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Canopy Interface Model (CIM) — A need for theoritical coherence

A 1-D Canopy Interface Model (CIM) was developed In order to simulate the effect of urban obstacles on the atmosphere in the boundary layer (Mauree,
2014). The model solves the Navier-Stokes equations on a high-resolved gridded vertical column. Past theories were implemented one by one with the
objective to test their relative coherences. The final proposition guarantees the coherence in any atmospheric stability and terrain configuration with a
modification of the scaling parameters.
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Several parametrizations were proposed to simulate the turbulent mixing coefficients over plane
surfaces and complexe surfaces. The most famous and used turbulence closure are:
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mixing length is taken from Santiago and Martilli (2010):
[(i) =max(h—d;z(i) —d) with d the displacement height

: . e taken as a function of h and the porosity d = h(1 — ¢) .
Without obstacles in a stratified atmosphere

Figure 3. Comparison of the wind U (in m/s) and e (in m? /s?) profiles computed with
a CFD (Thanks to J.L. Santiago and A. Martilli) and CIM. Cubic obstacles of 25 m.
Porosity of 0.75.
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= Energy production equaled to energy dissipation (Brouwers, 2007,
Charuchittipan and Wilson, 2009) :
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= Consequence : a direct relation between ¢,,, and R;; thatis ¢, = (1 —R;f) +
* Close to the MOST theory !

. Coherence with the MOST : @y, = (1 — C.Rir) % With C; = 4B (1+Bn2) in
-2 Applications : CIM in WRF
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stable atmosphere and C; =y, (1 + Vi %) * in instable atmosphere with B,,
and y,, constants used in the universal stability functions as proposed by CIM was introduced in WRF so that the coupled system could
Businger et al (1971) provide high resolution meteorological profiles.
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