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In Section A of this appendix we formalize the concepts introduced in Section 4.2 of our submission and prove the
equivalence stated there. Then, in Section B we describe some implementation details of our method. Finally, in Section C
we present additional results that did not fit in the main submission because of space limitations.

A. Equivalence of ΠD→N(X) and ΠN(X)

In this section we prove that the output ΠD→N (X) of our method is equivalent to the projection ΠN (X) of the score map
X into a manifold of admissible ground truthMN .

A.1. Notation

We start by defining the notation used in this section and recalling the definitions given in the main submission.
let I ∈ RN be an image containing elongated structures we are interested in extracting.
Let {pi}Ni=1 be the grid of pixels on which the images are defined, where for simplicity we assume squared images, N =√
N ×

√
N . For a pixel pi, we denote byND(pi) the squared neighborhood of pixels centered at pi of size D =

√
D×
√
D.

Let Y ∈ {0, 1}N be the binary ground truth corresponding to image I and let dY ∈ RN be the image obtained by applying
function d to every pixel of Y , where d is defined by

d(p) =

{
e
a(1−DY (p)

dM
) − 1 if DY (p) < dM

0 otherwise
, (1)

with DY the Euclidean distance transform of Y , a > 0 a constant that controls the exponential decrease rate of d close to the
centerline and dM > 0 a threshold value determining how far from a centerline d is set to zero.

We denote byMN the manifold of images dY , obtained from all possible ground truth images Y .
We defineX the score image obtained by applying the regressor ϕ of Section 3.1 to every pixel of image I . The projection

of X intoMN is denoted by ΠN (X) and it is given by

ΠN (X) = arg min
dY ∈MN

‖dY −X‖2. (2)

As described in Section 4, we approximate ΠN (X) by averaging the projections of small patches of X . In order to
formalize this, we define for every pixel pi of imageX the corresponding patch xi of sizeD centered at pi, xi = X(ND(pi)).
We also denote byMD the manifold of all patches of size D extracted from images inMN .

The projection of xi intoMD is given by

ΠD(xi) = arg min
y∈MD

‖y − xi‖2. (3)

The approximated projection ΠD→N (X) is defined as

ΠD→N (X)(p) =
1

R

∑
i:p−pi∈NR(p)

ΠD(xi)(p− pi), (4)



where R ≤ D is the size of the neighborhood used for averaging and where we take ΠD(xi) to be centered at zero, with
ΠD(xi)(p− pi) the value of ΠD(xi) at p− pi. In the following, to simplify notations, we will consider the case R = D. The
generalization to a generic value of R is straightforward.

Let {qd}Dd=1 be the
√
D ×

√
D grid of pixels on which the patches of size D are defined. For a pixel p ∈ {pi}Ni=1 in the

image grid of pixels, we denote with p(l), for l = 1, . . . , D the elements of ND(p).
For an image patch x of size D, we say that the support of x is ND(p) if, between the sets {qd}Dd=1 and ND(p), there is

the one to one correspondence f , given by ql = f(p(l)). In other words, this means that patch x can be thought as centered
at image location p. In such case, to simplify our notation, we will write x(p(d)) instead of x(f(p(d))).

For example, given the score image X , the image patch xi = X(ND(pi)) centered at pi, has support ND(pi). In the
same way, we will define the support of the projections ΠD(xi) to be ND(pi). In this way, we can rewrite the definition of
ΠD→N (X) Eq. (5) as

ΠD→N (X)(p) =
1

D

∑
i:p∈ND(pi)

ΠD(xi)(p). (5)

We say that two patches xi and xj overlap if the intersection of their supports ND(pi) ∩ND(pj) is not empty.
We indicate with X|N the restriction of an image X to a subset of pixels N ⊆ {pi}i. For example, using this notation,

we can write xi = X|ND(pi).
Let {yj}Jj=1 be a set of patches of size D such that for every j, yj has support ND(pj). We say that {yj}Jj=1 covers the

pixel grid {pi}Ni=1 if ⋃
j

ND(pj) = {pi}Ni=1. (6)

This means that for every pixel pi there exist at least one j such that pi is in the support of yj .
Then, for a set of patches {yj}Jj=1, such that {yj}Jj=1 covers {pi}Ni=1, we can define a new image of size N , called the

average image of patches {yj}Jj=1 and denoted by
⊔J

j=1 yi, by averaging the the patches yj on their supports. More precisely,
for every pixel p ∈ {pi}i, the value of the average image at pixel p is given by J⊔

j=1

yj

 (p) =
1

Cp

∑
j: p∈ND(pj)

yj(p) (7)

Where the normalization constant Cp is equal to the number of elements in the sum and in general it depends on the pixel
location p. Notice that (7) is well defined for every p because of (6).

In other words, for a pixel p, the value of
⊔J

j=1 yj in p is given by the average of the values yj(p), for those yj with support
containing p. For example, in the case of image patches xi = X(ND(pi)), since xi(p) = xj(p) for all p ∈ ND(pi)∩ND(pj),
we have

X =

N⊔
i=1

xi. (8)

Notice that in this case we have Cp = D for every p.
With this notations, using the fact that the support of ΠD(xi) is ND(pi), we can write the approximated projection

ΠD→N (X) as

ΠD→N (X) =

N⊔
i=1

ΠD(xi). (9)

Also in this case the normalization constant in Eq. (7) is Cp = D for every p.

A.2. Exact Projection

In this section we prove the equivalence ΠD→N (X) = ΠN (X). We first give two definitions that will be used as
hypothesis in the following Theorems.

Definition 1. We say thatMD is complete inMN if the following holds:

Y ∈MN ⇐⇒ ∃{yi}Ni=1 ⊆MD such that Y =
N⊔
i=1

yi, (10)

where, ∀i, yi has support ND(pi) and ∀i, j, yi(p) = yj(p) for all p ∈ ND(pi) ∩ND(pj).



This is property (i) given in Section 4.2 of our main submission. It means that the training set of patchesMD is composed
by all admissible ground truth patches and that averaging patches that coincide in the intersection of their supports, gives an
image ofMN .

The following definition formalizes instead hypothesis (ii) of Section 4.2.

Definition 2. Let us consider the set of all projections {ΠD(xi)}Ni=1 of all patches of size D of an image X . We say that
{ΠD(xi)}i is consistent if, for all xi and xj such that ND(pi) ∩ ND(pj) 6= ∅, we have ΠD(xi)(p) = ΠD(xj)(p) for all
p ∈ ND(pi) ∩ND(pj).

This means that the projection of two overlapping patches is the same for every pixel in the intersection of their support.
We can now state the following

Theorem 1. IfMD is complete inMN and if {ΠD(xi)}Ni=1 is consistent, then

‖X −ΠD→N (X)‖2 = ‖X −ΠN (X)‖2. (11)

Proof. Since ΠN (X) ∈ MN and MD is complete, for every patch xi the restriction of ΠN (X) to xi belongs to MD,
ΠN (X)|ND(pi) ∈MD. Then, by (3), we have for all xi

‖ΠD(xi)− xi‖2 ≤ ‖ΠN (X)|N (pi) − xi‖
2. (12)

Let {xij}Kj=1 be a subset of {xi}Ni=1 such that N (pij1 ) ∩ N (pij2 ) = ∅ for all j1 6= j2 and X =
⊔

j xij . The subset of
patches {xij}Kj=1 is given by a grid of non-overlapping image patches covering the whole image 1.

Since {ΠD(xi)}i is consistent, ΠD→N (X) =
⊔

j ΠD(xij ). In fact, for the hypothesis of consistency, the patches ΠD(xi)
coincide in their intersection. Then,

‖ΠD→N (X)−X‖2 = ‖
⊔
j

ΠD(xij )−
⊔
j

xij‖2 =

=
∑
j

‖ΠD(xij )− xij‖2.
(13)

Where the second equality holds since patches xij do not overlap. Eq.(13) tells that the distance between images X and
ΠD→N (X) can be computed by summing the distances between non-overlapping patches ΠD(xij ) and xij .

Then, from (12) and (13)
‖ΠD→N (X)−X‖2 ≤

∑
j

‖ΠN (X)|N (pij
) − xij‖2 =

= ‖ΠN (X)−X‖2,
(14)

where again the second equality follows by the fact that patches xij do not overlap.
However, since MD is complete and {ΠD(xi)}i is consistent, ΠD→N (X) ∈ MN . In fact ΠD→N (X) is given by

the average of the projections ΠD(xi) satisfying definition (10). Therefore, since ΠN (X) is defined in (2) as the point of
minimum distance to X inMN , we have

‖ΠN (X)−X‖2 ≤ ‖ΠD→N (X)−X‖2. (15)

From (14) and (15) we have the thesis.

Notice that the thesis of Theorem 1 tells us that the distance between our approximation ΠD→N (X) and X is as good
as the distance between X and ΠN (X). The equivalence of the two projections is given assuming that there is a unique
minimum of the distance to X inMN . This is stated in the following

Corollary 1. In the hypothesis of Theorem 1, if the function F (Y ) = ‖Y −X‖ has a unique minimum inMN , we have

ΠN (X) = ΠD→N (X). (16)

Proof. The thesis follows by (11) and the hypothesis.
1Such a decomposition always exists assuming that we can pad images with zeros.



In real applications only limited training patches are available and the hypothesis of completeness might not be satisfied.
Also consistency will not hold in general and projections in the intersection of overlapping patches will not be exactly the
same.

However, in next Section we show that by relaxing the hypothesis of Theorem 1 and assuming only approximated projec-
tions, we can prove that the error committed by our method is within a certain bound to the optimal solution. This bound is
directly related to the error committed by the projections on the patches ΠD(xi) and the size of our training set.

A.3. Approximated Projection

Let M̄D the set of all patches yi of size D of images dY inMN , assume that M̄D is complete inMN
2 and that the set

of available training patchesMD is included in M̄D,MD ⊆ M̄D. For a patch x, we denote ΠD̄(x) the projection of x into
M̄D.

For ε ≥ 0, we say thatMD is ε−complete inMN , if for all y ∈ MD there exists ȳ ∈ M̄D such that ‖y − ȳ‖2 ≤ ε.
This means that every ground truth patch ȳ is close, up to an error of ε, to an available training patch y. This hypothesis will
replace the hypothesis of completeness of Theorem 1.

The hypothesis of consistency will be replaced by the following:

∃ε1 ≥ 0 s.t. ∀xi ‖ΠD→N (X)|N (pi) −ΠD(xi)‖2 ≤ ε1, (17)

∃ε2 ≥ 0 s.t. ∀xi ‖ΠN (X)|N (pi) −ΠD̄(xi)‖2 ≤ ε2. (18)

This means that the restriction to N (pi) of the images ΠD→N (X) and ΠN (X) are close to the projections of patch xi onto
MD and M̄D respectively. Note that if {ΠD(xi)}i is consistent, then ε1 = 0 and if {ΠD̄(xi)}i is consistent, then ε2 = 0.

We now have the following

Theorem 2. IfMD is ε−complete inMN and if (17) and (18) hold. Then,

−
√
N

D
(ε1 + ε) ≤ ‖ΠN (X)−X‖2 − ‖ΠD→N (X)−X‖2 ≤

√
N

D
(ε1 + ε2). (19)

Proof. Let {xij}j be a disjoint partition of the image, as in the proof of Theorem 1. Then,

‖ΠN (X)−X‖2 =
∑
j

‖ΠN (X)|N (pij
) − xij‖2 ≤

≤
∑
j

(
‖ΠN (X)|N (pij

) −ΠD̄(xij )‖2 + ‖ΠD̄(xij )− xij‖2
)
≤

≤
∑
j

(
ε2 + ‖ΠD̄(xij )− xij‖2

)
=

=

√
N

D
ε2 +

∑
j

‖ΠD̄(xij )− xij‖2.

(20)

Where the first inequality is the triangle inequality and the second inequality is given by hypothesis (18).
SinceMD ⊆ M̄D, for every xi ‖ΠD̄(xi)− xi‖2 ≤ ‖ΠD(xi)− xi‖2. In fact, ΠD̄(xi) is the point of minimum distance

to xi, computed on a larger set M̄D compared to ΠD(xi).
Then, Eq.(20) becomes

‖ΠN (X)−X‖2 ≤
√
N

D
ε2 +

∑
j

‖ΠD(xij )− xij‖2. (21)

2If M̄D is not complete, we can extendMN by adding to it all images that can be obtained with Eq. (7) from patches in M̄D that coincide in their
supports.



By using the triangle inequality and hypothesis (17), Eq. (21) becomes

‖ΠN (X)−X‖2 ≤
√
N

D
ε2 +

∑
j

(
‖ΠD(xij )−ΠD→N (X)|ND(pij

)‖2

+‖ΠD→N (X)|ND(pij
) − xij‖2

)
≤

≤
√
N

D
ε2 +

∑
j

(
ε1 + ‖ΠD→N (X)|ND(pij

) − xij‖2
)

=

=

√
N

D
(ε2 + ε1) +

∑
j

‖ΠD→N (X)|ND(pij
) − xij‖2 =

=

√
N

D
(ε2 + ε1) + ‖ΠD→N (X)−X‖2.

(22)

The inequality in (22) proves the right hand side in (19). For the left hand side we proceed analogously.

‖ΠD→N (X)−X‖2 =
∑
j

‖ΠD→N (X)|ND(pij
) − xij‖2 ≤

≤
∑
j

(
‖ΠD→N (X)|ND(pij

) −ΠD(xij )‖2 + ‖ΠD(xij )− xij‖2
)
≤

≤
√
N

D
ε1 +

∑
j

‖ΠD(xij )− xij‖2.

(23)

Where we first used triangle inequality and then hypothesis (17).
Since ΠN (X)|ND(pi) ∈ M̄D for all pi, and since MD is ε−complete, ∀pi there exists yi ∈ MD such that ‖yi −

ΠN (X)|N (pi)‖2 ≤ ε. Moreover, for all yi ∈ MD, ‖ΠD(xi)− xi‖2 ≤ ‖yi − xi‖2. In fact, ΠD(xi) is the point of minimum
distance to xi inMD. Hence, substituting in (23) we have

‖ΠD→N (X)−X‖2 ≤
√
N

D
ε1 +

∑
j

‖ΠD(xij )− xij‖2 ≤

≤
√
N

D
ε1 +

∑
j

‖yij − xij‖2 ≤

≤
√
N

D
ε1 +

∑
j

(
‖yij −ΠN (X)|ND(pij

)‖2+

+‖ΠN (X)|ND(pij
) − xij‖2

)
≤

≤
√
N

D
ε1 +

∑
j

(
ε+ ‖ΠN (X)|ND(pij

) − xij‖2
)

=

=

√
N

D
(ε1 + ε) + ‖ΠN (X)−X‖2.

(24)

Equation (24) proves the left hand side of (19) and this ends the proof.

B. Implementation Details
In Section B.1 we describe more in detail the multiscale approach introduced in Section 5.1 of our submission. In Sec-

tion B.2 we describe how we can avoid the computation of the nearest neighbors for many image patches. In this way we can
decrease the computational complexity of our method.



B.1. Multiscale Approach

Given the score image X , the only parameter of our method is the size D of the patches xi on which the projection is
computed.

Ideally, we would like D to be large enough to capture enough contextual information. At the same time, using a too large
value for D makes it difficult to gather a representative training set of patches. As a consequence, a large value of D can
provoke loss of details. To handle this trade off, we adopted a multiscale approach. For clarity’s sake, we describe below the
case of 2 scales, but the generalization to an arbitrary number of scales is straightforward.

Given two patch sizesD1 > D2 > 0, for every pixel pi we consider the patch xi = X(ND1
(pi)) of sizeD1 and its central

part of size D2, x(cent)
i = X(ND2(pi)). Then, we consider the downsampled version of xi to size D2, x(down)

i .
We do this in both score images and for training ground truth patches y ∈ MD1

. We then perform Nearest Neighbors
search in terms of the distance

k(xi, y) = ‖x(cent)
i − y(cent)‖2 + ‖x(down)

i − y(down)‖2. (25)

We then take the multiscale projection ΠD1/D2
(xi) to be y(cent)

i∗
, where yi∗ = arg min k(xi, y) inMD1 . This replaces the

projection ΠD(xi) in the definition of ΠD→N (X).
Thanks to the downsampling term in Eq. (25) we can include more contextual information in the method. At the same

time, by considering only the smaller central part y(cent)
i for the final projection, we can preserve the details.

B.2. Efficient Implementation

Given the score map X , the main computational cost of our method comes from the computation of the nearest neighbors
{ΠD(xi)}Ni=1, for every patch of size D in image X .

Many algorithms for approximated nearest neighbor search have been proposed [1, 2, 6] and can be applied in combi-
nation with our method. Since the size D used in our experiments can be very large, especially for 3D data, we use in our
implementation the FLANN library [6], which is optimized for nearest neighbors search of high dimensional vectors.

Moreover, we take advantage of the specific properties of the ground truth manifoldMN , and in particular of the sparsity
of the ground truth images, to further reduce the computational cost. More precisely, suppose that the patch of zeros 0 of size
D belongs toMD. Then, given an image patch xi, it is easy to show that

if max
p∈N (pi)

xi(p) < min
y∈MD\{0}

‖y‖22
2‖y‖1

, then ΠD(xi) = 0. (26)

This means that we do not need to explicitly do nearest neighbors search patches whose maximum is smaller than a given
threshold, where the threshold can be computed in closed form from the training setMD.

To prove the statement above, we start by observing that

ΠD(xi) = 0⇔ 2
∑

p∈ND(pi)

xi(p)y(p) <
∑

p∈ND(pi)

y(p)2, ∀y ∈MD \ {0}. (27)

In fact, ΠD(xi) = 0 if and only if ‖xi − 0‖2 < ‖xi − y‖2, for all y ∈ MD \ {0}. Writing explicitely the distances, we
have ΠD(xi) = 0 if and only if∑

p

xi(p)
2 <

∑
p

(xi(p)− y(p))2 =
∑
p

(
xi(p)

2 − 2xi(p)y(p) + y(p)2
)
. (28)

Subtracting the left habd side from both sides of (29),

0 < −2
∑
p

xi(p)y(p) +
∑
p

y(p)2 ⇔ 2
∑
p

xi(p)y(p) <
∑
p

y(p)2. (29)

This gives us condition (27).
Now let xmax = maxp xi(p). Since y(p) ≥ 0 for every p3,∑

p

xi(p)y(p) ≤
∑
p

xmaxy(p) = xmax

∑
p

y(p). (30)

3Form the definition of d in Eq. (1), we have y(p) ≥ 0. For generic y(p) we should consider xmax = maxp |xi(p)|
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Figure 1. Precision-Recall curves for Centerline Detection on the Roads dataset for different tolerance values (in pixels). Top: evaluation
on the whole image. Bottom: Evaluation on junctions only. Best viewed in color.

Thus, from (30) and (27)∑
p

y(p)2 > 2xmax

∑
p

y(p)⇒
∑
p

y(p)2 > 2
∑
p

xi(p)y(p)⇒ ΠD(xi) = 0, (31)

where the last implication follows by (27). Therefore, since y(p) ≥ 0 and y 6= 0, we have
∑

p y(p) = ‖y‖1 > 0 and we can
write (31) as

if xmax <

∑
p y(p)2

2
∑

p y(p)
∀y ∈MD \ {0}, then ΠD(xi) = 0, (32)

that is condition (26) we wanted to prove.

C. Additional Results
In this section we present additional results that, because of space limitations, did not fit in our submission.
Fig. 1 shows the Precision-Recall curves for the different methods on the centerline detection task of Section 5.1. The

top row corresponds to the curves computed on the whole image for the different tolerance values considered. The bottom
row shows analogous plots for the junctions evaluation framework. Fig. 2 shows the F-measure as a function of the tolerance
factor and Fig. 3 the results on some test images.

Fig. 4 shows the Precision-Recall curves for the different methods on the vessel segmentation task of Section 5.2 and
Fig. 5 shows the results on some test images.

Fig. 6 shows the Precision-Recall curves for the different methods on the membrane detection task of Section 5.3 and the
F-measure as a function of the tolerance factor. Fig. 7 shows the results on some test slices.

Finally, Fig. 8 shows the Precision-Recall curves for the different methods on the boundary detection task of Section 5.4
and Fig. 9 shows the results on some test images.
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Figure 2. F-measure as a function of the tolerance factor for Centerline Detection on the Roads dataset. (a) Whole image; (b) Junctions
only. Best viewed in color.
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Figure 3. Centerline detection results. (a) Image; (b) Reg-AC [7] Score map; (c) Ours Score map; (d) Centerlines found after non-maxima
suppression on (c) and thresholding; (e) Ground Truth.
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Figure 4. Precision-Recall curves for DRIVE dataset. Best viewed in color.
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Figure 5. DRIVE dataset results. (a) Image; (b) SE [4]; (c) N4-Fields [5]; (d) Ours; (e) Ground Truth. Our method responds strongly on
thin vessels.
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(a) No Auto-context (b) Auto-context iter 1 (c) Auto-context iter 2
Figure 6. Membrane Detection Results. Top: Precision-Recall curves at the second Auto-context iterations for different tolerance values
(in voxels). Bottom: F-measure as a function of the tolerance factor for different Auto-context iterations. Best viewed in color.

(a) (b) (c) (d)

Figure 7. Membrane dataset results for three sample test slices. (a) Image; (b) ContextCues [3]; (c) Ours; (d) Ground Truth. Our method
removes background noise while shapening the response on the membranes. Notice that ground truth volumes are only partially annotated.
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Figure 8. Precision-Recall curves for boundary detection on BSDS dataset. Best viewed in color.

(a) (b) (c) (d) (e)

Figure 9. BSDS dataset results. (a) Image; (b) SE [4]; (c) N4-Fields [5]; (d) Ours; (e) Human annotations. Our approach returns more
continuous boundaries and preserves important details. Contrast has been enhanced for visualization purposes.


