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Abstract 

The intermittence of solar irradiation displays a great challenge for industrial applications, which often require a constant heat 
supply. Transient or dynamic simulation software, such as TRNSYS and EnergyPlus, enable modeling of such systems and the 
respective dynamic responses. Design and operation in these software packages is usually based on heuristic strategies.  
In this work, optimal design and operation of a solar heated industrial process with constant heating requirements is investigated 
based on Mixed Integer Linear Programming (MILP). The MILP model is constrained by surrogate functions that capture the 
main inefficiencies, but do not represent the dynamic behavior. In order to investigate the dynamic behavior and feasibility of the 
results from MILP, a TRNSYS model is created. In this way, the MILP model is verified and the quality of the dynamic model 
can be evaluated with respect to the potential non-dynamic optimum. 
The industrial heating requirements between 60 and 80°C are satisfied with the help of a novel High Concentration Photovoltaic 
Thermal System (HCPVT), a stratified thermal storage tank, and a back-up burner. The system is evaluated for Sede Boqer, 
Israel, and Tateno, Japan, two differently featured locations. It is concluded that the MILP formulation supplies a satisfying 
approximation of the system performance and, hence, may supply satisfying estimates of the system design and operation. It may 
also be concluded, that heuristic design and operation strategies can generate very good solutions with respect to the theoretical 
optimum. In this work, the system is optimized with respect to the thermal behavior and efficiency, and not the economic aspects. 
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1.  Introduction 

Solar heating and cooling applications and their system design optimization is a widely discussed topic not only 
due to the related environmental benefits. According to Henning et al. (1) the main obstacle against large-scale 
application is the lack of practical knowledge on design, control and operation of such systems. Dynamic modeling 
of solar heating and cooling applications is commonly addressed with transient system simulation software such as 
TRNSYS (2-7), INSEL (8), EnergyPlus (9) or Polysun (10). These allow dynamic analysis and performance 
evaluation of a specific design configuration. A heuristic way to improve the design is by varying the value of each 
variable while keeping the others unchanged in order to see the effect on the objective function. The approach is 
referred to as ‘parametric simulation method’ (11) and is applied for system enhancement (6). 

A number of internal or external ‘plug-in‘ toolboxes (DAKOTA (12), GenOpt (13)) enable optimization of the 
operating conditions and component sizes of dynamic models. Dynamic models are usually non-linear and generate 
discontinuous output due to the nature of the simulation software solvers or empirically assigned inputs. Stochastic 
methods are therefore the most commonly applied optimization algorithms (Genetic Algorithms (5, 14, 15), Particle 
Swarm Optimization (16)). As these heuristic algorithms often require hundreds or thousands of evaluations, 
computationally expensive models cannot be treated. Surrogate models, e.g. based on Artificial Neural Networks 
(ANN) (5, 17), provide a solution.  

The above presented methodologies allow dynamic system design, analysis, and optimization based on heuristic, 
often computationally expensive methods that do not always guarantee finding an optimum. 

On the other hand, Mixed Integer Linear Programming (MILP) methods have been used by many researchers for 
optimal design and control of integrated energy systems with industrial application (18-20), for building services 
(21, 22), urban planning (23, 24), and thermal storages (25-27). Solar technologies are considered in some of these 
(19, 21). The suitability of MILP for optimization problems is demonstrated by Bemporad et al. (28). One challenge 
of MILP problem formulations is the reduction of the problem to linear equations. Several solutions for dealing with 
this impediment, such as Taylor series expansion, are investigated for a thermal storage unit in (26) at the cost of 
higher computational effort. 

System behavior representation in sufficient accuracy of the MILP model at reasonable computational effort is 
tackled in this work for a solar thermal system coupled with a stratified thermal storage tank for heat supply to a 
continuous industrial process represented by a constant demand. Three different MILP formulations are presented 
and compared. A TRNSYS model of the same problem is created and used for tuning of parameters in the MILP 
formulation as well as for testing the optimal set of variables. Special attention is put on the storage equations, since 
the thermal storage behavior may be crucial to solar applications especially for constant demands imposed by an 
industrial demand.  

Nomenclature 

A surface area [m2] 
cp heat capacity [kJ/kgK] 
Q thermal power [kW] 
Q thermal energy [kWh] 
T temperature [°C] 
U heat transfer coefficient [W/m2] 

 linear coefficient: slope 
 linear coefficient: intercept 
 efficiency [-] 
 parameter [-] 
 density [kg/m3] 

 
Abbreviations 
AUX Auxiliary heater 
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BSRN Baseline Surface Radiation Network 
DISH HCPVT dish 
DNI Direct Normal Radiation [W/m2] 
HCPVT High Concentration Photovoltaic and Thermal System 
DEM Industrial demand  
MILP Mixed Integer Linear Programming 
SBO Sede Boqer (BSRN weather station) 
STOR Thermal storage 
TAT Tateno (BSRN weather station) 

2.  System and methods description 

The system consists of a novel High Concentration Photovoltaic Thermal (HCPVT) (29-31) dish that provides 
solar heat to an industrial process (between 60 and 80°C) and to a stratified thermal storage tank. The stratified tank 
is connected to the system via two bypass loops. The industrial demand is connected to the solar circuit through a 
heat exchanger. The HCPVT produces electricity and hot water at 85°C with an electrical and thermal efficiency of 
31.1% and 55% respectively. Characteristics of the HCPVT are the high concentration (2000 suns) and the low 
thermal inertia and the accompanying fast temperature response, which means that the desired outlet temperature 
can be reached within short time frame, even for weak DNI values (29). At the same time it is necessary to keep the 
PV cell temperature within safety limits to avoid damage. The electrical output is not treated in this work. Due to 
two-axis tracking, the collector output is not subject to cosine losses in winter. 

2.1.  Radiation data 

Historic radiation data of a full year is retrieved from the Baseline Surface Radiation Network (BSRN) (32) in 
minute wise time resolution (for the TRNSYS model) and hourly resolution (for the MILP model). This is justified 
by the desire for most realistic observations. For future analysis a typical meteorological year (TMY) is also 
recommended. The analysis is carried out for two weather stations with different meteorological topology. Sede 
Boqer (Israel) lies in the Har Hanegev desert, which is a comparatively dry region with high yearly Direct Normal 
Radation (DNI) (2208 kWh, 2011 (32)). It provides a good example for an isolated area that could profit from solar 
energy supply. On the other hand, Tateno (Japan) has a humid subtropical climate, a distinctly lower DNI (1164 
kWh, 2011 (32)), and a more moderate seasonal variation. Investigation of both locations allows a more holistic 
view on the system performance and methods. 

2.2.  Dynamic model 

The system components and connections of the TRNSYS 17 (33) model are depicted in Fig. 1. For simplicity, 
controllers and equations are not displayed. The units indicated with a small arrow are the units exposed to control 
signals. The component sizes and parameters of the initial case are displayed in Table 1. 

The variable speed pump, which circulates the solar-to-demand circuit, is controlled by an iterative feedback 
controller. It ensures that the inlet temperature to the solar receiver is kept constant such that the photovoltaic cell 
cannot be harmed. This leads to small variations of the inlet temperature of the storage/demand. The controlled flow 
diverter in the storage bypass is operated in such a way that satisfying the demand with direct solar energy is always 
prioritized towards filling of the storage. The storage discharge pump controls the mass flow rate such that the 
storage bottom inlet temperature remains constant. This temperature constrained control reacts to the decrease in 
storage outlet temperature by reducing the mass flow rate accordingly. 

The initial component sizes are determined by general reasoning. The HCPVT has a rated thermal power output 
of 22kWth and 12 kWel at a DNI of 1000W/m2. The original industrial demand size is chosen to be half of the rated 
solar thermal output. The storage is sized for the day of highest solar radiation with the assumption everything that is 
not consumed during that time is stored (day of highest DNI: 196, 13.6 h of sunshine, 3.2 m3). 
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Table 1 TRNSYS data sheet for the reference case of Sede Boqer. 

  Symbol Value Unit     Symbol Value Unit 

Fluid specific heat cp 4.2 kJ/kgK Heat exchanger Type 5     

Fluid density  990 kg/m3 Heat transfer coefficient 3150 W/K 

Fluid thermal conductivity 0.5944 W/mK Counter flow mode 2 - 

Fluid thermal Expansion coeff. 0.00026 1/K Auxiliary heater / Demand Type 659/92     

Storage Type 534   Rated capacity 20 kW 

Tank volume 3.0 m3 Demand QDEM 10.1 kW 

Height 1.9 m HCPVT dish (user created) Type 8050     
Top/bottom/side loss 
coefficient U 1.5 W/m2K  Electrical efficiency el 0.311 - 

Number of nodes 10 - Thermal efficiency th 0.55 - 

Initial node temperature   20 C Collector area Acoll 40 m2 

 
Table 2 Parameters of different MILP cases as fit with the data for Sede Boqer. 

Parameter Value   Parameter Value   Parameter Value   Parameter Value Parameter Value 
i
STOR 0.92 iii1

STOR 0.95 multmin
DEM 0 QMAX

STOR 1e3kWh Th
STOR 85°C 

ii1
STOR 0.96   iii3

STOR 0.93   multmax
DEM 2   TSTOR 80°C Tc

STOR 65°C 

QDEM 10.1 kW  Qmax
DISH 22 kW  ADISH 40 m2  el 0.311 th 0.55 

Fig. 1 System layout with TRNSYS components. 

Optimal operating strategy

Fixed variables
data

Fixed variables,
Parameters as decision 
variables

Parameters

TRNSYS Linearized models

fmincon
min f( i

STOR, ii1
STOR, iii1

STOR, iii3
STOR )

MILP
min f(multLOAD,VSTOR)

Test results from optimization

Optimal design & operation

equations

Fig. 2 Methodology for finding the surrogate parameters, and the system optimal design and operation. 
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2.3.  Mixed Integer Linear Programming (MILP) formulation 

The set of linear equations used to describe thermal behavior of the solar dish, the thermal storage, the auxiliary 
heater, and industrial demand is presented in this section. Scalar decision variables are henceforth represented by 
italic letters and parameters by roman letters; vectors are depicted in bold (with italic for variables or roman for 
parameters). In order to keep the problem size reasonable, the MILP equations are set in hourly resolution. The data 
set is chosen for the whole year instead of a set of typical periods (34), in order to keep origin of the errors traceable. 

 High Concentration Photovoltaic and Thermal (HCPVT) dish 2.3.1. 
The HCPVT dish is modelled by a simple set of equations based on the thermal and electrical efficiency. The 

solar dish is connected directly to the demand by a bypass loop and to the thermal storage unit. The transfer rates 
between solar and demand or storage are decision variables. 

th
DISH DISH   ADISH

DISH

Q DNI

Q DISH STOR DISH DEMQ Q
        (1) 

 Industrial demand and auxiliary heater 2.3.2. 
The industrial demand is, as mentioned before, set to a constant value. Heat is delivered from the solar dish, the 

storage, and an auxiliary heater, which ensures fulfillment of the requirements. A decision variable is introduced to 
the equation which may be used to size the demand optimally (multDEM). Initially it is set to one. 

DEMQ DEMmult DISH DEM STOR DEM AUXQ Q Q+        (2) 

 Thermal storage 2.3.3. 
For the stratified storage tank three different approaches are evaluated. The first one is based on an ideal stratified 

tank formulated in (27) with an additional parameter for the global losses which account for thermal losses as well 
as de-stratification. The other storage models contain further refinement. 
2.3.3.1 Storage model (i) 

The energy balance (i) of the ideal stratified storage tank assumes that the storage content of time t depends on 
the previous storage level (t-1) multiplied by a thermal loss fraction, the inflow and outflow at time t.  

i
STOR

1,2,...,8760

1  dt    \ 1

1 0 1 1

t t t t t

T

Ti i
STOR STOR DISH STOR STOR DEM

i
STOR DISH STOR STOR DEM

Q Q Q Q

Q Q Q

   (3) 

 
,max MAX

STOR
i
STOR

0 Q

0 1

i
STORQ

          (4) 

2.3.3.2 Storage model (ii) 
Model (i) accounts for thermal losses proportional to the storage energy content. However thermal losses are 

normally formulated as a function of the tank surface area, the heat transfer coefficient, and the inside and outside 
temperatures. Therefore, a term accounting for constant thermal losses independent from the filing level is added to 
the equation. 

1ii
STOR1 dt   \ 1t t t t t T2iiii ii

STOR STOR DISH ST STOR DEMOR STORQ Q Q Q   (5) 

The constant thermal loss term depends on the storage surface area and the external temperatures. 
2

2

2
STOR STOR

  0  

0         0

U Tout
STORA extT

ii ii
STOR STORii

STOR ii
STOR

ii
STOR

Q

Q         (6) 
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Since the storage temperatures alternate between 65 and 85°C, the temperature TSTOR is conservatively chosen as 
constant 80°C. The hourly external temperature vector Text is given from the BSRN data. The storage outside 
surface area is a decision variable that depends on the storage volume. The volume is related to the storage 
maximum heat content by the heat capacity, the density and the total temperature change inside the tank.  

Since the storage surface area is a non-linear function of the volume, it was linearly fit. Derivation of the 
coefficients is illustrated in Appendix A.  

max

h c
p STOR STOR

STOR STOR

c T -T
STOR

STOR

out
STOR STOR

QV

A V

         (7) 

The constant thermal losses are only active if the storage is filled. The if-else-condition can only be represented in 
MILP by adding new binary variables STOR {0,1}. Epsilon  represents a very small number. 

MAX
STORQii

STOR STOR
ii

STOR STOR

Q
Q

          (8) 

With this the loss coefficient is derived by multiplication 2 2ii ii
STOR STOR STOR . Multiplication of a binary and a 

continuous variable can be formulated in MILP as a set of linear equations. Therefore, equation (6) is reformulated 
with 2ii ,MAX out,MAX min

STOR STOR STOR STOR extU A T T  to the following. 
2 2ii ,min

STOR 0ii
STOR           (9) 

2 2ii ,MAX
STOR

ii
STOR STOR           (10) 

2
STOR STORU Tout

STORA extT2ii ii
STOR STOR        (11) 

2 2ii ,MAX
STOR12ii ii

STOR STOR STOR         (12) 

2.3.3.3 Storage model (iii) 
Since the storage tank top temperature drops throughout the discharge cycle, the discharge demand cannot stay 
constant. To account for that constraint a third storage model is derived. The main difference from (ii) is one 
additional equation. After the charge cycle has finished, the storage discharge heat rate is constrained to be smaller 
or equal to a fraction of the previous discharge rate. The energy balance is based on model (ii) with equations (6)-
(12). 

1iii
STOR1 dt   \ 1t t t t t T2iiiiii iii

STOR STOR DISH S STOR DEMTOR STORQ Q Q Q   (13) 

The additional constraint on the discharge heat rate is valid two time steps after the charge period is finished. 
3iii

STOR 1 2 100      \ 1,2t t t t TSTOR DEM STOR DEM STOR DEMQ Q Q    (14) 
3iii

STOR0 1           (15) 

2.3.3.4 Decision variables 
In this work, the only fixed size is the area of the one solar collector. The storage volume (VSTOR), the industrial 
demand (multDEM) and all heat rates are decision variables. The solar fraction is defined as the ratio between the 
industrial demand and the peak solar thermal power output. 

max
DIS

D

H

EMQ
Q
DEMmultsf           (16) 

Another quantity that allows quantification of the solar part with respect to the total consumption is defined. The 
solar contribution ( SOLAR) represents the fraction of the solar dish output of the total yearly energy supply. 

t t
D SH

t
I tDISH DISH

T T T

Q Q AUXQ         (17) 

2.3.3.5 Objective function 
The linear objective of the MILP is minimization of the global energetic losses. These are derived by summing 

the solar collector dish output and the total primary auxiliary consumption (an efficiency is attributed) and 



674   Anna S. Wallerand et al.  /  Energy Procedia   91  ( 2016 )  668 – 680 

subtracting the industrial demand consumption. This is a similar definition as the optimization of operational costs, 
but with purely energetic objectives. Since the solar input is constant, it has no influence on the optimization. The 
storage size is also taken into account in the objective function.  

 

DEM
max

AUXmin  36Q 5
LOAD

STOR

DEMmult t t t
STOR

V

t multf QDISH
T T T

Q AUX + Q     (18) 

2.4.  Linear model parameter estimation methodology 

The parameters of the storage models i
STOR, ii1

STOR, iii1
STOR, iii3

STOR are determined with the Matlab® function 
fmincon that relies on sequential quadratic programming (SQP). 
After it is ensured that the TRNSYS model follows the optimal control strategy in agreement with the MILP, the 
linear behavior is reconstructed in Matlab. All the variables (such as sizing of the components) are fixed and only 
the error parameters are left as decision variables for fmincon (see Fig. 2). To best imitate the TRNSYS behavior the 
objective function is set as the sum of the global error between the linear model and the TRNSYS data for the 
storage content and the auxiliary consumption. The quadratic hourly error is also investigated, but with less 
satisfying results. In this way the loss related parameters are determined for the location of Sede Boqer, see Table 2. 

 

1

1 3,

min
STOR

ii
STOR

iii iii
STOR STOR

i
t t

f t t t tTRNS TRNSYSY
AUX

S
STOR

T T

Q QMILP
ST

MILP
AUOR XQQ     (19) 

3.  Results and discussion 

3.1.  Comparison between TRNSYS and MILP (multDEM = 1) 

In this chapter the results from the dynamic simulation in TRNSYS and the surrogate functions of the MILP are 
compared for a fixed demand (multDEM) size of one. That means that the solar fraction is set to 0.45, while the 
storage size, and the flow rates are left as decision variables. The TRNSYS output is generated based on the design 
and operation specifications from the MILP. The system performances are compared based on the auxiliary heater 
consumption and the hourly storage filling. Comparison of the computational effort is clearly decided by the MILPs 
which take between less than a minute (i), 10 min (ii), and 30 min (iii) compared to more than 5 hours per run for 
the TRNSYS model (however for different data resolution). 

Fig. 3 (a) shows the heat demands and storage content of the TRNSYS simulation for Sede Boqer with a storage 
volume of 3.0m3 compared to the MILP results with optimal volumes of 3.05m3 (i), 3.15 m3 (ii), and 3.05 m3 (iii). 
The solar output, and amount sent to the storage and to the industrial demand are very similar between the TRNSYS 
and MILP formulation. For the TRNSYS data, the heat rate sent during discharge from the storage to the industrial 
demand shows a smooth constant reduction, while the MILP streams remain constant and then drop abruptly. This 
has an influence also on the hourly storage content, which in case of the MILP is emptied earlier than the TRNSYS. 
The storage content of the TRNSYS data is calculated by spacial integration over all storage node temperatures 
above 60°C. 

The smoothest reduction of the MILP models can be observed for case (iii), however only slightly different from 
the other two. The temperatures in Fig. 3 (b) show the average temperature in the storage tank and the solar collector 
outlet temperature. The average storage temperature increases as expected throughout the day and drops during 
discharge. The solar outlet temperature is kept quite constant through the day and drops during the night. 

As expected and implemented in TRNSYS, the MILP functions prioritize directly feeding the demand from solar 
energy before filling the storage. This is related to the thermal losses within the storage. 

The error between TRNSYS and MILP total yearly auxiliary consumption is between -1 and -2.5% (see Table 3). 
Since the parameters are optimized for the case of Sede Boqer, it is important to test the correlations for a different 
location. The same test problem is run for weather data of Tateno, except from the storage volume which is adopted 
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from the MILPs (2.53m3 (i), 2.55m3 (ii), and 2.48m3 (iii)) to be 2.5m3. According to the values (depicted in Table 3) 
the deviation between TRNSYS and MILP for Tateno is between -4 and -5%, and therefore slightly higher than for 
Sede Boqer. It is suggested that this outcome stems from the thermal inertia of the storage tank and with that the 
dynamic behavior. In the MILP formulation this is not considered. It should have a bigger influence for regions with 
lower yearly DNI. However, the error of both locations for quite a high range of yearly DNI (2208 vs 1164 kWh/m2) 
lies within the range of -1 and -5%. The smallest errors are achieved for the MILP model (iii) which however 
demonstrates the highest computational cost, followed by model (ii) with the second highest computational effort. 

Fig. 4 illustrates a scatter plot of TRNSYS data and the MILP surrogate function of the hourly storage content for 
a fixed demand multDEM of 1, for Sede Boqer and Tateno. The slopes of the linear fits of Sede Boqer are slightly 
below 1 while the ones from Tateno are slightly above 1. This is explained again by the fact that the MILP does not 
consider the dynamic losses and therefore overestimates the storage content of locations with lower, or more 
variable DNI. For high and constant DNI regions, as Sede Boqer, the surrogate function tends to underestimate the 
storage content slightly. But all in all, the agreement is considered sufficient for a demand multiplication factor of 1. 

Finally, the monthly mean heat rates of the TRNSYS model and MILP are compared in Fig. 5 for a storage tank 
volume of 3m3 and 3.05 m3 (iii). It shows that the MILP overestimates the solar and storage output in winter and 
underestimates in summer for Sede Boqer, and it most of the time overestimates the values for Tateno. That 
explains, why the MILP data for Sede Boqer agrees quite well (-0.9%) with the TRNSYS and for Tateno it deviates 
a more (-4.1%). It also illustrates that even if the solar fraction is the same, solar contribution ( SOLAR) of Sede 
Boqer is much higher than that of Tateno with 0.5 and 0.27 respectively. This is clearly related to the approximately 
two times higher yearly DNI in Sede Boqer compared to Tateno. It further indicates that adequate sizing of the solar 
system is an interesting issue that may depend on the geographic region.  

Summarizing this subchapter, it can be said: 
 The MILPs take between less than a minute (i), 10 min (ii), and 30 min (iii) compared to more than 5 

hours per run for the TRNSYS 
 The general agreement between MILP and TRNSYS output is sufficient for the estimation of the yearly 

(and monthly) auxiliary heat consumption and the storage content. 
 The MILP consequently underestimates the auxiliary consumption (between -0.9% and -5.0%). It is 

more precise for Sede Boqer than Tateno. 
 The three MILP models yield quite similar results. The descending order of precision is (iii) (ii) (i), 

which represents the inverted order of the computational time. 
 For low DNI regions the MILP models tend to overestimate the storage content, while for high DNI 

regions they tend to underestimate. 
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Table 3 TRNSYS and MILP yearly total auxiliary heat demand for the locations Sede Boqer and Tateno in 2011. 

MWh TRNSYS (i) (ii) (iii) % (i) % (ii) % (iii) 

Sede Boqer 48.0 46.9 47.0 47.63 -2.4 -2.2 -0.9 

Tateno 68.7 65.3 65.7 65.9 -5.0 -4.4 -4.1 

3.2.  Demand sizing 

The optimal size of the demand for one collector dish is investigated with regard to the objective function which 
aims at minimizing the total energetic losses. 

Fig. 6 displays the objective function of the TRNSYS and MILP outputs for different storage and solar fractions 
of the locations of Sede Boqer and Tateno. One important note is that the chosen storage size has a non-negligible 
influence on the TRNSYS output (auxiliary heat consumption). As an example, for a solar fraction of 0.23 in 
Tateno, from the empirical rule (parenthesis) a storage of 5.5m3 is proposed and from the MILPs a storage size of 
4m3 is suggested. In TRNSYS the sizes 9 and 4m3 were run showing that the objective function can be reduced by 
20%. This can be explained with the relation between the thermal losses and the storage outside surface area. 

For Sede Boqer the optimal solar fration given by the MILP ranges from 0.39 (i) to 0.43 (ii). This indicates that 
the original choice of sizing (sf=0.45) is close to the MILP optimum. For the case of Tateno, however, a solar 
fraction between 0.18 (i) and 0.23 (ii) is recommended for the given problem. Model (i) shows the strongest 
deviation from the TRNSYS data. That can be seen for Sede Boqer (errors at sf=0.36 (i) -7.2%, (ii) -6.8%, (iii) -
0.9%, at 0.6 (for different volumes) (i) -15.6%, (ii) -14.1%, (iii) -12.6%), and for Tateno (errors at sf=0.23 (i) -
16.0%, (ii) -9.3%, (iii) -4.5%). Therefore, model (ii) is proposed as best suited for targeting optimal design. It is 
derived that model (iii) is more accurate than (ii) at higher computational cost and cannot be evaluated below certain 
sizes (0.45).  

However, with increasing distance from the MILP optimum, the MILP results converge to the same values and 
diverge more strongly from the TRNSYS results. It is still inferred that the MILPs, especially model (ii), follow the 
same trend as the TRNSYS model and it will give a good first estimate of the objective function minimum and 
auxiliary consumption. In the demonstrated example the sizing and system complexity is quite trivial, but in a more 
elaborated scenario, such as shown in references (21, 24), these functions could be applied for good estimates of the 
here discussed components. In order to increase the significance and the applicability of the presented results, a 
wider range of temperature levels and collectors may be studied. This will however not replace a thorough dynamic 
analysis, but it may postpone it. 

Fig. 7 illustrates different MILP optimal solar fractions for BSRN stations of various yearly DNI values. A clear 
trend is recognizable for increasing DNI the optimal solar fraction increases. A solar contribution of around 0.5 
seems the most favorable for all locations. 

From the results above, it is condensed: 
 Model (ii) is proposed as best suited for targeting optimal design and control. 
 The derived functions can be applied for good estimates in more complex MILP optimization. 
 The MILP models follow the same trend as the TRNSYS data and give a good estimate of the objective 

function minimum and auxiliary consumption. 
 With increasing distance from the MILP optimum, the MILP results converge to the same values and 

diverge more strongly from the TRNSYS results. 
 The MILP models cannot replace a thorough dynamic analysis, but they may postpone it. 
 As expected with increasing DNI the optimal solar fraction increases such that the solar contribution 

converges to 0.5. 

4.  Conclusions and outlook 

The challenge between sufficient accuracy at reasonable computational time is tackled in this work for three 
different MILP models (i)-(iii) for a solar thermal system coupled with a stratified thermal storage tank to supply 
heat  to  a continuous industrial process. The process is represented by a constant demand. A TRNSYS  model of the  
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Fig. 4 Scatter plot of hourly storage content of TRNSYS model with storage tank volume of 3m3 and MILP surrogate function with an 
optimal size of 3.05/ 2.54m3 (i), 3.15/ 2.56m3 (ii), and 3.05/ 2.48m3 (iii) respectively for Sede Boqer/Tateno, at a fixed demand of 

multDEM=1. 

Fig. 6 Objective function for TRNSYS and MILP outputs for different storage and demand sizes. The thick lines mark the MILP 
minimum for two decision variables (VSTOR, multDEM), while the thin lines mark points with a fixed demand size (multDEM  fixed). 
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Fig. 5 Monthly mean data of the thermal power directly transferred from the solar dish to the demand, the storage output towards the demand, 
and the auxiliary demand of the TRNSYS data a storage tank volume of (a) 3m3, (b) 2.5m3 and MILP (a) 3.05 m3 (iii), (b) 2.48m3 for a fixed 

demand of multDEM=1. 
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same problem is created and used for tuning of parameters in the MILP formulation (for the location of Sede Boqer) 
as well as for testing the optimal set of decision variables (Sede Boqer, Tateno).  

The MILPs take between less than a minute (i), 10 min (ii), and 30 min (iii) compared to more than 5 hours per 
run for the TRNSYS model. It is concluded that the general agreement between MILP and TRNSYS output is 
sufficient for an estimation of the yearly (and monthly) auxiliary heat consumption (-1 to -5%). The MILP storage 
content tends to be slightly overestimated for the low DNI region (Tateno), while for the high DNI region (Sede 
Boqer) it is underestimated. The descending order of precision of the MILPs starts with model (iii) through (ii) 
towards (i), which represents the inverted order of the computational time. For differently chosen decision variable 
values, the MILP models follow the same trend as the TRNSYS data and give a good estimate of the objective 
function minimum and auxiliary consumption. Model (ii) is proposed as best suited for targeting optimal design and 
control. 

For future investigations it is recommended to study more complex TRNSYS models (e.g. including cooling 
coils, or a more complex solar field design) and more locations. In order to increase the significance and the 
applicability of the presented results, a wider range of storage and collector temperature levels and types may be 
studied. 

Further, a reduction of the radiation data to a set of typical (sequential) periods (34, 35) could be an option which 
allows for more complex MILP (storage) models (25). In this first analysis this option is excluded in order to keep 
origin of the system errors traceable. Finally, the goal of this work is not the replacement of thorough dynamic 
analysis by MILP, but maybe a postponement. 
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Appendix A. Linear fit of storage tank outside area 

The cylindrical storage tank outside surface area is linearly fit to the storage volume. The storage height is 
derived from a fixed predefined ratio between the cross-sectional area and the height 1.3h V . 
Another way of deriving the storage height is by fixing the height to diameter ratio. Ratios between 1 and 3 are 
recommended for stratified tanks (36), but are not discussed here, since the influence turned out to be marginal. 

The outside surface area is calculated as a function of the tank volume and height. 
4 2out

d

A h V h V h          (20) 

For a volumetric range between 1 and 6 m3 the above non-linear function is plotted and fitted linearly (see Fig. 8). 

Fig. 7 MILP optimal solar fraction for different BSRN 
stations of various yearly DNI values. 
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The linear coefficients of the storage tank outside area, the slope and intercept, are fit as STOR = 2.714 and STOR = 
3.3607, respectively. 
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