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Abstract—Parametric active contours are an attractive ap-
proach for image segmentation thanks to their computational
efficiency. They are driven by application-dependent energies
that reflect the prior knowledge on the object to be segmented.
We propose an energy involving shape priors acting in a
regularization-like manner. Thereby, the shape of the snake
is orthogonally projected onto the space that spans the affine
transformations of a given shape prior. The formulation of the
curves is continuous, which provides computational benefits when
compared to landmark-based (discrete) methods. We show that
this approach improves the robustness and quality of spline-
based segmentation algorithms, while its computational overhead
is negligible. An interactive and ready-to-use implementation of
the proposed algorithm is available and was successfully tested
on real data in order to segment Drosophila flies and yeast cells
in microscopic images.

Index Terms—Active contours, model-based segmentation,
parametric snake, deformable template, B-spline, shape space.

I. INTRODUCTION

SHAPE recognition is an active field of research with
a widespread area of application that includes domains

such as biology, medicine, or computer vision. In order to
recognize a shape, a suitable shape description and a measure
of fit have to be defined. This allows one to compare the
segmented structure to a reference. The description can be
either discrete, typically involving landmarks [1], or can entail
some form of continuous-domain processing [2]. In general,
the characterization and detection of shapes is facilitated when
prior knowledge is available.

In this paper, we present a method for the shape recognition
of closed curves that minimizes a measure of distance with
respect to a reference shape, up to an affine transformation. We
define as “affine shape space” the space that contains all planar
closed curves that are affine transformations of the reference
shape. Then, an essential step of our method is the analytical
derivation of the orthogonal projection of any curve onto the
shape space thus defined.

We describe the process of shape recognition as the evo-
lution of a parametric active contour (a.k.a. snake) [3], [4],
[5]. Active contours are widely used to segment images.
They are curves that evolve from an initial position towards
a boundary of interest in order to enclose the object to be
segmented. Different variants of snakes have been proposed
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in the literature [6], [7], [8], [9], [10]. There, the evolution of
the contour is typically driven by the minimization of a certain
energy term [11].

We parameterize continuously the closed curve by means of
(exponential) B-spline basis functions [11], [12], [13] and their
corresponding control points; this representation was proved
to be effective for fast energy minimization. Additionally,
B-splines provide a convenient way to handle intrinsic shape
properties of the curve, such as smoothness constraints [14].
The spline-based parameterization allows us to fully define
a closed curve by its control points only, while preserving
all the information of the continuous trajectory of the curve.
Therefore, the projection of an arbitrary spline curve onto the
shape space can be expressed as a function of the control
points that is based on a continuously defined distance between
a curve and the shape space.

Our formulation encapsulates the complexity derived from
the use of continuously defined curves. Other methods based
on discrete or semi-discrete approaches exist. For instance,
landmark-based methods minimize the distance of a curve
(discrete or continuous) to a set of points on the plane [15].
These methods are not computationally intensive since the
number of operations is essentially proportional to the num-
ber of landmarks. However, the energy they minimize may
be biased because the landmarks are usually not uniformly
distributed in space. Thus, regions with accumulation of land-
marks get more attention from the optimization algorithms.
Other popular methods are the pixel- or grid-based methods,
where curves are intrinsically discretized within the pixel grid
[16]. The computational cost of such methods is dominated by
the number of pixels used to discretize the curves. This ap-
proach becomes computationally expensive in high-resolution
images, where a large amount of pixels is needed. In this case,
the energy is biased again due to an uneven distribution of
distances within a pixel-grid, which introduce quantification
artefacts working against the optimizer. Solutions for including
prior shape knowledge in geodesic active contour models
can be found in the literature [17], [18], [19]. Foulonneau
et al. [20] propose a snake energy using shape priors based
on affine transformations. However, it can only be used for
region-based energies and also requires a prior normalization
step, which can introduce a bias into the framework. Charmi et
al. [21] propose shape priors based on the similarity transform;
a different class of transforms than the affine transformations.
Furthermore, their method is based on either discrete curves
or level sets while also including a prior normalization step.

Our alternative proposal is to define the orthogonal projector
onto the shape space that is given by a reference spline curve
and all its affine transformations. This implicit definition of a
shape space allows us to define a snake energy term including
prior knowledge. No normalization step is used and the energy
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term can be formulated in the continuous domain. However,
by using a spline-based description of the parametric curves,
the proposed solution can be implemented with no additional
cost compared to curves defined by a discrete set of landmarks.
To our knowledge this approach has not been proposed in an
active contour framework so far.

The main contributions of this paper are:

1) Presentation of a shape projector that maps an arbitrary
continuously-defined spline curve onto the shape space.

2) Proposition of an analytic expression of a distance
measure for the shape recognition of closed spline curves
using shape priors.

3) A spline-based continuous-domain solution that can
be implemented with no additional computational cost
compared to the approach where curves are described
by a discrete set of points, which allows to be compu-
tationally efficient.

4) A ready-to-use implementation of the proposed frame-
work that is freely available in the public domain as a
plug-in for the bioimage-analysis platform Icy [22].

The main field of application of our proposed method is
the segmentation of biological objects such as cells, bacteria
or other model organisms within images. Thereby, a sketch of
the outline of the structure of interest to be segmented in a
particular image is known beforehand. Often size, orientation
location and other aspects that can be described by affine
transformations are to be estimated in such settings. If the
class of possible transformations can be restricted to be affine,
prior knowledge can be used to enhance robustness of the
segmentation result. The choice of using spline-curves has
the advantage that user-interaction can be implemented by
allowing the user to locally change the curve by moving its
control points; a property that is often appreciated by final
users within the life-sciences community.

This paper is organized as follows: In Section II, we present
a review of the parametric snake model and the associated
framework. In Section III, we introduce the shape space
and derive the corresponding projector. Then, we describe
in Section IV how to incorporate prior shape information to
parametric snakes algorithms. In Section V we perform several
experiments in order to study the validity of our prior shape
energy term. We also show its usefulness in real experimental
conditions on two different biological image sets. Finally,
in Section VI, we describe the implementation details and
availability of the software implementation of our work.

II. SPLINE-BASED SNAKES

A. Parametric Representation of Closed Curves

Let r : D → R2 be a parametric curve on the plane, i.e.,
r(t) = (r1(t), r2(t)) with t ∈ D a continuous parameter. Since
r is closed, the two one-dimensional coordinate functions r1

and r2 are periodic and share the same period. For simplicity,
we normalized this period to be unity. Under these conditions,
we take D = [0, 1]. We parameterize these coordinate func-

(a) (b)

Fig. 1. Parametric representation of a closed curve in spline-based snake
models. (a) The parametric model for describing closed curves is given in
(1) (M = 5). The contour of the spline-based snake is shown as a solid line.
The control points {c[k]}k∈Z of the snake model are represented by dots
joined by a dashed polygon (a.k.a. the control polygon). (b) The parametric
functions r1(t) and r2(t) are displayed as solid lines, and the dashed lines
indicate the weighted basis functions.

tions by linear combinations of suitable basis functions. That
way, we represent the closed curve r as

r(t) =
∞∑

k=−∞

c[k]ϕ(M t− k), (1)

where ϕ is a compactly supported generating function and
{c[k] = (c1[k], c2[k])}k∈Z is an M -periodic sequence of
control points. Expressing r as in (1) allows us to take
advantage of fast and stable interpolation algorithms [23]. The
capability of r to adapt to detailed shapes is determined by
the number of control points M that determines the degrees
of freedom in the model (1). Typically, larger M leads to
additional flexibility of the curve.

Under periodicity conditions, we can reduce the infinite
summation in (1) to a finite one involving periodized basis
functions as

r(t) =
M−1∑
k=0

∞∑
n=−∞

c[M n+ k]ϕ(M (t− n)− k) (2)

=
M−1∑
k=0

c[k]
∞∑

n=−∞
ϕ(M (t− n)− k)︸ ︷︷ ︸
ϕM (M t−k)

, (3)

where ϕM is the M -periodization of the basis function ϕ. An
example of a curve described by (3) is shown in Figure 1.
If ϕ satisfies some mild conditions [24], then the defined
parameterization is able to approximate any closed curve with
arbitrary precision by using a sufficiently large number of vec-
tor coefficients. The function ϕ determines multiple properties
of the parametric model such as smoothness, reproduction
of interesting shapes, or computational efficiency [25]. In
practice, the particular choice of ϕ is usually governed by two
factors: computational complexity of the overall segmentation
algorithm and capability of the snake to adopt specific shapes
and to retain smoothness. B-spline functions have traditionally
been used as basis functions due to the existence of efficient
interpolation algorithms [26], their finite support, and their
good approximation properties [27]. A typical design con-
straint inherited from the time when snakes were built out of
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polygons (or, equivalently, linear B-splines) is to minimize the
overall curvature. Using the well-known variational properties
of splines [28], one can show that the minimization of the
curvature subject to interpolation constraints yields a cubic-
spline curve. However, traditional B-splines can only generate
curves that can be expressed as piecewise polynomials. Recent
research has lead the field to experiment with other basis
functions that are more suited to particular applications [13],
[29].

B. Desirable Properties for the Basis Functions

The three following conditions should be satisfied by our
parametric snake model:

1) Unique Choice of Basis Functions and Stable Repre-
sentation. We want our parametric curve to be defined
in terms of the coefficients in such a way that unicity
of representation is satisfied. Additionally, for compu-
tational purposes, the interpolation procedure must be
numerically stable. Therefore, ϕ has to satisfy the Riesz-
basis condition, meaning that two constants 0 < A ≤
B <∞ have to exist, such that

A ‖c‖`2 ≤
√
M ‖r‖L2

≤ B ‖c‖`2 (4)

for all c ∈ `2. This inequality implies that

∞∑
k=−∞

c[k]ϕ(M t− k) = 0 ⇒ c[k] = 0∀ k ∈ Z.

Thus, the basis functions are linearly independent and
every function is uniquely specified by its coefficients.
The upper inequality of (4) ensures the stability of
the interpolation process [23]. A convenient way to
verify whether a function ϕ satisfies the Riesz-basis
condition (4) is to express it in the Fourier domain [30]
as

A ≤
∞∑

k=−∞

|ϕ̂(ω + 2π k)|2 ≤ B,

where ϕ̂(ω) =
´
R ϕ(x) e−jω xdx denotes the Fourier

transform of ϕ.
2) Affine Invariance. We want to represent shapes irrespec-

tively of their position and orientation and, therefore,
we would like our model to be invariant to affine
transformations, which we formalize as

A r(t) + b =
∞∑

k=−∞

(A c[k] + b) ϕ(M t− k), (5)

where A is a (2× 2) matrix and b is a two-dimensional
vector. A more compact expression of affine transfor-
mations is obtained using homogeneous coordinates.
We denote the homogeneous representation of a two-
dimensional column vector adding h as a subscript. For
instance, we write

ph =

(
p
1

)
.

With this particular notation, it is possible to represent
both the linear transformation and the translation vector
as a single matrix multiplication with the matrix

H =

(
A b
0 1

)
. (6)

Then, the condition (5) can be written in homogeneous
coordinates as

H rh(t) =
∞∑

k=−∞

H ch[k]ϕ(M t− k),

It follows that the affine invariance is ensured if and
only if

∀t ∈ R :
∞∑

k=−∞

ϕ(M t− k) = 1.

In the literature, this constraint is often named the
partition-of-unity condition [23] and is an intrinsic prop-
erty of the basis function ϕ.

3) Linear Span of the Shape Space. The basis functions
should be chosen so that they span a space that contains
the curve to be segmented. Hence, they should be able
to handle intrinsic properties of the desired shape, such
as discontinuities or smoothness.

III. EFFICIENT SHAPE PRIORS

The aim of this section is to properly define the space that
comprises all possible affine transformations of the reference
curve, as well as the projector that maps any parametric curve
onto this shape space.

A. Notation

In our framework, the prior knowledge about the shape is
encoded in a parametric curve rref that takes the form of (1).
It is referred to as the reference curve. The set of all affine
transformations of the reference curve form the vector-space
Sref , called the affine shape space. Finally, the orthogonal
projection of any parametric shape onto the affine shape space
is denoted by rp.

B. Parameterization of the Affine Shape Space

Any curve in homogeneous coordinates within Sref can be
expressed as H rref

h , for some homogeneous H of the form (6).
Since the reference curve is built as an expansion of the
M control points {cref [k] = (cref

1 [k], cref
2 [k])}k∈[0...M−1] as

in (3), the affine shape space is fully determined by these M
vector parameters. Moreover, since an affine transformation is
uniquely determined by 6 scalar parameters, the space Sref

has dimension 6.
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C. Shape Fitting Within the Affine Shape Space

The best fit to the reference spline curve of a given
curve r corresponds to its orthogonal projection rp onto Sref .
Formally, the projected curve rp minimizes the mean-squared
error (MSE), i.e.,

MSE =

ˆ 1

0

‖r(t)− rp(t)‖2 dt. (7)

Note that the MSE can be rewritten using homogeneous
coordinates as

MSE =

ˆ 1

0

‖rh(t)− rp
h(t)‖2 dt. (8)

where
rp
h = H rref

h (9)

and H is a (3× 3) homogeneous affine matrix such as (6).
We define the matrix representation of the set of homoge-

neous control points {ch[k] = (c1[k], c2[k], 1)}k∈[0...M−1] of
a generic spline curve rh as

Ch =

 ch[0]T

...
ch[M − 1]T


=

 c1[0] c2[0] 1
...

...
...

c1[M − 1] c2[M − 1] 1

 .

Analogously, Cref
h and Cp

h correspond to the matrix repre-
sentation of the control points of the curves rref

h and rp
h,

respectively.
Theorem 1 provides an explicit expression to compute the

control points cp
h of the projected curve rp

h as a linear mapping
in RM . The analysis of this mapping reveals that the shape
space is a three-dimensional invariant subspace of RM .

Theorem 1: The matrix representation of the orthogonal
projection in the L2([0, 1]) sense of a curve defined by Ch

onto Sref can be expressed by

Cp
h = Pref Ch,

where Pref is an (M ×M) matrix given by

Pref = Cref
h

(
Cref

h

T
Φ Cref

h

)−1

Cref
h

T
Φ;

Φ is the autocorrelation matrix of the periodized basis func-
tions, with

Φi,j =

ˆ 1

0

ϕM (M t− i)ϕM (M t− j) dt.

Proof: We first expand (8) as

MSE =

ˆ 1

0

‖rh(t)− rp
h(t)‖2 dt

=

ˆ 1

0

(rh(t)− rp
h(t))

T
(rh(t)− rp

h(t)) dt

=

ˆ 1

0

(
rh(t)T rh(t)− 2 rh(t)T rp

h(t)

+ rp
h(t)T rp

h(t)
)

dt.

It follows that the minimizer of the MSE with respect to H
also minimizes

J =

ˆ 1

0

(
−2 rh(t)T rp

h(t) + rp
h(t)T rp

h(t)
)

dt (10)

since rh does not depend on H.
Now, we expand each of the terms of the sum. By linearity,

we obtain

rh(t)T rp
h(t)

=
M−1∑
i=0

M−1∑
j=0

ch[i]T cp
h[j]ϕM (M t− i)ϕM (M t− j)

and

rp
h(t)T rp

h(t)

=
M−1∑
i=0

M−1∑
j=0

cp
h[i]T cp

h[j]ϕM (M t− i)ϕM (M t− j).

We obtain an explicit representation of J in terms of the
sequence of vector coefficients by substituting the above
expression in (10). Then, we have

J =
M−1∑
i=0

M−1∑
j=0

(
−2 ch[i]T cp

h[j] + cp
h[i]T cp

h[j]
)

Φi,j ,

where

Φi,j =

ˆ 1

0

ϕM (M t− i)ϕM (M t− j) dt

are the samples of the autocorrelation of the periodized basis
function. Finally, we can write J using matrix notation as

J = −2 tr
(
CT

h Φ Cp
h

)
+ tr

(
Cp

h
T

Φ Cp
h

)
. (11)

Equivalently, we can make explicit the dependency on the
affine transformation by using the fact that the coefficients of
the projected curve and the reference curve are related only by
the affine transformation, cp

h = H cref
h . Note that cp

h = H cref
h

holds if and only if (9) holds. This can be shown by using the
partition-of-unity property of ϕ, and the linearity of the model.
In matrix notation, this amounts to substituting Cp

h = Cref
h HT

in (11). We obtain

J = −2 tr
(
CT

h Φ Cref
h HT

)
+ tr

(
H Cref

h

T
Φ Cref

h HT
)
.

Now, to obtain the optimal affine transformation in H, we
equate the gradient of J with respect to A and b to zero. It can
be shown that the solution is equivalent to the one obtained by
computing the derivative with respect to the free components
of H constrained to the knowledge of the last row. We define
∂′J
∂H as the derivative of J with respect to the free components
of H. More precisely,

∂′J

∂H
=

 ∂J
∂a11

∂J
∂a21

0
∂J
∂a12

∂J
∂a22

0
∂J
∂b1

∂J
∂b2

0

 ,

where H is a generic affine matrix as given by (6) whose
explicit expression is

H =

 a11 a12 b1
a21 a22 b2
0 0 1

 .



1057-7149 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2015.2457335, IEEE Transactions on Image Processing

Efficient Shape Priors for Spline-based Snakes 5

Then, the optimality condition becomes

∂′J

∂H
= −2

(
Ch

T ΦT Cref
h

)T

+Cref
h

T
Φ Cref

h HT + Cref
h

T
ΦT Cref

h HT

= 0.

We regroup the components, and express the equality as

−2 Cref
h

T
Φ Ch + Cref

h

T
(
Φ + ΦT

)
Cref

h HT = 0.

Finally, since Φ is a positive-definite symmetric matrix, the
optimal affine transformation is

H = Ch
T Φ Cref

h

(
Cref

h

T
Φ Cref

h

)−1

.

The matrix representation of the control points of the projected
curve is obtained as

Cp
h = Cref

h

(
Cref

h

T
Φ Cref

h

)−1

Cref
h

T
Φ Ch. (12)

By identification from (12), we finally obtain that

Pref = Cref
h

(
Cref

h

T
Φ Cref

h

)−1

Cref
h

T
Φ.

Note that Pref can be precomputed since it only depends on
the control points of the reference curve. This allows for a fast
implementation of the projection operator. The implementation
details are presented in Section VI-A.

The properties of the matrix Pref are summarized as:

1) idempotence
(
Pref 2

= Pref
)

;
2) rank 3, as long as the spline coefficients are not aligned;
3) the non-zero eigenvalues are equal to one and the cor-

responding eigenvectors are (cref
1 [0], . . . , cref

1 [M − 1])T,
(cref

2 [0], . . . , cref
2 [M − 1])T, and (1, . . . , 1)T.

These properties show that Pref is an oblique projector from
RM to a three-dimensional-invariant subspace of RM defined
by the vectors (cref

1 [0], . . . , cref
1 [M−1]), (cref

2 [0], . . . , cref
2 [M−

1]), and (1, . . . , 1). However, the corresponding projection of
the curve onto Sref in the L2 sense is orthogonal since it
minimizes the MSE in (7).

IV. ACTIVE CONTOURS WITH PRIOR SHAPES

The evolution of the snake is formulated as a minimization
problem; the associated cost function is usually denoted as
snake energy. The snake energy, as initially introduced by
Kass [3] is a linear combination of three terms:
• the image energy Eimage is responsible for guiding the

snake towards the boundary of interest;
• the constraint energy Econstraint provides the user with a

way to interact with the snake;
• the internal energy Einternal promotes the regularity of

the snake curve.
The overall snake energy is then given by

Esnake(Ω) = Eimage(Ω)+Einternal(Ω)+Econstraint(Ω), (13)

where Ω stands for the snake representation through parame-
ters (e.g., control points). The snake optimization consists in
finding

Ω∗ = arg min
Ω

Esnake(Ω).

The choice of each term is crucial because it has a direct
impact on the quality of segmentation. It usually depends on
the application and imaging modality. There is a vast amount
of literature on designing such energies [7], [8], [31], [32],
[33]. For the image energy, there are many strategies which
can broadly be categorized in two families: 1) schemes, which
use gradient information to detect contours (a.k.a. edge-based
methods) and 2) methods, which use statistical information to
distinguish different regions (a.k.a. region-based methods). In
our model, we use a formulation where the image energy is a
convex combination of an edge-based term and a region-based
term [11], [13], i.e., Eimage = αEedge + (1− α) Eregion.
Note that, for α = 0, the image energy reduces to a region-
based scheme, and, for α = 1, the image energy reduces
to a edge-based scheme. We use the internal energy to en-
code the prior shape information by constructing a term that
favors convergence of the snake towards a shape that is an
affine transformation of a given reference shape. The exact
expression is given in Section IV-A. We obviate the constraint
energy in the formulation. In return, we accommodate the user
interaction as a hard constraint by leaving selected coefficients
out of the optimization routine. Finally, our overall snake
energy is reduced to

Esnake = αEedge + (1− α) Eregion︸ ︷︷ ︸
Eimage

+Einternal. (14)

We now describe how to incorporate the information from
the affine shape space introduced in Section III-C.

A. Internal Energy with Shape Priors

We define a new energy that encourages the snake to stay
close to the shape space Sref . This energy penalizes shapes
that are not affine transformations of the reference curve rref .
This is achieved by constructing a quadratic functional that
achieves its minimum when the curve belongs to Sref , which
represents the closest fit with respect to the reference shape.
To that end, we define

Einternal = β ‖
(
Id−Pref

)
Ch‖2F, (15)

where β is a weight, Ch is the matrix form of the curve, Pref is
the projector onto Sref , and ‖ ·‖F is the Frobenius norm. Note
that the internal energy (15) is not equal to the MSE (7) in
general. However, both expressions share the same minimizer
(i.e., the coefficients of the optimal curve are the same) due to
Theorem 1. The factor β determines the trade-off between the
adhesion to the boundaries within the image and regularization
towards the prior shape. The minimization of (15) ensures the
convergence to a shape that is an affine transformation of the
reference shape; smoothness and regularity will therefore be
preserved.



1057-7149 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2015.2457335, IEEE Transactions on Image Processing

Efficient Shape Priors for Spline-based Snakes 6

B. Continuous-domain vs. Discrete Shape Priors

The proposed prior shape model can also be transposed into
the discrete setting using the conventional discrete shape-space
formalism [1]. Using standard results from approximation
theory, it can be shown that any curve in the plane (e.g.,
a pixel-based curve) can be approximated by a spline-based
model [24] with an arbitrary precision. More precisely, the
averaged minimum mean-squared approximation error along
all possible parameterization shifts between both curves con-
verges to zero at O(N−L), where N is the number of control
points of the curve and L is a strictly positive factor that
depends exclusively on the generating function ϕ.

Let us consider a pixel-based curve obtained by uniformly
sampling the parameter space of a continuous curve. We ob-
tain the collection of points {r(n/N)}n=0...N−1. Such point-
wise representation converges to the continuous curve when
N →∞ as long as the curve contains no discontinuities [24].
In this situation, the continuous mean-squared error in (7) is
equivalent to the classic discrete one as long as N is large
enough. Formally, we have

lim
N→∞

1

N

N−1∑
n=0

‖r
( n
N

)
−rp

( n
N

)
‖2 =

ˆ 1

0

‖r(t)−rp(t)‖2 dt.

(16)
In this discrete setting, an equivalent projection operation
would be defined by an N ×N matrix instead of the M ×M
matrix in the continuous case (see Theorem 1). Spline-snakes
are usually built with a small number of control points. For
instance, in the experimental validation of Section V, we use
a number of control points M ranging within the interval
[4, 9]. In the presented discrete setting, N is usually chosen to
match the spatial resolution of the image, that means that the
average distance in the plane between consecutive samples is
close to one-pixel unit. Equivalent point-based contours to the
ones shown in Section V achieving the same spatial resolution
would contain N ≈ 1000 discrete points (value depending on
image resolution). Since N � M and the continuous and
discrete minimization criteria are equivalent thanks to (16),
we see that the presented model provides an equivalent shape
prior to the snake at a much lower computational complexity.

C. Optimization of the Snake

The optimization is carried out efficiently by a Powell-like
line-search method [34]. The algorithm proceeds as follows:
First, a promising direction within the parameter space is
chosen depending on the partial derivatives of the energy.
Second, a one-dimensional minimization is performed along
the selected direction. Finally, a new direction is chosen using
the partial derivatives of the energy function once more, while
enforcing conjugation properties. This scheme is repeated until
convergence, with occasional conjugation reset. This method
requires either the partial derivatives of the energy function
with respect to the parameters or, in our case, with respect to
the control points. A detailed derivation of the gradient of the
energy described by (13) can be found in [11].

The contribution of the proposed shape-based internal en-
ergy can be extracted from the two first columns of

∂Einternal

∂c1[0]
∂Einternal

∂c2[0] 0
...

...
...

∂Einternal

∂c1[M−1]
∂Einternal

∂c2[M−1] 0


= 2β

(
Id−Pref

)T (
Id−Pref

)
Ch.

V. VALIDATION AND EXPERIMENTS

In this section, we evaluate the effect of the presented
energy term in different typical situations encountered in
biomedical imaging. First, we experimentally illustrate the
snake’s sensitivity to initial conditions. Then, we analyze the
robustness to noise of the model by segmenting simulated
images containing different levels of noise. Next, we show
the effect of the coefficient β when segmenting in low-contrast
situations. We conclude by analyzing the performance on the
method on real biological data. In the following experiments
as well as in the proposed software, the contour is built using
the ellipse-reproducing basis functions ϕ described in [13].

A. Dependence on Initial Conditions

Active contour models are known to be strongly dependent
on initial conditions. Sensitivity to the location and shape
of the initial contour is difficult to study thoroughly, and
quantitative evaluation of this aspect is therefore rarely ob-
served analytically. In order to address the question of the
dependence of snake convergence on initial conditions, we
have experimentally computed the basin of attraction of a
snake optimized using the proposed energy term.

We have created an 8-bit synthetic image of a typical mitotic
cell in fluorescence microscopy (see Figure 2a). To mimic
realistic conditions, the outline of our synthetic dividing cell
contains holes and intensity variations. Moreover, the cell’s
inside simulates inhomogeneous background in the fluores-
cence signal. The ground truth was constructed by manually
placing a spline curve with 9 control points perfectly matching
the edge of the cell. We initialized 50 different snakes at
random locations constructed from random perturbations of
the spline curve used as ground truth. The perturbed contours
were automatically optimized with β = 0 (no shape prior
energy) and α = 1 in (14) (i.e., no region-based term) using
an edge-based term relying on a popular ridge-estimator based
on the eigen-decomposition of the smoothed Hessian matrix of
the image [35], [36], [37]. Then, the experiment was repeated
with β = 10 using a shape prior derived from the ground truth.
The value of β was chosen experimentally.

To evaluate the sensitivity to initial conditions, the Jaccard
index, JI = |A∩B|

|A∪B| , where A and B are two non-empty sets,
was computed between all snakes and the ground truth. A
high value of JI reflects the fact that the snake managed to
find its way back to the optimal configuration. We show in
Figure 2b and Figure 2c the averaged values of the JI for
the 50 repetitions. The gray values of each pixel location in
the images correspond to the averaged Jaccard indices of the
snakes that go through that particular pixel location. In Table I,
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(a) (b) (c)

Fig. 2. Study of basin of attraction for simulated data. (a) Synthetic image of
a mitotic cell model. (b) Basin of attraction of the snake with β = 0 with the
ground truth overlaid. (c) Basin of attraction of the snake with β 6= 0 with
the ground truth overlaid. The gray values of each pixel location in (b) and
(c) correspond to the averaged Jaccard indices of the snakes going through
each pixel location.

TABLE I
AREA OF BASIN OF ATTRACTION YIELDING PERFECT SEGMENTATION

(JI > 0.9).

.
β area
0 147716
10 279800

we show the size of the basin of attraction as defined by the
pixel locations with JI > 0.9. One can observe that using the
prior shape energy term results in a two-fold increase in the
area of the basin of convergence as long as the prior shape is
well matched to the object to segment.

B. Efficiency and Robustness to Noise

In order to evaluate the proposed energy term with re-
spect to the robustness to noise, we used the same test
image, ground truth and energy terms as in Section V-A.
We generated 10 noisy realizations for several noise levels
(σ = 40, 70, 80, and 90), where σ corresponds to its standard
deviation by adding Gaussian white noise to the original syn-
thetic image. The resulting images have signal-to-noise ratios
of −6.6dB,−11.4dB,−12.54dB, and −13.46dB. Through all
experiments, the snake was initialized from the position shown
in Figure 3 (top left), which corresponds to a Jaccard index
of JI = 0.59. Performance measures of the segmentation
algorithm are given as Jaccard indices (see Table II), and
visual representation of the results are shown in Figure 3.
As in SectionV-A, a value of β = 10 was used for this
experiment. One can observe that the influence of the shape
prior increases the robustness to noise of the algorithm. In
particular, the performance of the algorithm without prior
degrades as the noise power increases whereas the version
with the shape prior converges to the same solution with
JI = 0.96. Moreover, the standard deviation of the JI remains
stable for the experiments with shape prior while it increases
substantially in the experiments without any prior.

C. Overall Contribution of Prior Shape Energy

The coefficient β in (15) can be interpreted as a balance
factor between the contribution of the data term and the
influence of the shape prior. It can be arbitrarily large, and for
very high values it will force the snake to lie within the affine

Fig. 3. Segmentation of synthetic data in the presence of noise. Top
row: initialization (left) and noisy image (right). A close up of a boundary
region between the artificial cell and the background is shown. Central row:
segmentation with shape prior in noisy conditions: the synthetic image has
been corrupted by adding AGWN with standard deviations of 40 (left), 80
(center), and 90 (right). Bottom row: same experiment as center row, but
without using a shape prior.

TABLE II
JACCARD INDICES FOR SEGMENTATION OF (NOISY) DATA.

SNR [dB] (stdd) shape prior no prior
∞ (noiseless) 0.96 0.96
−6.60 (40) 0.96± 0.0030 0.74± 0.0061 (fail)
−11.4 (70) 0.96± 0.0027 0.76± 0.0164 (fail)
−12.54 (80) 0.96± 0.0023 0.72± 0.0259 (fail)
−13.46 (90) 0.96± 0.0019 0.67± 0.0672 (fail)

shape space given by the prior. This point is important since
an extremely large value of β would make the system obviate
the image energy completely and converge to the closest shape
within the span of the shape-space in terms of (7) regardless of
the image. However, this configuration could be very different
in terms of JI . Therefore, the minimization of (7) does not
always imply an optimal value for JI .

We tested the influence of β by segmenting the noise-
free test image described in the previous section and that is
illustrated both on top left of Figure 3 and on Figure 2a. We
manually initialized our snake such that the overlap of this ini-
tialization and the ground truth corresponds to a Jaccard index
of JI = 0.52. Figure 4 shows quantitatively how increasing the
influence of the shape prior improves the segmentation. When
a certain value of β is reached (β ≈ 106 in our experiment),
the shape prior energy dominates the system and the snake
does not converge to the shape of interest anymore. We see
that when JI ≈ 107, the value of JI is similar to the initial
value before optimization, i.e., JI = 0.52. This is due to
numerical precision in the iterative optimization process since
the gradient of the image energy is nearly zero in comparison
to the value of the gradient of the prior shape energy.
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Fig. 4. Effect of the balance parameter β when segmenting the simulated
data displayed both on top left of Figure 3 and on Figure 2a. The effect of
the shape prior energy increases with β. In the limit case when β = 0, the
snake is completely driven by the image energy. Conversely, when β is large
enough, the system is dominated by the shape prior energy.

D. Segmentation of Drosophila Flies

In this experiment, we have tested the prior energy term
on real time-lapse sequences of Drosophila flies taken with
high-frame-rate cameras. The fruit fly, Drosophila, is a typical
model organism for the study of voluntary locomotion. Its
nervous system is simple and can be easily manipulated for
experimental purpose. Sequences of images featuring flies
walking inside a confined environment under different exper-
imental conditions are usually the data of choice for such
a study. The wandering behavior of Drosophila must then
be quantified with high precision in order to understand the
underlying locomotion mechanism of the fly [38].

In order to segment the fly, we used the edge-based term
mentioned in Section V-A and a region-based term that
discriminates an object from its background by building a
shell around the snake and maximizing the contrast between
the intensity of the image averaged within the snake curve
and the intensity of the image averaged over the elliptical
shell [9], [13]. As reference shape, we used the symmetric fly
model from our library with 18 control points as depicted in
Figure 8g. The effect of optimizing the snake with or without
the shape prior is shown in Figure 5. In particular, in cases
where the shape prior is not used, the snake converges to a
solution where the abdomen is well captured but the head
suffers from an extremely coarse segmentation. This is due
to the fact that nearby leg segments create spurious edges for
the edge-based energy term, and the uniformity of brightness
in that region image does not allow the region-based term
to properly discriminate all features of the head. However,
when adding the shape-based component, the snake is able to
catch the head of the fly similarly well regardless of the image
energy used.

E. Segmentation of Yeast Cells

We have applied the proposed energy term to segment the
Schizosaccharomyces pombe (a.k.a. fission yeast) [10]. Two
different data sets have been used: one to train a shape prior
and a second for the validation. The training set is shown in

(a) (b)

(c) (d)

Fig. 5. Qualitative assessment of the influence of the shape prior term while
segmenting a Drosophila fly. (a) Edge-based term only (i.e., α = 1 and
β = 0). (b) Region-based term only (i.e., α = 0 and β = 0). (c) Edge-based
term and shape-based energy (i.e., α = 1 and β > 0). (d) Region-based term
and shape-based energy (i.e., α = 0 and β > 0). The ‘+’ elements represent
the control points of the snake, which can still be fine-tuned manually to
increase the accuracy of the segmentation. Image courtesy of the Laboratory
of Intelligent Systems, EPFL, Switzerland.

Figure 6a. The cells were manually segmented by a biologist
and subsequently aligned in order to compute a statistical mean
shape [39]. In order to segment the yeast cells, we used the
image energy term mentioned in Section V-D with α = 0.5
and the mean prior shape learned from the data with β =
0.5. The initialization of each snake was performed manually
and is shown in Figure 6b. All snakes were composed of 8
control points. Finally, the results of the segmentation of the
validation set are shown in Figure 6c. In order to provide
quantitative performance results, the same validation set was
also segmented by a biologist, thus providing ground truth.
Several performance measures, in terms of Jaccard indices,
between the results obtained by our algorithm and the ground
truth are shown in Table III. We see that the results are in
agreement with the biologist and consistent with the Jaccard
indices obtained with simulated data.

F. Computational Aspects

The cost of evaluation of the prior shape energy per iter-
ation boils down to a simple low-dimensional matrix-vector
operation, where the matrix is of size M ×M . We verified
experimentally that this cost is negligible with respect to the
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(a)

(b) (c)

Fig. 6. Segmentation of the S. pombe. (a) Training set segmented manually
by an expert. (b) Initialization of multiple 8-points snakes on the validation
set using the learned prior shape from the training data. (c) Segmentation
of the yeast cells using the shape prior. Image courtesy of the Simanis-lab,
EPFL, Switzerland.

TABLE III
JACCARD INDICES FOR SEGMENTATION OF 37 YEAST CELLS.

measure JI
mean 0.85
std 0.06
min 0.72
max 0.94

evaluation of the image energy. For this purpose we measured
the time to run 1000 iterations with and without shape prior
energy. We repeated the experiment 10 times. In both cases
we obtained 76± 2 milliseconds, which shows the efficiency
of the proposed energy term. The experiment was carried out
on a 3.5 GHz processor with 32 GB RAM.

In general, the computation of the image energy dominates
the optimization of the snake. In particular, the complexity
of region-based terms is an order of magnitude higher than
their edge-based counterparts. Most region-based terms can be
expressed as surface integrals of an integrand over the domain
enclosed by the curve [11]. An efficient way to implement the
computation of the energy function is by using pre-integrated
images [11], [13]. By Green’s theorem, one can rewrite the
surface integral as the line integrals over pre-integrated images.
The use of Green’s theorem to rewrite the surface integrals
as line integrals dramatically reduces the computational load.
This can only be achieved accurately if the curve is defined
continuously.

Despite the fact that we are assuming a continuously defined
model for our functions, in a real-world implementation we
only have at our disposal a sampled version of the function
we want to pre-integrate. To solve this inconsistency, we store
the values of the pre-integrated images at integer locations in

(a) (b)

Fig. 7. Shape designer. (a) The GUI, and (b) an illustration of the use of the
shape designer to segment a brain ventricle.

auxiliary image arrays. Then, the energies can be obtained
using a bilinear interpolation of the sampled values in the
auxiliary images. Details for particular implementations of this
scheme can be found in [13], [40].

VI. SOFTWARE

A. Implementation

In order to ensure user-friendliness of the described al-
gorithm, we implemented the framework in a modular way.
The three different modules are: i) a dictionary containing the
shape library, ii) a routine to design and store custom spline
shapes, and iii) the implementation of the segmentation algo-
rithm. They are provided as freely available independent open-
source plug-ins. The entire framework runs on Icy, an open-
community Java-based platform for bio-image informatics1. It
can also be installed on tablets capable of running Java. In the
following, we describe each of the modules and how they can
be combined.

B. Shape Designer for Icy

The “Shape Designer” is an independent plug-in that en-
ables the design of custom shapes based on splines. The idea
is to let the user define shapes as refined as desired, without
requiring any knowledge about the underlying mathematical
properties of the curves. In Figure 7a, the GUI of the plug-in
is shown. It can be used to draw the control polygon of a
new spline snake to match a contour of interest in an image
with a few mouse clicks. The number of control points can
be specified by the user in order to delineate objects with
arbitrary precision. The plug-in includes additional interactive
functionalities to improve and facilitate manipulations, such
as dilation and rotation of a shape with respect to its centroid,
translation, and creation of symmetric shapes. In Figure 7b,
the boundary of the ventricle of a brain on a slice of an MRI
image has been segmented with the shape designer. In this
example, M = 7 control points have been used. The shapes
that are designed with the shape designer can be saved in XML
format to be reloaded to the shape library.

1http://icy.bioimageanalysis.org/
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TABLE IV
SHAPES AVAILABLE IN THE SHAPE LIBRARY.

.

shape M
guitar (a) 18

femur bone (b) 16
snow man (c) 16

brain white matter (d) 16
boomerang (e) 16

corpus callosum (f) 16
fly body (g) 18

shamrock (h) 16

C. Shape Library

The shape library stores the shape priors that are used for
the segmentation process. New shapes can be loaded as XML
files to be used as custom shape priors. We list in Table IV
some of the shapes that are provided by default. The letter in
brackets indicates the corresponding shape shown in Figure 8
while M is the number of control points used to generate
the curve. To generate the shapes, we use the previously
presented parametric spline snakes [13], [40] that perfectly
reproduce ellipses, while at the same time being capable of
approximating any planar closed curve. These basis functions
have minimal support, which makes the optimization process
more efficient [25]. After the shapes have been loaded, they
can be chosen from the dictionary through a GUI, as shown
in Figure 9.

D. Integration with Active Cells

The shape library is integrated in the main GUI of the
“Active Cells” plug-in (Figure 9). Through it, the user can ma-
nipulate snakes and images. Different combinations of snake
energies can be chosen, such as contour or region energies, and
the relative weight can be easily adjusted. The use of shape
priors is implemented by means of a supplementary energy
function whose weight can also be adjusted. This facilitates
user interaction and the results can be optimized online and
in an intuitive way.

VII. CONCLUSION

We have presented and derived a new energy term to
efficiently include shape priors for the segmentation with
2D spline snakes. It consists of an orthogonal projector of
an arbitrary shape onto the space that spans all the affine
transformations of a given shape prior. The specificity of our
approach is that the shape is represented by a parametric curve
as opposed to a discrete point cloud. We have shown that the
proposed projector is optimal in the L2 sense. We gave an
explicit expression of the corresponding energy term and of
its gradient in order to use it in a conventional optimization
scheme. The proposed algorithm has been implemented as a
framework that combines the energy describing the shape prior
together with traditional energy terms such as edge- or region-
based energies. A plug-in called “shape designer” has also
been developed. It allows one to design custom spline shapes
with a few mouse clicks, store, and finally reuse them in a

shape library. The complete framework is implemented as a
collection of user-friendly and interactive plug-ins. It is freely
available through Icy2. It has been successfully tested on real
biological segmentation problems such as detecting fly bodies
of Drosophila and yeast cells in microscopic images.
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