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Abstract. Our main goal is to determine, under certain restrictions, the maximal closed
connected subgroups of simple linear algebraic groups containing a regular torus. We call
a torus regular if its centralizer is abelian. We also obtain some results of independent
interest. In particular, we determine the irreducible representations of simple algebraic
groups whose non-zero weights occur with multiplicity 1.

1. Introduction

LetH be a simple linear algebraic group defined over an algebraically closed field
F of characteristic p ≥ 0. The closed subgroups of H containing a maximal torus,
so-called subgroups of maximal rank, play a substantial role in the structure theory
of semisimple linear algebraic groups. A naturally occurring family of maximal
rank subgroups of H are subsystem subgroups; a subsystem subgroup of H is a
closed semisimple subgroup G of H, normalized by a maximal torus of H. For
such a subgroup G, the root system of G is, in a natural way, a subset of the root
system of H. The main results of [32, 4] imply that every subgroup of maximal
rank is either contained in a parabolic subgroup of H, or lies in the normalizer
of a subsystem subgroup. Moreover, as described in [10, 3], we have a precise
understanding of the subsystem subgroups of a given simple group H.

Our aim here is to generalize the Dynkin-Borel-De Siebenthal classification by
replacing a maximal torus by a regular torus, that is, a torus whose centralizer
in H is a maximal torus of H. If G is a closed subgroup of H which contains a
regular torus of H, then the maximal tori of G are regular in H. Hence, we would
like to determine the closed connected subgroups G of H whose maximal tori are
regular in H. In its most general form, the question as stated is intractable. For
instance, by Proposition 1, for H of type Am the problem involves a classification
of indecomposable representations of simple algebraic groups G, with the property
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that all weight spaces are one-dimensional, a result which is not available in case
char(F ) > 0. A tractable version of the above question, and the one which we
consider and solve here, is the following:

Problem 1. Determine (up to conjugacy) the maximal closed connected subgroups
G of a simple algebraic group H containing a regular torus of H.

The solution to Problem 1 must include of course listing all maximal subgroups
of H of maximal rank. As mentioned above, the maximal connected, maximal
rank subgroups are either parabolic or subsystem. (See [18, §13] for a detailed
discussion.) Therefore, we will henceforth consider reductive subgroups G with
rank(G) < rank(H).

For a classical type group H with natural module V , a criterion for determining
whether a torus inH is regular is given by the following proposition. Recall that the
multiplicity of a weight in a representation is the dimension of the corresponding
weight space.

Proposition 1. Let H be a classical type simple algebraic group over F . Let V
be the natural FH-module and let T be a (not necessarily maximal) torus in H.
Then the following statements are equivalent:

(1) T is a regular torus in H;
(2) Either all T -weights on V have multiplicity 1, or H is of type Dm, and exactly
one T -weight has multiplicity 2 and all other T -weights have multiplicity 1.

The above proposition motivates our consideration of irreducible representations
of simple algebraic groups G having at most one T -weight space of dimension
greater than 1 (where T is now taken to be a maximal torus of G). Since all
weights in a fixed Weyl group orbit occur with equal multiplicites, if there exists
a unique weight occurring with multiplicity greater than 1, the weight must be
the zero weight. Our next result gives a complete classification of irreducible FG-
modules, both p-restricted (Thm. 2(1)) and non p-restricted (Thm. 2(2)), all of
whose non-zero weights occur with multiplicity 1.

For the statement of the result we require an additional notation and definition.
Let X(T ) denote the group of rational characters of T ; for a dominant weight
λ ∈ X(T ), let LG(λ) denote the irreducible FG-module of highest weight λ.

In the following we refer to Tables 1 and 2; all tables can be found in Section 8.

Theorem 2. Let G be a simple algebraic group over F and let T ⊂ G be a maximal
torus.

(1) Let λ ∈ X(T ) be a non-zero dominant weight. If char(F ) = p > 0, assume in
addition that λ is p-restricted. All non-zero weights of LG(λ) are of multiplicity
1 if and only if λ is as in Table 1 or Table 2.
(2) Let µ ∈ X(T ) be a non-zero dominant weight such that all non-zero weights
of LG(µ) are of multiplicity 1. Then either all weights of LG(µ) have multiplicity
1, or µ = pkλ for some integer k ≥ 0 and λ is as in Table 1 or Table 2, where
k = 0 if char(F ) = 0.

Note that Table 2 also contains the data on the multiplicity of the zero weight
in LG(λ).
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We will apply Proposition 1 and Theorem 2 to solve Problem 1 for H a classical
group with subgroup of the form ρ(G), where ρ : G → GL(V ) is an irreducible
representation of a simple algebraic group. In order to do so, for ρ of highest weight
as in Theorem 2, we must determine whether ρ(G) stabilizes a non-degenerate
quadratic or alternating form on the associated module. This will be carried
out in Section 5 for tensor-indecomposable representations. See Section 2 for a
discussion of the general case.

The main result for the classical groups is then the following:

Theorem 3. Let G be a simple algebraic group over F and ρ : G → GL(V ) an
irreducible rational representation with p-restricted highest weight λ. Let H ⊂
GL(V ) be the smallest simple classical group on V containing ρ(G) and assume
ρ(G) contains a regular torus of H. Then the pairs (G,λ) are those appearing
in Tables 4, 5, 6, 7, 8, 9. Moreover, each of the groups ρ(G) in the cited tables,
contains a regular torus of the classical group H.

Observe that Theorem 3 includes the case of char(F ) = 0. Moreover, we do
not require ρ(G) to be maximal in H. The specific case of maximal subgroups of
classical type groups is treated in Theorems 25 and 26.

Our result for the exceptional groups is the following:

Theorem 4. Let H be an exceptional simple algebraic group over F and M ⊂ H
a maximal closed connected subgroup containing a regular torus of H. Then either
M contains a maximal torus of H or the pair (M,H) is as in Table 10. Moreover,
each of the subgroups M ocurring in Table 10 contains a regular torus of the simple
algebraic group H.

We expect to use our results for recognition of linear groups, and more generally,
for recognition of subgroups of algebraic groups that contain an element of a specific
nature. This is the principal motivation for our consideration of Problem 2 below.
For the statement, we recall the following:

Definition 1. An element x of a connected reductive algebraic group H is said
to be regular if dimCH(x) = rank(H).

Note that for a semisimple element x ∈ H, this is equivalent to saying that
CH(x)◦ is a torus, or equivalently that CH(x) contains no non-identity unipotent
element. (See [25, Cor. 4.4] and [18, 14.7].) This is also equivalent to saying that
CH(x) has an abelian normal subgroup of finite index (still for x semisimple).

We now apply the following standard result.

Lemma 5. [12, Prop. 16.4] Let K be a connected algebraic group. A torus S of
K is regular if and only if S contains a regular element.

As every semisimple element of G belongs to a torus in G, Problem 1 is therefore
equivalent to the following.

Problem 2. Let H be a simple algebraic group over F . Determine (up to conjugacy)
all maximal closed connected subgroups G of H such that G contains a regular
semisimple element of H.
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Problem 2 can be viewed as a “recognition” result; that is, given a single ele-
ment g of H described in convenient terms, determine the closed subgroups G of
H containing g. There are many such results in the literature, both for simple
algebraic groups H and for finite groups of Lie type. The interested reader might
want to consult some of the references [34, 35], [36], [19], [33], [13], [8, 9], [21], [14],
[28], [22], [29].

It is of course natural to consider Problem 2 for arbitrary regular elements (i.e.,
not necessarily semisimple). The following proposition, proven in Section 2, shows
that the determination of subgroups containing a regular element of H can be
reduced to the case of regular semisimple elements. We would like to thank the
editors for providing a new proof, which is much simpler than our original proof.

Proposition 6. Let H be a connected reductive group over F . Let G ⊂ H be a
closed connected reductive subgroup. If G contains a regular element of H then G
contains a regular semisimple element of H.

Note that Problem 2, where we replace “semisimple” by “unipotent” was already
studied and solved in [22], [29], and [28]. We indicate in Section 7 how one can
use these results and the results of the current manuscript to classify pairs (G, g),
G a closed subgroup of H, g ∈ G a regular element of H.

We now describe briefly our approach to the resolution of Problem 1, which
differs according to whether H is of classical or of exceptional type. In the former
case our strategy is to reduce Problem 1 to the recognition of linear representations
of simple algebraic groups G whose weights satisfy certain specified properties.
Denote by V the natural module for a classical type simple algebraic group H.
Suppose first that H is of type Am. Then G reductive maximal implies that G
acts irreducibly on V , and (as alluded to above) the condition for a torus T of G
to be a regular torus in H can be expressed in geometric terms. Specifically, T is a
regular torus in H if and only if all T -weight spaces of V are one-dimensional. The
embedding G→ H can be viewed as a representation. Therefore, having reduced
to the case G simple, one needs to determine the irreducible representations of
simple algebraic groups all of whose weight spaces are one-dimensional. In this
form, the problem we are discussing was considered in [23]. For his purposes, Seitz
only needed infinitesimally irreducible representations satisfying the condition on
weight spaces; his result was later extended to general irreducible representations
in [37]. (We quote these results in Proposition 8 below.)

Now suppose that H is a classical group not of type Am, still with natural
module V . (Note that when H is of type Bn and p = 2, the natural module is a
(2n+ 1)-dimensional vector space equipped with a nondegenerate quadratic form
and H is the derived subgroup of the isometry group of this form.) Again we view
the embedding G→ H as a representation of G. As G is assumed to be maximal
among closed connected subgroups, and not containing a maximal torus of H, a
direct application of [23, Thm. 3] shows that either G acts irreducibly on V or
the pair (G,H) is (Bm−kBk, Dm+1), for some 0 < k ≤ m. In the latter case,
it is straightforward to show that G contains a regular torus of H; see Section 2
for details. Let now G be a closed subgroup of H, acting irreducibly on V and
containing a regular torus of H. It is easier to determine such subgroups when H
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is of type Bm or Cm due to the fact that a regular torus of H is regular in SL(V ).
Hence, we may refer to the previously mentioned classification of representations
having 1-dimensional weight spaces. If H = Dm, we apply Proposition 1 and
Theorem 2.

Now we turn to the case where H is of exceptional Lie type. In contrast with
the classical group case, the classification of maximal positive-dimensional closed
subgroups of H is explicit [15, Table 1]; we analyse the maximal connected sub-
groups which are not of maximal rank, and decide for which of these a maximal
torus is regular in H. This is done in Proposition 27. Here our method uses a
different aspect of representation theory than that used in the classical group case.
It is based upon the following fact.

Proposition 7. Let H be a connected algebraic group over F , with Lie algebra
Lie(H). Let T ⊂ H be a (not necessarily maximal) torus. The torus T is regular
in H if and only if dimCLie(H)(T ) = rank(H).

This follows from the fact that Lie(CH(S)) = CLie(H)(S), for any torus S ⊂
H. (See [12, Prop. A. 18.4]). Now T lies in a maximal torus TH of H and
so Lie(TH) = CLie(H)(TH) ⊂ CLie(H)(T ). Hence, T is regular in H if and only
if CLie(H)(T ) = Lie(TH). If G is explicitly given as a subgroup of H, one can
determine the composition factors of the restriction of Lie(H) as FG-module;
indeed this information is available in [15]. Next, for every composition factor, we
determine the multiplicity of the zero weight. Then CLie(H)(T ) = Lie(TH) if and
only if the sum of these multiplicities equals the rank of H.

Notation. We fix the notation and terminology to be used throughout the paper.
We write N0 for the set of non-negative integers, including 0, and N for the set
N0 \ {0}. Let F be an algebraically closed field, of characteristic 0 or of prime
characteristic char(F ) = p > 0. For a natural number a ≥ 1, we write p ≥ a
(respectively p > a, p 6= a) to mean that either char(F ) = 0 or char(F ) = p 6= 0
and p ≥ a (resp. p > a, p 6= a). For a linear algebraic group X defined over F ,
we write X◦ for the connected component of the identity. All groups considered
will be linear algebraic groups over F , and all subgroups will be closed subgroups
of the ambient algebraic group.

Let G be a reductive algebraic group over F . All FG-modules are assumed
to be rational, and we will not make further reference to this fact. We fix a
maximal torus and Borel subgroup T ⊂ B of G, the root system Φ(G) with respect
to T , a set of simple roots {α1, . . . , αn} corresponding to B, the corresponding
set of positive roots Φ+, and the corresponding fundamental dominant weights
{ω1, . . . , ωn}. Write X(T ) for the group of rational characters on T . Given a
dominant weight λ ∈ X(T ), we write LG(λ) for the irreducible FG-module with
highest weight λ, WG(λ) for the Weyl module of highest weight λ, and rad(WG(λ))
for the unique maximal submodule of the latter. A dominant weight λ ∈ X(T )
is said to be p-restricted if either char(F ) = 0 or char(F ) = p and λ =

∑
aiωi

with ai < p for all i. Recall that a weight µ ∈ X(T ) is said to be subdominant
to λ if λ and µ are dominant weights and µ = λ −

∑
aiαi for some ai ∈ N0. For

an FG-module M and a weight µ ∈ X(T ), we let Mµ denote the T -weight space
corresponding to the weight µ. Set WG := NG(T )/T , the Weyl group of G and
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write si for the reflection in WG corresponding to the simple root αi. We label
Dynkin diagrams as in Bourbaki [5].

When G is a classical type simple algebraic group, by the “natural” module for
G we mean LG(ω1), unless G is of type Bn and p = 2, in which case the natural
module is WG(ω1). We assume further that n ≥ 2 if G is of type Cn and n ≥ 3 if
G is of type Bn. It is well-known that G preserves a non-degenerate symplectic or
quadratic form on the natural module.

Acknowledgements. We would like to thank the editors and referees for many
useful comments, corrections and references which we believe have significantly
improved the manuscript. In addition, we thank Gunter Malle who read an earlier
version of the manuscript and provided several helpful suggestions.

2. Initial reductions

In this section, we prove Proposition 6, and therefore reduce the determina-
tion of connected reductive overgroups of regular elements to the consideration
of regular semisimple elements. Then as remarked earlier, we will treat this by
considering connected overgroups of regular tori.

The following proof was provided by one of the editors, and greatly simplifies
the orginial proof. We are very thankful to the editor for communicating this
improvement.

Proof of Proposition 6. Let Hreg denote the set of regular elements in H. This
is an open set in H ([26, 5.4]) and hence G ∩Hreg is open in G, and non-empty
by hypothesis. As well, the set of semisimple elements in G is dense in G (see
[12, Thm. 22.2]) and so intersects nontrivially Hreg ∩ G. Hence G contains a
semisimple regular element of H.

We give one further reduction for subgroups of classical groups containing reg-
ular tori. Let H be a simple algebraic group over F and let G be a maximal
closed connected subgroup of H which contains a regular torus of H. If G is not
reductive, then the main results of [32] and [4, §2] imply that G is a maximal
parabolic subgroup of H and hence contains a maximal torus of H. Henceforth
we will restrict our attention to connected reductive subgroups G.

Consider now the case where H is a classical type simple algebraic group with
natural module V . We use the general reduction theorem, [23, Thm. 3], on maxi-
mal closed connected subgroups of H; this allows us to restrict our considerations
to irreducibly acting subgroups of H. For a detailed discussion of this see [18, §18].
Precisely, an application of [18, Prop. 18.4] yields the following.

Let H be a classical group with natural module V and let G be maximal among
closed connected subgroups of H. Then one of:

(1) G contains a maximal torus of H.
(2) H is of type Am and G is of type Bm

2
, Cm+1

2
, or Dm+1

2
.

(3) H is of type Dm and either V = U ⊕ U⊥, where U is an odd-dimensional
non-degenerate subspace with respect to the bilinear form on V , 2 ≤
dimU ≤ dimV − 2, and G = StabH(U)◦, or char(F ) = 2 and G is the
stabilizer in H of a non-singular 1-space of V .
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(4) V = V1⊗V2, each of V1 and V2 is equipped with either the zero form (in case
V has no non-degenerate H-invariant form), or a non-degenerate bilinear
or quadratic form, and the form on V is obtained as the product form.
Moreover, G is the connected component of (Isom(V1) ⊗ Isom(V2)) ∩ H.
Note that if V is equipped with a quadratic form and char(F ) = 2, then
G = Sp(V1)⊗ Sp(V2).

(5) G is simple acting irreducibly and tensor indecomposably on V .

In the first four cases, it is straightforward to show that G contains a regular
torus of H. Hence we are reduced to considering simple subgroups which act
irreducibly and tensor indecomposably on V .

3. Irreducible representations whose non-zero weights are of
multiplicity 1

In this section, we determine the irreducible representations of simple algebraic
groups all of whose non-zero weights have multiplicity 1, thereby establishing The-
orem 2. Throughout this section we take G to be a simply connected simple
algebraic group over F . The rest of the notation will be as fixed in Section 1. We
inroduce the following notation.

Definition 2. Let G be a semisimple algebraic group with maximal torus T . We
denote by Ω2(G) the set of p-restricted dominant weights λ ∈ X(T ) such that all
non-zero weights of LG(λ) have multiplicity 1, and by Ω1(G) the set of weights
λ ∈ Ω2(G) such that all weights of LG(λ) have multiplicity 1.

As discussed in Section 1, we will require the following classification.

Proposition 8. Let λ ∈ X(T ) be a non-zero dominant weight.

(1) Assume in addition that λ is p-restricted. Then all weights of LG(λ) are of
multiplicity 1 if and only if λ is as in the second column of Table 1. In other
words, the set Ω1(G) \ {0} is as given in Table 1.

(2) Suppose that p > 0 and λ is not p-restricted, so λ =
∑k
i=0 p

iλi, where λi is
p-restricted for all i and λi 6= 0 for some i > 0. Then all weights of LG(λ) are of
multiplicity 1 if and only if the following hold:
(a) for all 0 ≤ l ≤ k, λl ∈ Ω1(G), and
(b) for all 0 ≤ l < k,

(λl, λl+1) 6= (ωn, ω1) if p = 2, G = Cn;
(λl, λl+1) 6= (ω1, ωn) if p = 2, G = Bn;
(λl, λl+1) 6= (ω1, ω1) if p = 2, G = G2;
(λl, λl+1) 6= (ω2, ω1) if p = 3, G = G2.

Proof. The result (1) follows from [23, 6.1] and [37]. Part (2) follows from [37,
Prop.2], assuming p 6= 2 when G = Bn. For this exceptional case, we apply the
isogeny Bn → Cn induced by the action of Bn on WBn

(ω1)/rad(WBn
(ω1)) and the

result of [37, Prop.2].

We now collect some results on dimensions of certain weight spaces in infinites-
imally irreducible FG-modules.
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Lemma 9. Let λ ∈ X(T ) be a p-restricted dominant weight.

(1) If G is of type An and λ = aωj + bωk, with 1 ≤ j < k ≤ n and ab 6= 0, then
the multiplicity of the weight λ−αj −αj+1−· · ·−αk in LG(λ) is k− j+ 1 unless
p|(a+ b+ k − j), in which case the multiplicity is k − j.
(2) If G is of type An and λ = cωi for some 1 < i < n and c > 1, then the
multiplicity of the weight λ−αi−1− 2αi−αi+1 in LG(λ) is 2 unless c = p− 1 in
which case the multiplicity is 1.
(3) If G is of type C2 and λ = aω1 + bω2, with ab 6= 0, the multiplicity of the
weight λ−α1−α2 in LG(λ) is 2 unless a+ 2b+ 2 ≡ 0 (mod p) in which case the
multiplicity is 1.
(4) If G is of type Bn with λ = ω1 + ωn, then the weight λ − α1 − · · · − αn has
multiplicity n in LG(λ), unless p|(2n+ 1) in which case it has multiplicity n− 1.
(5) If G is of type G2 and λ = aω1 + bω2, with ab 6= 0, the multiplicity of the
weight λ−α1−α2 in LG(λ) is 2 unless 3a+ b+ 3 ≡ 0 (mod p) in which case the
multiplicity is 1.
(6) If G is of type An and λ = aωi + bωi+1 + cωi+2, with abc 6= 0 and a + b =
p − 1 = b + c, the weight λ − αi − αi+1 − αi+2 has multiplicity at least 2 in the
module LG(λ).
(7) If G is of type D4 and λ = aω1, with a > 1, then the weight λ− 2α1 − 2α2 −
α3 − α4 has multiplicity at least 2 in LG(λ).
(8) If G is of type G2, λ = bω1 with b > 1, and p > 3, then the weight λ−2α1−α2

has multiplicity 2 in LG(λ).
(9) If G is of type G2, λ = aω2, with p > 3 and a = p−1

2 , then the weight
λ− 2α1 − 2α2 has multiplicity 2 in LG(λ).

Proof. Part (1) is [23, 8.6], (3) and (5) are [30, 1.35]. For (2), see the proof of [23,
6.7] and apply the main result of [20]. Part (4) is [7, 2.2.7], when p 6= 2. For the
case p = 2, use [23, 1.6]. The proof of (6) is contained in the proof of [23, 6.10].
Part (7) is proved in [23, 6.13]. Finally, the proofs of (8) and (9) follow from the
proof in [23, 6.18].

We now turn our attention to the determination of the set Ω2(G) \ Ω1(G).
Let λ be a p-restricted dominant weight for the group G. It will be useful to
work inductively, restricting the representation LG(λ) to certain subgroups and
applying the following analogue of [23, 6.4].

Lemma 10. Let X be a subsystem subgroup of G normalized by T . Let λ ∈ Ω2(G).
Let LX(µ) be an FX-composition factor of LG(λ), for some dominant weight µ in
the character group of X ∩ T . Then µ ∈ Ω2(X).

Proof. The argument is completely analogous to the proof of [23, Lemma 6.4]. Set
W := LG(λ). Write TX = XZ, where Z = CT (X)◦. Let 0 ⊂M1 ⊂ · · · ⊂Mt = W
be an F (XT )-composition series of W . Then there exists i such that LX(µ) ∼=
Mi/Mi−1. Now Mi = Mi−1⊕M ′ as FT -modules, Z acts by scalars on M ′ and the
set of (T ∩ X)-weights in M ′ (and their multiplicities) are precisely the same as
in LX(µ). Also, if ν is a non-zero weight of LX(µ), then ν corresponds to a non-
zero T -weight of M ′. Therefore if ν is a (T ∩X)-weight occurring in LX(µ) with
multiplicity greater than 1, there exists a T -weight ν′ such that dim(M ′)ν′ ≥ 2.
So ν′ = 0 and hence ν = 0. The result follows.
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Proposition 11. The set of weights Ω2(G) \Ω1(G) is as given in Table 2. More-
over, the multiplicity of the zero weight in LG(λ) is as indicated in the fourth
column.

Proof. We first note that for G and λ as in Table 2, the multiplicity of the zero
weight in LG(λ) can be deduced from [17, Table 2]. We now show that the list
in Table 2 contains all weights in Ω2(G) \ Ω1(G). Let λ ∈ Ω2(G) \ Ω1(G); in
particular, 0 must be subdominant to λ, and so λ lies in the root lattice. We will
proceed as in [23, §6]. We apply Lemma 10 to various subsystem subgroups of G;
all of such are taken to be normalized by the fixed maximal torus T .

Case A3. Consider first the case where λ = bω2. By the above remarks, b > 1,
and so we have p > 2. If b = 2, the only weights subdominant to λ are λ − α2,
which has multiplicity 1 in LG(λ) and µ = λ − α1 − 2α2 − α3 which is the zero
weight. Hence λ ∈ Ω2(G) and by Lemma 9(2), λ ∈ Ω1(G) if and only if p = 3. If
b > 2, the weight µ is a non-zero weight and Lemma 9(2) implies that b = p − 1,
in which case λ ∈ Ω1(G).

Now consider the general case λ = aω1 + bω2 + cω3. Assume for the moment
that abc 6= 0. Applying Lemma 9(1), we see that a+ b = p− 1 = c+ d. But then
Lemma 9(6) rules out this possibility. Hence we must have abc = 0. If ab 6= 0 as
above we have a + b = p − 1 and λ ∈ Ω1(G). The case bc 6= 0 is analogous. If
b = 0 and ac 6= 0, Lemma 9(1) implies that the weight λ− α1 − α2 − α3 must be
the zero weight and hence a = 1 = c. This weight appears in Table 2. Finally, if
b = c = 0 or a = b = 0, then λ ∈ Ω1(G). This completes the case G of type A3.

Case An, n 6= 3. If n = 2, Lemma 9(1) and Proposition 8 give the result. So we
now assume n > 3, and λ =

∑n
i=1 biωi. We apply Lemma 10 to various A3 Levi

factors of G, as well as the result of Lemma 9(1) and (2). For example, for each set
of consecutive simple roots {αi, αi+1, . . . , αi+k} with k > 1, bibi+k 6= 0 and bj = 0
for i < j < i+ k, we deduce that bi = 1 = bi+k and i = 1 and i+ k = n. Further
considerations of this type allow us to reduce to configurations of the form:

a) λ = ωi for some i,

b) λ = (p− 1)ωi, for 1 < i < n,

c) λ = aωi, for i = 1, n,

d) λ = cωi + dωi+1, cd 6= 0, 1 ≤ i < n and c+ d = p− 1,

e) λ = ω1 + ωn.

Each of these weights is included either in Ω1(G) or in Table 2.

Case C2. Let λ = dω1 + cω2. The arguments of [23, 6.11] together with
Lemma 9(3) show that either λ ∈ Ω1(G) or one of the following holds:

(a) d = 0, c > 1, c 6= p−1
2 , and the weight λ− 2α1 − 2α2 is the zero weight.

(b) c = 0, d > 1, and the weight λ− 2α1 − α2 is the zero weight.

(c) cd 6= 0, d > 1, 2c+ d+ 2 ≡ 0 (mod p) and λ− α1 − α2 is the zero weight.

Case (i) is satisfied only if c = 2; (ii) is satisfied only if d = 2; (iii) is not possible.

Case C3. Let λ = aω1 + bω2 + cω3. We apply Lemma 10 to three different C2

subsystem subgroups of G, namely X1, the Levi factor corresponding to the set
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{α2, α3}, X2, the conjugate of this group by the reflection s1, and X3 = Xw
1 , where

w = s1s2. Restricting λ to X1 gives that

(b, c) ∈ {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1,
p− 3

2
), (0,

p− 1

2
)}.

Note also that λ|T∩X2
has highest weight (a + b)µ1 + cµ2, where µ1, µ2 are the

fundamental dominant weights corresponding to the base {α1 + α2, α3}.
Suppose first that c 6= 0, so b ∈ {0, 1}. If a+ b < p, we can again apply the C2

result to the group X2 to see that a+ b = 0 or 1. On the other hand, if a+ b ≥ p,
we must have b = 1 and a = p− 1. This latter case is not possible as Lemma 9(1)
implies that the non-zero weight λ − α1 − α2 has multiplicity 2. Hence when
c 6= 0, we have (a, b, c) = (0, 0, c), or (a, b, c) = (1, 0, c), or (a, b, c) = (0, 1, p−3

2 ).
As the third possibility corresponds to a weight in Ω1(G), we consider the first
two possibilities. If (a, b, c) = (0, 0, c), by Proposition 8, we may assume c 6= p−1

2 ,
and c 6= 1. This leaves us with the weight 2ω3, and p 6= 5. But then [17] shows
that a non-zero weight has multiplicity greater than 1. If (a, b, c) = (1, 0, c), then
c ∈ {1, 2, p−1

2 }. The restriction of λ to the subgroup X2 is µ1 + cµ2. But here
Lemma 9(3) shows that the weight µ = λ− (α1 +α2)−α3 has multiplicity 2 unless
c = p−3

2 . Since µ is a non-zero weight, either c = 1 and p = 5 or c = 2 and p = 7.
Again, we refer to [17] to see that there is a non-zero weight with multiplicity
greater than one in each case.

Suppose now c = 0. Then the restriction to X1 implies that (a, b, c) is one of
(a, 1, 0), (a, 2, 0), (a, 0, 0). Suppose (a, b, c) = (a, 1, 0). If a = 0, then the only
subdominant weight in LG(λ) is the 0 weight and hence this gives an example.
If a 6= 0, Lemma 9(1) implies that a = p − 2. Then the restriction of λ to
X3 is the weight aη1 + η2, where η1, η2 are the fundamental dominant weights
corresponding to the base {α1, 2α2 + α3}. But then Lemma 9(3) implies that the
non-zero weight λ−α1−2α2−α3 occurs with multiplicity 2. If (a, b, c) = (a, 2, 0),
then the subdominant weight λ − 2α2 − α3 has multiplicity 2 and hence this is
not an example. Finally, if (a, b, c) = (a, 0, 0), we consider the restriction of λ to
the subgroup X3 and the C2 result implies that a = 1 or a = 2. If a = 1, then
λ ∈ Ω1(G), while if a = 2, [17, Table 2] shows that λ ∈ Ω2(G). This completes the
consideration of the case G = C3.
Case Cn, n ≥ 4. If λ =

∑
aiωi with ai = 0 for i ≤ n − 2, then the C3 result

and Lemma 10 (applied to the standard C3 Levi factor) implies that either λ is
one of the weights in Table 1 or in Table 2, or λ = ωn−1 or λ = ωn, with p 6= 3
in each case. If λ = ωn−1, then we refer to [17], for the group C4, to see that
the subdominant weight ωn−3 occurs with multiplicity 2. This then shows that
λ = ωn−1 6∈ Ω2(G). Now if λ = ωn, again use [17] and find that λ ∈ Ω2(G) when
n = 4, while if n > 4, the weight ωn−4 occurs with multiplicity 2 and so λ 6∈ Ω2(G).

We may now assume that there exists i ≤ n− 2 with ai 6= 0. Choose i ≤ n− 2
maximal with ai 6= 0 and consider the C3 subsystem subgroup X with root system
base {αi + · · · + αn−2, αn−1, αn}, so that λ|T∩X = aiη1 + an−1η2 + anη3, where
{η1, η2, η3} are the fundamental dominant weights corresponding to the given base.
As ai 6= 0, the C3 case considerations imply that an−1 + an = 0 and ai = 1 or 2.
If i = 1, λ occurs in the statement of the result. If i = 2, so λ = a1ω1 +a2ω2, then



SUBGROUPS CONTAINING REGULAR TORI 11

we may assume a1 6= 0, or a2 = 2, as λ = ω2 occurs in the statement of the result.
But then the restriction of λ to the C3 subsystem subgroup with root system base
{α1, α2 + · · ·+αn−1, αn} has non-zero weights occurring with multiplicity greater
than 1.

So finally, we may assume i > 2, and so n ≥ 5. If n = 5 and so i = 3, we
apply the result for C4 to see that a2 = 0 and a3 = 1. But the non-zero weight
λ − α2 − 2α3 − 2α4 − α5 has multiplicity at least 2 by the C4 result. Hence the
result holds for the case n = 5. If n ≥ 6, we consider the C5 subsystem subgroup
whose root system has base {αi−2, αi−1, αi + · · · + αn−2, αn−1, αn} and obtain a
contradiction.

Case Dn. Suppose first that n = 4. Let λ =
∑
aiωi. If a2 = 0, Lemma 9(1)

implies that λ = aiωi for i = 1, 3 or 4; assume by symmetry that i = 1. Then
Lemma 9(7) shows that either a1 = 1 or λ − 2α1 − 2α2 − α3 − α4 is the zero
weight. In either case, λ is as in the statement of the result. So we now assume
a2 6= 0. Using the result for A3, applied to the three standard A3 Levi factors,
we see that at most one of a1, a3, a4 is non-zero. However if a1 + a3 + a4 6= 0,
Lemma 9(1) and (2) provide a contradiction. Hence λ = a2ω2, and since λ = ω2

is in Table 2, we may assume a2 > 1. Now λ−α1− 2α2−α3 is a non-zero weight,
so Lemma 9(2) implies that a2 = p − 1. But we now apply Lemma 10 to the A3

subsystem subgroup with root system having as base {α2, α1, α2 + α3 + α4} to
obtain a contradiction.

Now consider the general case where n > 4. We argue by induction on n. Apply
the result for Dn−1 to the standard Dn−1 Levi factor of G to see that either λ is
as in the statement of the result or λ = aω1, aω1 + ω2, aω1 + ωn−1, aω1 + ωn,
aω1 + ω3, or aω1 + 2ω2. Now consider the D4 subsystem subgroup whose root
system has base {α1, α2 + · · · + αn−2, αn−1, αn}. The result for D4 then implies
that either λ appears in Table 1 or Table 2, or λ = ω3. But then the restriction
of λ to the standard Dn−1 Levi factor X affords a composition factor which is the
unique nontrivial composition factor of Lie(X). The weight corresponding to the
zero weight in Lie(X) is the weight λ−α1−2(α2 + · · ·+αn−2)−αn−1−αn, which
is a non-zero weight in LG(λ) with multiplicity at least n− 3. (See [17, Table 2].)
This completes the consideration of type Dn.

Case Bn. If p = 2, we may deduce the result from the case of G = Cn; hence we
assume for the remainder of this case that p 6= 2. Consider first the case n = 3.
We apply the result for C2 to the standard C2 Levi factor of G and the A3 result
to the subsystem subgroup X with root system base {α2 + 2α3, α1, α2}. Note
that if λ = aω1 + bω2 + cω3, then the restriction of λ to X affords a composition
factor with highest weight (b + c)η1 + aη2 + bη3, where {η1, η2, η3} is the set of
fundamental dominant weights dual to the given base. We deduce that either
λ appears in Table 1 or in Table 2 or λ = ω1 + ω3, 2ω3, (p − 3)ω1 + 2ω3, or
(p − 2)ω1 + ω3. The first case is ruled out by Lemma 9(4). For the second and
third, where p > 2, we see that the restriction of λ to the standard C2 Levi factor
affords a composition factor isomorphic to the Lie algebra of the Levi factor, in
which the non-zero weight λ − α2 − 2α3 has multiplicity 2. For the final case,
when λ = (p − 2)ω1 + ω3, consider the C2 subsystem subgroup Xs1 , with root
system base {α1 + α2, α3}, for which λ affords a composition factor with highest
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weight (p − 2)ζ1 + ζ2 (where ζ1, ζ2 are the fundamental dominant weights with
respect to the base {α1 + α2, α3}), contradicting Lemma 10. This completes the
consideration of G = B3.

Consider now the general case n ≥ 4. Let λ =
∑
aiωi. By considering the

restriction of λ to the standard B3 Levi subgroup, we see that an−1 + an < p.
Now consider the maximal rank Dn subsystem subgroup X with root system base
{α1, . . . , αn−2, αn−1, αn−1 + 2αn}. The above remarks imply that λ|T∩X is a p-
restricted weight and the result for Dn then gives the result for Bn.

Case En. For n = 6, we apply the Dn result to the two standard D5 Levi
subgroups of G and the An result to the standard A5 Levi subgroup of G to see
that either λ is as in Table 2 or λ = ω3, ω5, 2ω1 or 2ω6. In the first two cases, the
restriction of λ to one of the D5 Levi factors affords a composition factor which
is isomorphic to the unique nontrivial composition factor of the Lie algebra of the
Levi factor. But the zero weight in this composition factor corresponds to a non-
zero weight with multiplicity at least 4. In the last two configurations, we note
that the D5 composition factor afforded by λ has zero as a subdominant weight
of multiplicity at least 3 (here we use [16]). But this subdominant weight is a
non-zero weight with respect to T .

Now for n = 7, we apply the result for E6 as well as for D6 and A6 to see
that either λ is as in the statement of the result or λ = ω6 or 2ω7. These two
configurations can be ruled out exactly as in the case of E6. The case of G = E8

is completely analogous.

Case F4. For this case, we use the standard B3 and C3 Levi factors and the
maximal rank D4 subsystem subgroup whose root system base is {α2 + 2α3 +
2α4, α2, α1, α2 + 2α3}. This leads immediately to the result.

Case G2. Let λ = bω1 + aω2, where 3(α1, α1) = (α2, α2). We first treat the
cases where p = 2 or p = 3 by referring to [16] to see that λ is as in Table 2 or
λ = 2ω1 + 2ω2 and p = 3. But then Lemma 9(5) shows that the non-zero weight
λ−α1−α2 has multiplicity 2. So we may now assume p > 3. We will consider the
restriction of λ to X, the A2 subsystem subgroup corresponding to the long roots
in Φ(G); we have λ|T∩X = (a + b)η1 + aη2, where {η1, η2} are the fundamental
dominant weights for X.

Assume that λ is not as in Table 2, so λ 6= ωi, i = 1, 2. Now Lemma 9(8)
implies that a 6= 0. Consideration of the action of X, together with Lemma 9(1),
implies that either a + b ≥ p or 2a + b + 1 ≡ 0 (mod p). Now if b = 0, we must
be in the second case, so a = p−1

2 ; in particular, a > 1. But then Lemma 9(9)
gives a contradiction. Hence we must have b 6= 0. Then Lemma 9(5) implies that
3a + b + 3 ≡ 0 (mod p) and either 2a + b + 1 ≡ 0 (mod p) or a + b ≥ p. In
the first case we have a = p − 2 and b = 3; in the second case we must have
b ≥ 2. So in either case λ − 2α1 − α2 is a subdominant weight. Arguing as in
[23, 6.18], we see that the non-zero weight λ − 2α1 − α2 has multiplicity 1 only
if 6a+ 4b+ 8 ≡ 0 (mod p), which together with the previous congruence relation
implies that b = p−1, and hence 3a+ 2 ≡ 0 (mod p). We are now in the situation
where a + b ≥ p; indeed, as a = p−2

3 or 2p−2
3 , we have that either p = 5, a = 1,

b = 4 and [16] gives a contradiction, or λ|T∩X = pη1 + (cη1 + dη2), with cd 6= 0,
(c, d) = (p−5

3 , p−2
3 ) or ( 2p−5

3 , 2p−2
3 ). In each case, the result for A2 leads to a
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contradiction.
It remains to verify for each weight λ in Table 2 that all non-zero weights of

LG(λ) do indeed have multiplicity 1. This is straightfoward using [17] and [16].

The following corollary is immediate.

Corollary 12. Let λ ∈ X(T ) be dominant and p-restricted. If all non-zero weights
of LG(λ) occur with multiplicity 1, then the zero weight occurs with multiplicity at
most rank(G).

Note that bounds for the maximal weight multiplicities in irreducible represen-
tations of G are studied in [1, 2]. The above corollary does not however follow
from their results.

Corollary 13. Let λ ∈ Ω2(G). Then one of the following holds:

(1) λ ∈ Ω1(G).
(2) LG(λ) is the unique nontrivial composition factor of Lie(G).
(3) (G,λ) is one of (A3, 2ω2) with p > 3, (Bn, 2ω1), (Cn, ω2) with n > 2 and
p 6= 3 if n = 3, (Bn, ω2) with p = 2, (C2, 2ω2) with p 6= 5, (C4, ω4) with p > 3,
(Dn, 2ω1) with n > 3, or (F4, ω4) with p 6= 3.

Proof. The statement about Lie(G) follows from the known structure of the FG-
module Lie(G); see for example [23, 1.9].

We record in the following corollary the cases where the 0 weight has multiplicity
2 in LG(λ), for λ ∈ Ω2(G). This will be required for the resolution of Problem 1
in case H = Dn.

Corollary 14. Let λ ∈ Ω2(G) and suppose that the zero weight has multiplicity 2
in LG(λ). Then the pair (G,λ) is as in Table 3.

We can now complete the proof of Theorem 2.

Theorem 15. Let λ ∈ X(T ) be a non-zero dominant weight. Then at most one
weight space of LG(λ) is of dimension greater than one if and only if one of the
following holds:

(1) the module LG(λ) is as described in Proposition 8;
(2) λ = pkµ for some k ∈ N0, k = 0 if char(F ) = 0, and for some weight
µ ∈ Ω2(G) \ Ω1(G), as given in Table 2.

Proof. By Propositions 8 and 11, for the modules LG(λ) described in (1) and (2),
all non-zero weights are of multiplicity at most 1. So now take λ ∈ X(T ) a non-
zero dominant weight such that at most one weight space of LG(λ) has dimension
greater than 1, and suppose λ is not as in (1). In particular, LG(λ) has a weight
of multiplicity greater than 1. Note that if a non-zero weight in LG(λ) occurs with
multiplicity greater than 1, then so do all of its conjugates under the Weyl group.
Hence, the weight occurring with multiplicity greater than one in LG(λ) must be
the zero weight.

Now, let λ =
∑l
i=1 p

kiλi, where λi is a non-zero dominant p-restricted weight
for all i; so we have LG(λ) ∼= LG(pk1λ1) ⊗ · · · ⊗ LG(pklλl). If l = 1 then (2)
holds. Let l > 1. Then for all 1 ≤ i ≤ l, the weights of LG(pkiλi) must have
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multiplicity 1 (else a non-zero weight has multiplicity greater than 1 in LG(λ)).
Then by Proposition 8, we see that there exists a pair (λi, λj) with kj = ki + 1,
as in Proposition 8(2)(b). So we investigate the multiplicity of the zero weight in
the tensor products associated to these pairs of weights.

Let LG(λ) = LG(λ1)⊗LG(pλ2), where (G, p, λ1, λ2) is one of the following: (a)
(Cn, 2, ωn, ω1), (b) (Bn, 2, ω1, ωn), (c) (G2, 2, ω1, ω1), or (d) (G2, 3, ω2, ω1). Let εi
be the weights defined as in [5, Planche II, III, IX].

In case (a), the weights of LG(ωn) are ±ε1±· · ·±εn and the weights of LG(2ω1)
are ±2ε1 . . .± 2εn; in particular, there are no common weights. It follows that the
0 weight does not occur in LG(λ1)⊗ LG(2λ2).

In case (b), the weights of LG(ω1) are ±εi and 0 and the weights of LG(2ωn)
are ±ε1 ± ε2 ± · · · ± εn and we conclude as in the previous case.

In case (c), the weights of LG(ω1) are {±(ε1 − ε2),±(ε1 − ε3),±(ε2 − ε3)}. So
LG(ω1) and LG(2ω1) again have no common weight, and hence the 0 weight does
not occur in LG(ω1)⊗ LG(2ω1).

Finally for case (d), the weights of LG(3ω1) are {0, {±3(ε1 − ε2),±3(ε1 −
ε3),±3(ε2 − ε3)}, and the weights of LG(ω2) are 0,±(2ε1 − ε2 − ε3),±(2ε3 − ε1 −
ε2),±(2ε2 − ε1 − ε3). Then the multiplicity of the weight 0 in LG(λ1)⊗ LG(3λ2)
is 1.

It follows from Proposition 8 that the weights of LG(λ1) ⊗ LG(pλ2) whose
multiplicity is greater than 1 are non-zero. Hence there are no examples of λ =∑l
i=1 p

kiλi with l > 1 and all λi different from 0 such that the zero weight has
multiplicity greater than 1 and all non-zero weights have multiplicity 1 in the
module LG(λ).

4. Semisimple regular elements in classical groups

In this section, we prove Proposition 1. Throughout, H is a simply connected
simple algebraic group of classical type, with natural module V . Let H̃ be the
image of H in GL(V ). Note that x ∈ H is regular if and only if the image of x in
H̃ is regular in H̃.

Lemma 16. Let H be of type Am, Bm, Cm or Dm, and assume p 6= 2 if H has
type Bm. Let t ∈ H̃ be a semisimple regular element. Then t is a regular element
in GL(V ), except for the following cases:

(1) H is of type Bm and −1 is an eigenvalue of t on V with multiplicity 2;
(2) H is of type Dm and at least one of 1 and −1 is an eigenvalue of t on V with
multiplicity 2.

Proof. The result is trivial if H is of type Am, so we assume that V is equipped
with a nondegenerate symplectic or quadratic form and that H̃ ⊂ Isom(V ) is
the corresponding simple algebraic group. Let d = dimV , and let b1, . . . , bd
be a basis of V with respect to which the Gram matrix of the associated bi-
linear form is anti-diagonal, with all non-zero entries in the set {1,−1}. We may
assume the matrix of t with respect to this basis is diagonal and of the form
t = diag(t1, . . . tm, x, t

−1
m , . . . , t−1

1 ), where x is absent if d is even and equal to 1
otherwise. Since t is regular in H, t1, . . . , tm are distinct. Moreover, if H is of
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type Cm then all t1, . . . , tm, t
−1
m , . . . , t−1

1 are distinct. Indeed, the roots of Cm take
values {tit−1

j , titj , t
2
j | 1 ≤ i 6= j ≤ m} and t lies in the kernel of no root. If H is of

type Bm, m > 2, then the roots of H take values {tit−1
j , titj , tj | 1 ≤ i 6= j ≤ m}

on t. So no ti is equal to 1 and therefore the eigenvalues t1, . . . , tm, x, t
−1
m , . . . , t−1

1

are distinct except for the case (1). Finally, for H of type Dm, we argue as above,
using the fact that the roots of H take values {tit−1

j , titj | 1 ≤ i 6= j ≤ m} on t,
which leads to (2).

Lemma 17. Let H be of type Am, Bm, Cm or Dm, and let T ′ be a regular torus
in H̃. Then T ′ is a regular torus in GL(V ), except for the case where H is of type
Dm and the fixed point subspace of T ′ on V is of dimension 2.

Proof. Appying Lemma 5, we choose t ∈ T ′ such that CH(t)◦ = CH(T ′). By
Lemma 16, t is regular in GL(V ) if H is of type Am or Cm, and so the result
holds. If dimV is odd, that is, if H is of type Bm, let T be a maximal torus of H.
Then for all T -weights µ, ν of V , the difference µ− ν is a multiple of a root of H
(with respect to T ). Since T ′ is a regular torus in H̃, T ′ 6⊂ ker(β) for any root β
of H. Hence T ′ has distinct weights on V , and so is a regular torus in GL(V ).

Finally, consider the case H = Dm. Let b1 . . . b2m be a basis for V as in the
previous proof. We may assume that T ′ consists of diagonal matrices with respect
to this basis. Now, T ′ regular implies that the weight of T ′ afforded by 〈bj〉 is
distinct from the weight afforded by 〈b2m−k+1〉 for all k 6∈ {j, 2m− j + 1}. So the
weights of T ′ on V are distinct unless there exists j, 1 ≤ j ≤ m, such that the
weight afforded by 〈bj〉 is equal to that afforded by 〈b2m−j+1〉. So assume these
two weights coincide. Since the weights afforded by these two vectors differ by a
sign, if they are equal, they must be 0. Hence there is a unique such j and the
result holds.

Proposition 18. Let H be of type Dm with m ≥ 4. Let T be a torus in H̃.
Suppose that there exists at most one T -weight of V of multiplicity greater than 1,
and if such a weight exists, its multiplicity is 2. Then CH̃(T ) is a maximal torus

in H̃, that is, T is a regular torus in H̃.

Proof. If all weights of T on V have multiplicity 1, then T is a regular torus in
GL(V ), and hence in H̃. Suppose that there is a weight µ of T on V of multiplicity
2, and let M be the corresponding weight space. Denote by R the set of singular
vectors in M together with the zero vector.

If R = M then M is totally singular, M ⊂ M⊥, and V |T = M⊥ ⊕ V2. It
is well-known that the FT -module V2 is dual to M , and hence is contained in a
T -weight space. This is a contradiction as dimV2 = 2 and by hypothesis M is the
unique weight space of dimension greater than 1.

Suppose that M is neither totally singular nor non-degenerate with respect to
the bilinear form on V . Then R is a 1-dimensional T -invariant subspace of M
and M ⊂ R⊥. Let M |T = R ⊕ R′ for a T -submodule R′. Then non-zero vectors
x ∈ R′ are non-singular, and if t ∈ T then tx = µ(t)x. Let Q be the quadratic
form on V preserved by H̃. Then Q(x) = Q(tx) = µ(t)2Q(x), for all t ∈ T , whence
µ = 0. Therefore, T acts trivially on M , and hence on R. However, V/R⊥ is an
FT -module dual to R, so T acts trivially on V/R⊥. As V is a completely reducible



16 D. M. TESTERMAN AND A. E. ZALESSKI

FT -module, it follows that the dimension of the zero T -weight space on V is at
least 3, which contradicts the hypothesis.

Finally, suppose that M is non-degenerate with respect to the bilinear form on
V . The reductive group CH̃(T ) stabilizes all T -weight spaces of V . Since SO2(F )
has no unipotent elements, CH̃(T ) must be a torus, as required.

Proof of Proposition 1. The Proposition follows directly from Lemma 17 and Propo-
sition 18.

As explained in Section 1 and Section 2, for a classical group H with natural
module V , Proposition 1 reduces the resolution of Problems 1 and 2 to a question
about weight multiplicities in the module V |G, for a simple algebraic group G
acting irreducibly and tensor-indecomposably on V . Given a simple subgroup G
of H, we see that a maximal torus T of G is a regular torus of H if and only if one
of the following holds:

a) all T -weight spaces of V are 1-dimensional, and so V is described by Proposi-
tion 8, or

b) G ⊂ H = Dm and the 0 weight space of V (viewed as a T -module) is 2-
dimensional, while all other T -weight spaces of V are 1-dimensional, so V is
described by Theorem 15 and Proposition 11.

5. Orthogonal and symplectic representations

As in the previous sections, we take G, T and the rest of the notation to be
as fixed in Section 1. In this section we partition the irreducible representations
ρ of G with highest weight in Ω1(G) into four families depending on whether
ρ(G) is contained in a group of type Bm, Cm, Dm or in none of them. (It is
well-known that the latter holds if and only if the associated FG-module is not
self-dual.) In addition, we determine which of the weights in Ω2(G) correspond to a
representation whose image contains a regular torus of H = Dm. This information
is collected in Tables 4, 5, 6, 7, 8, 9, and completes the proof of Theorem 3. For
simplicity, we will say that an irreducible representation of G (or the corresponding
module V ) is symplectic, respectively orthogonal, if G preserves a non-degenerate
alternating form, respectively a non-degenerate quadratic form on V . As discussed
in Section 2, for our application, it suffices to consider tensor-indecomposable
modules.

Until the end of the section λ ∈ X(T ) is assumed to be a p-restricted dominant
weight. Recall that the highest weight of the irreducible FG-module LG(λ)∗ (the
dual of LG(λ)), is −w0λ, where w0 is the longest word in the Weyl group of G.
Since −w0 = id for the groups A1, Bn, Cn, Dn, (n even), E7, E8, F4, and G2, all
irreducible modules are self-dual for these groups. (See [18, 16.1].) The following
result, whose entirely straightfoward proof is omitted, treats the remaining cases.

Proposition 19. Let G be of type An, n > 1, Dn, n odd, or E6. Let λ ∈ Ω2(G).
Then LG(λ) is a self-dual FG-module if and only if one of the following holds:

(1) G = An, n > 1, and either
(i) λ = ω1 + ωn, or
(ii) λ = ω(n+1)/2, for n odd, or
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(iii) λ = (p− 1)ω(n+1)/2, for n odd, or

(iv) λ = p−1
2 (ωn/2 + ω(n+2)/2), for n even and p odd, or

(v) λ = 2ω2 for n = 3.
(2) G ∼= Dn, n odd, and λ ∈ {ω1, ω2, 2ω1};
(3) G ∼= E6 and λ = ω2.

Lemma 20. (1) Let G = An, p > 2 and let λ = (p − 1)ω(n+1)/2 for n odd, and

λ = p−1
2 (ωn/2 + ω(n+2)/2) for n even. Then dimLG(λ) is odd.

(2) Let G = An, n odd, and λ = ω(n+1)/2. Then dimLG(λ) =

(
n+ 1

(n+ 1)/2

)
and

so dimLG(λ) is even.
(3) Let G = Cn, n > 1, p > 2 and let λ1 = p−1

2 ωn, λ2 = ωn−1 + p−3
2 ωn. Then

dimLG(λ1) = (pn + 1)/2 and dimLG(λ2) = (pn − 1)/2.

Proof. (1) Let B := {(c, i) | 0 ≤ c ≤ p − 1, 0 ≤ i ≤ n} and for the purposes
of this proof set ω0 and ωn+1 to be the 0 weight. Then by [38, Prop. 1.2] (and
the discussion on page 555 loc.cit), the direct sum of all irreducible representations
LG(µ) with µ running over the set {(p−1−c)ωi+cωi+1 | (c, i) ∈ B} has dimension
pn+1. Note that the trivial representation of G occurs twice among the LG(µ)
(specifically, for (c, i) = (0, 0) and (p − 1, n)). We also observe that LG(λ) with
λ as in (1) is the only nontrivial self-dual module among the LG(µ), whereas the
other LG(µ) (with µ 6= λ, 0) occur in the sum as dual pairs. Therefore, the parity
of dimLG(λ) coincides with that of pn+1, which is an odd number.

(2) The irreducible FG-module LG(ωj) is the j-th exterior power of the natural
FG-module, whence the result.

(3) The assertion is proven in [37], see the statement A of the Main Theorem.

For the proof of Proposition 22, we first recall the following result from [27].

Lemma 21. [27, Lemma 79] Let G be a simply connected simple algebraic group
over F , with root system Φ. Fix a maximal torus T of G and for each α ∈ Φ, let Uα
denote the 1-dimensional root subgroup normalized by T , corresponding to the root
α, and fix isomorphisms xα : Ga → Uα. For c ∈ F ∗, set hα(c) = wα(c)wα(1)−1,
where wα(c) = xα(c)x−α(−c−1)xα(c). Finally set h =

∏
α∈Φ+ hα(−1). Then

(1) h is in the center of G and h2 = 1.
(2) For a dominant weight λ, if w0(λ) = −λ, then G preserves a symplectic
form on V if λ(h) = −1, and a nondegenerate symmetric bilinear form on V if
λ(h) = 1.

Proposition 22. Let λ ∈ Ω2(G). Assume moreover that p > 2. Then LG(λ) is
symplectic if and only if the pair (G,λ) is as in Table 4. In particular, if λ ∈ Ω2(G)
with LG(λ) symplectic, then λ ∈ Ω1(G).

Proof. First, by Lemma 21, if |Z(G)| is odd then every self-dual irreducible rep-
resentation of G is orthogonal; in particular, this is the case if G = An with n
even. So we assume that |Z(G)| is even. It follows that G is classical or of type
E7. Furthermore, in the adjoint representation of G the center acts trivially, so
again by Lemma 21 the representations arising from the adjoint representation are
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orthogonal. More generally, any representation where all weights are roots must
be orthogonal. Now let h ∈ Z(G) as defined in Lemma 21.

Using the description of the sum of the positive roots in Φ(E7) given in [5,
Planche VI], we deduce that h acts nontrivially on LE7(ω7), and hence by Lemma 21
LE7

(ω7) is symplectic. So we are left with the classical groups.

Let G = An with n odd. In view of Proposition 19, Lemma 20, and the above
comments, we must consider the cases λ = 2ω2 for n = 3 and λ = ω(n+1)/2 with n
odd. In the former case, h acts trivially on LG(2ω2), so the module is orthogonal.
In the second case, LG(λ) is the (n + 1)/2-th exterior power of the natural FG-
module, and so h acts as (−1)(n+1)/2 · Id on LG(λ). Then the above Lemma gives
the result.

Let G = Cn, n > 1. Since LG(ω1) is the natural symplectic module for G, h
acts as −Id on LG(ω1), so in particular h 6= 1. As Z(G) is of order 2, LG(λ) is
symplectic if and only if G acts faithfully on LG(λ). As the root lattice ZΦ(G)
has index 2 in the weight lattice, it follows that G acts faithfully on LG(λ) if and
only if λ 6∈ ZΦ(G). The weights λ = ω2, 2ω1, 2ω2 all lie in ZΦ(G). Note that ωn
(respectively, ωn−1) lies in ZΦ(G) if and only if n is even (respectively, odd). (See

[5, Planche III].) Therefore, p−1
2 ωn 6∈ ZΦ(G) if and only if n(p−1)

2 is odd. Observe

that ωn−ωn−1 6∈ ZΦ(G) and ωn−1 + p−3
2 ωn = ωn−1−ωn + p−1

2 ωn; it follows that

ωn−1 + p−3
2 ωn 6∈ ZΦ(G) if and only if n(p−1)

2 is even, as stated in Table 4.

Let G = Dn, n > 3 odd; here the weights which we must consider are ω1, 2ω1

and ω2. Since LG(ω1) is the natural orthogonal module for G, h acts trivially on
LG(ω1). Since 2ω1 and ω2 each occur in LG(ω1) ⊗ LG(ω1), LG(2ω1) and LG(ω2)
are also orthogonal.

Let G = Dn, n > 3 even. For the weights ω1, 2ω1 and ω2, the argument of
the previous paragraph is valid. So we must consider the weights ωn−1 and ωn.
A direct check using the information in [5, Planche IV] allows one to see that

ωn−1(h) = (−1)
n(n−1)

2 = ωn(h), and so LG(ωn−1) and LG(ωn) are symplectic if
and only if n ≡ 2 (mod 4).

Let G = Bn, n > 2. In this case ωn is the only fundamental dominant weight
which does not lie in the root lattice. In the natural embedding of Bn in Dn+1,
Bn acts irreducibly on each of the spin modules for Dn+1; the restriction is the
FG-module LBn(ωn) in each case. Hence, for n odd, LG(ωn) is symplectic if and
only if n+ 1 ≡ 2 (mod 4). When n is even, we consider the natural embedding of
Dn in Bn, where the spin module for Bn decomposes as a direct sum of the two
distinct spin modules for Dn, and the summands are non self-dual, non isomorphic,
and hence non-degenerate with respect to the form. Hence LG(ωn) is symplectic
if and only if n ≡ 2 (mod 4). So to summarize, for the group G = Bn, LG(ωn) is
symplectic if and only if n ≡ 1 or 2 (mod 4).

This completes the proof of the proposition.

Continuing with the case where G preserves a non-degenerate form on LG(λ)
and p > 2, for the weights λ ∈ Ω2(G) not listed in Table 4 the module LG(λ) is
orthogonal. In order to decide whether the image of G under the corresponding
representation lies in a subgroup of type Bn or Dn, one has only to determine
whether dimLG(λ) is odd or even. Since we are interested in the solution to
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Problem 2, we consider those weights λ ∈ Ω2(G) for which the multiplicity of the
0 weight is at most 1 if LG(λ) is odd-dimensional, and at most 2 if dimLG(λ) is
even.

The following lemma can be deduced directly from [17] and the preceding re-
sults.

Lemma 23. Let λ ∈ Ω2(G). Assume p > 2, LG(λ) is orthogonal, and moreover
the multiplicity of the 0 weight in LG(λ) is at most 2. Then dimLG(λ) is even if
and only if the pair (G,λ) is as in Table 5.

We give the odd-dimensional orthogonal representations LG(λ), with λ ∈ Ω1(G)
in Table 6.

We now turn to the situation where p = 2, and LG(λ) is self-dual.

Lemma 24. Let λ ∈ Ω2(G) such that LG(λ) is self-dual and the multiplicity of
the 0 weight in LG(λ) is at most 2. Assume in addition that p = 2. Then LG(λ)
has a non-degenerate G-invariant quadratic form if and only if (G,λ) are as in
Table 7.

Proof. We first inspect the last column of Table 2, where the dimension of the
0 weight space in LG(λ) is given. In addition, the result of Proposition 19, and
the remarks preceding the proposition, further restrict the list of pairs (G,λ) for
λ ∈ Ω2(G), which must be considered. We find that the only even-dimensional
LG(λ) in addition to those listed in Table 7 are as follows:

a) G = A1, λ = ω1, dimLG(λ) = 2;
b) G = Cn, λ = ω1, dimLG(λ) = 2n;
c) G = Bn, λ = ω1, dimLG(λ) = 2n;
d) G = G2, λ = ω1, dimLG(λ) = 6.

In cases (a), (b), (c) and (d) above, it is well-known that G preserves no non-
degenerate quadratic form on LG(λ). Hence we now turn to the list of pairs (G,λ)
of Table 7. The pair (Dn, ω1) is clear as LDn

(ω1) is the natural representation of
the classical group of type Dn.

For cases where LG(λ) occurs as a composition factor of the adjoint represen-
tation of G, we refer to [11, §3] to conclude that G preserves a non-degenerate
quadratic form on LG(λ). (Note that we may also apply the exceptional isogeny
F4 → F4.) The pairs (C3, ω2), (C4, ω2), (E7, ω7) are covered in [6, Table 2], and we
can then use the isogeny Bn → Cn to settle the analagous cases for G = Bn. This
leaves us with the pairs (An, ω(n+1)/2), (Cn, ωn), (Bn, ωn), (Dn, ωj), j = n− 1, n.
For the second case, we may consider the group Bn acting on LG(ωn). Then in
all cases the Weyl module with the given highest weight is irreducible and the
existence of a G-invariant quadratic form follows from [24, 2.4].

Additionally, we provide in Table 9 the list of modules LG(λ), with λ ∈ Ω1(G),
LG(λ) 6∼= LG(λ)∗. So in particular, the image of G under the corresponding repre-
sentation contains a regular torus of H = SL(LG(λ)) and G does not lie in a proper
classical subgroup of H. Finally, Table 8 records the non-orthogonal symplectic
modules LG(λ) for λ ∈ Ω1(G) when p = 2.

Note that at this point the proof of Theorem 3 is complete.
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We can now give an explicit solution to Problem 1 for simple subgroups G of
classical groups. In Proposition 25, we treat the case of tensor-indecomposable
irreducible representations of G all of whose weight spaces are 1-dimensional. As
discussed in Section 2, the image of G under a tensor-decomposable representation
is not maximal in the classical group. In Proposition 26, we handle the orthogonal
irreducible representations of G whose zero weight space has dimension 2 while
all other weight spaces are 1-dimensional. In the following two Propositions, we
determine whether the image of G under the given representation is a maximal
subgroup of the minimal classical group containing it.

Proposition 25. Let G be a simple algebraic group and let λ ∈ Ω1(G). Let ρ :
G → GL(V ) be an irreducible representation of G with highest weight λ. Then
ρ(G) is a maximal subgroup in the minimal classical group on V containing ρ(G),
except for the following cases:

(1) G = A1, λ = 6ω1, p ≥ 7, where there is an intermediate subgroup of type
G2;

(2) G = A2, λ = ω1 + ω2, p = 3, where there is an intermediate subgroup of
type G2;

(3) G = Bn, λ = ωn, where there is an intermediate subgroup of type Dn+1;

(4) G = Cn, λ = ωn, p = 2, where there is an intermediate subgroup of type
Dn+1.

Proof. This follows from Seitz’s classification of maximal closed connected sub-
groups of the classical type simple algebraic groups, see [23, Thm. 3, Table 1] and
our results above.

Proposition 26. Let λ be a weight of G occurring in Tables 5 or 7 but not in
Table 1. Let ρ : G → GL(V ) be an irreducible representation with highest weight
λ. In particular, ρ(G) lies in the (simple) orthogonal group on V , and does not
contain a regular torus of SL(LG(λ)). Then ρ(G) is a maximal subgroup of the
orthogonal group containing ρ(G), except for the following cases:

(1) G = A3, λ = ω1 + ω3, p = 2, where there is an intermediate subgroup of
type C3;

(2) G = D4, λ = ω2, p = 2, where there are intermediate subgroups of type C4

and F4;

(3) G = G2, λ = ω2, p = 2, where there is an intermediate subgroup of type C3.

Proof. The proof is carried out exactly as the proof of Proposition 25.

6. Maximal reductive subgroups of exceptional groups containing
regular tori

In this section, we consider Problem 1 for the case where H is an exceptional
type simple algebraic group over F . We will determine all maximal closed con-
nected subgroups M of H which contain a regular torus. As discussed in Section 2,
we will assume M to be reductive and rank(M) < rank(H). The main tool is the
classification of the maximal closed connected subgroups of H, as given in [15,
Cor. 2(ii)]. In order to be consistent with the tables and notation used in loc. cit.,
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we will throughout this section (and only in this section) allow both B2 and C2,
contrary to our standing convention.

For a semisimple group M = M1M2 · · ·Mt, with Mi simple, and with respect
to a fixed maximal torus TM of M , we will write {ωi1, . . . , ωi`i}, for the set of
fundamental dominant weights of TM ∩ Mi (so rank(Mi) = `i). In case M is
simple, we will simply write {ω1, . . . , ω`}.

Proposition 27. Let M be a maximal closed connected positive-dimensional sub-
group of an exceptional type simple algebraic group H. Assume rank(M) < rank(H).
Then M contains a regular torus of H if and only if the pair (M,H) is as given in
Table 10. In particular, if M contains a regular torus of H, then M is semisimple.

Before proving the result, it is interesting to compare the above table with
[15, Thm. 1], which describes the maximal closed connected positive-dimensional
subgroups of the exceptional simple algebraic groups. There are precisely four
pairs (M,H), M a maximal closed connected positive-dimensional subgroup of an
exceptional algebraic group H with rank(M) < rank(H), and where M does not
contain a regular torus of H: one class of A1 subgroups in H = E7, 2 classes of
A1 subgroups in H = E8 and a maximal B2 in E8.

Proof. Let M be as in the statement of the result and fix TM , a maximal torus of
M . (Throughout the proof we will refer to M as a maximal subgroup, even though
M may only be maximal among connected subgroups.) Then [15, Cor. 2] implies
that M is semisimple. The method of proof is quite simple. By Proposition 7,
TM is a regular torus in H if and only if dim(CLie(H)(TM )) = rank(H). Hence, we
need only determine the dimension of the 0 weight space for TM acting on Lie(H).
This can be deduced from the information in [15, Table 10.1].

If M is of type A1, the notation T (m1;m2; . . . ;mk), used in [15, Table 10.1],
represents an FM -module whose composition factors are the same as those of
WM (m1ω1) ⊕ · · · ⊕ WM (mkω1). Since the multiplicity of the 0 weight in each
Weyl module for A1 is precisely 1, we see that the only maximal A1-subgroups
containing a regular torus are those listed above. This covers the case H = G2.

Consider now the two remaining cases in H = F4. If M is the maximal G2

subgroup in H (occurring only for p = 7), then Lie(H)|M has composition factors
LM (ω2) and LM (ω1 +ω2). Now consulting [16], we see that the 0 weight has mul-
tiplicity 2 in each of these irreducible modules and hence multiplicity 4 in Lie(H).
This then implies that TM is a regular torus in H. For the semisimple subgroup
M = A1G2 in F4 (which exists when p ≥ 3), we must explain an additional no-
tation used in [15]. In [15, Table 10.1], the notation ∆(µ1;µ2) denotes a certain
indecomposable FM -module whose composition factors are LM (µ1), LM (µ2) and
two factors LM (ν), where µ1 and µ2 are dominant weights such that the tilting
modules T (µ1) and T (µ2) each have socle and irreducible quotient of highest weight
ν. Now if p > 3, Lie(H)|M has composition factors LM (4ω11 + ω21), LM (2ω11),
and LM (ω22). (See the paragraph preceding Proposition 27 for an explanation of
the notation used here.) The multiplicity of the 0 weight in these modules is 1, 1,
2, respectively, and hence TM is a regular torus of H. In case p = 3, the composi-
tion factors are LM (4ω11 +ω21), LM (ω22) LM (ω21), LM (ω21), and LM (2ω11), and
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again the multiplicity of the 0 weight is 4. This completes the consideration of the
case H = F4.

Now we consider the case H = E6 and rank(M) ≥ 2. There is a maximal A2

subgroup M of H (when p ≥ 5) whose action on Lie(H) is Lie(H)|M = LM (4ω1 +
ω2)⊕ LM (ω1 + 4ω2)⊕ LM (ω1 + ω2). Consulting [16], we see that the multiplicity
of the zero weight in this module is 6 and so M contains a regular torus of H. The
group H also has a maximal G2 subgroup M when p 6= 7, such that Lie(H)|M
has the same set of composition factors as WM (ω1 + ω2) ⊕ WM (ω2). Now we
consult [16] and find that the multiplicity of the zero weight in Lie(H)|M is 6 for
all characteristics p 6= 7; hence M contains a regular torus of H.

Turn now to the maximal closed connected subgroups ofH = E6, of rank at least
4. The maximal subgroup M of type C4 acts on Lie(H) with composition factors
LM (2ω1) and LM (ω4), if p 6= 3, and with these same composition factors plus an
additional 1-dimensional composition factor, if p = 3. As usual, we find that the
dimension of the 0 weight space is 6 and so C4 contains a regular torus of H. For
the maximal F4 subgroup M of H, which exists in all characteristics, Lie(H)|M =
LM (ω4) ⊕ LM (ω1), if p > 2, and when p = 2, the Lie algebra is isomorphic to
the tilting module of highest weight ω1, which has a composition factor LM (ω1)
and two factors LM (ω4). The usual argument shows that M contains a regular
torus of H. Finally, we consider the maximal subgroup M ⊂ H of type A2G2;
Lie(H)|M has the same set of TM -weights (and multiplicities) as the FM -module
WM (ω11 +ω12 +ω21)⊕WM (ω11 +ω12)⊕WM (ω22). One checks as usual that the
multiplicity of the 0 weight is indeed 6.

We now turn to the case H = E7, and M is a maximal closed connected
subgroup of rank 2. There exists a maximal A2 subgroup M of H when p ≥ 5,
whose action on Lie(H) is given by LM (4ω1 + 4ω2) ⊕ LM (ω1 + ω2), when p 6= 7,
and Lie(H)|M = T (4ω1 + 4ω2), when p = 7. Again using [16] one verifies the
multiplicity of the 0 weight in Lie(H)|M is 7 and hence TM is a regular torus of
H. The maximal A1A1 subgroup M of H is such that Lie(H)|M has the same set
of TM -weights (and multiplicities) as the module WM (2ω11 + 8ω21)⊕WM (4ω11 +
6ω21)⊕WM (6ω11 + 4ω21)⊕WM (2ω11 + 4ω21)⊕WM (4ω11 + 2ω21)⊕WM (2ω11)⊕
WM (2ω21). One verifies that the multiplicity of the zero weight is 7 and hence M
contains a regular torus of H. This completes the consideration of the rank two
reductive maximal connected subgroups.

We now handle the remaining maximal connected subgroups of H = E7. The
maximal A1G2 subgroup M of H, which exists for all p ≥ 3, satisfies: Lie(H)|M
has the same set of TM -weights (and multiplicities) as the FM -module WM (4ω11+
ω21) ⊕WM (2ω11 + 2ω21) ⊕WM (2ω11) ⊕WM (ω22). As usual, we check that the
multiplicity of the zero weight in Lie(H)|M is 7. The maximal A1F4 subgroup
M is such that Lie(H)|M has the same set of TM -weights (and multiplicities)
as the module WM (2ω11 + ω24) ⊕WM (2ω11) ⊕WM (ω21). This module has a 7-
dimensional 0 weight space and so M contains a regular torus of H. Finally, we
consider the maximal G2C3 subgroup M , which exists in all characteristics. In
this case, Lie(H)|M has the same set of TM -weights (and multiplicities) as the
FM -module WM (ω11 + ω22)⊕WM (ω12)⊕WM (2ω21), which has a 7-dimensional
0 weight space and again M contains a regular torus of H.
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To complete the proof, we now turn to the case H = E8 and M a maximal closed
connected subgroup of rank at least 2. There exists a unique (up to conjugacy) rank
2 reductive maximal subgroup of H, namely M = B2, when p ≥ 5. Here Lie(H)|M
has the same set of TM -weights (and multiplicities) as WM (6ω2)⊕WM (3ω1+2ω2)⊕
WM (2ω2); but this latter has a 12-dimensional 0 weight space and so TM is not a
regular torus of H. We now consider the group M = A1A2. Here Lie(H)|M has the
same set of TM -weights (and multiplicities) as the FM -module WM (6ω11 + ω21 +
ω22)⊕WM (2ω11+2ω21+2ω22)⊕WM (4ω11+3ω21)⊕WM (4ω11+3ω22)⊕WM (2ω11)⊕
WM (ω21 +ω22), which has an 8-dimensional 0 weight space and hence M contains
a regular torus of H. Finally, we consider the maximal G2F4 subgroup M , which
exists in all characteristics. Here Lie(H)|M has the same set of TM -weights (and
multiplicities) as the FM -module WM (ω11 + ω24)⊕WM (ω12)⊕WM (ω21), which
has an 8-dimensional 0 weight space and so TM is a regular torus of H.

7. Non-semisimple regular elements

We conclude the paper with some remarks about how one can determine the
connected reductive overgroups of a regular element, which is neither semisim-
ple nor unipotent. Of course, if G is a closed connected reductive subgroup of
H containing a regular element of H, then Proposition 6 implies that G con-
tains a regular semisimple element and hence has been determined (assuming G
is maximal). Nevertheless, one might be interested in determining closed con-
nected reductive subgroups which contain a non semisimple regular element of H.
As mentioned before, this has been done for the regular unipotent elements in
[22] and [29]. So now suppose g = us = su ∈ G ⊂ H with s semisimple and
u unipotent and g regular in H. Set Y = CH(s)◦ and X = CG(s)◦. We first
claim that u is a regular unipotent element of Y . Indeed, if u is not regular in
Y then dimCH(g) = dimCY (u) > rank(Y ) = rank(H), contradicting the regular-
ity of g. Thus u is a regular unipotent element in the connected reductive group
Y = CH(s)◦, lying in the connected reductive group X = CG(s)◦. We now appeal
to the following classification:

Theorem 28. [29, Theorem 1.4] Let G be a closed semisimple subgroup of the
simple algebraic group H, containing a regular unipotent element of H. Then G
is simple and either the pair (H,G) is as given in Table 11, or G is of type A1

and p = 0 or p ≥ h, where h is the Coxeter number for H. Moreover, for each
pair of root systems (Φ(H),Φ(G)) as in the table, respectively, for (Φ(H), A1, p),
with p = 0 or p ≥ h, there exists a closed simple subgroup X ⊂ H of type Φ(G),
respectively A1, containing a regular unipotent element of H.

The above classification applies to simple groups H, but it is straightforward
to deduce from this the set of possible pairs of reductive groups (CG(s)◦, CH(s)◦).
Now we use information about the structure of centralizers of semisimple elements
in H and in G. The connected components of centralizers of semisimple elements
are subsystem subgroups and thus can be obtained via the Borel-De Siebenthal
algorithm. Hence one can inductively determine the pairs (G,H) such that there
exists a semisimple element s ∈ G with (CG(s)◦, CH(s)◦) one of the pairs given by
Theorem 28.
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Remark 1. We point out here two inaccuracies, in [22] and [29]. In the statement of
[22, Thm. A], the condition given for the existence of an A1 subgroup containing
a regular unipotent element is p > h. But in fact, as shown in [31], such a
subgroup exists for all p ≥ h. This has been correctly stated in Theorem 28. In
addition, in Table 1 of [29], we indicated that p 6= 2 for the example of G2 in
D4; however, this prime restriction is not necessary and should be omitted. This
has been corrected in Table 11 below. Finally we also point out that in [29], we
determined all connected reductive overgroups of regular unipotent elements, and
indeed established that such a group must be simple (see Proposition 2.3 loc.cit).
Therefore, the caption of Table 11 below reflects this.

8. Tables

We recall here our convention for reading the tables in case char(F ) = 0: for
a natural number a the expressions p > a, p ≥ a or p 6= a are to be interpreted
as the absence of any restriction, that is, a is allowed to be any natural number.
Note further that when a weight λ has coefficients expressed in terms of p, we are
assuming that char(F ) = p > 0.

G Ω1(G) \ {0}
A1 aω1, 1 ≤ a < p
An, n > 1 aω1, bωn, 1 ≤ a, b < p

ωi, 1 < i < n
cωi + (p− 1− c)ωi+1, 1 ≤ i < n, 0 ≤ c < p

Bn, n > 2 ω1, ωn
Cn, n > 1, p = 2 ω1, ωn
C2, p > 2 ω1, ω2, ω1 + p−3

2 ω2,
p−1

2 ω2

C3 ω3

Cn, n > 2, p > 2 ω1, ωn−1 + p−3
2 ωn,

p−1
2 ωn

Dn, n > 3 ω1, ωn−1, ωn
E6 ω1, ω6

E7 ω7

F4, p = 3 ω4

G2, p 6= 3 ω1

G2, p = 3 ω1, ω2

Table 1: Irreducible p-restricted FG-modules with all weights of multiplicity 1
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G conditions Ω2(G) \ Ω1(G) weight0 multiplicity

An, n > 1, (n, p) 6= (2, 3) ω1 + ωn

{
n− 1 if p|(n+ 1)

n if p 6 |(n+ 1)

A3 p > 3 2ω2 2
Bn n > 2, p 6= 2 ω2 n

n > 2, p = 2 ω2 n− gcd(2, n)

2ω1

{
n if p|(2n+ 1)

n+ 1 if p 6 |(2n+ 1)

Cn n > 1 2ω1 n

n > 2, (n, p) 6= (3, 3) ω2

{
n− 2 if p|n
n− 1 if p 6 |n

C2 p 6= 5 2ω2 2
C4 p 6= 2, 3 ω4 2

Dn n > 3 2ω1

{
n− 2 if p|n
n− 1 if p 6 |n

n > 3, p 6= 2 ω2 n
n > 3, p = 2 ω2 n− gcd(2, n)

E6 ω2

{
5 if p = 3

6 if p 6= 3

E7 ω1

{
6 if p = 2

7 if p 6= 2

E8 ω8 8

F4 ω1

{
2 if p = 2

4 if p 6= 2

p 6= 3 ω4 2
G2 p 6= 3 ω2 2

Table 2: Irreducible p-restricted FG-modules with non-zero weights of multiplicity
1 and whose zero weight has multiplicity greater than 1.
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G λ conditions dimLG(λ)

A2 ω1 + ω2 p 6= 3 8
A3 2ω2 p > 3 20

ω1 + ω3 p = 2 14
B3 ω2 p = 2 14
B4 ω2 p = 2 26
C2 2ω1 10

2ω2 p 6= 5 14
C3 ω2 p 6= 3 14
C4 ω2 p = 2 26

ω4 p 6= 2, 3 42
D4 ω2 p = 2 26
F4 ω1 p = 2 26

ω4 p 6= 3 26
G2 ω2 p 6= 3 14

Table 3: λ ∈ Ω2(G), 0 weight in LG(λ) of multiplicity 2

G λ conditions dimLG(λ)

A1 aω1 a odd a+ 1

An ω(n+1)/2 n > 1 odd, n+1
2 odd

(
n+ 1
n+1

2

)
Bn ωn n > 2, n ≡ 1 or 2 (mod 4) 2n

C3 ω3 14
Cn ω1 n > 1 2n

ωn−1 + p−3
2 ωn n > 1, p ≥ 3, n(p− 1)/2 even (pn − 1)/2

p−1
2 ωn n > 1, p ≥ 3, n(p− 1)/2 odd (pn + 1)/2

Dn ωn−1, ωn n > 3 even, n ≡ 2 (mod 4) 2n−1

E7 ω7 56

Table 4: λ ∈ Ω2(G), p 6= 2, LG(λ) symplectic
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G λ conditions dimLG(λ)

An ω(n+1)/2 n > 1 odd, (n+ 1)/2 even

(
n+ 1
n+1

2

)
A2 ω1 + ω2 p 6= 3 8
A3 2ω2 p > 3 20
Bn ωn n ≡ 0 or 3 (mod 4) 2n

C2 2ω1 10
2ω2 p 6= 5 14

C3 ω2 p > 3 14
C4 ω4 p > 3 42
Dn ω1 n > 3 2n

ωn−1, ωn n ≡ 0 (mod 4) 2n−1

F4 ω4 p > 3 26
G2 ω2 p > 3 14

Table 5: λ ∈ Ω2(G), p 6= 2, LG(λ) even-dimensional orthogonal, with 0
weight of multiplicity at most 2

G λ conditions dimLG(λ)

A1 aω1 a > 0 even a+ 1
An (p− 1)ω(n+1)/2 n > 1, n odd †

p−1
2 (ωn/2 + ω(n+2)/2) n even †

Bn ω1 n > 2 2n+ 1
C2 ω2 5

Cn ωn−1 + p−3
2 ωn n ≥ 2, n(p−1)

2 odd (pn − 1)/2

p−1
2 ωn n ≥ 2, n(p−1)

2 , even (pn + 1)/2
F4 ω4 p = 3 25
G2 ω1 7

ω2 p = 3 7

Table 6: λ ∈ Ω1(G), p 6= 2, LG(λ) odd-dimensional orthogonal

† The dimensions of these modules can be deduced from the fact that the repre-
sentations can be realized in the action of SLn+1 on the homogeneous components
of the truncated polynomial ring F [Y1, . . . , Yn+1]/〈Y p1 , . . . , Y

p
n+1〉. See [38] for ex-

ample.
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G λ conditions dimLG(λ)

An ω(n+1)/2 n > 1 odd

(
n+ 1
n+1

2

)
A2 ω1 + ω2 8
A3 ω1 + ω3 14
Bn, Cn ωn 2n

B3, C3 ω2 14
B4, C4 ω2 26
Dn ω1 n > 3 2n
Dn ωn−1, ωn n > 3 even 2n−1

D4 ω2 26
E7 ω7 56
F4 ω1, ω4 26
G2 ω2 14

Table 7: λ ∈ Ω2(G), p = 2, LG(λ) orthogonal, with 0 weight of multiplicity
at most 2

G λ conditions dimLG(λ)

A1 ω1 2
Bn ω1 n ≥ 3 2n
Cn ω1 n ≥ 2 2n
G2 ω1 6

Table 8: p = 2, λ ∈ Ω1(G), LG(λ) non-orthogonal symplectic

G λ conditions

An aω1, bωn n > 1, 1 ≤ a, b < p

ωi 1 < i < n, i 6= (n+ 1)/2 if n is odd

cωi + (p− 1− c)ωi+1 1 ≤ i < n, 0 ≤ c < p, and
c 6= (p− 1)/2 if n is even and i = n/2;
c 6= 0 if n is odd and i = (n− 1)/2;

c 6= p− 1 if n is odd and i = (n+ 1)/2.
Dn ωn−1, ωn n > 3 odd
E6 ω1, ω6

Table 9: λ ∈ Ω1(G), λ 6= −w0λ and ρ(G) contains a regular torus of SL(LG(λ))
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H M simple M non simple

G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7) A1G2 (p ≥ 3)
E6 A2 (p ≥ 5), G2 (p 6= 7) A2G2

C4 (p ≥ 3), F4

E7 A1 (p ≥ 19), A2 (p ≥ 5) A1A1 (p ≥ 5), A1G2 (p ≥ 3)
A1F4, G2C3

E8 A1 (p ≥ 31) A1A2 (p ≥ 5), G2F4

Table 10: Maximal connected reductive subgroups M ⊂ H, H exceptional,
rank(M) < rank(H), with M containing a regular torus of H

H G

A6 G2, p 6= 2
A5 G2, p = 2
C3 G2, p = 2
B3 G2

D4 G2

B3

E6 F4

An−1, n > 1 Cn/2, n even
B(n−1)/2, n odd, p 6= 2

Dn, n > 4 Bn−1

Table 11: Connected reductive subgroups G ⊂ H containing a regular unipotent
element
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