Recent Advances in Carbon Capture with Metal-Organic Frameworks

The escalating level of CO2 in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO2 emissions, however, the energy cost associated with post-combustion carbon capture process alone is similar to 30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO2. In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO2 adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

Published in:
Chimia, 69, 5, 274-283
Bern, Swiss Chemical Soc

 Record created 2015-09-28, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)