Résumé

We present a new method for estimating heart motion from two-dimensional echocardiographic sequences by exploiting two ultrasound modalities: B-mode and tissue Doppler. The algorithmestimates a two-dimensional velocity field locally by using a spatial affine velocity model inside a sliding window. Within each window, we minimize a local cost function that is composed of two quadratic terms: an optical flow constraint that involves the B-mode data and a constraint that enforces the agreement of the velocity field with the directional tissue Doppler measurements. The relative influence of the two differentmodalities to the resulting solution is controlled by an adjustable weighting parameter. Robustness is achieved by a coarse-to-fine multi-scale approach. The method was tested on synthetic ultrasound data and validated by a rotating phantom experiment. First applications to clinical echocardiograms give promising results.

Détails

Actions