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1 Introduction

The B0→ K∗0e+e− decay is a flavour changing neutral current process that is mediated by

electroweak box and loop diagrams in the Standard Model (SM). Charge conjugation is

implied throughout this paper unless stated otherwise and the K∗0 represents the K∗0(892),

reconstructed as K∗0 → K+π−. The angular distribution of the K+π−e+e− system is

particularly sensitive to contributions from non-SM physics (NP). The leading SM diagrams

are shown in figure 1; the relative contribution of each of the diagrams varies with the

dilepton invariant mass. In the region where the dilepton invariant mass squared (q2) is less

than 6 GeV2/c4, some theoretical uncertainties from long distance contributions are greatly

reduced, thereby allowing more control over the SM prediction and increasing sensitivity to

any NP effect [1, 2]. Furthermore, the contribution from a virtual photon coupling to the

lepton pair dominates in the very low q2 region, allowing measurement of the helicity of the

photon in b→ sγ transitions [3, 4]. In the SM, this photon is predominantly left-handed,

with a small right-handed component arising from the mass of the s quark and long distance

effects. In contrast, in many extension of the SM, NP may manifest as a large right handed

current, see for example refs. [5–8].
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ū/c̄/t̄

γ, Z0

e+

e−

K∗0

B0
b̄

d

W+
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Figure 1: Dominant Standard Model Feynman graphs for the electroweak loop and box diagrams

involved in the B0→ K∗0e+e− decay.

The q2 region below 1 GeV2/c4 has previously been studied through the analysis of

the B0 → K∗0`+`− (` = e, µ) [9–11]. Experimentally, an analysis with muons rather than

electrons in the final state produces a much higher yield at LHCb. This is primarily due

to the distinctive signature that muons provide, which is efficiently exploited in the online

selection, together with the better mass and energy resolutions and higher reconstruction

efficiency of dimuon decays. However, as outlined in ref. [12], dielectron decays at low q2

provide greater sensitivity to the photon polarisation and therefore to the C7 and C′7 Wilson

coefficients, which are associated with the left-handed and right-handed electromagnetic

operators, respectively [3]. Due to the muon mass, the virtual photon contribution in

dimuon decays is suppressed relative to dielectron decays. Additionally, the formalism for

the B0→ K∗0e+e− decay is greatly simplified as the electron mass can be neglected. Indeed,

the decay with electrons allows for an angular analysis down to a q2 of 0.0004 GeV2/c4.

However, above a q2 of 1 GeV2/c4, the muon mass terms become negligible and the electron

and muon modes have essentially the same functional dependence on the Wilson coefficients

(within the lepton flavour universality assumption).

This work is based on a previous analysis performed by the LHCb collaboration to

measure the B0→ K∗0e+e− branching fraction with an integrated luminosity of 1.0 fb−1 [13],

with the selection re-optimised for the angular analysis.

The partial decay width of the B0→ K∗0e+e− decay can be described in terms of q2

and three angles, θ`, θK and φ. The angle θ` is defined as the angle between the direction

of the e+ (e−) and the direction opposite to that of the B0 (B0) meson in the dielectron

rest frame. The angle θK is defined as the angle between the direction of the kaon and
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the direction opposite to that of the B0 (B0) meson in the K∗0 (K∗0) rest frame. The

angle φ is the angle between the plane containing the e+ and e− and the plane containing

the kaon and pion from the K∗0 (K∗0) in the B0 (B0) rest frame. The basis is designed

such that the angular definition for the B0 decay is a CP transformation of that for the B0

decay. These definitions are identical to those used for the B0→ K∗0µ+µ− analysis [10].

As in ref. [10], the angle φ is transformed such that φ̃ = φ+ π if φ < 0, to compensate for

the limited signal yield. This transformation cancels out the terms that have a sinφ or

cosφ dependence and simplifies the angular expression without any loss of sensitivity to the

remaining observables. In the limit of massless leptons and neglecting the K+π− S-wave

contribution, which is expected to be negligible1 at low q2 with the current sample size [14],

the B0→ K∗0e+e− angular distribution reads as

1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dcos θ` dcos θK dφ̃
=

9

16π

[
3

4
(1− FL) sin2 θK + FL cos2 θK +(
1

4
(1− FL) sin2 θK − FL cos2 θK

)
cos 2θ` +

1

2
(1− FL)A

(2)
T sin2 θK sin2 θ` cos 2φ̃ +

(1− FL)ARe
T sin2 θK cos θ` +

1

2
(1− FL)AIm

T sin2 θK sin2 θ` sin 2φ̃

]
.

(1.1)

The four angular observables FL, A
(2)
T , ARe

T andAIm
T are related to the transversity amplitudes

through [2]

FL =
|A0|2

|A0|2 + |A|||2 + |A⊥|2

A
(2)
T =

|A⊥|2 − |A|||2
|A⊥|2 + |A|||2

ARe
T =

2Re(A||LA∗⊥L +A||RA
∗
⊥R)

|A|||2 + |A⊥|2

AIm
T =

2Im(A||LA
∗
⊥L +A||RA

∗
⊥R)

|A|||2 + |A⊥|2
,

(1.2)

where |A0|2 = |A0L|2 + |A0R|2, |A⊥|2 = |A⊥L|2 + |A⊥R|2 and |A|||2 = |A||L|2 + |A||R|2. The

amplitudes A0, A|| and A⊥ correspond to different polarisation states of the K∗0 in the

decay. The labels L and R refer to the left and right chirality of the dielectron system.

Given the definition of φ̃, the observable A
(2)
T is averaged between B0 and B0 decays,

while AIm
T corresponds to a CP asymmetry [15]. The observable FL is the longitudinal

polarisation of the K∗0 and is expected to be small at low q2, since the virtual photon

1Using refs. [1, 14] it can be shown that the ratio of the S-wave fraction to the fraction of longitudinal

polarisation of the K∗0 is constant as function of q2 in the 0-6 GeV2/c4 range.
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is then quasi-real and therefore transversely polarised. The observable ARe
T is related to

the forward-backward asymmetry AFB by ARe
T = 4

3AFB/(1 − FL) [2]. The observables

A
(2)
T and AIm

T , in the limit q2 → 0, can be expressed as simple functions of the C7 and C′7
coefficients [2]

A
(2)
T (q2 → 0) =

2Re(C7C′∗7 )

|C7|2 + |C′7|2
and AIm

T (q2 → 0) =
2Im(C7C′∗7 )

|C7|2 + |C′7|2
. (1.3)

These measurements therefore provide information on photon polarisation amplitudes,

similar to that obtained by the CP asymmetry measured through time-dependent analyses

in B0→ K∗0(→ K0
Sπ

0)γ decays [16, 17].

This paper presents measurements of FL, A
(2)
T , AIm

T and ARe
T of the B0→ K∗0e+e−

decay in the bin corresponding to a reconstructed q2 from 0.0004 to 1 GeV2/c4.

2 The LHCb detector and data set

The study reported here is based on pp collision data, corresponding to an integrated

luminosity of 3.0 fb−1, collected at the Large Hadron Collider (LHC) with the LHCb

detector [18, 19] at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. The

LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range

2 < η < 5, designed for the study of particles containing b or c quarks. The detector includes

a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the

pp interaction region [20], a large-area silicon-strip detector located upstream of a dipole

magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors

and straw drift tubes [21] placed downstream of the magnet. The tracking system provides

a measurement of momentum, p, with a relative uncertainty that varies from 0.5% at low

momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex,

the impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT
is the component of the momentum transverse to the beam, in GeV/c. Different types

of charged hadrons are distinguished using information from two ring-imaging Cherenkov

detectors [22]. Photons, electrons and hadrons are identified by a calorimeter system

consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter

(ECAL) and a hadronic calorimeter. Muons are identified by a system composed of

alternating layers of iron and multiwire proportional chambers [23].

The trigger [24] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction. For

signal candidates to be considered in this analysis, all tracks from the B0→ K∗0e+e− decay

must have hits in the vertex detector and at least one of the tracks from the B0→ K∗0e+e−

decay must meet the requirements of the hardware electron or hadron triggers, or the

hardware trigger must be fulfilled independently of any of the decay products of the signal

B0 candidate (usually triggering on the other b hadron in the event). The hardware electron

trigger requires the presence of an ECAL cluster with a minimum transverse energy between

2.5 GeV and 2.96 GeV depending on the data taking period. The hardware hadron trigger

requires the presence of a cluster in the hadron calorimeter with a transverse energy greater
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than 3.5 GeV. The software trigger requires a two-, three- or four-track secondary vertex

with a significant displacement from the primary pp interaction vertices (PVs). At least

one charged particle must have a transverse momentum pT > 1.7 GeV/c and be inconsistent

with originating from the PV. A multivariate algorithm [25] is used for the identification of

secondary vertices consistent with the decay of a b hadron.

Samples of simulated B0→ K∗0e+e− events are used to determine the efficiency to

trigger, reconstruct and select signal events. In addition, specific samples of simulated

events are utilised to estimate the contribution from exclusive backgrounds and to model

their mass and angular distributions. The pp collisions are generated using Pythia [26?

] with a specific LHCb configuration [28]. Decays of hadronic particles are described by

EvtGen [29], in which final-state radiation is generated using Photos [30]. The interaction

of the generated particles with the detector, and its response, are implemented using the

Geant4 toolkit [31? ] as described in ref. [33]. The simulated samples are corrected

for known differences between data and simulation in particle identification [22], detector

occupancy and hardware trigger efficiency.

3 Selection of signal candidates

Bremsstrahlung radiation, if not accounted for, would worsen the B0 mass resolution. If

the radiation occurs downstream of the dipole magnet, the momentum of the electron is

correctly measured and the photon energy is deposited in the same calorimeter cell as

the electron. If photons are emitted upstream of the magnet, the electron momentum is

evaluated after photon emission, and the measured B0 mass is shifted. In general, these

bremsstrahlung photons deposit their energy in different calorimeter cells than those hit by

the electron. In both cases, the ratio of the energy detected in the ECAL to the momentum

measured by the tracking system, an important variable in identifying electrons, remains

unbiased. To improve the momentum reconstruction, a dedicated bremsstrahlung recovery

is used. Contributions from photon candidates, neutral clusters with transverse energy

greater than 75 MeV, found within a region of the ECAL defined by the extrapolation of

the electron track upstream of the magnet, are added to the measured electron momentum.

Oppositely charged electron pairs formed from tracks with pT exceeding 350 MeV/c and

with a good-quality vertex are used to form signal candidates. If the same bremsstrahlung

photon is associated with both the e+ and the e−, its energy is added randomly to one of

the tracks. The reconstructed e+e− invariant mass is required to be in the range 20–1000

MeV/c2 (0.0004 < q2 < 1 GeV2/c4). The choice of the lower bound is a compromise between

the gain in sensitivity to the photon polarisation from measuring as low as possible in q2 and

a degradation of the resolution in φ̃ as q2 decreases, due to multiple scattering, as shown

in figure 2. The lower bound requirement at 20 MeV/c2 on the e+e− invariant mass also

serves to reduce the background from B0→ K∗0γ decays followed by a photon conversion

in the material, noted below as B0→ K∗0γe+e− .

Candidate K∗0 mesons are reconstructed in the K∗0 → K+π− mode where the pT of

the K+ (π−) meson is required to be larger than 400 (300) MeV/c and charged pions and

kaons are identified using information from the RICH detectors.
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Figure 2: Resolution on the φ̃ angle as a function of the e+e− invariant mass as obtained from

LHCb simulated events.

Candidate K∗0 mesons and e+e− pairs are required to have a common good-quality

vertex to form B0 candidates. When more than one PV is reconstructed, the one giving

the smallest IP χ2 for the B0 candidate is chosen. The reconstructed decay vertex of

the B0 candidate is required to be significantly separated from the PV and the candidate

momentum direction to be consistent with its direction of flight from the PV. The B0 mass

resolution, the angular acceptance and the rates of physics and combinatorial backgrounds

depend on how the event was triggered. The data sample is therefore divided into three

mutually exclusive categories: events for which one of the electrons from the B0 decay

satisfies the hardware electron trigger, events for which one of the hadrons from the B0

decay satisfies the hardware hadron trigger and events triggered by activity in the event

not due to any of the signal decay particles.

In order to maximise the signal efficiency while reducing the high level of combina-

torial background, a multivariate classifier based on a boosted decision tree algorithm

(BDT) [34, 35] is used. The signal training sample is composed of simulated B0→ K∗0e+e−

events and the background training sample is taken from the upper invariant mass sideband

(m(K+π−e+e−) > 5600 MeV/c2) of B0→ K∗0e+e− decays reconstructed in half of the data

sample. Two separate BDTs are used, one each for half of the data sample. They are

optimised separately and applied to the complementary half of the data in order to avoid

any potential bias due to the use of the data upper sideband for the background sample.

The BDT uses information about the event kinematic properties, vertex and track quality,

IP and pT of the tracks, flight distance from the PV as well as information about isolation of

the final state particles.2 The selection is optimised to maximise NS/
√
NS +NB separately

for the three trigger categories and the two BDTs through a grid search of the set of criteria

for the particle identification of the four final state particles and the BDT response. The

background yield (NB) is extrapolated into the signal range using the m(K+π−e+e−) dis-

tribution outside a ±300 MeV/c2 window around the known B0 mass. The expected signal

2The isolation is defined as the number of good two-track vertices that one of the candidate signal tracks

can make with any other track in the event [36].
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yield (NS) is obtained using the B0→ K∗0e+e− simulation and the known B0→ K∗0e+e−

branching fraction [13], and correcting for data-to-simulation differences in the selection

efficiency obtained using the well known B0→ J/ψ (e+e−)K∗0 decay. The efficiency of this

requirement on the selected signal is 93% while the background is reduced by two orders of

magnitude. The expected values for NS/
√
NS +NB range from 3.9 to 7.5 depending on

the trigger category.

4 Exclusive and partially reconstructed backgrounds

Several sources of background are studied using samples of simulated events, corrected to

reflect the difference in particle identification performances between data and simulation.

A large non-peaking background comes from the B0 → D−e+ν decay, with

D− → e−νK∗0 which has a combined branching fraction about four orders of magnitude

larger than that of the signal. In the rare case where both neutrinos have low energies,

the signal selection is ineffective at rejecting this background which tends to peak towards

cos θ` ≈ 1. In order to avoid any potential bias in the measurement of the ARe
T parameter,

a symmetric requirement of | cos θ`| < 0.8 is applied to suppress this background, resulting

in a loss of signal of the order of 10%.

To suppress background from B0
s→ φe+e− decays, with φ→ K+K−, where one of the

kaons is misidentified as a pion, the two-hadron invariant mass computed under the K+K−

hypothesis is required to be larger than 1040 MeV/c2.

Background from the decay Λ0
b→ pK−e+e− is suppressed by rejecting events where

the pion is consistent with being a proton, according to the information from the RICH

detectors.

The probability for a decay B0→ K∗0e+e− to be misidentified as B0→ K∗0e+e− is

estimated to be 1.1 % using simulated events and this background is therefore neglected.

Another important source of background comes from the B0→ K∗0γ decay, where the

photon converts into an e+e− pair. In LHCb, approximately 40% of the photons convert

before reaching the calorimeter, and although only about 10% are reconstructed as an e+e−

pair with hits in the vertex detector, the resulting mass of the B0 candidate peaks in the

signal region. Two very effective criteria for suppressing this background are the minimum

requirement on the e+e− invariant mass, m(e+e−) > 20 MeV/c2, and a requirement that

the uncertainty of the reconstructed z coordinate of the e+e− pair, σz(e
+e−), is less than

30 mm. These requirements reject more than 99% of simulated B0→ K∗0γ events. The

remaining contamination is estimated by normalising the simulated B0→ K∗0γe+e− to the

observed yield without the σz(e
+e−) criterion and requiring the e+e− invariant mass to be

lower than 5 MeV/c2. The residual contamination from B0→ K∗0γ decays is (3.8± 1.9)%

of the signal yield. Part of this background comes from low-mass e+e− pairs that are

reconstructed at larger masses due to multiple scattering. The remainder comes from direct

Bethe-Heitler pair-production at masses larger than 20 MeV/c2. To obtain an accurate

estimate of this component, the Geant4 simulation is reweighted as a function of the true

e+e− mass to match the distribution of ref. [37] since Geant4 does not model correctly

the high-mass e+e− pair production.
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Another possible source of contamination is the decay B0→ K∗0V (→ e+e−) where

V is a ρ, ω or φ meson. Expected rates for these backgrounds have been evaluated in

refs. [4, 38]. The effects of direct decays or interference with the signal decay are found to

be negligible after integrating over the q2 range.

Partially reconstructed (PR) backgrounds arising from B0→ K∗0e+e−X decays, where

one or more of the decay products (X) from the B0 decay is not reconstructed, are also

taken into account. These incomplete events are mostly due to decays involving higher

K∗ resonances, hereafter referred to as K∗∗. The decays B0→ K∗0η and B0→ K∗0π0

are also studied and several cases are considered: the case when the e+e− pair comes

from a converted photon in the material, the case when the e+ and e− originate from the

conversions of the two photons and finally the case of the Dalitz decay of the η or the π0.

They contribute about 25% of the PR background in the angular fitting domain.

5 Fit to the K+π−e+e− invariant mass distribution

In a first step, a mass fit over a wide mass range, from 4300 to 6300 MeV/c2, is performed

to estimate the size of the B0→ K∗0e+e− signal, the combinatorial background and the

PR background. The fractions of each component are determined from unbinned maximum

likelihood fits to the mass distributions separately for each trigger category. The mass

distribution of each category is fitted to a sum of probability density functions (PDFs),

modelling the different components. Following the strategy of ref. [39], the signal PDF

depends on the number of neutral clusters that are added to the dielectron candidate to

correct for the effects of bremsstrahlung. The signal is described by the sum of a Crystal Ball

function [40] (CB) and a wide Gaussian function accounting for the cases where background

photons have been associated; the CB function accounts for over 90% of the total signal

PDF. The shape of the combinatorial background is parameterised by an exponential

function. Finally, the shape of the PR background is described by non-parametric PDFs [41]

determined from fully simulated events passing the selection.

The signal shape parameters are fixed to the values obtained from fits to simula-

tion but the widths and mean values are corrected for data simulation differences using

B0→ J/ψ (e+e−)K∗0 as a control channel. Since the photon pole contribution dominates

in the low-q2 region, the PR background is expected to be similar for B0→ K∗0e+e− and

B0→ K∗0γ. The large branching fraction of the decay B0→ K∗0γ allows the fractions

of PR background relative to the signal yield to be determined from the data. These

fractions are extracted from a fit to a larger sample of events obtained by removing the

requirements on the lower bound of the e+e− invariant mass and on σz(e
+e−) and therefore

dominated by B0→ K∗0γe+e− events. The invariant mass distribution, together with the

PDFs resulting from this fit, is shown in figure 3(a) for the three trigger categories grouped

together. The corresponding distribution for the B0→ K∗0e+e− fit is shown in figure 3(b).

There are 150 ± 17 B0→ K∗0e+e− signal events, 106 ± 16 PR background events and

681± 32 combinatorial background events in the 4300−6300 MeV/c2 window.

In this wide mass window, the sample is dominated by combinatorial background,

whose angular shape is difficult to model. Furthermore the angular distributions depend

– 8 –



J
H
E
P
0
4
(
2
0
1
5
)
0
6
4

]2c/ [MeV)−e+e−π+K(m
4500 5000 5500 6000

) 2 c
C

an
di

da
te

s 
/ (

40
 M

eV
/

0

20

40

60

80

100

120

140

160

180

200

220

Data

Model

−e+e
γ0*K → 0B

−e+e)X0*K (→B 

Combinatorial

LHCb
(a)

]2c/ [MeV)−e+e−π+K(m
4500 5000 5500 6000

) 2 c
C

an
di

da
te

s 
/ (

40
 M

eV
/

0

20

40

60

80

100

Data

Model
−e+e0*K → 0B

−e+e)X0*K (→B 

Combinatorial

LHCb
(b)

Figure 3: Invariant mass distribution for (a) the B0→ K∗0γe+e− and (b) the B0→ K∗0e+e−

decay modes and the three trigger categories grouped together. The dashed line is the signal PDF,

the light grey area corresponds to the combinatorial background and the dark grey area is the PR

background. The solid line is the total PDF. The two vertical dotted lines on the B0→ K∗0e+e−

plot indicate the signal window that is used in the angular fit.

on the kinematic properties of the background and may thus vary as functions of mass.

Hence, the angular fit is performed in a narrower mass window from 4800 MeV/c2 to

5400 MeV/c2. In this restricted window there are 124 B0→ K∗0e+e− signal events, 38 PR

and 83 combinatorial background events, corresponding to a signal-to-background ratio

of the order of one. About half of these events belong to the electron hardware trigger

category and the rest are equally distributed between the other two categories.

6 Angular acceptance and angular modelling of the backgrounds

6.1 Angular acceptance

The angular acceptance is factorised as ε(cos θ`, cos θK , φ̃) = ε(cos θ`)ε(cos θK)ε(φ̃) as sup-

ported by simulation studies. The three corresponding one-dimensional angular distributions

for the B0→ K∗0e+e− decay are distorted by the geometrical acceptance of the detector,

the trigger, the event reconstruction and the selection. Furthermore, their precise shapes

depend upon the various trigger categories, each being enriched in events with different

kinematic properties. For the φ̃ angle, a uniform acceptance is expected. However, there are

distortions in both the cos θ` and cos θK distributions, mainly arising from requirements on

the transverse momenta of the particles. The cos θK acceptance is asymmetric due to the

momentum imbalance between the kaon and the pion from the K∗0 decay in the laboratory

frame due to their different masses. The cos θK and cos θ` acceptance distributions are

modelled on simulated B0→ K∗0e+e− events with Legendre polynomials of fourth order.

The functions chosen to model the cos θ` acceptance are assumed to be symmetric and

modified by a linear term to estimate the systematic uncertainty on the ARe
T parameter.

For the φ̃ acceptance, no significant deviation from uniformity is observed. To estimate the

systematic uncertainty, modulations in cos 2φ̃ or sin 2φ̃ are allowed. Such modulations are

the most harmful ones since they may be confused with physics processes yielding non-zero

values of A
(2)
T or AIm

T .
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6.2 Angular modelling of the backgrounds

In the mass window 4800 < m(K+π−e+e−) < 5400 MeV/c2 used in the angular analysis,

about one third of the events are combinatorial background. The angular distribution of

these events is described by the product of three independent distributions for cos θ`, cos θK
and φ̃. This background largely dominates at low m(K+π−e+e−): between 4300 MeV/c2

and 4800 MeV/c2, about 90% of the events are combinatorial background according to

the mass fit shown in figure 3. However, the angular distributions of the background

depend upon m(K+π−e+e−) and the information from the lower mass window cannot be

used directly for modelling the signal region. The effect of this correlation is extracted

from a sample of data events selected with a looser BDT requirement but excluding the

region of the BDT response corresponding to the signal. With this selection the sample is

dominated by background in the whole mass range. The cos θK background distributions

are modelled as first order polynomials. The cos θ` background distributions are modelled

with polynomial functions with third and fourth order terms. The φ̃ distributions are

compatible with being uniform. This method assumes that there is no strong correlation

between the BDT response and m(K+π−e+e−). This assumption is tested by subdividing

the sample of events with looser BDT response and comparing the differences between

the angular shapes predicted by this procedure and those observed. These differences are

smaller than the statistical uncertainties of the parameters used to describe the angular

shapes. The statistical uncertainties are thus used to assess the size of the systematic

uncertainties due to the combinatorial background modelling.

The PR background accounts for about 15% of the events in the angular fit mass

window. These events cannot be treated in the same way as the combinatorial ones. Since

only one or two particles are not reconstructed, the observed angular distributions retain

some of the features induced by the dynamics of the decay. Hence, they are modelled

using the same functional shapes as the signal, but with independent physics parameters,

FL,PR, A
(2)
T,PR, AIm

T,PR and ARe
T,PR. The loss of one or more final-state hadrons leads to a

smaller apparent polarisation of the K∗0. While on B0→ K∗0γ simulated events the FL

parameter is found to be zero, it reaches 17% for simulated B→ γK∗∗(→ KπX) events.

Since in the SM one expects an FL value of the order of 15 to 20%, FL,PR is assumed to be

equal to 1/3, which is equivalent to no polarisation. This parameter is varied between 17%

and 50% to assess the size of the systematic uncertainty associated with this hypothesis.

Similarly, the loss of information due to the unreconstructed particles leads to a damping of

the transverse asymmetries of the PR background, A
(2)
T,PR, AIm

T,PR and ARe
T,PR, compared to

those of the signal. The signal transverse asymmetries are expected to be small in the SM,

therefore their values are set to zero to describe the angular shape of the PR background.

For A
(2)
T,PR and AIm

T,PR the validity of this assumption is tested by comparing angular fits

to B→ J/ψK∗∗(→ KπX) and B0→ J/ψK∗0 simulated events, which confirms a damping

factor compatible with zero. The systematic uncertainty associated with this assumption is

estimated by varying A
(2)
T,PR and AIm

T,PR up to half of the fitted signal values of A
(2)
T and

AIm
T , i.e. assuming a damping factor of 0.5. For the ARe

T,PR parameter, however, one cannot

estimate a damping factor with the same method since in the B→ J/ψK∗0 decay the value
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of ARe
T is zero. The systematic uncertainty is evaluated by allowing the ARe

T,PR parameter

to be as high as the ARe
T value obtained from the B0→ K∗0e+e− angular fit.

7 Measurement of the angular observables

7.1 Fit results

To measure the four angular observables, FL, A
(2)
T , AIm

T and ARe
T , an unbinned maximum

likelihood fit is performed on the m(K+π−e+e−), cos θ`, cos θK and φ̃ distributions in the

signal window defined in section 5. The inclusion of m(K+π−e+e−) in the fit strongly

improves its statistical power since the level of background varies significantly within the

signal mass window. The fit is performed simultaneously on the three trigger categories

sharing the fit parameters associated with the angular observables. The mass PDFs for the

three components (signal, PR background and combinatorial background) are obtained from

the fit described in section 5. The angular PDFs for the signal are obtained by multiplying

the formula of eq. 1.1 by the acceptance described in section 6. Similarly, the angular

PDFs for the PR background are modelled by using eq. 1.1 and the acceptance described in

section 6 and setting FL,PR = 0.33 and A
(2)
T,PR = AIm

T,PR = ARe
T,PR = 0. Finally, the angular

PDFs for the combinatorial background are described in section 6. The combinatorial

and PR background fractions are constrained to the values calculated from the mass fit

described in section 5. The fit is validated using a large number of pseudo-experiments that

include all the components of the fits. Several input values for the angular observables,

FL, A
(2)
T , AIm

T and ARe
T , are studied including those associated with NP models, and the fit

results are in good agreement with the inputs. The fitting procedure is also verified using a

large sample of fully simulated events; the fitted values of FL, A
(2)
T , AIm

T and ARe
T are in

excellent agreement with the generated ones. This validates not only the fit but also the

assumption that the angular acceptance factorises. The distributions of m(K+π−e+e−),

cos θ`, cos θK and φ̃, together with the likelihood projections resulting from the fit, are

shown in figure 4 and the fit results are given in table 1. The fitted values of FL, A
(2)
T , AIm

T

and ARe
T are corrected for the (3.8 ± 1.9)% contamination from B0→ K∗0γe+e− decays,

assuming that FL,K∗0γ , A
(2)
T,K∗0γ

, AIm
T,K∗0γ and ARe

T,K∗0γ are all equal to zero, and are used

for the computation of the systematic uncertainties related to the angular description of

the PR background. The fitted values are also corrected for the small fit biases due to the

limited size of the data sample.

7.2 Systematic uncertainties

To evaluate the contributions from the possible sources of systematic uncertainty, pseudo-

experiments with modified parameters are generated and fitted with the PDFs used to

fit the data. Fit results are then compared with input values to assess the size of the

uncertainties.

The systematic uncertainties due to the modelling of the angular acceptance are

estimated by varying the shapes introducing functional dependences that would bias the

angular observables.
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Uncorrected values Corrected values

FL 0.15± 0.06 0.16± 0.06± 0.03

A
(2)
T −0.22± 0.23 −0.23± 0.23± 0.05

AIm
T +0.14± 0.22 +0.14± 0.22± 0.05

ARe
T +0.09± 0.18 +0.10± 0.18± 0.05

Table 1: Fit results for the angular observables FL, A
(2)
T , AIm

T and ARe
T . The second column

corresponds to the uncorrected values directly obtained from the fit while the third column gives

the final results after the correction for the (3.8± 1.9)% of B0→ K∗0γe+e− contamination and for

the small fit biases due to the limited size of the data sample. The first uncertainty is statistical and

the second systematic.
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Figure 4: Distributions of the K+π−e+e− invariant mass, cos θ`, cos θK and φ̃ variables for the

B0→ K∗0e+e− decay mode and the three trigger categories grouped together. The dashed line is

the signal PDF, the light grey area corresponds to the combinatorial background, the dark grey

area is the PR background. The solid line is the total PDF.

The uncertainties due to the description of the shape of the combinatorial background

are obtained from the uncertainties on the parameters describing the shapes and by allowing

for potential cos 2φ̃ and sin 2φ̃ modulations.

To estimate the uncertainties due to the modelling of the PR background the FL,PR

parameter is varied between 0.17 and 0.5. The systematic uncertainties related to the A
(2)
T

and AIm
T observables depend on the values of the observables themselves: their sizes are

assessed by varying the damping factor up to 0.5, i.e. reducing the distortions of the φ̃
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Source σ(FL) σ(A
(2)
T ) σ(AIm

T ) σ(ARe
T )

Acceptance modelling 0.013 0.038 0.035 0.031

Combinatorial background 0.006 0.030 0.029 0.038

PR background 0.019 0.011 0.007 0.009

B0→ K∗0γ contamination 0.003 0.004 0.003 0.002

Fit bias 0.008 - - 0.010

Total systematic uncertainty 0.03 0.05 0.05 0.05

Statistical uncertainty 0.06 0.23 0.22 0.18

Table 2: Summary of the systematic uncertainties.

distribution of the PR background by a factor of two compared to the signal ones. For the

ARe
T parameter, the systematic uncertainty is estimated by varying ARe

T,PR up to the fitted

value obtained for B0→ K∗0e+e−.

The systematic uncertainties from the B0 → K∗0γe+e− background are due to the

uncertainty on the size of the contamination.

Finally, to estimate possible biases due to the fitting procedure, a large number of

pseudo-experiments are generated with the number of events observed in data and are fitted

with the default PDFs. While the A
(2)
T and AIm

T estimates are not biased, the FL and ARe
T

observables exhibit small biases (less than 10% of the statistical uncertainties) due to the

limited size of the data sample and are corrected accordingly. The values of the corrections

are assigned as uncertainties (labelled as “Fit bias” in table 2) .

The systematic uncertainties are summarised in table 2. The systematic uncertainties

on the FL, A
(2)
T , AIm

T and ARe
T angular observables in table 1 are obtained by adding these

contributions in quadrature. They are, in all cases, smaller than the statistical uncertainties.

7.3 Effective q2 range of the selected B0→ K∗0e+e− signal events

The distribution of the reconstructed q2 for the signal is obtained using the sPlot tech-

nique [42] based on the B0 invariant mass spectrum and shown in figure 5. Taking into

account the effect of event migration in and out the q2 bin, the average value of the true q2 of

the selected signal events is equal to q2 = 0.17± 0.04 GeV2/c4. The acceptance as a function

of the true q2, obtained from the LHCb simulation, is uniform in a large domain except close

to the limits of the reconstructed q2, 0.0004 and 1 GeV2/c4. Due to reconstruction effects,

the q2 effective limits are slightly different. Because of reduced acceptance in the low-q2

region, the value of the lower q2 effective limit is increased; because of bremsstrahlung

radiation, events with a true q2 greater than 1 GeV2/c4 are accepted by the selection and

the higher q2 effective limit is also increased. The values of these effective boundaries are

obtained by requiring that in the low- and high- q2 regions the same number of events are

obtained in a uniform acceptance model and in the LHCb simulation. The true q2 effective

region is thus determined to be between 0.002 and 1.12 GeV2/c4. It is checked, using the

LHCb simulation, that the average values of the true q2 and of the angular observables

evaluated with a uniform acceptance in the region between 0.002 and 1.12 GeV2/c4 are in

agreement with those obtained from the angular fit performed on the events selected in
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Figure 5: Distribution of the reconstructed q2 from an sPlot of data (black points). The dashed

line represents the B0→ K∗0e+e− contribution and the grey area corresponds to the 3.8% B0→
K∗0γe+e− contamination. The solid line is the sum of the two.

the reconstructed q2 interval 0.0004 to 1 GeV2/c4. An uncertainty on the q2 effective limits

is assigned as half of the q2 limit modification. The true q2 effective range is thus from

0.0020± 0.0008 to 1.120± 0.060 GeV2/c4. This range should be used to compare the FL,

A
(2)
T , AIm

T and ARe
T measurements with predictions.

8 Summary

An angular analysis of the B0→ K∗0e+e− decay is performed using proton-proton collision

data, corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experi-

ment in 2011 and 2012. Angular observables are measured for the first time in an effective

q2 range from 0.0020± 0.0008 to 1.120± 0.060 GeV2/c4. The results are

FL = 0.16± 0.06± 0.03

A
(2)
T = −0.23± 0.23± 0.05

AIm
T = +0.14± 0.22± 0.05

ARe
T = +0.10± 0.18± 0.05,

where the first contribution to the uncertainty is statistical and the second systematic.

The results are consistent with SM predictions [2, 43]. For the low average value of q2 of

this analysis, the formulae relating A
(2)
T and AIm

T and C7 and C′7 in eq. 1.3 are accurate at

the 5% level, for SM values of the ratios of Wilson coefficients C9/C7 and C10/C7. At this

level of precision and for SM values of C7, the ratio C′7/C7 is compatible with zero. This

determination is more precise than that obtained from the average of the time-dependent

measurements of CP asymmetry in B0→ K∗0(→ K0
Sπ

0)γ decays [16, 17].
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[26] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)

026 [hep-ph/0603175] [INSPIRE].
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s Università di Pisa, Pisa, Italy
t Scuola Normale Superiore, Pisa, Italy
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