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Abstract A numerical procedure to implement a frequency-independent general-
ized non-reflecting radiation boundary conditions, GNRBC, based on the Laplace
Transform, is described in details and tested successfully on a simple 2 frequency
test problem. In the case of non-stationary regimes occurring in gyrotron oscilla-
tors, it is shown that the reflection at frequencies significantly separated from the
carrier frequency can be effectively suppressed by this method. A detailed analysis
shows that this numerical approach can be consistently used only for models in which
there is no assumed separation of time scales between the RF field envelope time-
evolution and the electron time of flight across the interaction region. The GNRBC
has been implemented in a nonlinear time-dependent self-consistent monomode
model, TWANGpic, in which there is no time scale separation since the RF field
envelope is updated at each integration time step of the electron motion. The illustra-
tion of the effectiveness of the GNRBC is made with TWANGpic on a gyrotron for
which extensive theoretical and experimental results have been performed.

Keywords Gyrotron oscillator · Radiation boundary conditions

1 Introduction

In the presence of non-stationary dynamics, a gyrotron oscillator is characterized by a
frequency spectrum exhibiting the excitation of side-bands over a bandwidthΔf/f of
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approximately 0.5–1 % as shown in [1, 2] and references therein. The proper descrip-
tion of the wave-particle interaction in the commonly used gyro-averaged slow time
scale models [3–5] requires to properly define the radiation boundary conditions at
the extremities of the considered interaction space. Compared to the seminal paper
by Ginzburg et al. [6], in which the non-reflecting frequency-independent bound-
ary condition was derived and used in the case of a simplified interaction space
with constant radius, in this paper, the interaction space is extended such to include
the real gyrotron cavity as well as the uptaper and a simplified launcher follow-
ing the cavity. This implies that the frequency-independent non-reflecting radiation
boundary condition needs to be generalized (GNRBC) to the case in which it is
defined at the launcher extremity with a radius significantly larger than the cavity
constant radius section. This allows to consider cases in which the reference fre-
quency (usually close to the cavity cutoff frequency) is significantly different than
the cutoff frequency at the position of the GNRBC. An improved radiation bound-
ary condition has also been considered by Wu et al. [7]. Considering this extended
interaction space and a single transverse TE-mode, excited by the electron beam,
non-stationary regimes can take place in the gyrotron cavity only [1, 2], but could
possibly also occur in the launcher section at a frequency close to the cutoff fre-
quency given by the launcher radius. In this case, the relative frequency separation
between the frequencies excited in the cavity and the launcher can be as high as
8–10 %. A possible instability taking place in a simplified launcher geometry has
been observed in some numerical codes and is called dynamic after-cavity inter-
action which underlying physical mechanism is described in [8] and references
therein.

The paper is organized as follows: after the introduction, in Section 2 the underly-
ing assumptions of the parabolic wave equation are recalled. In Section 3 the GNRBC
is derived using a Laplace transform technique and it is shown that, compared to
[6], an additional term appears in the form of a Fresnel integral. Section 4 describes
in detail the numerical implementation of the GNRBC. For validating the numerical
scheme, the results of the GNRBC are applied in Section 5 to a simple test case con-
sisting of a constant radius waveguide excited with a source term containing two well
separated frequencies. The GNRBC has been implemented in the nonlinear time-
dependent monomode model TWANGpic [9], and its effectiveness is illustrated and
discussed in Section 6. Section 7 concludes the paper.

2 Wave Envelope Equation

In a cylindrical perfectly conducting waveguide with an adiabatically varying radius,
the electric field associated to a single transverse eigenmode, T Em,p, can be written
as:

E(r, t) = Re[E(z, t)em,p(r, θ)], (1)

where E(z, t) is the electric field amplitude and em,p(r, θ) is a vector describing the
transverse dependence of a given transverse mode at the axial position, z [5].
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The electric field amplitude, E(z, t), satisfies the wave-equation:

− 1

c2

∂2E

∂t2
+ ∂2E

∂z2
− k2⊥(z)E = s, (2)

where the perpendicular wave vector k⊥(z) = νm,p/Rw(z) is assumed to vary slowly
along z due to the slow variation of the cavity wall radius, Rw(z). The quantity, νm,p,
is the pth zero of the first derivative of the bessel function Jm(x) and s is a source
term.

Assuming a reference frequency ω0:

E(z, t) = f (z, t) exp(−iω0t), (3)

the wave envelope equation (or parabolic wave equation) can be deduced from the
full wave Eq. 2 as

2i
ω0

c2

∂f

∂t
+ ∂2f

∂z2
+

(
ω2
0

c2
− k2⊥(z)

)
f = s exp(iω0t), (4)

where the term ∂2f/∂t2 is neglected assuming
∣∣∣ 1f ∂f

∂t

∣∣∣ � ω0. Finally, using the

following time and space normalization

t̄ = ω0t, z̄ = k0z = ω0

c
z, (5)

the normalized envelope equation is given by

2i
∂f

∂t̄
+ ∂2f

∂z̄2
+

(
1 − k2⊥/k20

)
f = s exp(it̄)/k20 . (6)

Equation 6 needs to be completed with boundary conditions. For a gyrotron oscil-
lator with the left boundary, z = 0, in cut-off, the condition f (0, t̄) = 0 is imposed.
At the exit of the interaction region, at the right boundary, a radiation boundary
condition is imposed and is described in the next section.

3 Reflection Coefficient

The analysis of the reflection at the waveguide boundary is conveniently performed
in the wave frequency domain where the field envelope representation is simply the
Laplace transform:

F(Ω, z̄) =
∫ ∞

0
dt̄ eiΩt̄ f (t̄ , z̄), Im(Ω) ≥ γ, (7)

with γ being larger than any possible exponential growth rate of f (t̄, z̄).
The inverse Laplace transform can thus be defined as:

f (t̄, z̄) = 1

2π

∫ ∞+iγ

−∞+iγ

dΩ e−iΩt̄ F (Ω, z̄). (8)
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The normalized frequency Ω defined in the Laplace transform (7) is related to the
wave frequency ω by

ω = ω0(1 + Ω). (9)

At a given axial position z, the field F(Ω) can be written as a sum of a forward
and a backward wave:

F(Ω) = A+ exp(iκ‖z̄) + A− exp(−iκ‖z̄), (10)

where the normalized parallel wave vector, κ‖, is given by the local dispersion
relation which can be deduced from Eq. 6 assuming s = 0:

κ2‖ (z̄) = 2Ω + 1 − k2⊥/k20 = 2Ω + κ2‖0, (11)

where we have introduced the axial wave vector κ‖0 at ω = ω0 (or Ω = 0). Notice
that this dispersion relation is the approximation of the full dispersion relation where
Ω2 has been neglected, which is implied in the derivation of the envelope Eq. 6. From
Eq. 10 and

∂

∂z̄
F (Ω) = iκ‖A+ exp(iκ‖z̄) − iκ‖A− exp(−iκ‖z̄), (12)

the reflection coefficient can be obtained as

R(Ω) = A−
A+

= iκ‖F − ∂F/∂z̄

iκ‖F + ∂F/∂z̄
e2iκ‖ z̄. (13)

A simplified non-reflecting boundary condition, SNRBC, for the envelope Eq. 6,
assumes that the resulting stationary state has essentially a single frequency or a very
narrow frequency spectrum peaked at the reference frequency, Ω = 0:

R(Ω = 0) = 0 =⇒ ∂F

∂z̄
= iκ‖0F =⇒ ∂f

∂z̄
= iκ‖0f. (14)

This boundary condition leads however to non-zero reflection for Ω �= 0:

R(Ω) = κ‖ − κ‖0
κ‖ + κ‖0

e2iκ‖z̄. (15)

As shown in Fig. 1, a wave with Ω 	 −0.06 can have a reflection which is as
large as 25 %.

In order to have R(Ω) = 0 for any Ω , at the interaction region boundary, the
non-reflecting boundary condition has to be imposed in the frequency domain as

F(Ω) = 1

iκ‖
∂F

∂z̄
= 1

i
√
2Ω + κ2‖0

∂F

∂z̄
(Ω) = G(Ω)

∂F

∂z̄
(Ω), (16)

having defined G(Ω) = 1/i
√
2Ω + κ2‖0.

Using the convolution theorem, the field in the time domain can be deduced as

f (t̄) =
∫ t̄

0
dτ g(τ)

∂f

∂z̄
(t̄ − τ) (17)
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Fig. 1 The absolute value of the reflection coefficient as given by Eq. 15 for a SNRBC, Eq. 14 and
k⊥/k0 = 0.9. The cut-off frequency is Ωco = −κ2‖0/2 = −0.095

where g(τ) is the inverse Laplace Transform of G(Ω):

g(τ) = 1

2π

∫ ∞+iγ

−∞+iγ

G(Ω) e−iΩτ dΩ = 1

2πi

∫ ∞+iγ

−∞+iγ

e−iΩτ√
2Ω + κ2‖0

dΩ, τ ≥ 0,

(18)
and, as shown in Appendix, can be obtained as:

g(τ) = 1

i

√
1

2πiτ
exp

(
i
κ2‖0
2

τ

)
, τ ≥ 0. (19)

One can readily check that∫ ∞

0
dτ g(τ) eiΩτ = 1

i
√
2Ω + κ2‖0

= G(Ω). (20)

The GNRBC for any frequency Ω can thus be expressed in the time domain as

iκ‖0 f (t̄) = κ‖0√
2πi

∫ t̄

0

dτ√
τ

exp

(
i
κ2‖0
2

τ

)
∂f

∂z̄
(t̄ − τ). (21)

If ∂f/∂z̄ is time-independent or weakly time-dependent (see [11]), one obtains

lim
t̄→∞

f (t̄) = ∂f

∂z̄

∫ ∞

0
dτ g(τ) = G(0)

∂f

∂z̄
= 1

iκ‖0
∂f

∂z̄
. (22)

which is the single frequency approximation, Eq. 14.
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The samemethod has been proposed in [6] but the article considers the special case
where the reference frequency ω0 is chosen as the cut-off frequency at the boundary,
which implies that κ‖0 = 0.

4 Numerical Implementation

From here on, for notational convenience, the bar symbol is omitted on the normal-
ized t and z. Let us consider the discrete times tj = jΔt, j = 0, 1, . . . and denote
the field and its axial derivative defined at tj as fj and f ′

j , respectively. The GNRBC
given by Eq. 21 can thus be approximated at the time tn, up to second order in Δt as:

iκ‖0 fn(t) = κ‖0√
2πi

n∑
j=1

∫ jΔt

(j−1)Δt

dτ
ei

κ2‖0
2 τ

√
τ

f ′(tn − τ)

	
n∑

j=1

f ′
n−j+1 + f ′

n−j

2
(Aj − Aj−1), (23)

where f ′(t) is approximated as piece-wise constant:

f ′(t) 	 f ′(jΔt) + f ′((j − 1)Δt)

2
= f ′

j + f ′
j−1

2
, for t ε [(j − 1)Δt, jΔt]. (24)

The quantity Aj in Eq. 23 is given by:

Aj = κ‖0√
2πi

∫ jΔt

0
dτ

ei
κ2‖0
2 τ

√
τ

=
√
2

i

[
C

(
β
√

j
)

+ iS
(
β
√

j
)]

, (25)

where C(z) and S(z) are the Fresnel Integrals [13]:

C(z) =
∫ z

0
cos

(π

2
t2

)
dt, S(z) =

∫ z

0
sin

(π

2
t2

)
dt, (26)

and

β = κ‖0
√

Δt/π. (27)

Finally, the GNRBC can be written as a convolution sum

iκ‖0 fn =
n∑

j=0

χj f ′
n−j

χ0 = 1

2
(A1 − A0),

χj = 1

2
(Aj+1 − Aj−1), j = 1, 2, . . . , n − 1,

χn = 1

2
(An − An−1). (28)
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Notice that

lim
n→∞

n∑
j=0

χj = lim
n→∞

An+1 + An

2
=

√
2

i
lim

x→∞ [C(x) + iS(x)] = 1, (29)

clearly recovering Eq. 22.

5 A Simple Test Case

To test the efficiency of the GNRBC described above, a constant radius simple cavity
(constant k⊥) of length L and is driven by the LHS boundary condition at the input,
z = 0:

f (z = 0, t) = [
1 + exp(−iΩ1t)

]
min(1, t/tr ), (30)

which defines a two-frequency driving term, with the first frequency at Ω = 0 and
the second at Ω1. The GNRBC is imposed at z = L.

Using a finite element approach, theweak form of Eq. 6 and the following B-spline
[12] expansion for f and its derivative f ′ = ∂f/∂z:

f (z, t) =
N∑

ν=1

cν(t)Λν(z),

f ′(z, t) =
N∑

ν=1

cν(t)Λ
′
ν(z), (31)

where N = Nz + p, Nz is the number of intervals along z and p the order of the
B-splines, the following system of ODE’s can be derived for the field coefficients
c(t):

M
dc
dt

+ N · c = 0,

Mνν′ = 2i
∫ L

0 dzΛνΛν′, Nνν′ = ∫ L

0 dz
(
−Λ′

νΛ
′
ν′ + κ2‖0ΛνΛν′

)
.

(32)

Using a second order time centered implicit discretization, the following linear
system of equations for the field cn at time tn = nΔt is obtained:

M
(
cn − cn−1

Δt

)
+ N

(
cn + cn−1

2

)
= 0,

=⇒
(
M + Δt

2
N

)
cn =

(
M − Δt

2
N

)
cn−1. (33)

The zero initial condition can be imposed simply by starting with c0 = 0 while the
essential boundary conditions at z = 0, Eq. 30 and at z = L, Eq. 28 are implemented
by replacing respectively the first and last equations of the linear system above with:

cn
1 = [

1 + exp(−iΩ1tn)
]
min(1, tn/tr )

iκ‖0 cn
N − χ0

N∑
ν=N−p

Λ′
ν(L)cn

ν =
n∑

j=1

χj f ′(L, tn − jΔt). (34)
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Notice that with this non reflecting boundary condition, the time marching
algorithm involves all the previously computed values of f ′ at z = L.

Figure 2 shows the results obtained with the simple boundary conditions (14).
From left to right and top to bottom are shown the early time evolution of f at z = 0
and z = L, the real and imaginary parts as well as the modulus and phase of the
complex field versus z at the stationary state. The last two figures are obtained by
performing a discrete Fourier transform of the field at z = L on a suitable chosen
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Fig. 2 Results from the simple test problem for a SNRBC, Eq. 15 and k⊥/k0 = 0.9
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time window and the definition of the frequency-dependent reflection coefficient in
Eq. 13. As expected, the computed reflection here agrees very well with Eq. 15 and
shows a high reflection (≈ 25 %) at the drive frequency Ω1 = −0.06.

Using the numerical implementation of the GNRBC given in Eq. 34, one can
reduce this reflection to less than 1 % as shown in Fig. 3, resulting in a field
axial profile closer to a cosine function. Figure 4 shows that to achieve very low
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Fig. 3 Results from the simple test problem using the GNRBC, Eq. 28, k⊥/k0 = 0.9, (ω1 − ω0)/ω0 =
−0.06 and ω0Δt = 2. Note that compared to Fig. 2, for highlighting the effect of GNRBC, the amplitude
of the reflection coefficient is in logarithmic scale and the isolated point at Ω = 0 corresponds to the
calculated reflection coefficient at this frequency
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Fig. 4 The reflection coefficient R(Ω) in the vicinity of Ω1 = (ω1 − ω0)/ω0 = −0.06 for different time
steps ω0Δt and k⊥/k0 = 0.9

reflection, the time step should be small enough to resolve accurately the drive fre-
quency Ω1. This is confirmed in Fig. 5 where the convergence of the reflection
at the drive frequency Ω1 with respect to |Ω1|Δt is examined for Ω1 = −0.06
and Ω1 = −0.03. Finally, Fig. 6 shows that this reduction of the reflection (at
the drive frequency Ω1 = −0.06) is achieved through a steady reduction of the
amplitude of the backward wave A− while the forward wave A+ remains almost
unchanged.

6 Illustration of GNRBC in the TWANGpic Simulation Codes

To illustrate the effect of the GNRBC, the example of the 140 GHz gyrotron
developed for the W7-X stellarator is considered [10, 14, 15] for which realistic
experimental parameters are used. The GNRBC is implemented in the TWANGpic
[9] code which is based on 1D Particle-in-Cell (PIC) approach. The essential feature
of TWANGpic is the fact that there is no time-scale separation between the evolu-
tion of the rf-wave envelope, and the particles in the sense that the rf-field envelope
is updated at each integration time step of the electron motion: the wave-particle
interaction is described by a one-dimensional Particle-in-Cell (PIC) approach. This
feature not only allows to study non-stationary dynamics in gyrotron oscillators, but
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Fig. 5 Convergence of R(Ω1) with respect to |ω1−ω0|Δt for k⊥/k0 = 0.9, and the two drive frequencies
Ω1 = −0.06 and Ω1 = −0.03

also is consistent with the time step required for exploiting the GNRBC which is the
subject of this paper.

The interaction space wall-radius profile as well as the magnetic field profile are
shown in Fig. 7 (top). Note that for the purpose of this study on GNRBC, a simplified
launcher geometry (80 mm < z < 140 mm) has been considered which does not
include any helical perturbations as it is the case for the real launcher described in
[14] and references therein. The main system parameters are the cavity mode is the
T E28,8, magnetic field maximum B0 = 5.6152T at z = 25 mm, beam energy Eb =
81.8keV , beam current Ib = 43.2A, pitch angle α = 1.18 with no alpha-spread, and
guiding radius rg0 = 10.17 mm.

The self-consistent rf-field amplitude and phase profiles across the interaction
space, calculated with TWANGpic, are shown in Fig. 7. In both figures (middle
for the amplitude and bottom for the phase), the comparison of the results obtained
with the SNRBC (red curve) and GNRBC (dashed blue curve) is made. In the inter-
action space defined by the cavity, z ≤ 0.05 m, the results for the two boundary
conditions are identical. However, after the cavity, in the simplified launcher section
(0.08 m ≤ z ≤ 0.14 m), one clearly observes, both on the amplitude and phase a sig-
nificant difference between the two boundary conditions, with in particular a constant
amplitude and a linear phase for the GNRBC case.

Considering the time trace of the real part of the rf electric field at the interaction
space exit (z = 0.14 m), one observes in Fig. 8 that for the SNRBC (green curve),
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Fig. 6 Changes of forward and backward wave amplitudes as ω0Δt decreases for k⊥/k0 = 0.9 and
Ω1 = −0.06

on top of the main frequency, excited in the cavity, a second frequency is excited
at the launcher exit. This second frequency does not appear when the GNRBC is
used, therefore, demonstrating that this spurious frequency is a numerical artifact
associated to the boundary condition used in the model.

Considering the rf-field at the radiation boundary (z = 0.14 m) shown in Fig. 8,
the associated frequency spectrum is shown in Fig. 9 (top) which clearly shows that
for the case using the SNRBC the second frequency excited at the exit of the launcher
section is approximately 8 GHz lower than the main frequency at 140 GHz.With such
an important frequency separation, when the SNRBC is used, an important reflec-
tion (|R| ≈ 25 %) is generated at the radiation boundary condition for the spurious
frequency at Ω = −0.06 (see Fig. 1).
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simulations. The cylindrical wall radius includes the cavity, the uptaper and a simplified geometry of the
launcher without helical wall perturbations. Middle and bottom Self-consistent amplitude (middle) and
phase (bottom) profiles calculated with TWANGpic with GNRBC (dashed blue) and without (red)

The decomposition of the rf-field in backward and forward waves is shown in
Fig. 9 (middle) for the SNRBC and Fig. 9 (bottom) for the GNRBC and for the
frequency domain in which the spurious frequency is excited when using the SNRBC.

time [ns]
0 20 40 60 80 100 120 140

R
e(

E
) 

[V
/m

]

× 107

-1.5

-1

-0.5

0

0.5

1

1.5

2
TWANGPIC, SNRBC

TWANGPIC,GNRBC

Fig. 8 140 GHz gyrotron for W7-X. Real part of the rf-electric field computed with TWANGpic at the
exit of the interaction region, z = 0.14 m. In blue with the GNRBC and in green without
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Fig. 9 140 GHz gyrotron for W7-X. Top: rf-field frequency spectrum calculated with TWANGpic at
the exit of the interaction space with (blue) and without (dashed green) GNRBC. The black vertical line
indicates the cut-off frequency calculated at the exit of the interaction space z = 140 mm.Middle: forward
and backward waves rf-field spectrum in the frequency range where the dynamic-ACI instability appears
when using SNBRC Bottom: same as the middle figure, but with GNRBC. No dynamic-ACI is observed
with GNRBC

The effectiveness of the GNRBC is clearly visible since no backward wave com-
ponent exists when GNRBC is considered. The excitation of this spurious frequency
in the launcher region is called dynamic After Cavity Instability (dynamic-ACI).
Its detailed analysis is outside the scope of this paper and is described in [8].This
example stresses the fact that, even though dynamic-ACI is physically plausible, in
many cases, it is a numerical artifact associated to the model describing the wave-
particle interaction and in particular the implemented radiation boundary condition.
As shown, by using the GNRBC, the spurious frequency excitation disappears.

7 Conclusion

A numerical scheme defining a generalized non-reflecting frequency independent
radiation boundary condition, GNRBC, has been successfully implemented in the
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monomode self-consistent TWANGpic code. The model derivation, its numerical
implementation as well as a detailed numerical study of its properties on a simple
test case has been presented. The effectiveness of GNRBC has been demonstrated
on simulations performed on a gyrotron cavity extensively studied both in theory and
experiments.
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Appendix: Inverse Laplace Transform of 1/iκ‖(Ω)

Using the dispersion relation (11), the inverse Laplace transform can be computed as
follow

g(τ) = 1

2πi

∫ ∞+iγ

−∞+iγ

e−iΩτ√
2Ω + κ2‖0

dΩ = ei
κ2‖0
2 τ

4πi

∫ ∞+iγ

−∞+iγ

e−iΩτ/2

√
Ω

dΩ (35)

Splitting the integral path between its Re(Ω) < 0 and Re(Ω) > 0 parts, and noting
that √

Ω = √−(−Ω) = i
√−Ω, for Re(Ω) < 0,

the integral becomes, in the limit γ → 0∫ ∞−iγ

−iγ

dΩ
eiτΩ/2

i
√

Ω
+

∫ ∞+iγ

iγ

dΩ
e−iτΩ/2

√
Ω

= √
2π

[
−i

√
1

−iτ
+

√
1

iτ

]
,

where we have used the following result∫ ∞

0
du e−zu2 = 1

2

√
π

z
, Re(z) ≥ 0.

For τ < 0, the sum inside the bracket can be calculated as

−i

√
1

i|τ | +
√

1

−i|τ | = 1√|τ |
(

e−iπ/2

eiπ/4
+ 1

e−iπ/4

)
= 0,

while for τ > 0

−i

√
1

−i|τ | +
√

1

i|τ | = 1√|τ |
(

e−iπ/2

e−iπ/4
+ 1

eiπ/4

)
= 2√

iτ
,

where the principal branch has been considered for computing
√

i.
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The final result is thus

g(τ) =

⎧⎪⎨
⎪⎩
0 for τ < 0

1

i

√
1

2πiτ
exp

(
i
κ2‖0
2

τ

)
. otherwise

(36)
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