Files

Abstract

Power-line communication (PLC) is widely used as it offers high data-rates and forms a network over electrical wiring, an existing and ubiquitous infrastructure. PLC is increasingly being deployed in hybrid networks that combine multiple technologies, the most popular among which is WiFi. However, so far, it is not clear to which extent PLC can boost network performance or how hybrid implementations can exploit to the fullest this technology. We compare the spatial and temporal variations of WiFi and PLC. Despite the potential of PLC and its vast deployment in commercial products, little is known about its performance. To route or load balance traffic in hybrid networks, a solid understanding of PLC and its link metrics is required. We conduct experiments in a testbed of more than 140 links. We introduce link metrics that are crucial for studying PLC and that are required for quality-aware algorithms by recent standardizations of hybrid networks. We explore the spatial and temporal variation of PLC channels, showing that they are highly asymmetric and that link quality and link-metric temporal variability are strongly correlated. Based on our variation study, we propose and validate a capacity estimation technique via a metric that only uses the frame header. We also focus on retransmissions due to channel errors or to contention, a metric related to delay, and examine the sensitivity of metrics to background traffic. Our performance evaluation provides insight into the implementation of hybrid networks; we ease the intricacies of understanding the performance characteristics of the PHY and MAC layers.

Details

Actions

Preview