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Abstract—Finite Volume Particle Method was successfully used
to predict fluid flow behavior for 2-D simulations. In this paper,
we present a FVPM which is applicable for 3-D solid mechanics
simulations. This method features rectangular top-hat kernels
for computing the interaction vectors exactly and efficiently.
We employed this method to solve the elasto-plastic constitutive
equations. To validate the model, we study the impact of rigid
spherical particle to the solid surface with different velocities
and compare the residual stress and plastic deformation with
the FEM solutions.

I. INTRODUCTION

Fluid flow advecting silts originating from snow, glaciers
or monsoons can cause severe erosion when passing through
the turbines. Erosive wear occurs when silt particles collide
into the material and remove part of it due to the repeated
plastic deformations. The purpose of this paper is to present a
particle-based method, which is capable to predict the plastic
behavior of the material under the silt impact loads.

The Finite Volume Particle Method (FVPM) is a particle-
based method introduced by Hietel [1]. This method includes
many of the desirable features of mesh-based finite volume
methods. FVPM profits from particle interaction vectors to
weight conservative fluxes exchanged between particles. In
this methods, computational nodes are usually moving with
material velocity which is compatible with the Lagrangian
form of the motion equations. FVPM has some features of
SPH but unlike SPH, it is locally conservative regardless of any
variation in particle smoothing length. This enables the users to
refine the solution by splitting particles into smaller ones in the
region of interest and perform the simulation efficiently. Re-
cently, Quinlan and Nestor [2] proposed a method to compute
the interaction vectors for 2-D cases exactly. Following their
work, Jahanbakhsh [3] developed an exact FVPM applicable
for 3-D cases. This method features the rectangular top-hat
kernel and is implemented in SPHEROS software [4].

In the present paper, we discretize the elasto-plastic con-
stitutive equations based on the mentioned 3-D FVPM. To
validate the model, we select a problem concerning the shot
impact to the solid material. This test case is selected due to
its close relation to erosive wear mechanism. The numerical
study is performed for normal impact of a single shot to the
solid plate. We study the effect of two impact velocities of

75 and 100 m s~!. We validate the method by comparing the
residual stress and plastic deformation with the FEM solutions
of Meguid et al. [5] and Hong et al. [6].

The structure of the paper is as following. In the next
section, we present the governing equations including con-
stitutive model for solid, silt motion and the contact force.
Then, FVPM with rectangular top-hat kernel discretization
is presented. Later, the strategy used for particle splitting is
explained. We present the solution algorithm and numerical
results afterward.

II. GOVERNING EQUATIONS
A. Solid state

The solid motion is governed by mass and linear momentum
conservation equations as

dp
-F _ _ . 1
7 pV - C (1)
d(pC
C) _ G ottt pg )

dt
where 4

-7 denotes substantial derivative, p is the density, C
is the velocity vector, g is the gravitational acceleration and
o is the Cauchy’s stress tensor. To model the effect of silt,
the contact force, f,, exerted by silt particles in considered in
linear momentum equation.

The Cauchy’s stress tensor, o, is decomposed as
o=s—pl 3

where s represents the deviatoric stress tensor and p represents
the pressure obtained from equation of state

p=a’(p—po) 4)

In (4), a and p, denote to the sound speed and reference
density respectively. For a given bulk modulus, K, the sound
speed is computed as

a= & (5)
P

The rate of deviatoric stress, S, is described by the Jaumann
rate of stress, sV, as

s'=6—-s5-Q-Q-s (6)



9*" international SPHERIC workshop

Paris, France, June, 03-05 2014

where €2 is rotation tensor
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For small deformations, the strain rate tensor, €, is linearized
and approximated as

Q:

VC + (VC)"
eme—p=YCHrVO) )
2
and the deviatoric strain rate tensor, &, is found by
1
g =é— gtr (&)1 )

According to Hooke’s law, with shear modulus G we could
write

sV =2G¢€’ (10)
Substituting (10) into (6) and integrating in time yields
s(*):s(t)+(s-Q+Q~s+2Gé')At (11)

where s(*) denotes to the trial stress tensor. The effective trial
stress is defined by

s = [360). g0
>

In present study, we assume solid as an isotropic elasto-plastic
material. The constitutive model is based on radial return
plasticity explained in [7]. If s®*) exceeds yield stress, Oy,
the Von Mises flow rule

flo,ep) = \/;S: s—0y(gp) <0

is violated and we scale the trial stresses back to the yield
surface

12)

13)

A _ ()

(14)

(t+At)
(e . .
where m = ’8(7*) is called radial return factor.

For isotropic linear strain hardening models, the yield stress
is evolved by

o(TAD = o) + EP A, (15)

where Ae, denotes to the effective plastic strain increment

/2
Ag, = §A€P: Ag)

After some mathematical operations, see [7], the effective
plastic strain increment reads

s — Jg(f)
3G + EP
According to [8], the dissipated energy due to the plastic
deformation is

(16)

Ae, = (17)

t
Wy :/ / o: gpdVdr (18)
0 JQ(r)
We define dissipated energy density, w,,, as
t
wy, :/ o &pdr (19)
0

Neglecting the volumetric plastic strains, the increment for
dissipated energy density is approximated by

Aw, = AR Ae, = st+at). Aeg, (20)
Finally, Aw), is computed as
Aw, = Ag, (ms(*)) = Aspa?(ﬁm) (21)

The deviatoric stress, plastic strain, and dissipated energy den-
sity is computed and stored at the midpoint of two interacting
particles. Therefore, the velocity gradient is needed there.
Nestor et al. [9] used a re-normalized SPH operator to compute
the the velocity gradient at the midpoint. Here, we use the
weighted least squares approach to compute the gradients [3].
Thus, for particles ¢ and j, the deformation rate and rotation
tensors is computed as

D;; = % (@Cij + (@Cij)T)

1/ N T
5 (vcij - (vey) )
where V denotes to the gradient operator obtained from
weighted least squares. This way, we avoid double summation

gradient operators and accordingly a more compact computa-
tional stencil is obtained.

(22)

(23)

B. Rigid Silt Particle and Contact Modeling

Silt particles are assumed rigid and spherical. Hence, their
mass and volume remains constant and their acceleration is
found from Newton’s second law

m@—fc—&—m
dt 8

where m denotes to the silt mass and f€ is the contact force
exerted from solid.

To evaluate the contact force, we assume that the solid
particles are spheres with radii of h, see Fig. (1). Doing this,
the contact force f¢ is computed as penalty force. Each particle
is checked for penetration through the other particle surface. If
the particles penetrate, a penalty force in direction of centers
is applied between the particles at their contact point. The
magnitude of this force is proportional to the amount of
penetration and is computed according to Hertz contact theory.
For contact between two spheres of radii R; and Ro, the
contact force vector is given by

(24)

N
|

4F
f¢=| —Rz2d
()
where, e denotes to the unit vector passing through the particle
centers and d is the penetration depth. R and E are the
effective radius and Young modulus respectively defined as

(25)

11 1
— =+ = 26
R R Ry (26)
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Fig. 1: Interaction of silt and solid particles is accomplished
by contact force. The dashed line indicates the boundary of
silt particle j. The solid particles are assumed as circles with
radii h. The contact force ff; is computed for particle ¢ in
direction of center lines

where F1, F are the Young modulus and vq, v the Poisson’s
ratios associated with each particle. It is worth to note that, for
the rigid silt particle, the Young modulus is infinity. Therefore,
its effect would be canceled from (27).

III. FVPM

In FVPM, the Sheppard function is used as the interpolating
or shape function. Sheppard interpolation is equivalent to
Moving Least Squares (MLS) interpolating function with zero-
order basis [10]. Shepard function ; (x) for a given point 4
reads

(28)

where W; (x) = W, (x — x;, h;) is the kernel function and
o is the kernels summation. h; is the smoothing length at
the given point and represents the spatial resolution of the
interpolation. Sheppard interpolation is zero-order consistent
which means that a constant function could be reproduced
exactly. These shape functions are used in discretization of
the PDE arising from the conservation law

oU
= tV-F(U)=0

where U is the conserved variables and F represents the flux
functions. For solid equation, U and F are equal to {p, pC}
and {pC, pCC — o} respectively. According to [3], we write
the discretized equations in locally conservative form as

d . .
5 (UiVo) + D Uy (ki -Tji—%;-Tyy)+ > Fij- Ay =0
7 ,

(30)
where V; is particle volume and x; denotes to the particle
velocity. In present study, x; is always equal to material
velocity C;. I';; and A;; are defined as

- [ VT
[e) g

(29)

€29

A;j =Ty —T} (32)

Uj,; is found by averaging the conserved variables of particles
1 and j. The F;; consists of deviatoric stress, pressure and
invicid flux pCC . Deviatoric stress is updated according
to the method described in section II-A. For the pressure
and invicid flux we use the average of particle’s values. We
add artificial viscosity 1I;; into the momentum flux to avoid
nonphysical oscillations. The II;; is computed as proposed by
Monaghan [11].
The particle volume is evolved by
dd‘f :Z(xj Ty — % - Tji) +%; - S
J

(33)

where S; = Zj A;j. The term x; - S; in (33) is included to
satisfy the free surface boundary condition [3]. As discussed
by Quinlan and Nestor [2], considering the exact integration
of interaction vectors, the S; vanishes for the interior particles.

IV. RECTANGULAR TOP-HAT KERNEL

In present study, we use rectangular kernels to compute
the particle interaction vectors in 3-D case. To compute these
vectors, the integral defined in (31) has to be evaluated. For
conventional bell-shaped kernels, this integral is difficult or
impossible to be evaluated exactly. The alternative approach is
to use the Quadrature rules which become very costly in 3-D.
Recently, Quinlan and Nestor [2] used 2-D top-hat kernel with
circular support, which enables them to compute the integrals
exactly and efficiently. Implementing the spherical support
kernels for 3-D case requires huge geometric computations
which again increases the computational cost. Here, we use
top-hat kernel but instead of spherical support, we consider
rectangular support kernel for the particles. Using rectangu-
lar support kernels induces less geometric computations and
yields to an efficient and exact method for 3-D cases.

The rectangular top-hat kernel is defined as

Fig. 2(a) shows a system of particles and their overlapping
regions with rectangular support kernels in 2-D. The Sheppard
shape function contours corresponding to particle ¢ are shown
in Fig. 2(b) and 2(c) for bell-shaped and top-hat kernels
respectively. It is visible that bell-shaped kernel results in a
smoother shape function.

According to (34), VW is zero everywhere and is not
defined at the particle smoothing border. However, the integral
corresponding to the interaction vector I';; is defined. After
some mathematical operations [3], the integral in (31) is

simplified as
m ASZ
r,=->(=F)

T \91 0}

— Xilloo < hi

1% = Xillo > hi

(35)

According to (35), the surface corresponding to the intersec-
tion of particles ¢ and j is partitioned to m rectangles. These
partitioning is due to other particles intersections. In (35), AS
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Fig. 2: Rectangular support kernels and overlapping regions
indicated in shaded areas (a). Contours of Sheppard shape
function corresponding to particle 7 is plotted for (b) bell-
shaped kernel and (c) top-hat kernel.
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Fig. 3: Intersection volume of particles 7 and j is indicated by
dashed line. It splits to different segments. o ,0~ and area
vector AS are shown for the thick segment. The numbers
inside the circle denotes to o.

denotes to the surface vector of partitions, o is the summation
of the kernels outside of the intersection zone and o~ is the
summation of the kernels which appear at the surface. A 2-
D representation of the partitioning is shown in Fig. 3. The
rectangular partitions are simplified to line segments for 2-D
case.

V. PARTICLE SPLITTING

FVPM formulation enables to handle different size or
smoothing length of particles. Here, we refine the solution by
splitting the particles which are near the contact point. This
procedure is performed in two steps. First, the original particle
is split into eight fine particles and secondly, the field variables
are mapped from the original particles to the split ones. After

splitting, the volume of fine particles are computed as
Vi=) Vi
J
where V;; is computed by
V= [ by

For the field variables like pressure, stress, density and veloc-
ity, we use the original particle’s value. The mass of refined
particles is found from the density and volume as

(36)

(37

m; = p;V; (38)

The split particles are distributed within the smoothing vol-
ume of the original one. The union of the smoothing volume
for the split particles has to be equal to the original smoothing
volume. Hence, the smoothing length for split particles are
depending on their position. We define 7 parameter which
links the particle spacing § to the smoothing length as

h

=5 (39)

As it is visible in Fig. 4a, n value should be greater than 0.5
to generate the particle overlapping zones. On the other hand,
the large values of 1 generates huge computational stencils
and increases the computational cost. To our experiments, a
reasonable value for ) could be selected between 0.55 to 0.95.
To distribute the particles, we change the 7 in a way that the
successive splitting makes a pattern similar to mesh obtained
by Adaptive Mesh Refinement technique [12]. For instance in
2-D case, the two particles shown in upper side of Fig. 4a, are
split into four small ones shown in Fig. 4b. This distribution
dictates the smoothing length for small particles as
/
W_ oL
h 4n
where h' denotes to the split particle smoothing length. Finally,
the n for r-times split particle reads

1\ 1
") —gr (po L) 1
=2 (1 -3) 4

Equation (41) is valid for both 2-D and 3-D cases. In present
study, we set the () in such a way that the finest 7 is equal
to 0.75.

(40)

(41)

VI. SOLUTION ALGORITHM

We used second-order explicit Runge-Kuta scheme for the
time integration. In this scheme, the conserved variables are
updated for the half of the time step using the current time
step values

UtHs) —y® _y.F (U(t)) At (42)
2
Then, the intermediate fluxes are computed using the half time
step values. And finally, the conserved variables for new time
step is found by

Uta) — gy _y.F (U(”%)) At 43)
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Fig. 4: Schematic diagram of particle splitting in 2-D case.
(a) The original particle distribution and (b) The split particle
distribution

The stress tensor and plastic strain are updated according to
forward Euler time integration scheme. The solution algorithm
is shown in Algorithm 1. For a given CFL number, the At is
adapted for each step as

hi

At = CFL x min ()

44
PERTCN 44

VII. RESULTS

To validate the code for plastic deformation, we simulated a
test case concerning the shot-peening process. In shot-peening
process, the surface of metal is bombarded with spherical
shots. Each shot impacting the surface, makes a tiny plastic
deformation on it and produce a hemisphere zone with residual
compressive stress. Overlapping these zones, forms a uniform
layer stressed in compression underneath the metal surface.
Here, we simulate a single shot impact and compare the
residual stress distribution by FEM studies [5] and [6]. The
case is set up according to Mequid et al. [5] FEM model. The
problem dimensions and material properties are summarized
as below, see Fig. 5.

o Solid dimensions are W = 0.0035 m, H = 0.002 m and
B =0.0025 m.

o Diameter of silt particle is d = 0.001 m.

o Silt and solid density is p = 7800 kg m®.

« Initial yield stress for solid is 02 =6 x 108 Pa.

 Linear strain-hardening parameter for solid is EP = 8 x
108 Pa.

« Elastic modulus for solid is £ = 2 x 10! Pa.

The solid sample is fixed at the bottom. We enforce this
condition by setting the velocity of the particles placed at
the bottom to zero. The simulation has been performed for
two different shot velocities of C = (—75,0,0) and C =
(—100,0,0) m s~!. To study the convergence of the method,
each simulation is repeated for five different particle spacing
ofézg,éz%,ézg,ézl%andéz%.TheresultshaS
been achieved by splitting particles near the contact zone. For
all the cases, the time steps is adapted to respect CFL= 0.8
and the simulation is run for 1 x 105 s. The artificial viscosity
parameters « and [ appears in Monaghan [11], is set to 0.2
and 0.4 respectively.

Algorithm 1 Solution algorithm

for each time step At do
compute contact force from (25)
compute - (m;C;) for particle
if (7 € solid) then use (30)
if (¢ € silt) then use (24)
compute d—’f for solid particle from (30)
compute % for solid particle from (33)
update momentum and mass from (42)
update volume VZ-(H%) = V;(t) + Cfi—‘tf%
update density p; = 73—;
compute pressure from equation of state (4)
. R DI CE
update particle velocity x; =C;
update deviatoric stress for particles ¢ and j (11)
if 37(;) > U;Jt), then
solve for the plastic strain increment, (17)
solve for the dissipated energy density, (21)
update ¢, and w,,
update yield stress (15)
return deviatoric stress to yield surface (14)

else
SZ(;JrAt) _ Sz(';)

communicate variables
compute contact force from (25)
compute 2 (m;C;), 22 and 4¥ for (¢t + §t)
update momentum and mass from (43)
update volume Vi(HAt) = Vi(t) + %At
update density p; = T3
compute pressure from equation of state (4)
update particle velocity )'(EH_M) = C§t+At)
update position x§t+At) = xz(»t) + XEHM)At
split particles
search for neighboring particles
communicate variables
t—t+ At

end for

Results shown in Fig. 6 are corresponding to the case of
|C| = 75 m s~!. Fig. 6a depicts the time history of total
dissipated plastic energy, W,, normalized by initial kinetic
energy of the shot which is the total energy of the system Fio.
The total dissipated plastic energy is found by summation of
the dissipated plastic energy for all solid particles as

Wy =Y wyV; (45)
where w,,; denotes to the dissipated energy density for particle
1. wp; 1s the average of the midpoint values computed from
(21). As it is visible, the dissipated plastic energy for particle
spacing 0 = g is too small. By reducing the particle spacing,
this value converges to 90% of the Eiy. The contribution of
kinetic energy and plastic dissipated energy for different par-
ticle spacing is plotted in Fig. 6b. The kinetic energy shown,
represent the shot particles kinetic energy after rebound. The
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Fig. 5: Outline of single shot impact test case

kinetic energy of solid is negligible. The remaining energy
is stored as elastic potential or dissipated due to the effect of
artificial viscosity and numerical dissipation induced by spatial
and temporal discretization. This effect is reduced for smaller
particle spacing and converges to 5% of the Eiy.

Fig. 6¢ shows the variation of residual stress o, with depth
along the central axis for different particle spacing. It is visible
that the results are converging to the finest solution i.e. § =
3%. In Fig. 6d, the residual stress o,, obtained by FVPM is
compared with Meguid et al. [5] and Hong et al. [6] results.
As it is visible, there is a close match between the three sets
of numerical results.

Fig. 7 shows the data for the case with |C| = 100 m s~ 1.
Similar to previous case, the time history for total dissipated
plastic energy is shown in Fig. 6a and the results are con-
verging to 86% of the Eiym. The contribution of kinetic and
dissipated energy is depicted in 6b. For this case, 10% of
the Fi is stored as elastic potential energy or dissipated by
artificial viscosity and numerical dissipation. In Fig. 7c the
residual stress o,, for different particle spacing are plotted

which converges to the finest solution i.e. § = ?%. The o,
corresponding to the § = 3% is compared with Meguid et al.

[5] and Hong et al. [6] results in Fig. 7d. A good agreement
is observed between FVPM and other numerical results.

Snapshots of the case |C| = 75 m s~! with § = 3% after
shot impact are shown in Fig. 8. In Fig. 8a, the residual stress
contours in XZ plane is plotted and compared with Meguid et
al. [5] results. The plastic deformation made by shot impact
is also visible. It shows a good agreement with Meguid et al.
[5] solution. In Fig. 8b, a 3-D view of solid colored by o0,
is shown. Here, the solid particles are represented by spheres
with radius equal to h. Particles near the contact point has
been split for five level from dg = d to § = % which results
in a refined solution.

VIII. CONCLUSION

We presented a 3-D FVPM method. This method features
rectangular top-hat kernel which enables us to integrate the

e
LI T T
=
S E

o Meguidetal
. Hongetal

—— FVPM (= §5)

ZixiN

(© (d

Fig. 6: Results for single shot impact with velocity |C| =
75 m s~ 1. (a) The time history of energy dissipated in plastic
deformation for different particles spacing. (b) The kinetic
energy and plastic dissipation after impact for different particle
spacing. (c¢) The variation of residual stress o,, with depth
along the central axis for different particle spacing. (d) The
residual stress o,, is compared with Meguid et al. [5] and
Hong et al. [6] results.

interaction vectors exactly and efficiently. This method is
employed to discretize the solid motion equation with elasto-
plastic constitutive model. We also presented a contact model
to evaluate the contact force applied between rigid spherical
particle and solid. We introduced a splitting method which
preserve the computational volume of original particles. We
simulated the case of single shot impact to the solid surface.
We studied the convergence of the method for two different
velocity of shot. Finally, we compared our results with FEM
solutions which showed a good agreement.
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7: Results for single shot impact with velocity |C| =
m s~!. (a) The time history of energy dissipated in plastic

deformation for different particles spacing. (b) The kinetic
energy and plastic dissipation after impact for different particle
spacing. (c¢) The variation of residual stress o,, with depth
along the central axis for different particle spacing. (d) The
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