

The hope is that if T̂ is wisely chosen, then |	G〉 captures
correctly the physics of the ground state, i.e., with a good
variational wave function, EG ≡ 〈	G|Ĥ |	G〉 ≈ E0, the exact
ground-state energy. To check the pertinence of this state-
ment, we have compared the energies and nearest-neighbor
correlations with those computed with ED on small systems
with open boundary conditions. In Table II, one can see, for
some systems, the comparison between ED and VMC results
for the ground-state energy. The nearest-neighbor correlations
will be compared in the next sections. Considering the
excellent agreement between the two methods for the cluster
sizes available to ED, there are good reasons to hope that
these Gutzwiller projected wave functions can quantitatively
describe the properties of the ground state.

B. Exact diagonalizations

On a given cluster, the total Hilbert space grows very fast
with N , and the standard approach that only takes advantage
of the conservation of the color number is limited to very
small clusters for large N . Quite recently, two of the present
authors have developed a simple method to work directly
in a given irrep for the SU (N ) Heisenberg model with the
fundamental representation at each site [45], allowing to reach
cluster sizes typical of SU (2) for any N . This method can
be extended to the case of more complicated irreps at each
site, in particular, totally antisymmetric irreps, and the exact
diagonalization results reported in this manuscript have been
obtained along these lines.
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C. Correlation function and structure factor

To characterize the ground state, it will prove useful to study
the diagonal correlation defined by

C(r) =
∑

α

〈
Ŝ0

ααŜr
αα

〉 =
∑

α

〈â†
0αâ0αâ†

rαârα〉 − m2

N
. (6)

The structure factor is then given by the Fourier transform of
this function:

C̃(k) = 1

2π

N

m(N − m)

∑
r

C(r) eikr , (7)

where the prefactor has been chosen such that∑
k

C̃(k) = n

2π
.

III. SU (N) WITH m = 1

In this section, we extend the SU(4) results of Wang
and Vishwanath [15] to arbitrary N for m = 1 (fundamental
representation), and we perform a systematic comparison with
Bethe ansatz and quantum Monte Carlo (QMC) results. Since
these systems are known to be gapless, |	Fermi

G 〉 is the only
relevant wave function to study.

Let us start with the ground-state energy. Using Bethe
ansatz, Sutherland [7] derived an exact formula for the ground-
state energy per site e0(N ) of the Hamiltonian (2) that can be
written as a series in powers of 1/N :

e0(N ) = −1 + 2
∞∑

k=2

(−1)kζ (k)

Nk
, (8)

where ζ (k) = ∑∞
n=1(1/nk) is Riemann’s zeta function. e0(N )

is depicted in Fig. 1 as a continuous line. The dashed lines
are approximations obtained by truncating the exact solution
at order N−k, k � 2. For comparison, the variational energies
obtained in the thermodynamic limit after extrapolation from
finite size systems are shown as dots in Fig. 1. The agreement
with the exact solution is excellent for all values of N , and it
improves when N increases (see Table III). Quite remarkably,

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

e0

N−1

m = 1
O(N−2)
O(N−3)
O(N−4)

FIG. 1. (Color online) Variational energy per site of SU (N )
chains with the fundamental irrep at each site (dots) compared to
Bethe ansatz exact results (solid line) and polynomial approximations
in 1/N (dashed lines).

TABLE III. Comparison of the variational energies for m = 1
systems obtained for infinite chains with exact Bethe ansatz. The
incertitudes on the VMC data are smaller than 10−4.

N BA VMC error [%]

3 −0.7032 −0.7007 −0.36
4 −0.8251 −0.8234 −0.21
5 −0.8847 −0.8833 −0.16
6 −0.9183 −0.9173 −0.11
7 −0.9391 −0.9383 −0.09
8 −0.9528 −0.9522 −0.06
9 −0.9624 −0.9620 −0.05

the variational estimate is better than the N−4 estimate even
for SU (3).

We now turn to the diagonal correlations and its associated
structure factor defined by Eqs. (6) and (7). At very low
temperature, QMC has been used by Frischmuth et al. [8]
for SU (4) and by Messio and Mila [9] for various values of N

to compute this structure factor. The QMC data of Messio and
Mila and the results obtained with VMC for n = 60 sites are
shown in Fig. 2. Qualitatively, the agreement is perfect: VMC
reproduces the singularities typical of algebraically decaying
long-range correlations. However, even quantitatively the
agreement is truly remarkable, and, as for the ground-state
energy, it improves when N increases. Clearly, Gutzwiller
projected wave functions capture the physics of the m = 1
case very well.

IV. SU (N) WITH m = N/2

For these systems, there is a self-conjugate antisymmetric
representation of SU (N ) at each site. The ground states of such
systems, referred to as extended valence bound solids [47], are
predicted to break the translational symmetry, to be twofold
degenerate and to exhibit dimerization since only two sites are
needed to create a singlet, and the spectrum is expected to be
gapped.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2π

5
π

2
2π

3
π

4π

3
3π

2
8π

5

C̃
(k

)

k

m = 1 n = 60

FIG. 2. (Color online) Comparison of the structure factors calcu-
lated with VMC (empty squares) and QMC (filled circles) for various
SU (N ) systems. In the VMC calculations, antiperiodic boundary
conditions have been used for SU (3) and SU (5), and periodic ones
for SU (4).
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N/m = 2
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0 0.05 0.1 0.15 0.2 0.25 0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

−4

−3

−2

−1

0

1

1 3 5 7 9 11 13 15 17

n = 18 δ ≈ 0.182

1 3 5 7 9 11 13

−8

−6

−4

−2

0

2

n = 14 δ ≈ 0.333

ΔE

n−1

δ

n−1

E

ii

FIG. 3. (Color online) ED and VMC results for various SU (N )
models with m = N/2. Upper left panel: size dependence of the
energy gap for SU (4) and SU (6). Upper right panel: optimal
variational parameter δ for periodic boundary conditions for SU (4),
SU (6), SU (8), and SU (10). Lower panels: energy per bond for
SU (4) (left) and SU (6) (right) calculated with ED (circles) and
VMC (squares) for open boundary conditions. Note that the optimal
variational parameters δopt are different in the upper right panel and
in the lower panels because they correspond to different boundary
conditions (periodic and open).

We have investigated two representative cases, (SU (4)
m = 2) and (SU (6) m = 3), with ED up to 18 and 14 sites,
respectively, and the cases N = 4 to 10 with VMC. The main
results are summarized in Fig. 3.

Let us start by discussing the ED results. Clusters with
open boundary conditions have been used because they are
technically simpler to handle with the method of Ref. [45],
and because, in the case of spontaneous dimerization, they
give directly access to one of the broken symmetry ground
states if the number of sites is even. The gap as a function
of the inverse size is plotted in the upper left panel of Fig. 3
for SU (4) and SU (6). In both cases, the results scale very
smoothly, and a linear fit is consistent with a finite and large
value of the gap in the thermodynamic limit. In the lower
panels of Fig. 3, the bond energy is plotted as a function of
the bond position for the largest available clusters [18 sites for
SU (4), 14 sites for SU (6)] with solid symbols. A very strong
alternation between a strongly negative value and an almost
vanishing (slightly positive) value with very little dependence
on the bond position clearly demonstrates that the systems are
indeed spontaneously dimerized.

Let us now turn to the VMC results. Since the relevant
instability is a spontaneous dimerization, it is expected that
the dimerized |	2

G(δ)〉 wave function allows one to reach lower
energy than the |	Fermi

G 〉 one. This is indeed true for all cases
we have investigated (up to N = 10 and to n � 100), and the
optimal value of the dimerization parameter δopt > 0 is nearly
size independent and increases with N (see upper right panel of
Fig. 3), in qualitative agreement with the gap increase between
SU(4) and SU (6) observed in ED. To further benchmark the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

π 2π

〈C̃
(k

)〉

k

N/m = 2 n = 120

δopt ≈ 0.485
δopt ≈ 0.425
δopt ≈ 0.344
δopt ≈ 0.205

FIG. 4. (Color online) Structure factor of various SU (N ) models
with m = N/2 calculated with VMC with the optimal variational
parameter δopt.

Gutzwiller projected wave functions for these cases, we have
calculated the bond energy using the optimal value of δ (open
symbols in the lower panel of Fig. 3) for the same clusters as
those used for ED with open boundary conditions. The results
are in very good quantitative agreement.

With the large sizes accessible with VMC, it is also
interesting to calculate the diagonal structure factor defined in
Eq. (7). All the structure factors peak at k = π , but, unlike
in the case of the fundamental representation, there is no
singularity but a smooth maximum (see Fig. 4). This shows
that the antiferromagnetic correlations revealed by the peak
at k = π are only short-ranged, and that the correlations
decay exponentially at long distance, in agreement with the
presence of a gap, and with the spontaneous dimerization. To
summarize, ED and VMC results clearly support Affleck’s
predictions that the N/m = 2 systems are gapped and point
to a very strong spontaneous dimerization in agreement with
previous results by Paramekanti and Marston [32].

V. SU (6) WITH m = 2

This case is a priori more challenging to study because
the relevant operator that is generated in the renormalization
group theory appears at higher order than the one-loop
approximation. Therefore the gap can be expected to be
significantly smaller than in the previous case. This trend is
definitely confirmed by ED performed on clusters with up to 15
sites: the gap decreases quite steeply with the system size (see
upper left panel of Fig. 5). It scales smoothly, however, and
a linear extrapolation points to a gap of the order �E � 0.2,
much smaller than in the SU (6) case with m = 3 (�E � 4),
but finite. On the largest available cluster, the bond energy
has a significant dependence on the bond position, with an
alternance of two very negative bonds with a less negative
one.

These trends are confirmed and amplified by VMC. Indeed,
the trimerized wave function

∣∣	3
G(δ)〉 leads to a better energy

for all sizes, and the optimal value scales very smoothly to a
small but finite value δopt ≈ 0.03. This value is about an order
of magnitude smaller than in the SU (6) case with m = 3, but
the fact that it does not change with the size beyond 60 sites is
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m = 2
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FIG. 5. (Color online) ED and VMC results for the SU (6) model
with m = 2. Upper left panel: size dependence of the energy gap.
Upper right panel: optimal variational parameter δ for periodic
boundary conditions. Lower left panel: energy per bond calculated
with ED (circles) and VMC (squares) on 15 sites with open boundary
conditions. Note that the optimal variational parameter δ = 0 in that
case. Lower right panel: energy per bond calculated with VMC with
periodic boundary conditions.

a very strong indication that the system trimerizes (by contrast
to the marginal case shown in Fig. 9). The trimerization is
confirmed by the lower plots. For n = 15, the VMC results are
again in nearly perfect agreement with ED, and for n = 60,
the bond energy shows a very clear trimerization.

To test the nature of the long-range correlations is of course
more challenging than in the previous case since a small gap
implies a long correlation length. And indeed, on small to
intermediate sizes, the structure factor has a sharp peak at
k = 2π/3 very similar to the SU (3), m = 1 case. However,
going to very large system sizes (up to n = 450 sites), it is clear
that the concavity changes sign upon approaching k = 2π/3
(see upper right panel of Fig. 6), consistent with a smooth
peak, hence with exponentially decaying correlation functions
(see also lower panel of Fig. 6).

In that case, in view of the small magnitude of the gap,
hence of the very large value of the correlation length, it
would be difficult to conclude that the system is definitely
trimerized on the basis of ED only. In that respect, the VMC
results are very useful. On small clusters, the Gutzwiller
projected wave function with trimerization is nearly exact,
and VMC simulations on very large systems strongly support
the presence of a trimerization and of exponentially decaying
correlations.1

1We have been informed by S. Capponi that these conclusions agree
with unpublished DMRG results [S. Capponi (private communica-
tion)].

m = 2 n = 450 δ = 0.0295

0
0.05
0.1

0.15
0.2

0.25
0.3

2π/3 π 1.95π/3 2.25π/3

0.25

0.26

0.27

−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1

0 3 6 9 12 15 18 21

kk

r

〈C̃
(k

)〉
〈C̃

(k
)〉

FIG. 6. (Color online) Upper left panel: Structure factor of the
SU (6) model with m = 2 calculated with VMC using a trimerized
wave function with the optimal variational parameter. Upper right
panel: zoom on the region near k = 2π/3. It clearly shows that
the structure factor is smooth. Lower panel: real-space diagonal
correlations for 60 sites.

VI. MARGINAL CASES: SU (8) WITH m = 2 AND SU (9)
WITH m = 3

These two systems are the only ones which possess
operators with scaling dimension χ = 2. They are therefore the
only cases where it is impossible to predict whether the system
is algebraic or gapped on the basis of Affleck’s analysis. As far
as numerics is concerned, these cases can again be expected
to require large system sizes to conclude.

The ED results are quite similar to the previous case. The
scaling of the gap is less conclusive because the last three
points build a curve that is still concave and not linear like
in the previous case (see the upper right panel of Fig. 7).
So one can only conclude that if there is a gap, it is very
small, especially for SU (8) with m = 2. The bond energies
build a pattern which is consistent with a weak tetramerization
for SU (8) with m = 2, and with a significant trimerization
comparable to the SU (6), m = 2 case for SU (9) m = 3.

The VMC method turns out to give a rather different
picture however. For SU (8) with m = 2, two variational wave
functions (|	Fermi

G 〉,|	4
G(δ1,δ2)〉) can be tested. Interestingly,

for n = 16 with open boundary conditions, |	Fermi
G 〉 fails

to reproduce the bound energies pattern observed with ED
but |	4

G(0.054, − 0.036)〉 is successful (see lower left panel
of Fig. 7). This pattern, which could be interpreted as a
weak tetramerization, is in fact probably just a consequence
of the fourfold periodicity of algebraic correlations in the
presence of open boundary conditions. Indeed, it turns out
that, for any system size with periodic boundary conditions,
the minimization of the energy using |	4

G(δ1,δ2)〉 failed to find
a solution for any |δ1,2| > 0.002. Therefore |	Fermi

G 〉 is believed
to be the best variational wave function. The conclusion is that
there is no tetramerization, and that the correlations must be
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FIG. 7. (Color online) ED and VMC results for the marginal
cases SU (8) with m = 2 and SU (9) with m = 3. Upper left panel:
size dependence of the energy gap for both cases. Upper right panel:
optimal variational parameter δ for the SU (9) case with periodic
boundary conditions. The results for SU (8) are not shown because
they identically vanish for periodic boundary conditions. Lower left
panel: energy per bond for SU (8) calculated with ED (circles) and
VMC (squares) for open boundary conditions. Note that the optimal
variational parameters δopt are different from zero with open boundary
conditions. Lower right panel: energy per bond for SU (9) calculated
with ED (circles) and VMC (squares) for open boundary conditions.

algebraic. This is also supported by the structure factor, which
seems to have a singularity at k = π/2 (see Fig. 8).

Let us now turn to SU (9) with m = 3. This system could,
in principle, be trimerized, and therefore |	Fermi

G 〉 and
∣∣	3

G(δ)〉
have been compared. For small clusters, there is a large optimal
value of δ, actually much larger than for SU (6) with m = 2,
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FIG. 8. (Color online) (Top) Structure factor of the SU (8) model
with m = 2 (left) and of the SU (9) model with m = 3 (right)
calculated with VMC with periodic boundary conditions. (Bottom)
Real-space correlations. The four plots represents results obtained
with |	Fermi

G 〉.
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FIG. 9. (Color online) Energy per site as a function of the
variational parameter δ for the SU (6) with m = 2 (left) and SU (9)
with m = 3 (right).

and the bond energies are typical of a strongly trimerized
system, in agreement with ED. However, δopt decreases very
fast with n until it vanishes for n � 100 whereas, for SU (6)
with m = 2, δopt levels off at a finite value beyond n = 60
(see Fig. 9). We interpret this behavior as indicating the
presence of a crossover: on small length scales, the system
is effectively trimerized, but this is only a short-range effect,
and the system is in fact gapless with, at long-length scale,
algebraic correlations.

One can again calculate the structure factor using the
best variational wave function (in both cases |	Fermi

G 〉 for
big enough systems) to check if a discontinuity exists. The
results displayed in the upper plots of Fig. 8 clearly show a
discontinuity at k = π/2 for the SU (8) and at k = 2π/3 for
SU (9). These discontinuities indicate an algebraic decay of
the long-range correlations. The lower plot shows that even if
these systems are gapless, there is a maxima of the correlation
every N/m sites.

VII. EXAMPLE WITH IRRELEVANT OPERATOR: SU (10)
WITH m = 2

For completeness, we have also looked at a case where there
is an irrelevant operator of scaling dimension larger than 2,
namely, SU (10) with m = 2. As expected, the best variational
wave function is |	Fermi

G 〉 for all sizes, and the structure factor
exhibits discontinuities at k = 2π/5, consistent with a gapless
spectrum and algebraic correlations.

VIII. CRITICAL EXPONENTS

Motivated by the remarkably accurate results obtained
in previous works for the case the fundamental representa-
tion[15,32], we have tried to use the VMC results to determine
the critical exponent that controls the decay of the correlation
function at long distance, Eq. (7). For the particular case of
gapless systems, conformal field theory predicts an algebraic
decay of the long-range correlations function according to

C(r) = c0

r2
+ ck cos(2πrm/N )

rη
,

where η = 2 − 2/N is the critical exponent.
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For systems with periodic boundary conditions, one can
define two distances between two points, which naturally leads
to the following fitting function [8]:

c0(r−ν + (n − r)−ν) + ck cos(2πrm/N )(r−η + (n − r)−η)

with four free parameters: c0, ν and ck , η, the amplitudes and
critical exponents of the components at k = 0 and 2πm/N ,
respectively.

There is a large degree of freedom in the choice of the
fitting range. One could, in principle, select any arbitrary
range of sites [xi,xf ], 0 � xi < xf � n − 1. The problem
is that each range will give different critical exponents. In
order to obtain some meaningful results, the following method
has been chosen. Using the periodicity of the systems, only
the ranges with xi = a and xf = n − a − 1, 1 � a � n/2,
have been considered. For each value of a, the coefficient of
determination of the fit has been computed and if its value is
higher than 0.999 than the range [a,n − a − 1] is selected to
perform the extrapolation of the critical exponents. If the value
is too low, the fit is considered to be bad and the range with
a ← a + 1 is tested. If no good range can be found with this
criterion, the condition over the coefficient of determination
is relaxed to be higher than 0.995 and the first fit with a
residual sum of squares divided by n that is smaller than 10−7

is selected.
The critical exponents η obtained in this way are shown

in Fig. 10. The theoretical values of the critical exponents
η = 2 − 2/N are shown as straight lines. In all cases, the
extracted exponents agree quite well with the theoretical

predictions when n is large enough. In particular, for a given
N , the exponent η does not depend on m, as predicted by
non-Abelian bosonization. The critical exponents ν has also
been extracted but, as already observed [8], a precise estimate
is difficult to get. Nevertheless, for N = 3,4, ν ∈ [1.8,2.25]
and for N � 5, ν ∈ [1.95,2.05] for the largest systems.

IX. CONCLUSIONS

Using variational Monte Carlo based on Gutzwiller pro-
jected wave functions, we have explored the properties of
SU (N ) Heisenberg chains with various totally antisymmet-
ric irreps at each site. In the case of the fundamental
representation, which is completely understood thanks to
Bethe ansatz and to QMC simulations, these wave functions
are remarkably accurate both regarding the energy and the
long-range correlations. In the case of higher antisymmetric
irreps, where field theory arguments are in most cases able
to predict that the system should be gapless or gapped,
allowing for a symmetry breaking term in the tight binding
Hamiltonian used to define the unprojected wave function
leads to results in perfect agreement with these predictions,
and the ground state is found to be spontaneously dimerized
or trimerized. Finally, in the two cases where the operator
that could open a gap is marginal, SU (8) with m = 2
and SU (9) with m = 3, this variational approach predicts
that there is no spontaneous symmetry breaking, and that
correlations decay algebraically. These results suggest that
the operators are marginally irrelevant in both cases. It would
be interesting to test these predictions either analytically by
pushing the renormalization group calculations to higher order,
or numerically with alternative approaches such as DMRG or
QMC.

In any case, these results prove that Gutzwiller projected
fermionic wave functions do a remarkably good job at
capturing quantum fluctuations in one-dimensional SU (N )
Heisenberg models with totally antisymmetric irreps. Consid-
ering the encouraging results obtained in 2D for the SU (N )
Heisenberg model with the fundamental irrep at each site on
several lattices, one can legitimately hope these wave functions
to be also good for the SU (N ) Heisenberg model with totally
antisymmetric irreps at each site in 2D. Work is in progress
along these lines.
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