Poleable Nanoparticles as Fillers Towards Non-linear Optically Active Actuators

A new type of poleable dielectric elastomer is introduced herein. The elastomer contains polymer nanoparticles with frozen molecular dipoles, which can be oriented at elevated temperatures in an electric field via poling. The aim is to provide a soft material with high, tunable optical properties suitable for actuator and flexible electronics applications. To that end poleable polymeric nanoparticles with high dipole concentrations and glass transition temperatures well above room temperature will be needed to be used as filler in an elastomer matrix. The synthesis and characterization of such particles is presented in this manuscript. Polyhydroxyethyl methacrylate (PHEMA) nanoparticles were synthesized using miniemulsion polymerization. The particles were loaded with 4-[ ethyl (2-hydroxyethyl) amino]-4-nitrobenzene, usually called Disperse Red 1 (DR1), which has a large dipole moment (mu = 7.5 - 9.5 D). (1) The maximum dipole loadings is limited by the solubility of the dipole in the monomer solutions prior to polymerization. All samples show a glass transition temperature around 95 degrees C. Secondary electron microscopy (SEM) revealed spherical particles, the size of which was confirmed by dynamic light scattering (DLS) measurements. A composite was prepared by dispersing the particles in polydimethyl siloxane (PDMS).


Editor(s):
Barcohen, Y
Published in:
Electroactive Polymer Actuators And Devices (Eapad) 2015, 9430, 94302U
Presented at:
Conference on Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, MAR 09-12, 2015
Year:
2015
Publisher:
Bellingham, Spie-Int Soc Optical Engineering
ISSN:
0277-786X
ISBN:
978-1-62841-533-9
Keywords:
Laboratories:




 Record created 2015-09-28, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)