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ABSTRACT

We derived constraints on cosmological parameters using weak lensing peak statistics mea-
sured on the ~130deg’ of the Canada—France—Hawaii Telescope Stripe 82 Survey. This
analysis demonstrates the feasibility of using peak statistics in cosmological studies. For our
measurements, we considered peaks with signal-to-noise ratio in the range of v = [3, 6].
For a flat A cold dark matter model with only (2,,, og) as free parameters, we constrained
the parameters of the following relation ¥g = 03(£2,,/0.27)* to be X3 = 0.82 £ 0.03 and
a = 0.43 + 0.02. The « value found is considerably smaller than the one measured in two-
point and three-point cosmic shear correlation analyses, showing a significant complement
of peak statistics to standard weak lensing cosmological studies. The derived constraints on
(2, og) are fully consistent with the ones from either WMAP9 or Planck. From the weak

0.27

lensing peak abundances alone, we obtained marginalized mean values of Q,, = 0.38¥3}
and og = 0.81 £ 0.26. Finally, we also explored the potential of using weak lensing peak
statistics to constrain the mass—concentration relation of dark matter haloes simultaneously

with cosmological parameters.

Key words: gravitational lensing: weak —dark matter — large-scale structure of Universe.

1 INTRODUCTION

Large-scale structures in the Universe perturb the propagation of
light rays from background sources causing small shape distortions
and luminosity changes for their observed images (e.g. Bartelmann

* E-mail: 1xk98479 @pku.edu.cn (LX); fanzuhui @pku.edu.cn (ZF)

& Schneider 2001). Such effects, namely weak lensing effects,
are closely related to the formation and evolution of foreground
structures and the global expansion history of the Universe, and
therefore are known to be one of the most promising probes in
cosmological studies (e.g. Albrecht et al. 2006; LSST Dark Energy
Science Collaboration 2012; Amendola et al. 2013; Weinberg et al.
2013). The cosmic shear two-point (2-pt) correlation analysis has
been demonstrated to be a powerful statistics in extracting weak
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lensing signals from shape measurements of background galaxies
(e.g. Fu et al. 2008; Heymans et al. 2012; Jee et al. 2013; Kilbinger
etal. 2013; Kitching et al. 2014). On the other hand, 2-pt correlations
can only reveal part of the cosmological information embedded
in weak lensing signals given the non-linearity of the structure
formation. To overcome this limitation, higher order cosmic shear
correlation analyses are a natural extension (e.g. Semboloni et al.
2011; van Waerbeke et al. 2013; Fu et al. 2014). Weak lensing peak
statistics, i.e. concentrating on high signal regions, is another way
to probe efficiently the non-linear regime of the structure formation,
and thus can provide important complements to the cosmic shear
2-ptcorrelation analysis (e.g. White, van Waerbeke & Mackey 2002;
Hamana, Takada & Yoshida 2004; Hennawi & Spergel 2005; Tang
& Fan 2005; Dietrich & Hartlap 2010; Kratochvil, Haiman & May
2010; Yang et al. 2011; Marian et al. 2012; Hilbert et al. 2012; Bard
et al. 2013; Lin & Kilbinger 2014)

Observationally, different analyses have proved the feasibility of
performing weak lensing peak searches from data (e.g. Wittman
et al. 2006; Gavazzi & Soucail 2007; Miyazaki et al. 2007; Geller
et al. 2010). However, up to now, few cosmological constraints are
derived from weak lensing peak statistics in real observations. There
are two main reasons for lack of such analyses. First, weak lensing
observations are just starting to reach significantly large survey areas
to provide reasonable statistics for peak abundances (e.g. Shan et al.
2012, 2014; van Waerbeke et al. 2013). The second reason is the
theoretical difficulty to calculate the cosmology dependence of peak
abundances.

Theoretically, high signal-to-noise (S/N) weak lensing signal re-
gions are expected to be associated closely with massive structures
along lines of sight (e.g. White et al. 2002). Therefore, in princi-
ple, weak lensing peak abundances should reflect the underlying
mass function of dark matter haloes weighted by the lensing ef-
ficiency kernel (e.g. Hamana et al. 2004). In practice, however,
the correspondence between weak lensing peaks and the massive
dark matter haloes is influenced by various effects, such as the
noise from the intrinsic ellipticities of source galaxies, the pro-
jection effect of large-scale structures, and the hierarchical mass
distribution of dark matter haloes (e.g. van Waerbeke 2000; Tang
& Fan 2005; Hamana et al. 2012; Yang et al. 2013). Thus, it is
not straightforward to predict the cosmology dependence of weak
lensing peak abundances. One possible solution is to create a large
number of simulation templates for weak lensing peak statistics
densely sampled in cosmological-parameter space. By comparing
the observational measurements with the templates, we can derive
cosmological constraints (e.g. Dietrich & Hartlap 2010; Liu et al.
2015, hereafter LPH2015). Considering the large number of cosmo-
logical parameters and different physical and observational effects,
such an approach can be numerically expensive. Another efficient
way is to build theoretical models, which take into account the
impact of the different effects.

Based on simulation studies, Marian, Smith & Bernstein (2009,
2010) developed a phenomenological model for hierarchically de-
tected weak lensing peak abundances in which the 2D peak mass
function is scaled to the 3D mass function of dark matter haloes.
Hamana et al. (2004, 2012) derived a fitting formula for weak
lensing peak abundances by incorporating a probability function
in relating peak heights and underlying dark matter haloes at a
given mass and redshift. Calibrated with numerical simulations,
such a probability function tends to include the effects of noise
from intrinsic ellipticities of source galaxies, the projection effects
of large-scale structures and the non-spherical matter distributions
of dark matter haloes. Assuming Gaussian random fields for both

the projected field of large-scale structures and the shape noise,
Maturi et al. (2010) proposed a theoretical model to calculate the
number of contiguous areas above a given threshold in the filtered
convergence field. This is equivalent to the genus in Minkowski
functionals. When the threshold is high, this statistics corresponds
well to the number of peaks. By comparing with simulations, it
was shown that the model can predict well the number distribution
for relatively low thresholds, but underestimates the high threshold
regions that are mostly related to individual massive haloes (Maturi
et al. 2010; Petri et al. 2013).

In Fan, Shan & Liu (2010, hereafter F10), we have presented
a theoretical model taking into account the shape noise effects. In
this model, we divide a given area into halo regions occupied by
dark matter haloes with the size limited by their virial radii, and
the regions outside dark matter haloes. We first calculate the weak
lensing peak abundances in a halo region by assuming a density
profile for the halo and the Gaussianity of the shape noise. By em-
ploying the mass function of dark matter haloes with a lower mass
cut representing the halo mass above which single haloes domi-
nantly contribute to weak lensing peaks along their lines of sight,
we can then calculate statistically the peak distribution in regions
occupied by massive haloes. For the rest of the regions, we assume
that the peaks are purely noise peaks. Our model has been tested ex-
tensively by comparing with numerical simulations (F10; Liu et al.
2014, hereafter LWPF2014). It was shown that the model results
are in very good agreement with simulation results. It is noted that
the model in its present form does not contain the projection effects
of large-scale structures. For current generation of weak lensing
surveys with the surface number density of lensing-usable galax-
ies around n, ~ 10 arcmin~2, the shape noise is dominant over the
projection effects for the smoothing scale ~1 arcmin. Thus neglect-
ing the projection effects should not affect the model prediction
significantly. For future surveys with much improved statistics, the
projection effects need to be considered carefully, and we have
started to look into this problem.

For the Canada—France-Hawaii Telescope (CFHT) Stripe 82
Survey (CS82; e.g. Li et al. 2014; Shan et al. 2014; Hand et al.
2015), the number density of galaxies used in weak lensing stud-
ies is ~10arcmin~?, and the survey area excluding the masked
regions is ~130 deg?. For this survey, the shape noise is the dom-
inant source of contaminations on weak lensing peak analyses.
We thus expect that our model can work well in predicting theo-
retically the peak abundances. This in turn allows us to perform
cosmological constraints from observational weak lensing peak
abundances.

As this work was being completed, we became aware of the study
by LPH2015. They also analysed the cosmological application of
weak lensing peak statistics using CFHTLenS data. Their studies
are based on interpolations from a suite of simulation templates on
a grid of 91 cosmological models in the parameter space of (2,
og, w) ,where Q, g and w are, respectively, the dimensionless
matter density of the Universe, the amplitude of the extrapolated
linear matter density fluctuations smoothed over a top-hat scale of
8h~'Mpc, and the equation of state of dark energy. Using different
and independent approaches, LPH2015 and our work both showed
the promising potential of weak lensing peak statistics in cosmo-
logical studies.

The paper is organized as follows. In Section 2, we describe
briefly the CS82 survey. In Section 3, we present the procedures of
weak lensing peak analyses. In Section 4, we show the cosmological
constraints derived from peak abundances. Summary and discussion
are given in Section 5.
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2 CFHT STRIPE 82 SURVEY AND WEAK
LENSING CATALOGUES

The CS82 survey was conducted thanks to the collaboration between
the Canadian, French and Brazilian CFHT communities. CS82 cov-
ers a large fraction of the Sloan Digital Sky Survey (SDSS) Stripe 82
with high-quality i-band imaging under excellent seeing conditions
in the range of 0.4-0.8 arcsec with an average of 0.59 arcsec. The
survey contains a total of 173 tiles, 165 of which from CS82 obser-
vations and 8 from CFHT-LS Wide (Erben et al. 2013). Each CS82
tile was obtained from four consecutive dithered observations each
with an exposure time of 410 s. The derived 50 limiting magnitude
in a 2 arcsec diameter aperture is iyp ~ 24. After removing over-
lapping regions and applying all the masks across the entire survey,
the effective survey area is reduced from ~173 to ~130 deg’.

The same forward modelling LENSFIT pipeline (Miller et al. 2007,
2013) as that for CFHTLenS was used for the CS82 shape measure-
ments. As described in Miller et al. (2013), the LENSFIT algorithm
applied to CFHTLenS was calibrated using different sets of simu-
lated images with different observing conditions and point spread
functions (PSFs). For the shape measurement errors written in the
form of € = (1 4+ m)€e"™® + ¢, it is found that the multiplicative bias
factor m can be well modelled as a function of galaxy S/N ratio and
size. For the additive bias ¢, the simulation calibration shows that
it is consistent with zero. However for real data, the additive bias
can occur. Heymans et al. (2012) show that for the LENSFIT measure-
ments of CFHTLenS, the ¢; component is consistent with zero, but
there are small residues for c,. Similarly to m, the ¢, term also de-
pends on galaxy S/N ratio and size. It is noted that CFHTLenS has
a wide range of seeings, number of exposures, noise and depth, and
their influences on shape measurements can all be encoded into the
two parameters of galaxy S/N ratio and size. Therefore for CS82,
although the observing conditions are different from CFHTLenS,
the LENSFIT pipeline is well applicable. We should emphasize that al-
though we use the same LENSFIT pipeline as CFHTLenS, we measure
the PSFs and calculate the S/N ratio and size and the corresponding
bias terms m and ¢ for CS82 source galaxies ourselves.

In our weak lensing analyses, the selection criteria of source
galaxies are weight w > 0, FITCLASS = 0, MASK < 1. Here the
weight factor is the inverse variance weight accorded to each source
galaxy given by LENSFIT. The FITCLASS is an index for star/galaxy
classification provided by LENsFIT with FITCLASS = 0 for galaxies.
The index MASK describes the mask information at an object’s
position. Objects with MASK < 1 can safely be used for most weak
lensing analyses (Erben et al. 2013). No magnitude cut is applied for
the catalogue as fainter galaxies have lower weights. These criteria
result in a total number of source galaxies of 9281 681. The total
effective number of galaxies taking into account their weights is
5475318, and the corresponding average effective number density
is ~11.8 galaxies arcmin—2.

Not all the source galaxies have redshift information. In our the-
oretical calculations, we therefore adopt a redshift distribution de-
rived for the whole population of source galaxies, which is obtained
by magnitude matching of Cosmic Evolution Survey (COSMOS)
galaxies with the CS82 source galaxies (Shan et al. 2014; Hand
etal. 2015). It is given by

Zu +Z(1h
+c

p=(2) , ey

where a = 0.531, b = 7.810 and ¢ = 0.517. The median redshift

is zm = 0.76 and the mean redshift is z = 0.83. The normalized
redshift distribution is shown in Fig. 1.
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Figure 1. Normalized redshift distribution of CS82 source galaxies.

Because the COSMOS field is small, the sample variance can be
significant. There are also errors in the photometric redshift estima-
tions for COSMOS galaxies. Thus the CS82 redshift distribution
derived from COSMOS can have uncertainties. We will discuss the
impact of such uncertainties on peak analyses in Section 4.3.

3 WEAK LENSING PEAK ANALYSIS

3.1 Theoretical aspects

In the weak lensing theory under the framework of general relativity,
the deflection of light rays from a source can be written as the
gradient of a lensing potential ¥(#). The induced observational
effects can be described by the Jacobian matrix A, which is given
by (e.g. Bartelmann & Schneider 2001)

GRVA( k- —
A= (o= SPD) = (1Ko e ) o
’ 69,89/ ) l—x+ Y1
where the convergence « and the shear y; lead to the isotropic

change and the elliptical shape distortion of the observed image,
respectively, with respect to the unlensed image. They are related

to the potential by
1 1%y %y %y
= ~V%y, = == - ==, = . 3
K 2 l// Vi 2 <a291 6292 V2 agl 602 ( )

In the weak lensing regime under the Born approximation, we have

_ 3HiQum /‘X ay LEOO G = X 8L ()6, X )
2¢? fx GO a(x’)

where H) is the Hubble constant, y is the comoving radial distance,
fx 1s the comoving angular-diameter distance, a is the scale factor
of the universe and § is the density perturbation along the line of
sight.

The convergence « is directly related to the projection of line-of-
sight density fluctuations weighted by the lensing efficiency factor.
Physically, massive structures generate large weak lensing signals
along their lines of sight. These peak signals are best seen visually
in the weak lensing convergence field. On the other hand, weak
lensing signals directly extracted from galaxy shape measurements
are the shears, or more precisely the reduced shears defined as
gi = y:/(1 — k), rather than the convergence. Therefore, weak lens-
ing peak analysis usually involves procedures to construct quanti-
ties representing the projected mass distribution from lensing shears

, @
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based on the relation between the two quantities shown in equation
3).

Specifically, assuming precise shape measurements, the observed
ellipticity of a galaxy at redshift z located at the sky position @ can be
written in a complex form given by (e.g. Seitz & Schneider 1997)

14+ g%(0,2)ei(0, 2)
6(0,2) = 0 0 (5)

14 g(0,2)€(0, 2)

c@.0t1g0 o Crle@al>1

where “*’ represents the complex conjugate operation, g = g, +1g»
is the complex reduced shear, and € is the intrinsic ellipticity of the
galaxy. Here the complex ellipticity is defined as € = (a — b)/(a +
b) exp(2i¢) with a, b and ¢ being the length of the major and minor
axes and the orientation of the approximate ellipse of the observed
image, respectively. For source galaxies at a fixed redshift z, it has
been shown that the average of € over a large number of galaxies
near @ gives rise to an unbiased estimate of g(@,z) or 1/g(8, z)
assuming (e€;) = 0. For galaxies with a redshift distribution, the
average of € over galaxies near a given sky position may have a
complicated relation with the lensing signal we are interested in if
both |g| < 1and |g| > 1 occur in the region for galaxies at different
redshifts. On the other hand, for subcritical regions with |g| < 1 for
all the redshifts, the average of the observed ellipticity (€) gives
rise to an estimate of (g) weighted by the redshift distribution of
source galaxies. In the case k <« 1, we have (e) = (y). For the
weak lensing peak analysis, we therefore need to construct a field
closely related to the matter distribution from the (reduced) shear
estimate (€).

The aperture-mass peak analysis, also referred to as the shear peak
analysis, is to study peaks in the aperture mass M, field constructed
from the tangential shear component with respect to the point of in-
terest with a filtering function Q (e.g. Schneider et al. 1998; Marian
et al. 2012; Bard et al. 2013). Theoretically, M,, corresponds to the
convergence field filtered with a compensated window function U
where U and Q are related. One of the advantages of M, studies is
that because of the compensated nature of U, M, is independent of
the lensing mass—sheet degeneracy. Furthermore, in the case with
k < 1 and g ~ y, M, can be obtained directly from the tangen-
tial component of the observed (€,). In the peak regions where the
lensing signals are high, the difference between g and p is not neg-
ligible. Therefore, noting that the M,, constructed from (e;) itself
carries cosmological information, it is not the same as the filtered
convergence field.

Another approach for weak lensing peak studies is to reconstruct
the convergence field from (e) taking into account the non-linear
relation between g and y (e.g. Kaiser & Squires 1993; Bartelmann
1995; Kaiser, Squires & Broadhurst 1995; Seitz & Schneider 1995,
1997; Squires & Kaiser 1996; Jauzac, Jullo & Kneib 2012; Jullo
et al. 2014). In this approach, to avoid unphysical results, it is im-
portant to filter € first and then to proceed with convergence recon-
struction using the filtered (€). Different reconstruction schemes
have been studied. For the classical Kaiser—Squires (KS) recon-
struction (Kaiser & Squires 1993; Squire & Kaiser 1996), boundary
effects and the mass—sheet degeneracy problem can exist. However,
for a field of view of about 1 deg x 1 deg and larger, such effects are
expected to be insignificant. In this paper, we reconstruct the con-
vergence field from the filtered (€) with the non-linear KS method
(e.g. Bartelmann 1995). From numerical simulations, we find that
the regions with |g| > 1 are negligible, and therefore assuming
subcriticality for all the regions is an excellent approximation.

for |g(6,2)| < 1

3.2 The convergence reconstruction and the peak
identification

Our convergence reconstruction procedures are described below.
For a source galaxy used in weak lensing analyses in the CS82
catalogue, we first correct the additive errors

=€, € =6—c0, (6)

where €; and €/ are the uncorrected and corrected ellipticity com-
ponents, respectively, and c¢; is the additive bias given by CS82.
With €/, we apply smoothing and obtain a smoothed field of € on
regular 1024 x 1024 grids over the field of view of one pointing.
With the multiplicative errors m taken into account statistically (van
Waerbeke et al. 2013), we have

S Wi (@, — 0)w(®)e(8,)
> Wa 0 — O)w(@)(1 +m;)’

where 6 and @ ; are for the grid position and the galaxy position,
respectively, Wy, is the normalized smoothing function, w is the
weight for source galaxy shape measurements given by CS82. The
summation is over all the source galaxies. In the subcritical approx-
imation, (€)(@) is an unbiased estimate of (g) smoothed over the
window function Wy, and weighted by the source redshift distribu-
tion. We use the Gaussian smoothing function W, with

(€)(0) = )

W, (0 ! o1 8
o ( )_T%e){p(_g)' (3)
The smoothing scale 6 is chosen to be 6 = 1.5 arcmin, suitable for
cluster-scale structures that are closely related to high weak lensing
peaks. Within the smoothing kernel, the number of galaxies is about
ny03 ~ 20, for n, ~ 10arcmin™>. We expect that the statistics of
the residual shape noise after smoothing is approximately Gaussian
from the central limit theorem (e.g. van Waerbeke 2000).

With (€)(#), we perform the convergence reconstruction itera-
tively by using the relation between « and y in equation (3). Partic-
ularly, we use their relation in Fourier space with

p(k) = 7' DKk k), ©
and
kf - k% + 2ik ky

D)y =m
® Er i

(10

We start by assuming «© = 0 everywhere, and thus y© = (e)
(Bartelmann 1995). At n-th step, we obtain k™ from y*~! via
equation (9) and the subsequent inverse Fourier transformation.
We then update y to y™ = (1 — k™)(€) for next iteration. The
reconstruction process is stopped when the converging accuracy of
1079 (the maximum difference of the reconstructed convergence
between the two sequential iterations) is reached. For CS82, the
reconstruction is done pointing by pointing each with the field of
view of about 1deg x 1 deg.

To evaluate the shape noise level in each pointing for subse-
quent peak analyses, we randomly rotate the corrected ellipticity
of each galaxy. Then the same procedure is applied to obtain the
reconstructed random noise convergence field.

It is noted that there are regions with no reliable shape measure-
ments for galaxies indicated with the index MASK > 1 in the CS82
catalogue. These galaxies are excluded in the weak lensing anal-
yses. The existence of these masked regions can affect the weak
lensing peak abundances significantly if they are not treated prop-
erly. In LWPF2014, we study in detail the mask effects. With the
S/N ratio defined by the average noise level, the number of high

MNRAS 450, 2888-2902 (2015)
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peaks increases around the masked regions, which can lead to con-
siderable bias in cosmological-parameter constraints derived from
weak lensing peak abundances. To reduce the mask effects, regions
around masks should be excluded in peak counting. If they are kept,
the noise effects in these regions should be considered separately
from the regions away from masks (LWPF2014).

To quantify the mask effects on the number of usable galaxies
in the convergence reconstruction, we calculate the galaxy filling
factor at each grid point similar to that done in van Waerbeke et al.
(2013). Summing over galaxies outside masked regions, we define
the galaxy filling factor as

> Wae (8, — 0)w(®;)
Jo '

where fj is calculated by randomly populating galaxies over the full
area of a tile with

fo=1>_ Wae (8, — 0)i(®,)). (12)

1) = an

Here () is for the average over . Specifically, for each tile, we cal-
culate the average number density of galaxies in the area excluding
the masked regions. With this number density, we then randomly
populate galaxies over the full area of the tile including the masked
regions. For each galaxy, we randomly assign it a weight @ accord-
ing to the weight distribution of the real observed galaxies. We then
calculate the quantity > W, (0, — 8)W(0,,) at each grid point 0
where the summation is over all the populated galaxies. The average
value over all the grid points gives rise to f;.

Hence, for each pointing, we obtain the reconstructed lensing
convergence, noise and filling factor maps, respectively. We have
a total of 173 sets of maps corresponding to the 173 pointings. In
Fig. 2, we show an example of the reconstructed convergence map
for one pointing and the corresponding map of the filling factor. In
each map, the dark blue regions are regions with the filling factor
f < 0.5. To avoid the mask effects on weak lensing peak analyses,
we exclude these regions in peak counting (van Waerbeke et al.
2013; LWPF2014). The black circles in the plots show the clusters
in the field detected using the red sequence Matched-filter Proba-
bilistic Percolation (redMaPPer) algorithm (Rykoff et al. 2014). It
is seen that the clusters have a good association with weak lensing
convergence peaks, but the correspondence is not one to one due

Reconstructed mass map

0.08
-0.20 0.06
0.04
-0.4
0.02
=
a 0.6 i
e ‘ -0.02
O
-0.04
-0.8
-0.06
-0.08

342.6 342.4 34i.2 342 341.8

to the existence of noise and the projection effects of large-scale
structures (e.g. Shan et al. 2014).

For weak lensing peak analyses, we detect peaks from the recon-
structed lensing convergence maps as follows. Considering a pixel
on a reconstructed convergence map (1024 x 1024 pixels), if its
convergence value is the highest among its nearest eight neighbour-
ing pixels, it is identified as a peak. We only count peaks in regions
with the filling factor f > 0.5. To reduce the boundary effects, we
also exclude the outer most 50 pixels (corresponding to ~3 arcmin
~ 26¢) in each of the four sides of a map in our peak counting.
The effective area of CS82 for weak lensing peak studies is then
reduced to ~114 deg” after mask-region and boundary exclusions.
The S/N ratio of a peak is defined by

v=12, (13)
00

where K is the reconstructed convergence value of the peak and
o is the mean rms of the noise from the 173 noise maps. It is
known that o depends on the number density of source galaxies
and the smoothing scale of the window function used in obtaining
the smoothed ellipticity field (e). It can vary somewhat from one
pointing to another. In our study, the mean o is evaluated from
all the noise maps considering only regions with the filling factor
f > 0.5. For the smoothing scale g = 1.5 arcmin, we have oy &
0.022. It is noted that we calculate o directly from the rotated
galaxies in noise maps, and therefore we do not need to know
explicitly the galaxy intrinsic ellipticity dispersion o .. On the other
hand, we find that for CS82 galaxies, o, ~ 0.4 for the total of the
two components.

We note that in our peak identification scheme, we do not group
peaks together as some other methods do (e.g. Hamana et al. 2012).
We will see in Section 3.3 that our theoretical model for peak
abundances takes into account the noise peaks in halo regions and
counts them as independent ones. Accordingly, we therefore do not
need the peak grouping that may give rise to some artificial effects.

3.3 Theoretical model for weak lensing peak abundances

To derive cosmological constraints from observed weak lensing
peak abundances, their dependence on cosmological models needs
to be understood and quantified. Known to be closely related to

Filling factor map
1.5

342.6 3424

342.2 342

RA

Figure 2. Left-hand panel: the reconstructed convergence map for one specific tile with the Gaussian smoothing scale 6 = 1.5 arcmin. Regions with filling
factor <0.5 are masked out in dark blue. Right-hand panel: the corresponding filling factor map. The redMaPPer clusters in the field are indicated by the black

circles with the size indicating the richness of the clusters.
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line-of-sight matter concentrations, the existence of galaxy shape
noise, the projection effects of large-scale structures, the complex
mass distribution of dark matter haloes, etc., complicates the re-
lation between weak lensing peak abundances and the underlying
mass function of dark matter haloes. While building a large set
of templates from numerical simulations densely sampled over the
multidimensional cosmological-parameter space can be very useful
and important, it is computationally expensive. On the other hand,
theoretical modelling based on our physical understandings can be
very insightful and valuable in disentangling different effects on
weak lensing peak abundances. With explicit dependences on cos-
mological parameters and other physical parameters, it can be used
to perform cosmological constraints efficiently. Depending on the
assumptions and approximations employed in the modelling, their
results can be less accurate than those from full simulations. Sim-
ilarly to the calculation of the non-linear matter power spectrum
based on the halo model but calibrated with simulations, which is
widely used in weak lensing 2-pt correlation analyses, the com-
bination of the two, that is, testing and calibrating a model with
simulations, can be a very effective way to study the cosmological
dependence of weak lensing peak statistics efficiently with high
precision.

In this paper, we focus mainly on high peaks and adopt the model
of F10 for the weak lensing peak abundances, which takes into ac-
count the dominant shape noise in the modelling. The model has
been tested extensively by comparing with full ray-tracing simula-
tions (F10; LWPF2014), and has also be confronted with observa-
tional studies (Shan et al. 2012, 2014).

Here we describe the important ingredients of the model. More
details can be found in F10 and LWPF2014.

In F10, we assume that the smoothed convergence field can be
written as Ky = K + N, where K represents the true lensing conver-
gence and N is for the residual shape noise. The field N results from
the contribution of the intrinsic ellipticities of different galaxies in
the smoothing kernel. Without considering the intrinsic alighments
of source galaxies, if the number of galaxies within the smoothing
kernel is large enough, it has been shown that N is approximately
a Gaussian random field from the central limit theorem (e.g. van
Waerbeke 2000). As discussed in Section 3.2, for a smoothing scale
0 = 1.5 arcmin, the number of galaxies within the smoothing win-
dow in CS82 is ~20. Therefore, N can be well approximated as a
Gaussian random field.

Concentrating on high peaks, it is expected that signals of true
peaks mainly come from individual massive haloes (e.g. Hamana
et al. 2004; Tang & Fan 2005; Yang et al. 2011). We therefore
divide a given area into halo regions and field regions. Inside the
region of an individual halo, we have Ky = K + N, where K is
regarded as a known field from the halo convergence, and N is
a Gaussian random field. Therefore Ky itself is also a Gaussian
random field modulated by the halo surface mass distribution K.
Then the peak number distribution for Ky is readily calculable
using Gaussian statistics. The modulation effects from K involve K
itself, its first derivatives K' = 0K /dx;, (i = 1,2) and its second
derivatives K"/ = 9% K /dx;0x ;- The total number of peaks in halo
regions can thus be obtained by the summation of the peaks over
all the halo regions weighted by the halo mass function. In the field
region, the numbers of peaks are directly computed from the noise
field N.

Specifically, the total surface number density of peaks can then
be written as

Npeak(V)AV = np o (V)dv + np, (V)dv, (14)

where v = Ky/o is the S/N ratio of a peak. The term nj,, (v) is for

peaks in halo regions including not only the true peaks correspond-

ing to real haloes but also the noise peaks within the halo regions.

The second term ny, (v) is for pure noise peaks in field regions.
For nj,(v) in halo regions, it can be written as

1y (V) = /dzdv(z) dMn(M, 2) f,(v, M, 2) (15)
peak dZdQ . ) Jp\Vs 3 )

where dV(z) is the cosmological volume element at redshift z, dQ2
is the solid angle element, n(M, z) is the mass function of dark
matter haloes. Here we adopt the Sheth-Tormen mass function in
the calculation (Sheth & Tormen 1999). The mass limit M, is
for the mass above which individual haloes contribute dominantly
to the weak lensing peak signals along their lines of sight. From
simulation analyses, we find that My, = 10'*7h~'M(; is a suitable
choice. The factor f, is for the number of peaks in the area within
the virial radius of a halo of mass M at redshift z, and is given by
Ovir
fov, M, 2) = / 46 (20) iy (v, 0. M. 2), (16)
0
where 0y = Rir(M, 2)/Da(z) and D(2) is the angular-diameter
distance. The physical virial radius is calculated by
1/3

, a7

M

RMM@=[Mmmmm

where p(z) is the background matter density of the Universe at
redshift z and the overdensity A,; is taken from Henry (2000).

The function ﬁ;eak(v, 6, M, z) in equation (16) describes the sur-
face number density of peaks at the location of 6 from the centre of
the halo, which depends on the convergence profile of the halo. On
the basis of the theory of Gaussian random fields, it can be derived

explicitly as (F10)

3 (K])2+(K2)2

2
0]

1 1 1 K :
X| ———F| X - =lVv—-—
202 212 | P | T 2 %
[ 1
X X T E———
o ) Rr(l—y)]' 2

[[m+m“+WW@—m%—KMW}
xexp | —

A (v, 0, M, 2) = exp

21 = y3)
xF(xN)}, (18)

Where@f = 20'12/0'227 YN = 0'12/(0'002), Ki = 6,—K,and Kij = ain.
Here the quantities o; are the moments of the noise field N given by
(e.g. van Waerbeke 2000)

of = [akE NP, 1

where N(k) is the Fourier transform of the noise field N. For K(9),
K'(#), and K%(0) of a halo with mass M at redshift z, they depend
on the mass profile of the halo and source redshift distribution.
Here we assume the spherical Navarro—Frenk—White (NFW) mass
distribution for dark matter haloes (Navarro, Frenk & White 1996,
1997). The concentration parameter c;, (M) = R, /1 is calculated
from the mass—concentration relation given in Bhattacharya et al.
(2013), where r, is the characteristic scale of an NFW halo. For
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the redshift distribution of source galaxies, we take equation (1) for
CS82 data.
The function F(xy) in equation (18) is given by (F10)

(K]I _ K22)2

2
03

F(xy) = exp

1/2
X / dey 8 (szveN) X% (1- 4ey,) exp (— 4xNeN)
0
/-n dQN 1 _ K22)
X — exp
Jo T

where xy = (Ay1 + An2)/02 and ey = (An1 — An2)/(202Xy). Ani
and Ay, are the two eigenvalues (Ay; > Ay2) and 6y is the rotation
angle in the range [0, 7] with the diagonalization of (—K})) (e.g.
Bardeen et al. 1986; Bond & Efstathiou 1987).

As for the field term '’ (v) in equation (14), it is given by

— 4xyen cos(20y) , (20)

peak
n 1 dv(z)
npeak(v) = digz{nran(v) |:dQ - / dz dZZ
x/ dM n(M, Z)(ﬂ@ir)}} 1)
Miim

where n,,,(v) is the surface number density of pure noise peaks
without foreground haloes. It can be calculated by equation (18)
with K =0, K’ =0and KV = 0.

It is seen that in this model, the cosmological information is
contained in the halo mass function, lensing kernel, cosmic volume
element, and the density profile of dark matter haloes. We note
that although we use the NFW density profile and the mean mass—
concentration relation derived by Bhattacharya et al. (2013) for the
full sample of dark matter haloes in our fiducial model calculations,
in principle, the density profile parameters can be treated as free
parameters. Therefore from weak lensing peak abundances, it is
possible to constrain these structural parameters simultaneously
with cosmological parameters.

For our model calculation of npc.x, multidimensional integrations
are needed. With great efforts numerically and applying multiple
parallel techniques, such as OpenMP and GPU programming, we
have developed a fast and high-precision model calculation algo-
rithm, which makes it possible for us to perform cosmological
constraints from weak lensing peak abundances. An outline of our
programming structures is given in the appendix.

4 COSMOLOGICAL CONSTRAINTS FROM
CS82 WEAK LENSING PEAK COUNTS

4.1 Fitting method

As described in Section 3.2, from the reconstructed convergence
maps, we identify and count peaks in regions where the galaxy
filling factor is f > 0.5. This effectively excludes the masked regions
in the peak counting to avoid the mask effects. The useful survey
area is approximately 114 deg?. We only consider high peaks with
the S/N ratio v > 3. With the noise level oy ~ 0.022 under the
smoothing scale 6 = 1.5 arcmin for CS82, the high peaks have
smoothed signals K > 0.066. For the considered survey area, there
are few peaks with v > 6. We therefore concentrate on the peaks in
the range of 3 < v < 6.

We divide the peaks into five bins. We consider both equal bins
with Av = 0.5 and unequal bins with the number of peaks compa-
rable in different bins. For equal bins, we do not include the number
of peaks in the bin of v = (5.5, 6] in cosmological studies because it
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is only ~1 with large expected statistical fluctuations. In this case,
the number of peaks is ~500 for the first bin with v = [3, 3.5] and
is ~10 for the last bin with v = (5, 5.5]. For unequal bins, we have
the number of peaks in the range of ( ~ 160, ~80) for different bins
withv =[3,3.1], (3.1, 3.25], (3.25, 3.5], (3.5, 4], (4, 6], respectively.
To derive cosmological-parameter constraints from weak lensing
peak counts, we calculate the x? defined as follows (LWPF2014):

—dN“”(C )dNW— Z dN(”)<C )dzv<”> 22)

ij=1,...,5

where dN" NI(,f D) — Nécjk(v,-) with N;,f;il)((v,-) being the pre-
diction for the cosmological model p/ from F10 and Né‘:gk(v,-) being
the observed data for the peak counts. This effectively assumes
that the number fluctuation in each bin can be approximated by a
Gaussian distribution. With the number of peaks in the equal bin
case being larger than ~10 per bin and being larger than about 80
per bin in the unequal bin case, the Gaussian error distribution is
expected to be a good approximation. The corresponding likelihood
function is given by

1
L o exp (_EXI%’) ) (23)

The matrix Cj; is the covariance matrix of the peak counts includ-
ing the error correlations between different v bins. Here we apply
bootstrap analyses using the CS82 observational data themselves to
obtain an estimate of C;;. We realize that such an estimate cannot re-
veal the cosmic variance over the full survey area. Ideally, C;; should
be constructed by generating a large number of CS82 mocks from
ray-tracing simulations following exactly the same galaxy distribu-
tion, mask distribution, survey geometry, etc., as CS82 data. It is
noted that the CS82 survey covers a long stripe of ~90 deg x2 deg.
Therefore to fully mimic the survey geometry, we need very large
simulations to cover the ~90 deg extension, which are difficult to
achieve at the moment.

For Cj;, we thus generate 10 000 bootstrap samples by resampling
the 173 tiles from real observation data sets. The covariance matrix
Cj; is then calculated from the bootstrap samples by

R
“R- 12[ peak(Vi) =

r=1

]

24

pmk(vl } [N;cak(vj) -

where r denotes for different samples with the total number of

samples R = 10000, and N, (v;) is for the peak count in the

bin centred on v; from the sample r. The inverse of the covariance

matrix is then calculated by (Hartlap, Simon & Schneider 2007)

Ci-RoMNin =2y N < r-2, 25)
R—-1

where Ny, is the number of bins used for peak counting.

We note that such bootstrap analyses implicitly assume the in-
dependence of the peak distribution between different tiles each
with an area of about 1deg?. We have made a test by dividing
the survey area into units each containing four adjacent tiles (i.e.
~2 deg x2 deg) and then performing bootstrap analyses by resam-
pling these units. The resulted inverse covariance, considering the
diagonal elements which are much larger than the off-diagonal
terms, shows less than ~8 per cent differences from the one us-
ing one tile as a unit. We also perform tests using 2 x 3 and 2
x 10 adjacent tiles as units, separately. The diagonal terms of the
inverse covariance differ from those using one tile as a unit by
<8 per cent and <11 per cent, respectively. We have carried out
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another test to use our 15 sets of mocked data to calculate the
covariance. However, our mock simulations do not mimic the long
stripe geometry of the CS82 survey, and the independent unit has an
areaof 4 x 3.5 x 3.5 = 49 deg?, as will be described in Section 4.2.
We find that for the diagonal elements of the inverse covariance, the
differences between the results from mock sets and that of using
one tile as a unit are generally less than 10 per cent.

We also carry out Jackknife resampling for error estimations.
For using one tile, 2 x 2 and 2 x 3 tiles as independent units, re-
spectively, the diagonal elements of the resulted inverse covariance
differ from the corresponding bootstrap resampling by less than 5
per cent.

We therefore adopt the bootstrap covariance estimated from CS82
data using one tile as an independent unit in our following fiducial
analyses.

We use cosmomc (Lewis & Bridle 2002) modified to include our
likelihood function for weak lensing peak counts to perform cos-
mological constraints. In this paper, we mainly consider constraints
on the two cosmological parameters (£2,,, o'g) under the flat A cold
dark matter (ACDM) assumption. We adopt flat priors in the range
of [0.05, 0.95] and [0.2, 1.6] for 2, and og, respectively. We take
the Hubble constant # = 0.7 in units of 100 kms™! Mpc", the
power index of the initial density perturbation spectrum ns = 0.96,
and the present baryonic matter density €2, = 0.046. As discussed
above, our fiducial constraints use the covariance estimated from
bootstrap resampling of individual tiles. As a quantitative compari-
son, we also perform (£2,,, o'g) constraints by using the covariance
estimated from resampling 2 x 2 adjacent tiles. The constraint con-
tours are nearly overlapped with those of our fiducial analyses with
the area of 1o region larger only by ~1 per cent.

To further show the potential of weak lensing peak statistics,
we also perform constraints on the mass—concentration relation
of dark matter haloes, assuming it follows a power-law relation,
simultaneously with the cosmological parameters (2, 0's).

4.2 Mock CS82 analyses

Before presenting the results from CS82 observational data, in this
part, we first show our mock CS82 analyses using ray-tracing sim-
ulations. As discussed above, the full mock of CS82 taking into
account the long stripe geometry demands very large simulations,
which are yet to be realized. Therefore in the current mock analyses
presented here, we do not attempt to mimic the survey geometry of
CS82, but are limited to the tests of our peak analyses procedures,
including the convergence reconstruction, mask effects exclusion,
cosmological-parameter fitting, etc. These mocks also serve as a
further test of our theoretical model on the peak abundances.

To construct the CS82 mocks, we carry out dark-matter-only
N-body simulations in the flat ACDM framework. The cosmological
parameters are taken to be 2, = 0.28, Q, = 0.72, Q, = 0.046, o
=0.82, ny =0.96 and & = 0.7. Our ray-tracing procedures largely
follow our previous studies of LWPF2014, but with different box
paddings.

In accord with the redshift distribution of CS82 galaxies, we
perform ray-tracing calculations up to z = 3. For our considered
cosmological model, the comoving distance to z, = 3 is approxi-
mately 4.54 h~' Gpc. We design to pad 12 independent simulation
boxes to z = 3, with eight simulation boxes each with a size of
320 4~ Mpc to redshift z = 1 and 4 larger simulations each with a
size of 600 4~ Mpc from z = 1 to z = 3. With these independent
simulations, we can perform ray-tracing calculations straightfor-
wardly with no repeated use of same structures.

Table 1. Redshifts of the lens planes. The planes at z; >
1.0 are produced from four independent L = 600/~ 'Mpc
simulations, while those at lower zj are obtained from eight
independent simulations with L = 320 2~ 'Mpc.

0.0107  0.0322  0.0540 0.0759 0.0981  0.1205
0.1432  0.1661  0.1893  0.2127 0.2364  0.2604
0.2847  0.3094 0.3343  0.3596 0.3853 04113
0.4377 0.4645 04917 0.5193  0.5474  0.5759
0.6049  0.6344  0.6645 0.6950 0.7261  0.7578
0.7900  0.8229 0.8564 0.8906  0.9254  0.9610
0.9895 1.0289 1.0882 1.1496 1.2131 1.2789
1.3472 14180 1.4915 1.5680  1.6475  1.7303
1.8166  1.9066  2.0005 2.0987 22013  2.3087
24213 25393 2.6632 2.7934  2.9296

The N-body simulations are done with GADGET-2 (Springel 2005).
For both small and large sized simulations, we use 640 par-
ticles. The mass resolution is ~9.7 x 10° h"'M and ~6.4 x
IOIOh_'MQ for small boxes and large boxes, respectively. The
simulations start from z = 50 and the initial conditions are set by
using 2LpTIC (Crocce, Pueblas & Scoccimarro 2006). The initial den-
sity perturbation spectrum is generated by cams (Lewis, Challinor
& Lasenby 2000). The force softening length is about ~20 42~ kpc,
which is good enough for our studies concerning mainly high weak
lensing peaks corresponding to massive dark matter haloes.

For ray-tracing simulations, we use 59 lens planes up to z = 3. The
corresponding redshifts of the planes are listed in Table 1. We follow
closely the method of Hilbert et al. (2009). The detailed descriptions
for ray-tracing calculations can be found in LWPF2014. In order
to generate mock data for CS82 galaxies, we calculate shear and
convergence maps at the far edge of each of the 59 lensing planes
using the lower redshift planes. For a set of simulations with 12
independent boxes, we then can generate four sets of lensing maps
each with an area of 3.5 x 3.5 deg® sampled on 1024 x 1024 pixels.
In each set, we have 59 shear and 59 convergence maps at 59
different redshifts corresponding to the far edges of the 59 lens
planes. We run 12 sets of simulations, and generate lensing maps
with the total area of 12 x 4 x (3.5 x 3.5) = 588 degz. This allows
us to generate three nearly independent mocks for CS82, and each
mock is constructed from three sets of simulations with the area of
~3 x 49 = 147 deg®.

For each mock, the generating procedure is as follows.

(i) With the 3 x 49 deg? lensing maps, we place the tiles of CS82
observed galaxies behind. We note again that we do not attempt to
mimic the true CS82 long stripe survey geometry here. Therefore,
we pad the CS82 tiles randomly over the simulated map area. In
each tile, the positions and the amplitudes of ellipticities of the
galaxies are preserved, but with their orientations being randomized.
Because there is no exact redshift information for each galaxy, we
assign redshifts to the galaxies following the redshift distribution
of equation (1). The galaxy weights and the mask information are
also preserved in each tile.

(ii) For a galaxy, its reduced shear g is calculated by interpolating
the signals from the pixel positions on simulated maps to the galaxy
position. The interpolation is also done in the redshift dimension.
Regarding the randomized ellipticity obtained in (i) as its intrinsic
ellipticity, we then can construct the mock observed ellipticity for
the galaxy by equation (5).

(iii) For each tile of the mock data, we perform the conver-
gence reconstruction with the same procedure for the observed
data described in Section 3.2 except we do not correct for the
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Figure 3. CS82 mock simulation results. Upper panels show the peak count distribution in logarithmic scale with equal bins (left), and the peak count
distribution in linear scale with unequal bins (right). The three sets of symbols with different colours correspond to the three sets of independent mocks. Within
the same colour, five data sets corresponding to five different noise realizations are shown. The blue “*’ and the error bars are for the average values and the
rms over the 15 mocks. The solid line is for our model predictions. The lower panels show the relative differences between the average values of the 15 mock
sets and our model predictions. The error bars are for the rms of the relative differences between each mock and the model predictions.
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Figure 4. Cosmological constraints on (2, o'g) derived from the CS82 mock peak counts with equal bins (left-hand panel) and with unequal bins (right-hand

panel), respectively. The blue dot is for the mock simulation input.

multiplicative error in the mock data because our lensing signals
are from simulations.

(iv) We perform the peak identifications and peak number count-
ing in the same way as for the observational data described also in
Section 3.2.

In our analyses, noise peaks from shape noise are accounted for.
Therefore to obtain a good estimate of the average numbers of
peaks, we randomly rotate the galaxies five times leading to five re-
alizations of the intrinsic ellipticities for source galaxies. Therefore,
we totally generate 3 x 5 mocks for CS82.

In Fig. 3, we show the peak number distributions for the mock
data. The upper-left panel is for the results (in logarithmic scale)
of equal bins with the bin width Av = 0.5 in the range of [3.,
5.5] and the upper-right panel (in linear scale) is for the case of
unequal bins with v = [3, 3.1], (3.1, 3.25], (3.25, 3.5], (3.5, 4], (4,
6], respectively. The three sets of symbols with different colours
correspond to the mocks from three independent sets of simulated
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maps. The five data points within each colour are the results from
different shape noise realizations. The blue ‘*’ and error bars are
for the average values and rms over the 15 mocks. The solid line
is for our model predictions with the shape noise level o taken to
be the average value over all the tiles. The lower panels show the
corresponding relative differences between the average values of the
15 mocks and our model predictions. It is seen that for both binning
cases, the averaged mock results agree with our model predictions
very well. The relative differences are <10 per cent, and most often
<5 per cent.

In Fig. 4, we show the derived constraints on (2, o'g). Here, we
use the results averaged over the 15 mocks as the ‘observed’ data,
and the covariance matrix is estimated by constructing bootstrap
samples each containing 173 tiles as the CS82 data from all the
tiles in the 15 mocks. The contours are for 1o and 20 confidence
levels. The left- and right-hand panels are for the cases of equal
bins and unequal bins, respectively. The blue symbol indicates the
underlying parameters of the mocks. We see that noting the strong
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Figure 5. CS82 observational results. Left-hand panel: the peak count distribution in logarithmic scale with equal bins. Right-hand panel: the peak count
distribution in linear scale with unequal bins. The corresponding solid line is the theoretical prediction with the best-fitting cosmological parameters obtained
from MCMC fitting. The error bars are the square root of the diagonal terms of the covariance matrix.

degeneracy of the two parameters, the mock constraints recover the
input cosmological parameters excellently. The results from the two
binning cases agree well.

4.3 Results from CS82 observational data

We now proceed to show the results from the CS82 observational
data. In Fig. 5, the left- and right-hand panels show the results of
peak counts for the equal and unequal bins, respectively. The error
bars are from the bootstrap sampling using the CS82 observational
tiles. The solid line in each panel is from our theoretical model with
the best-fitting cosmological parameters (see Fig. 6). In Fig. 6, we
show the cosmological constraints from the CS82 observed weak
lensing peak counts with the red and blue contours from equal and
unequal bins, respectively. The constraints from the two binning
cases are consistent with each other very well. The best-fitting
results and the marginalized 1D mean for 2, and og are shown in
Table 2.

It is seen that similar to weak lensing correlation analyses (e.g.
Kilbinger et al. 2013; Fu et al. 2014; Kitching et al. 2014), the con-
straints on the two parameters from weak lensing peak abundances
alone are strongly degenerate. Considering the relation defined by

16
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—equal bins

L L L L L L L L

01 02 03 04 06 07 08 09

0.5
Qp,
Figure 6. Cosmological-parameter constraints for (22, og) derived from

CS82 observational peak counts with equal bins (red) and with unequal bins
(blue), respectively.

Table 2. Constraints on 2, and og from CS82 weak lensing peak abun-
dances. The best-fitting values and the marginalized 1D mean are shown.
The errors are 68 per cent confidence intervals.

Parameter Best fit 1D mean
(equal bin)  (unequal bin)  (equal bin)  (unequal bin)
o 0.22 0.27 0.37793¢ 0.38%0%
+0.28 +0.26
oy 0.91 0.83 0.837 58 0.81705%

Table 3. Constraints on g and «. The errors are 68 per cent confidence
intervals. The 2-pt and 3-pt values are the results in Fu et al. (2014) derived
from COSEBis, a second-order E-/B-mode measure and the diagonal third-
order aperture-mass moment, respectively.

Parameter Equal bin Unequal bin 2-pt 3-pt
g 082+£004 082£003 079£006  0.737%
@ 043£0.02 042£002 070£0.02 0.58=+0.02

Yg = 0g(21/0.27)* and using the same estimation method as in Fu
etal. (2014), we obtain g = 0.82 + 0.04 and &« = 0.43 £ 0.02 and
¥g = 0.82 £ 0.03 and @ = 0.42 £ 0.02 for the two binning cases,
respectively. In Table 3, we list the constraints on g and o from our
peak analyses and the results from 2-pt (COSEBis, a second-order
E-/B-mode measure) and 3-pt (3d, diagonal third-order aperture-
mass moment) analyses of Fu et al. (2014) using CFHTLenS data.
It is noted that for both CS82 and CFHTLenS, the survey areas
used in the analyses are ~120deg®. The mean redshift for CS82
data used in our analyses is z ~ 0.83, and the mean redshift for
CFHTLenS used in Fu et al. (2014) is z ~ 0.75. It is seen that the «
value from our peak analyses is significantly smaller than that from
2-pt and 3-pt analyses. This shows a great potential of weak lens-
ing peak analyses in cosmological studies. In Fig. 7, we show the
corresponding constraints demonstrating the differences visually.
We note that the above 2-pt COSEBis and 3-pt 3d analyses from
Fuetal. (2014) are in ACDM model with five free parameters (2.,
o3, Q, N, h). Their results shown in Table 3 and Fig. 7 here are
the results marginalized over (2, ng, 7). On the other hand, in our
peak analyses, we fix the other three parameters and vary only (2.,
o). To see if the constraints, particularly the degeneracy direction
between (2, 0g), can be affected significantly by allowing more
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Figure 7. The comparison for the constraints on (22, og) between our
peak analyses and the results from 2-pt and 3-pt analyses of Fu et al. (2014).

free cosmological parameters, we study the dependence of the peak
abundances on (2, og, Qb, 15, 1) by calculating the derivatives
with respect to these parameters using the model of F10. It is found
that the dependences of peak abundances on 2, and o'g are much
stronger than the dependences on the other three parameters. There-
fore, we do not expect that the inclusion of (2, 1, h) as free pa-
rameters can change our results on the constraints of (2, o) from
peak analyses considerably. We further perform a not-so-rigorous
Fisher analysis using the derivatives of the peak abundances with
respect to the five parameters and errors corresponding to CS82
data. Assuming Gaussian priors for Qy, 1y and h with og, = 0.05,
o,, = 0.1 and o, = 0.3, we find that the constraints on (2, o)
marginalized over (S2y, 1, h) are about the same as the results with
only (2, 0'3) as free parameters. This shows again that our results
should not be affected considerably if we include (2y, ng, /) in our
peak analyses.

Itis noted that the degeneracy of (£2,,, 0's) from our peak analyses
is comparable to the constraints from cluster studies. From Sunyaev-
Zel’dovich effect (SZ) cluster abundance analyses, o ~ 0.3 has been
obtained (e.g. Hasselfield et al. 2013; Reichardt et al. 2013; Planck
Collaboration: Ade et al. 2014b). For X-ray cluster studies, o ~ 0.5
(e.g. Vikhlinin et al. 2009; Bohringer, Chon & Collins 2014). Using
SDSS ‘maxBCG’ cluster catalogue, Rozo et al. (2010) derived o ~
0.41. Our constraint is & ~ 0.42, which is in good agreement with
the cluster studies noting the variations between different analy-
ses largely due to the different observable-mass relation. This is
expected because high weak lensing peaks have close associations
with clusters of galaxies along lines of sight.

In the very recent studies of LPH2015, they obtain
Yy = Ug(Qm/0.27)0'60 = 0.84Jj8:gi using the peak analyses alone
combining the results from two smoothing scales. The « value is
larger than ours of o = 0.42 and Xg is somewhat smaller. There
are a number of differences between their analyses and ours. They
use the peaks spanning a large range of « value from negative to
positive. In our cosmological studies, we only consider high peaks
with v > 3, which corresponds to x > 0.066 for 6 = 1.5 arcmin
(corresponding to ~1 arcmin in LPH2015 because of the differ-
ent definition of 8g). We expect that our results should resemble
more those of cluster studies as explained in the previous para-
graph. For low peaks, besides the impact of noise, they are related
to the projection effects of large-scale structures, which might be
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1.6
—CS82 peak statistics
—Planck
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Figure 8. Constraints from WMAP9 (green) and Planck (red) overplotted
on ours from peak counts with unequal bins. The contours are for 1o and
20 confidence levels.

largely described by the underlying power spectrum. However, in
LPH2015, they find that although weak lensing peaks show stronger
covariance with the power spectrum than cluster counts, the overall
covariance between peaks and the power spectrum is rather weak.
Therefore, even low peaks and the power spectrum should contain
non-overlapping cosmological information. The error covariance
matrix estimation is also different in the two studies. We use the
bootstrap approach by using the data themselves. In LPH2015, they
use a fiducial simulation to calculate the covariance by randomly
rotating and shifting the simulation box of size 240h~'Mpc in ray
tracing. To fully explore the cause of the differences from different
analyses can be a worthwhile task in the future.

In Fig. 8, we show the constraints in comparison with the results
from WMAP9 (Hinshaw et al. 2013, green) and Planck (Planck Col-
laboration: Ade et al. 2014a, red). It can be seen that our constraints
are in good agreement with both.

The above analyses adopt the fiducial redshift distribution given
in equation (1) with @ = 0.531, b = 7.810 and ¢ = 0.517 for CS82
galaxies. Derived by matching to COSMOS galaxies, this redshift
distribution can have significant uncertainties. To understand the im-
pact of the uncertainties on our peak analyses, we follow Hand et al.
(2015) to vary the parameters in the redshift distribution and anal-
yse how the peak abundances change using the theoretical model of
F10. Considering peaks in the range of v = [3, 6], we find that by
shifting the peak position of the redshift distribution by Az = +£0.1,
the peak abundances change by ~=3 per cent to ~+£20 per cent
from low to high peaks. Varying the b parameter by +30 per cent
(—30 per cent) leads to ~—2 per cent (45 per cent) to ~—10 per
cent (+20 per cent) changes in the peak abundances. A 30 per cent
change in ¢ parameter causes <5 per cent changes in peak abun-
dances. The largest impact is from the uncertainties in a parameter.
Changing a by +30 per cent (—30 per cent) leads to ~+8 per cent
(—5 per cent) to ~+30 per cent (—20 per cent) variations in the
peak abundances from low to high peaks. With these varied redshift
distributions, we estimate the best fit og from observed CS82 peak
abundances (unequal bins) by keeping €2, to be approximately the
best-fitting value from our fiducial analyses. The results are shown
in Fig. 9. It is seen that for all the above changes, the best fit o5 are
within the 1o range of our fiducial constraints. Therefore, we do not
expect a considerable impact on our results from the uncertainties
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Figure 9. The impact of the uncertainties in the galaxy redshift distribution
on cosmological-parameter constraints derived from CS82 weak lensing
peak abundances.

in the galaxy redshift distribution. On the other hand, for future
surveys with dramatically improved statistics, the uncertainties in
the redshift distribution can be an important source of systematic
errors for weak lensing peak statistics, and the required accuracy
for redshift measurements needs to be carefully studied.

4.4 Other constraints

Besides cosmological-parameter constraints, weak lensing peak
statistics may also possibly provide constraints on the density pro-
file of dark matter haloes because massive dark matter haloes are
the sources of true weak lensing peaks with high S/N ratios (e.g.
Yang et al. 2013). In our theoretical model of F10, the dependence
of the peak abundances on the density profile of dark matter haloes
is explicit. This allows us to perform constraints on the structural
parameters of dark matter haloes simultaneously with cosmological
parameters. Similar ideas are also recently proposed in other studies
(e.g. Cardone et al. 2014; Mainini & Romano 2014). To show this
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Table 4. Marginalized 1D mean from the four-
parameter fitting using unequally binned peak
counts. The errors are 68 per cent confidence

intervals.

Parameter Mock CS82 observation
0.30 0.30

Qm 0.38%03¢ 0.341939

o5 0.80%0%3 0.8410753

+5.4 +5.2

A 9.754% 15556
+1.41 1.37

B _0'15—1.45 _0-15:.31

feasibility, we assume a power-law mass—concentration relation for
NFW haloes in our model calculations with (e.g. Duffy et al. 2008)

A My, P 26
Cyir = s
(14 z)07 1014h’1M®

where A and B are regarded as free parameters. The redshift de-
pendence (1 + z)°7 is taken to be consistent with recent simula-
tion results (e.g. Bhattacharya et al. 2013). We then perform four-
parameter fitting from the observed weak lensing peak counts. The
flat priors are [0, 20] for A, [—2, 2] for B, [0.05, 0.95] for 2, and
[0.2, 1.6] for og. The results are shown in Fig. 10 where the un-
equal binned peak counts are used. The left-hand panels are for the
results from mock data described in Section 4.2, and the right-hand
panels are from CS82 observational data. We see that although the
obtained constraints are mainly for (2, o'g), the constraints on the
plane of (A, B) are apparent even for the current generation of weak
lensing surveys. The marginalized 1D mean for both mock and the
CS82 observational analyses are shown in Table 4. The results for
A and B are in broad agreement with the results from simulated
haloes although the error ranges are large. We also note that in this
four-parameter fitting, the constraint contours on (2, o) plane
are enlarged somewhat in comparison with the results of the two-
parameter fitting case, showing the influence of the uncertainties of
the halo structural parameters on the cosmological constraints.

For future surveys with much larger survey areas and the im-
proved depth, statistically we expect significant enhancements of
weak lensing peak analyses, which in turn will provide us valuable
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Figure 10. The four-parameter constraints from the mocked (left) and observed (right) unequal binned weak lensing peak counts. The contours are for 1o and

20 confidence levels
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cosmological information complementary to cosmic shear correla-
tion analyses.

5 SUMMARY AND DISCUSSIONS

With CS82 weak lensing observations, we study the weak lensing
peak abundances for v in the range [3, 6], and derive the first
cosmological constraints from peak analyses. We summarize the
results as follows.

(i) For flat ACDM, the cosmological constraints on (2, og)
from peak analyses are fully consistent with the constraints ob-
tained from cosmic shear correlation studies. On the other hand, the
degeneracy direction of the two parameters is flatter than those from
the correlation analyses. Quantitatively, with Xg = 0g(£2,/0.27)%,
we obtain o = 0.42 £ 0.02 in comparison with « = 0.70 £ 0.02
from COSEBis 2-pt correlations and o = 0.58 £ 0.02 from diag-
onal three-order aperture-mass correlation studies (Fu et al. 2014).
This shows a promising potential of weak lensing peak analyses
complementary to correlation studies. It is noted that to explore
the improvements on the cosmological-parameter constraints from
the combined analyses, the full covariance between the peak abun-
dances and the correlation functions should be investigated care-
fully.

(i1) Our derived cosmological constraints from peak analyses are
also consistent with both WMAP9 and Planck results.

(iii)) We perform constraints on (A, B), the power-law form of
the mass—concentration relation of dark matter haloes, simultane-
ously with the cosmological parameters (2, og). For the CS§2
survey with relatively large statistical errors, the current constraints
are mainly on (2,,, og). However, the constraints on (A, ) are
already apparent. This shows the capability to constrain the struc-
tural parameters of massive structures together with cosmological
parameters from weak lensing peak statistics. With much improved
data from future surveys, performing simultaneous constraints on
the structural and cosmological parameters can potentially allow
us to extract important astrophysical effects on the structural evo-
lution of the mass distribution of haloes (e.g. Yang et al. 2013).
Meanwhile, it can also avoid the possible bias on cosmological-
parameter constraints resulting from the pre-assumption about the
halo structures in predicting the cosmological dependence of weak
lensing peak abundances.

In this paper, we adopt the theoretical model of F10 for predicting
the peak abundances. The model takes into account the effects of
shape noise in the calculation, and has been tested extensively with
ray-tracing simulations in our previous studies (F10; LWPF2014).
For CS82, the shape noise is the dominant source of error. The
applicability of the model is further shown with our mock anal-
yses presented in Section 4.2 here. Comparing to the approach
fully relying on large simulations, theoretical modelling can help
us understand better different effects, and can allow us to explore
cosmological- and dark matter halo density profile parameter space
efficiently.

On the other hand, for future surveys with much reduced statis-
tical errors, our theoretical model needs to be developed to include
the effects neglected in the current treatment, such as the projection
effects of large-scale structures, the complex mass distribution of
haloes, etc. Unlike the shape noise, such effects themselves also
contain cosmological information. With the help of simulations,
we are currently working towards improving our model for future
cosmological applications.

Weak lensing effects are unique in probing the dark side of the
Universe. Current generation of completed surveys, such as CS82
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and CFHTLenS, have served as important demonstrations to show
the feasibility of weak lensing cosmological studies. Ongoing sur-
veys, such as DES (The Dark Energy Survey Collaboration 2005),
HSC (Hyper Suprime-Cam Design Review 2009) and KiDS (de
Jong et al. 2013), will expand the survey area to a few thousand
square degrees. Future ones, such as Euclid (Amendola et al. 2013)
and LSST (LSST Science Collaboration 2009), will target at nearly
half of the sky of about 20 000 deg?. The statistical capability of
weak lensing studies will increase tremendously. To fully realize
the power, however, different systematics, both observational and
theoretical ones, need to be understood thoroughly. For this, the
current surveys also play important roles in revealing different ob-
stacles that need to be overcome and further paving the road to the
future.
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APPENDIX A:

In this appendix, we describe our programming structure for com-
puting theoretically the peak abundances using the model of F10.
For clarity, we copy the relevant equations in Section 3.3 here. For
a S/N ratio v, the surface number density of peaks is given by

Npeak (V)Y = np o, (V)Y + np (V)dv. (AD)

The part for pure noise peaks nj.,(v) can be calculated easily
if the regions occupied by haloes are known. Therefore the most
computationally heavy part is n;,.,, (v) for peaks in halo regions. In
F10, it can be calculated by

. dv(z)
)= [l [ amanonemo, @
and
Ovir
MMMw=/ 46 (2m0) A, (v, 0, M., 2), (A3)
0
where
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Figure Al. Sketch for our code calculations.

It is noted that given a pair of (M, z) for a halo, the function
Apea (v, 0, M, z) in equation (A4) can be computed independently
for different & and v. We therefore employ GPU for this part of
calculations, which improves our computational efficiency enor-
mously.

We illustrate our programming structures in Fig. A1. The specifics
are as follows.

(1) We first divide the halo mass range and the redshift range
into N; x N, grid points as shown in the bottom layer of Fig. Al.
Memories are allocated for mass M (N, sample points) and redshift
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z (N, sample points) matrix on host memory (CPU memory). We
then calculate the corresponding virial radius r,;(M, z) on CPU
according to equation (17).

(ii) Then the results of ry; are copied to global memory (GPU
memory). We allocate global memory for different 6 (N3 sample
points) and SNR v (N, sample points) as shown in the top layer of
Fig. Al.

(iii) We take the advantage of GPU shared memory to evaluate
the smoothed convergence field K and its first and second deriva-
tives for an NFW halo using Chebyshev interpolation algorithm
for integration (Fox & Parker 1968). The shared memory is highly
efficient and suitable to use in this situation.

(iv) Launch the main kernel to evaluate f,(v, M, z) according to
equations (A3) and (A4). This involves massive amount of calcula-
tions because of the multidimensional integrations and is benefited
greatly by using the GPU feature.

(v) Atlast, we copy the results of f,(v, M, z) from global memory
to host memory, and calculate the final result of ny , (v) using the
11th-order Simpson method on CPU (Press 2007).

The use of GPU improves the model calculation efficiency signif-
icantly. For example, our own workstation consists of two Xeon
E5-2697v2 CPUs and four Nvidia GTX Titan GPU. Each CPU
contains 12 cores while each GPU contains 2880 cores. In this case,
we achieved a calculation speed which is more than 20 times faster
by using GPU than that by using CPU alone.
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