Abstract

A solution processable, molecular organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene), was employed as hole transport material (HTM) in mesoscopic methylammonium lead iodide perovskite solar cells. TIPS-pentacene is potentially cost effective, exhibits a relatively high hole mobility and has a favourable HOMO level with respect to the valence band of perovskite. The photovoltaic performance of perovskite solar cells with TIPS-pentacene as HTM in its pristine form and with a dopant/additive was investigated and compared with classical spiro-OMeTAD based devices. Through solvoneering (solvent engineering) and concentration optimization TIPS-pentacene in its pristine form gave a very competitive power conversion efficiency (PCE) of 11.8% under 1 sun conditions. The open circuit voltage of 0.92 V and a short circuit current density of 20.86 mA cm(-2) for the devices with pristine TIPS-pentacene were higher compared to doped spiro-OMeTAD based devices under similar conditions, thus paving the use of TIPS-pentacene as an alternative to an expensive spiro-OMeTAD for large area integration in perovskite based solar cells.

Details

Actions