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Abstract4

Real behavior of existing structures is usually associated with large uncertainty that is often5

covered by the use of conservative models and code practices for the evaluation of remaining fa-6

tigue lives. In order to make better decisions related to retrofit and replacement of existing bridges,7

new techniques that are able to quantify fatigue reserve capacity are required. This paper presents8

a population-based prognosis methodology that takes advantage of in-service behavior measure-9

ments using model-based data interpretation. This approach is combined with advanced traffic10

and fatigue models to refine remaining-fatigue-life predictions. The study of a full-scale bridge11

demonstrates that this methodology provides less conservative estimations of remaining fatigue12

lives. In addition, this approach propagates uncertainties associated with finite-element, traffic and13

fatigue-damage models to quantify their effects on fatigue-damage assessments and shows that14

traffic models and structural model parameters are the most influential sources of uncertainty.15

Keywords: Modeling uncertainty, behavior measurement, model-based data interpretation, traffic-16

load model, hot-spot stress.17

1Ph.D Student, Applied Computing and Mechanics Laboratory (IMAC), School of Architecture, Civil and En-
vironmental Engineering (ENAC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
(corresponding author). Email address: rpasquie@gmail.com

2Ph.D Student, Steel Structures Laboratory (ICOM), School of Architecture, Civil and Environmental Engineering
(ENAC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

3Fellow Postdoctoral Researcher, Department of Civil and Environmental Engineering, University of California,
Berkeley, CA 94720, USA

4Fellow Postdoctoral Researcher, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

5Professor, Steel Structures Laboratory (ICOM), School of Architecture, Civil and Environmental Engineering
(ENAC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

6Professor, Applied Computing and Mechanics Laboratory (IMAC), School of Architecture, Civil and Environ-
mental Engineering (ENAC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

1

Manuscript
Click here to download Manuscript: Pasquier_et_al_BEENG-2018_rev1.tex 

Pasquier, R., D’Angelo, L., Goulet, J., Acevedo, C., Nussbaumer, A. and Smith, I.F.C: (2016). "Measurement, Data 
Interpretation, and Uncertainty Propagation for Fatigue Assessments of Structures." Journal of Bridge Engineering, 
10.1061/(ASCE)BE.1943-5592.0000861, 04015087. http://cedb.asce.org Copyright ASCE

http://www.editorialmanager.com/jrnbeeng/download.aspx?id=211255&guid=78f35901-6af1-47b0-8d7d-dc8105c7ff1a&scheme=1


INTRODUCTION18

Due to the uncertainty associated with real behavior of existing structures, conservative models19

and code practices are often used to evaluate remaining lives. However, the increasing importance20

of economic and environmental issues related to retrofit and replacement of existing structures21

has led to the need for new techniques that are able to refine evaluations reserve capacity. For22

the case of fatigue evaluations of existing steel bridges, weigh-in-motion data and probabilistic23

tools can now improve traffic-load models. Also, advances in fatigue-damage models of com-24

plex connections are able to enhance the estimation of remaining fatigue life. In order to leverage25

such techniques, model-based data interpretation approaches are required to identify physics-based26

models that are capable of accurately predicting structural behavior. Behavior measurements (e.g.,27

displacements, tilts, strains and accelerations) are thus needed to identify unknown physical pa-28

rameters of such models and reduce uncertainties associated with predictions.29

Several studies have performed fatigue assessments using direct measurements that provide ac-30

curate estimations of stress-ranges occurring during monitoring and using various fatigue-damage31

models (Sweeney 1976; Li et al. 2001; Zhou 2006; Soliman et al. 2013; Kwon et al. 2013). How-32

ever, this information typically falls short when extrapolated for other locations and for other load33

configurations. In practical applications, models are required to predict quantities that are not mea-34

sured directly due to a range of technological, economic and practical reasons. Extrapolation is35

feasible using indirect behavior measurements and physics-based models, such as finite-element36

models. In addition, inferring the correct values of physical parameters is essential for understand-37

ing the true behavior of structures and for enhancing confidence in model extrapolation (Farajpour38

and Atamturktur 2012; Brynjarsdóttir and O’Hagan 2014).39

Many studies have used behavior models to make fatigue assessments of structures using traffic40

simulations (Leander et al. 2010; Leitão et al. 2011; Guo et al. 2012) and advanced fatigue-damage41

models (Siriwardane et al. 2008; Liu et al. 2010). However, these models have been either vali-42

dated or calibrated without accounting for modeling and measurement uncertainties. Verification43

of compatibility of behavior models with measurements does not guarantee accurate predictions,44
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particularly in the presence of systematic modeling uncertainties that are unavoidable when ide-45

alizing complex systems. Model-based data-interpretation techniques that include modeling and46

measurement uncertainties are required in order to infer unknown structural properties, thereby47

improving fatigue assessments (prognosis).48

Model-based data interpretation for complex systems is an ambiguous task that usually leads to49

multiple explannations for measured behavior. Thus, model-based data-interpretation approaches50

leading to a single calibrated model offer limited support for decisions and prognosis (Beven 2006;51

Neumann and Gujer 2008; Beck 2010; Goulet and Smith 2013; Atamturktur et al. 2014). Proba-52

bilistic techniques such as Bayesian inference (Mackay 2003; Yuen 2010) are available for updat-53

ing the knowledge of model parameters and accommodating multiple solutions. Many examples54

have been reported where Bayesian methodologies lead to correct parameter identification and55

extrapolations in situations where information is available for defining the joint probability den-56

sity function (PDF) of modeling and measurement errors and where systematic errors are absent57

(Beck and Katafygiotis 1998; Papadimitriou et al. 2001; Beck and Au 2002; Zhang et al. 2013).58

However, systematic errors are common when modeling complex structures, due to simplifica-59

tions and omissions made in the process of idealization. Goulet and Smith (2013) have proposed60

a population-based data interpretation technique called error-domain model falsification (EDMF).61

This methodology is most appropriate for performing diagnosis when knowledge of errors is in-62

complete.63

Proper consideration of traffic induced loadings is a technical challenge in the fatigue life64

assessment of road bridges. Traffic-load models that are proposed in codes (AASHTO 2007;65

EN1993-1-9 2005; SIA261 Code 2003) can return errors in the calculation of loading stress-range66

spectra resulting in significant errors in remaining-fatigue-life estimations. In addition, local load67

spectrum often varies significantly from the national average (Moses et al. 1987). The combination68

of the weigh-in-motion (WIM) technique with traffic simulation provides a solution to this chal-69

lenge. This technique allows for integrating traffic-loading uncertainties in the fatigue-damage70

assessment. Several studies have used this approach for building suitable traffic-load models71
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(Crespo-Minguillón and Casas 1997; Leahy et al. 2014; Morales-Nápoles and Steenbergen 2015).72

However, no study have been found where traffic simulations and population of finite-element73

models obtained using data interpretation are combined in order to estimate remaining fatigue74

lives of structures.75

Pasquier et al. (2014) proposed a population-based prognosis methodology based on error-76

domain model falsification and code practices that is able to refine remaining-fatigue-life predic-77

tions by taking advantage of in-service behavior measurements. A case study on a hollow-section78

truss bridge has demonstrated that this approach is able to reduce uncertainty associated with79

remaining-fatigue-life predictions. However, the fatigue-damage assessment of hollow section80

joints has been carried out based only on simplified fatigue models.81

Due to the complexity of the stress field in hollow section joints, the hot-spot stress method,82

also known as the geometric stress method, is employed to evaluate the fatigue life of bridges83

made of tubular elements. This method provides Srhs-N curves based on experimental data where84

the Srhs relates to the hot-spot stress range in that joint, rather than the nominal stress range used85

in the conventional fatigue classification method (Maddox 1997; Niemi et al. 2006). The hot-spot86

stress is extrapolated at the weld toe, where potential crack initiation sites (hot spots) are expected.87

Contrary to the nominal stress, the hot-spot stress includes the effect of the joint geometry (stress88

concentration), the type of load and the weld shape being idealized. Therefore, the Srhs-N curve89

presents the advantage of simplifying Snom-N curves given for each detail category into single90

design curve depending on weld type by including the global detail geometry in the hot-spot stress91

calculation (Hobbacher 2007).92

This paper builds on the work by Pasquier et al. (2014) and enhances the population-based93

prognosis methodology by combining advanced traffic and fatigue models with on-site behavior94

measurements in order to further improve predictions of remaining fatigue lives. By propagat-95

ing uncertainties associated with these advanced strategies, the methodology provides insight into96

sources of uncertainty for the prediction of fatigue-reserve capacity as well as support for man-97

agement decisions related to structural retrofit, repair and replacement. The first section describes98
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the enhanced prognosis methodology and the second section presents a full-scale case study that99

illustrates the overall benefits of the approach.100

POPULATION-BASED FATIGUE PROGNOSIS101

This section describes the population-based prognosis methodology for remaining-fatigue-life102

evaluation of tubular K-joints in existing bridges. First, error-domain model falsification, the103

system-identification approach, is presented. Then, the second section explains the process of104

influence-line predictions based on models identified by EDMF. Traffic simulations based on WIM105

data and the hot-spot stress method for tubular K-joints are then described. Finally, the last section106

explains how uncertainty is propagated throughout the methodology in order to predict the remain-107

ing fatigue life and how the uncertainty relative importance is determined. Also in this section, a108

flowchart summarizing the methodology is presented in Figure 3.109

Error-domain model falsification110

The goal of system identification is to combine the information provided by model predictions111

and by measurements in order to learn what are possible values for θ, which describe character-112

istic properties of a structure. Estimates for nY characteristic responses Yi of a structure can be113

provided by models as well as by in-situ observations of a constructed system. Let g{m}i (θ) de-114

note model predictions from a model class {m} and taking as input a set of parameter values θ,115

ŷi denotes observations, and {Ui,g, Ui,ŷ} respectively denotes a random variable describing model116

prediction and measurement errors for the ith structural characteristic response. In this paper, the117

superscript {m} denoting the model class is omitted in order to simplify the notation. The rela-118

tionships between a characteristic response and a model prediction is given by119

Yi = gi(θ) + Ui,g, ∀i = 1, 2, . . . , nY (1)

and between a characteristic response and a measurement is120

Yi = ŷi + Ui,ŷ, ∀i = 1, 2, . . . , nY (2)
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The joint probability density function (PDF) fUŷ
(uŷ) describing the measurement error is in com-121

mon cases estimated from repeated calibration experiments performed in controlled conditions.122

In the case of civil structures, such a characterization is usually not possible for the joint PDF123

of model-prediction errors, fUg(ug); instead, fUg(ug) is commonly estimated based on heuris-124

tics and expert knowledge. Examples of sources of modeling uncertainty are idealized support125

and connection conditions, weld geometry, temperature effects, load amplitude and load position,126

Bernoulli-beam hypothesis, geometric variability of the structure, constitutive law of materials,127

etc. For finite-element models, examples are also mesh refinement and interpolation, element-type128

choices, the presence of singularities, etc. Because modeling uncertainty associated with complex129

systems commonly has a larger variance than measurement uncertainty, the joint PDF describing130

the combination of modeling and measurement uncertainties, fUc(uc) ∼ Uŷ −Ug is also domi-131

nated by heuristics and expert knowledge.132

Error-domain model falsification performs system identification by generating an initial popu-133

lation of model instances {θk}, k = 1, 2, · · · , nk and then falsifies those instances that are not com-134

patible with observations given modeling and measurement uncertainties. The candidate model set135

Ω consists in the initial model set minus the falsified models so that136

Ω = {k : Ti,low ≤ gi(θk)− ŷi ≤ Ti,high,∀i} (3)

where Ti,low and Ti,high are threshold bounds defining the shortest intervals including a probability137

φ
1/nY

d for the marginal PDFs of fUc(uc), where φd ∈ [0, 1] is the target reliability usually set at138

0.95.139

Influence-line prediction140

The population-based fatigue prognosis methodology predicts remaining fatigue lives using141

candidate models obtained as described in the first section, traffic simulations and hot-spot stress-142

range calculations. For the determination of hot-spot stresses of a welded K-joint, internal forces143

of members (braces (br) and chord (ch)) are required to calculate nominal stresses (axial (ax) and144
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in-plane-bending (ipb) stresses) acting in the joint. In order to lower the effects of local stress145

concentrations, internal forces are extracted at a distance δ = 1.9 · D and δ = 2.2 · d of the joint146

(Schumacher et al. 2003), with D and d being the chord and the brace outer diameters. Axial147

forces N , in-plane-bending moments M and also shear-forces V are extracted at each of the four148

members of the joint such that in-plane-bending stresses at the joint are calculated using the shear-149

force linear variation. Figure 1 illustrates the internal forces and the nominal stresses involved in150

the calculation of hot-spot stresses.151

The knowledge of internal forces in a bridge is based on load models that represent heavy-152

vehicle traffic crossing the structure. To be able to perform traffic simulations, influence lines of153

internal forces acting at critical joints are required. These influence lines are predicted using the154

candidate models and a moving reference axle load.155

Each point of the influence line of an internal force Qj(xl) for nj locations is obtained using156

Eq. (4), where xl is the location of the axle loading on the bridge.157

Qj(xl) = gj(xl,θK) + Uj,g(xl), ∀j = 1, 2, . . . , nj (4)

In Eq. (4), the candidate models are randomly selected using a discrete random variable K that is158

defined by the PDF:159

fK(k) =

 1/#Ω, ∀k ∈ Ω

0, otherwise
(5)

Thus, Qj(xl) is a random variable described by a PDF obtained by the combination of internal-160

force prediction values for each candidate model gj(xl,θK) and the distribution of modeling un-161

certainties, Uj,g(xl). Then, influence lines are used to generate the spectra of internal forces N(t),162

V (t) and M(t) from a traffic model for each member of each critical joint.163

Traffic model164

In order to determine a realistic spectrum of internal forces, traffic of heavy vehicles crossing165

the bridge is modeled based on measured weigh-in-motion (WIM) data. WIM devices capture166
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static vehicle axle weights and provide information on: (1) vehicle arrival time (VAT ); (2) vehicle167

speed (VS ); (3) gross vehicle weight (GVW ); (4) vehicle total length (TVL); (5) vehicle axle load168

(AVW ); and (6) vehicle axle spacing (AVS ). Only heavy vehicles with GVW larger than ten tons169

are taken into account since lighter vehicles lead to a negligible contribution to the bridge fatigue170

damage.171

The traffic simulation tool takes as input the WIM raw data spreadsheet and classifies observed172

heavy vehicles in 13 classes according to GR03-EUR13 classifications (Table A.2 (Meystre and173

Hirt 2006)). A mean value and a covariance matrix are assigned to the random variables GVW ,174

TVL, AVW and AVS of each class based on WIM data. In addition, a normal PDF and a Burr PDF175

(Kleiber and Kotz 2003) are fitted to observed vehicle speeds (VS ) and to observed inter-arrival176

times (VIT ). Inter-arrival times are computed based on the difference between arrival times of177

consecutive vehicles. The distributions for VAT , VS , GVW , TVL, AVW and AVS represent the178

probabilistic traffic model. In order to determine the spectrum of internal forces N(t), V (t) and179

M(t), a sequence of axle loadings (i.e. trucks being represented by either two or more axles with180

defined AVS ) is randomly generated based on the traffic model for a representative traffic period.181

In this sequence, each axle loading refers to a time t. At each xl along the bridge length, the182

generated axle loading of time t is superimposed to internal-force influence lines for determining183

N(t), V (t) and M(t). Although the influence lines are determined based on a reference axle184

loading, the internal forces related to traffic simulation can be obtained by proportionality of axle-185

loading value since the bridge finite-element model behaves elastically. Thus, knowing the axle-186

load value of the traffic sequence and the reference axle-loading value, the internal forces are187

multiplied by the ratio of these values. This procedure is repeated for each time step of the sequence188

and the spectrum of internal forces is determined for a single lane. The random traffic sequences189

for different lanes are generated individually. Finally, the spectra of individual lanes are summed190

up to obtain the total internal-force spectrum at the critical joint members.191
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Hot-spot stress method192

Knowing the spectrum internal forces (N(t), V (t) andM(t)) in the truss members at a distance193

δ of the joint enables calculation of the spectrum of axial and in-plane bending stresses at the weld194

toe (critical point). Axial stresses are constant along members between two joints, whereas in-195

plane-bending stresses vary linearly over the length of members. Therefore, spectra of nominal196

stresses in brace and chord members are generated from spectra of internal forces according to Eq.197

(6):198

σax(t) =
N(t)

A

σipb(t) =
M(t) + V (t) · δ

W

(6)

where A and W are the member cross-section area and the elastic section modulus, respectively,199

and δ is the distance from the weld toe to the position where the shear force V is extracted. At200

weld toes, where fatigue cracks are expected, geometrical discontinuities cause stress deviations201

and stress concentrations. This effect is taken into account in the calculation of hot-spot stresses202

σhs,i by multiplying the member stress σ away from the joint by the stress concentration factor203

SCF i as shown in Eq. (7):204

σhs,i = σ · SCF i (7)

where index i represents the hot-spot location.205

Since stresses are elastic, the total hot-spot stress σhs,i at hot spot i is the superposition of206

individual hot-spot stress under each load case (Zhao et al. 2000) and thus the hot-spot stress207

spectrum is calculated over time t as follows (axial brace force: ax−br, moment in brace: ipb−br,208

axial chord force: ax− ch, moment in chord: ipb− ch):209

σhs,i(t) = σax−br(t) · SCF i,ax−br + σipb−br(t) · (0.5 · SCF i,ipb1−br + 0.5 · SCF i,ipb2−br)

+ σax−ch(t) · SCF i,ax−ch + σipb−ch(t) · SCF i,ipb−ch

(8)

The stress concentration factors are determined from Schumacher et al. (2003) for K-joints210
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defined by geometric parameters β = d
D

, γ = D
2T

and τ = tbr
T

where d is the outer brace diameter,211

D is the outer chord diameter, tbr is the brace wall thickness and T is the chord wall thickness.212

Thus, spectra of hot-spot stresses are generated from spectra of nominal stresses and stress con-213

centration factors at critical joint locations. In tubular K-joints, the most common crack location is214

encountered at hot spot 1 (hs1), which is situated at the weld toe in the chord, and for joints with215

tension in the chord, on the tension brace side (see Figure 2) (Acevedo and Nussbaumer 2012).216

This methodology, which expresses hot-spot stress spectrum from the nominal stress spectrum in217

Eq. (8), is more optimistic than expressing hot-spot stress ranges from nominal stress ranges. In-218

deed, computing the nominal stress ranges before using the hot-spot stress method leads to the loss219

of synchronicity of axial and in-plane-bending nominal stresses that appear in the traffic simula-220

tion. Such procedures lead to unnecessary conservatism in the hot-spot stress-range calculation221

since peaks in axial stresses and their ranges do not necessarily act at the same time as the peaks in222

in-plane-bending stresses. Thus, evaluating hot-spot stress spectra helps preserve the simultaneity223

of stress ranges acting at critical joints.224

Remaining-fatigue-life prediction225

Histograms of hot-spot stress ranges are obtained using the rainflow algorithm (Downing and226

Socie 1982) and are then compared to the Srhs-N curve referring to the joint category under study227

for the determination of the damage index. Srhs-N curves may be either provided by codes (SIA263228

Code 2003; Zhao et al. 2000) or based on experimental data in order to avoid using deterministic229

values in this methodology. Provided that a sufficient number of experimental results are used, a230

regression model can be identified and then used for the comparison of stress ranges. The damage231

index Dperiod is then computed using Miner’s rule (Miner 1945) in Eq. (9) where damage induced232

by each stress range h of the histogram are summed for the period of traffic that is simulated.233

Dperiod =
∑ nh

Nh

=
∑ nh

C ·∆σ−mhs,i,h
(9)
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In Eq. (9), the Srhs-N curve is described by C · ∆σ−mhs,i,h, where C is a constant depending on234

the detail category and m is the slope coefficient; for steels, it is usually defined as m = 3. The235

remaining fatigue life RFL in years is then obtained using Eq. (10):236

RFL =
Ryear

Dperiod

(10)

where Ryear is the portion of traffic simulation period over one year. For example, one week of237

traffic simulations is extrapolated in years using Ryear = 1/52. In Eq. (10), traffic is assumed238

constant during the joint life and failure is assumed to occur when the damage index reaches unity.239

Propagation of uncertainty and sensitivity analysis240

In previous sections, Equations 6 through 10 have been written for a single model instance241

and a single critical joint. In the population-based prognosis methodology, N , V and M are242

random variables, Nbr,j(xl),Vbr,j(xl) and Mbr,j(xl) and are obtained from Eq. (4) (here, for the243

brace internal forces of the j th joint and similarly transposed for the chord internal forces). Using244

the probabilistic traffic model, random samples are generated from the distributions VAT , VS ,245

GVW , TVL, AVW and AVS in order to define a random sequence of axle loadings. After traffic246

simulations, these internal forces are time dependent: Nbr,j(t),Vbr,j(t) and Mbr,j(t). Consecutively,247

axial and in-plane-bending stresses, hot-spot stresses and hot-spot stress ranges are random vari-248

ables, σax,j(t), σipb,j(t), σhs,i,j(t) and ∆σhs,i,j(t). Then, from Eq. (9), Dperiod becomes the random249

variable Dperiod,j and similarly for RFLj from Eq. (10).250

Finally, using a number of samples nSP of random variables in Eq. (4), the probability den-251

sity function of RFLj for the j th joint among the nj joint locations is obtained using Monte-Carlo252

analysis. For each Monte-Carlo step, the influence line of a candidate-model sample K is used to253

calculate the remaining fatigue life from a random traffic sequence and a random Srhs-N curve sam-254

ple. A sufficient number of samples nSP should be generated in order to ensure convergence of the255

remaining-fatigue-life distribution. Using this process, model-parameter uncertainties, modeling256

uncertainties, traffic uncertainties and Srhs-N curve uncertainty are propagated through remaining-257
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fatigue-life predictions. Lower and higher remaining-fatigue-life prediction thresholds are then258

evaluated for each distribution RFLj . These thresholds represent the shortest interval includ-259

ing a target probability of prediction φp. Prediction thresholds are a robust representation of the260

remaining-fatigue-life uncertainty when little information is available for defining the true model261

of errors associated with remaining-fatigue-life values. Since the identification reliability is φd,262

and since the process involves independent random variables, the probability of having the true263

prediction value included between prediction thresholds for each critical joint independently is at264

least φd · φp, given the estimated PDF of uncertainty.265

Figure 3 summarizes the population-based prognosis methodology starting from the initial pop-266

ulation of model instances to the remaining-fatigue-life prediction of a single critical joint. After267

falsification, nSP candidate-model samples are used to predict influence lines of member internal268

forces including modeling uncertainties. Then, the damage index of each candidate-model sample269

is determined through a Monte-Carlo analysis over each nSP samples using traffic simulations for270

computing internal-force spectra, nominal-stress spectra, hot-spot stress spectrum, rainflow anal-271

ysis and Srhs-N curve comparison. Finally, from the damage index, the distribution of remaining-272

fatigue-life predictions is determined.273

In this methodology, model-parameter uncertainties, modeling uncertainties, traffic uncertain-274

ties and Srhs-N curve uncertainty are propagated across the process of fatigue prognosis. In order275

to determine the relative importance of each uncertainty source involved in the process, a sensi-276

tivity analysis can be undertaken. Here, the sensitivity analysis is based on the response surface277

methodology (Box and Draper 1959; Fang et al. 2005). Let Y = f(X1, X2, . . . , Xi, . . . , Xn) be278

the response of a model f having random variablesX as parameters. VariablesX are used to build279

a model matrix M whose elements are standardized in the sense of design of experiments. The280

model f can be approximated by a linear function Y ≈Mβ, where β contains the parameters of281

the linear function. This expression can be solved using the least squares method such that:282

β̂ = (MTM )−1(MTY ) (11)
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where the vector β̂ = [β̂0, β̂1, β̂2, . . . , β̂i, . . . , β̂n]T represents the least-square estimator of the true283

parameter vector and thus, whose elements represent the importance of each variable Xi on the284

response Y , except β̂0 that is the constant term of the linear function. The relative importance of285

the random variables Xi is then computed over the sum of all importances: β̂i∑n
i=1 β̂i

.286

CASE STUDY: AARWANGEN BRIDGE287

Structure description288

The example under study is a composite-steel-concrete bridge over the Aar river and located in289

the city of Aarwangen (Switzerland). The bridge has two spans of 47.8 m with welded tubular steel290

trusses connected in a composite manner to the concrete deck that is 8.3 m wide. The cross-section291

of the finite-element model and its general overview are displayed in Figure 4. This bridge carries292

the bidirectional traffic with two lanes (west and east) of a main road going from Langenthal to293

an exit on the highway Bern-Zurich and Niederbipp. On average, 2, 572 trucks with an average294

weight of 18 tons cross the bridge in both directions every week.295

The purpose of this study is to improve the reserve-capacity estimation of two K-joint connec-296

tions of the truss as shown in Figure 5. Each K-joint has southern and northern welds, leading to297

four critical joints to evaluate overall. The failure location for these four joints is assumed in the298

chord (hot spot 1). This location is defined as the critical hot-spot position for this study in order299

to avoid the increase of complexity related to the evaluation of the other hot-spot locations.300

The structure takes a set of six unknown parameter values θ = [θ1, θ2, . . . , θ6]: the rotational301

stiffness of the truss connections, the longitudinal stiffnesses of the pavement covering expan-302

sion joints, and Young’s moduli of steel, concrete and pavement. In the finite-element model, the303

connection stiffness and the southern and northern expansion-joint stiffnesses are modeled using304

rotational and longitudinal springs. These parameters are illustrated in Figure 6.305

Model falsification and influence-line computation306

As presented in Pasquier et al. (2014), the parameter values are identified using behavior mea-307

surements that are determined from static-load tests. From an initial population of 15, 625 model308
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instances, a subset of 69 candidate models are compatible with 21 strain measurements made dur-309

ing static-load testing (Pasquier et al. 2014) by following the error-domain model falsification310

approach using a target reliability φd = 0.95.311

The 69 candidate models are used to predict the influence lines of chord and brace internal312

forces for the two K-joints (overall 24 internal forces). A reference axle loading based on codes313

(SIA261 Code 2003) is used to compute the influence lines. The load moves from one end of the314

bridge to the other by step xl of two meters, leading to overall l = 49 load steps. Influence lines315

are determined in turns for west and east lane axle loading.316

The resolution of influence-line discretization obtained through finite-element analysis could317

be too low to be used for simulating traffic due to high demand in computing time for increasing318

the resolution. In such case, a linear interpolation is undertaken for increasing the influence-line319

resolution. The error associated with the interpolation is then quantified and combined with the320

other modeling uncertainties. For Aarwangen Bridge, since 49 load steps do not return a high321

enough influence-line resolution for the traffic-simulation process, a linear interpolation is carried322

out in order to obtain influence lines of 193 points. It would be computationally demanding, and323

not necessarily more accurate, to calculate influence lines of 193 points for each candidate model.324

In order to determine the error induced by the interpolated influence line, the influence line for325

193 points is determined using the finite-element model for the model instance having the mean326

values of parameters θ. Then, the interpolation errors for the 193 points are obtained by comparing327

this influence line with the interpolated one. The same procedure is carried out for the influence328

lines of modeling uncertainties. In this way, the interpolation error can be combined with the other329

modeling uncertainties at the 193 points.330

Then, the distribution of influence lines of each internal force is determined using Eq. (4),331

including the interpolation error in the modeling uncertainties Uj,g(xl). In order to have a rea-332

sonable computing time during traffic simulation, the number of samples of Qj(xl) is limited to333

nSP = 1, 000. Gathering the 24 internal forces, 1, 000 candidate-model samples and the two traffic334

lanes, the number of influence lines to be processed during traffic simulations is 48, 000.335

14



The modeling uncertainties Uj,g(xl) are presented in Table 1. Model simplifications, mesh336

refinement and additional uncertainty are sources whose PDF is estimated based on engineering337

judgment and have identical distributions over xl. Influence-line interpolation error is considered338

as a bias that is added to each candidate-model sample such that no PDF is estimated. The other339

sources of uncertainty represent parameters with secondary influence on the structural response340

and their effect on the model predictions is propagated through the finite-element model using a341

thousand Monte-Carlo simulations. Except for the interpolation error, all other sources of modeling342

uncertainty were also used for defining the threshold bounds during model falsification and in343

Pasquier et al. (2014).344

For example, Figure 7 presents the combined parameter and modeling uncertainty associated345

with influence lines of internal forces Nch,s1 and Mch,s1 for the initial model set (IMS) and the346

candidate model set (CMS). At the maximum axial force and moment, the IMS uncertainty ranges347

from 192 to 231 kN and from 2.86 to 3.78 kNm as the CMS uncertainty ranges from 208 to 230 kN348

for the axial force and from 3.07 to 3.54 kNm for the moment. A reduction of uncertainty is ob-349

served between the IMS and CMS uncertainty due to the falsification of inadequate model instances350

by the measurements.351

Traffic simulations and hot-spot stress-range calculation352

Traffic simulations are based on 18 days of continuous traffic measurements on the bridge with353

mobile WIM device ”Golden River”. WIM raw data contain information on VAT , VS , GVW ,354

TVL, AVW , AVS of heavy vehicles crossing the bridge on the west lane (direction Aarwangen)355

and on the east lane (direction Niederbipp) during the period from 9/10/1998 to 27/10/1998. A total356

number of 6, 577 heavy vehicles (3, 655 vehicles on the west lane, 2, 922 vehicles on the east lane)357

are classified using the traffic simulation tool presented in section ”Traffic model”. For each class,358

the multivariate vector [GVW ,TVL,AVW ,AVS ] is described by a mean vector and a covariance359

matrix. PDFs for VS and VIT are fitted based on the WIM data. Table 2 summarizes their PDFs360

depending on whether heavy-vehicle traffic crosses bridge west lane or east lane. Once the traffic361

on the two lanes has been completely defined, random sequences of weekly axle loadings of west362
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and east lanes are generated for each of nSP candidate-model samples. Spectra of internal forces363

are determined by superimposing traffic axle-loading samples to the influence lines of N , V and364

M .365

From the internal-force spectra, nominal-stress spectra are calculated at each time t using Eq.366

(6). In this expression, A and W are random variables due to the member geometrical uncertainty.367

Their values vary in relation with diameter and thickness uncertainty displayed in Table 1.368

The SCF values are determined by linear interpolation (and occasionally extrapolation) of369

K-joint SCF table at hot spot 1 obtained experimentally and numerically by Schumacher et al.370

(2003) on similar joint geometry. The interpolation is based on the non-dimensional parameters371

of the joints (β = 0.48, γ = 4.06 and τ = 0.4) for brace angles θ = 45. The SCF values that372

are displayed in Table 3 are used to calculate the hot-spot stress spectra at hs1 based on Eq. (8).373

The hot-spot stress spectra are then transformed into hot-spot stress-range histograms using the374

rainflow algorithm.375

Remaining-fatigue-life evaluation376

The remaining fatigue lives of the four joints are calculated by comparing the hot-spot stress-

range histograms to Srhs-N curves. For this study, 30 experimental data points (Acevedo and

Nussbaumer 2012; Zamiri 2014) are used to build a regression model. This model is a Gaussian

function N (a+ b · log(∆σhs), c
2) with [a, b, c] ∼ N (µ,Σ) and

µ = [26.88,−2.61,−0.90]T , Σ =


1.71 −0.34 0

−034 0.07 0

0 0 0.02


where a and b are parameters of the straight line representing the mean value of the regression377

model and having standard deviation c. In addition, [a, b, c] are random variables that are described378

by a multivariate Gaussian distribution of parameters µ and Σ. The latter includes variances and379

correlation values of [a, b, c].380

In order to be comparable with experimental data that were obtained with various chord thick-381
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nesses, hot-spot stress-range resistances Srhs and hot-spot stress ranges ∆σhs obtained from traffic382

simulation are corrected to refer to stress resistance of 20 mm thickness members Srhs,20 using Eq.383

(12), given by Schumacher et al. (2003).384

Srhs,20 =

(
T

20

)0.25

· Srhs,T , ∀T > 20mm (12)

In Eq. (12), Srhs,T refers to the hot-spot stress range of a joint having a chord thickness of T . For385

the joints under study, the chord thickness is T = 50 mm. This fatigue model does not consider a386

fatigue limit for the low stress ranges. The fatigue limit implies that low stress-range values lead to387

an infinite number of cycles, i.e. no damage is induced when no cycles are greater than the limit.388

Since the purpose of this study is to determine the remaining-fatigue-life distribution, a continuous389

Srhs-N curve is thus preferred, which is a strong but conservative assumption.390

The hot-spot stress-range histograms are compared to this regression model in order to obtain391

the number of cycles and compute the damage index using Eq. (9). The process is repeated ran-392

domly nSN = 1, 000 times until convergence of the damage-index distribution is achieved. This re-393

peated process is necessary since nSP = 1, 000 samples of stress-range histograms are insufficient394

to capture the Srhs-N curve uncertainty associated with the regression model. Finally, the remaining395

fatigue life of each candidate-model sample is calculated using Eq. (10), with Ryear = 1/52 since396

one week of traffic is simulated, in order to determine the distribution of RFLj for each critical397

joint. This distribution is composed of nSP × nSN = 1, 000, 000 samples. The convergence of the398

distribution is verified with a lower value of nSP in order to ensure the correctness of the repeated399

Srhs-N curve comparison process. Based on the distribution of RFLj , prediction thresholds are400

determined using a target reliability φp = 0.95. Since the identification reliability is φd = 0.95, the401

probability of having the true prediction value included between threshold bounds for each critical402

joint independently is at least φd · φp = 0.90.403

Figure 8 presents the remaining-fatigue-life predictions that are determined using the population-404

based prognosis methodology for the four critical joints (see Figure 5). A second axis represents405
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the results in term of equivalent number of trucks crossing the bridge in both directions during406

life time. This figure compares predictions made with the initial population of model instances407

(IMS), the candidate model set (CMS) and a design model that is composed of pinned-truss con-408

nections without expansion joints and design values for Young’s moduli of steel (210 GPa) and409

concrete (35 GPa). The design-model remaining fatigue life is calculated using prescriptions of410

Zhao et al. (2000) for the internal-force determination and the same random process for traffic and411

remaining-fatigue-life computation as for IMS and CMS predictions. For the CMS predictions,412

the value displayed in Figure 8 is the lower bound of the confidence intervals including 95% of the413

probability distribution. This value is important since it expresses the lowest acceptable value for414

the remaining-fatigue-life prediction. Uncertainty reduction between IMS and CMS predictions is415

computed based on the percentage of reduction between IMS and CMS ranges defined as the dif-416

ference of upper and lower prediction thresholds. The improvement ratio is obtained by comparing417

the design-model prediction and the CMS lower threshold. The RFL values that are found are very418

high and would be reduced with higher traffic loads. However, this allows for relative comparison419

of design-model prediction and CMS predictions. Note that since a single slope Srhs-N curve re-420

sistance model is used, it is expected that many model instances would lead to an infinite life using421

a fatigue limit.422

These results reveal an uncertainty reduction of up to 57% of the reserve-capacity predictions423

for joint 1-south and joint 2-north. In addition, when compared with the design-model predictions,424

the candidate-model-prediction lower bounds depict an improvement of remaining fatigue life up425

to 170% for joint 2-south. This means that the use of data interpretation combined with an en-426

hanced finite-element analysis lead to less conservative estimates of the fatigue reserve capacity.427

This observation was also made by Pasquier et al. (2014). In addition, this second study of the428

Aarwangen Bridge confirms the good condition of the four tubular joints, whose reserve capacity429

against fatigue failure is much longer than the bridge service life.430
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Relative importance of uncertainty sources431

The relative importance is determined using the response-surface method. Sources such as432

parameter uncertainty, modeling uncertainty, traffic uncertainty and Srhs-N curve uncertainty are433

varied individually through the Monte-Carlo process while having the other sources constant in434

order to determine the distribution of Xi (Eq. 11). This type of sensitivity analysis is local, i.e.435

it accounts for individual parameter variability and its effect on the model response. Then, using436

the same random samples, all sources are varied to determine Yi. Finally, the relative importance437

is obtained as presented in Figure 9. This bar diagram describes the relative importance of each438

uncertainty source on the remaining fatigue life for the four critical joints before data interpretation439

is undertaken. The traffic uncertainty is the main uncertainty source related to the reserve fatigue440

capacity, with 60 to 78% of relative importance between the joints. The second source is the441

parameter uncertainty, with 18 to 38% influence depending on the joints. Modeling uncertainty (see442

Table 1) and uncertainty associated with Srhs-N curve regression model have very low influences443

on remaining-fatigue-life predictions.444

The parameter-uncertainty relative importance is composed of the relative importance of indi-445

vidual model parameters θ. Figure 10 displays their relative importance on the remaining-fatigue-446

life predictions. The stiffness of the southern expansion joint and the rotational stiffness of truss447

connections are shown to be the most influential depending on the critical joint location. The448

southern expansion joint has more importance than the northern expansion joint since the four crit-449

ical joints are located on the bridge southern span. In addition, the material Young’s moduli have450

a minor influence on predictions, particularly the steel Young’s modulus that has the lowest influ-451

ence. This shows that modeling assumptions associated with boundary conditions and connection452

stiffnesses are important for the accuracy of fatigue assessments. These structural components are453

usually the main sources of systematic errors in the modeling of complex structures such as the454

Aarwangen Bridge. Therefore, special care is required when modeling such components.455

The comparison of uncertainty source importance is also carried out after data interpretation456

as shown in Figure 11. In this case, model falsification impacts only the parameter uncertainty457
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that is greatly reduced as presented already in Figure 8. Here, the relative importance of param-458

eter uncertainty is decreased to the level of modeling uncertainty and Srhs-N curve uncertainty.459

Consequently, traffic uncertainty has the dominant influence.460

In Figures 9 and 11, the uncertainties associated with the traffic model have a high influence on461

remaining-fatigue-life values. This is due to the large variability of truck weights in the simulated462

traffic, particularly the part of trucks with lower weight, that lead to large variability in the number463

of stress ranges and, subsequently, to large variability in remaining fatigue life. Such light-truck464

traffic is not of main concern since the most important value is the lower bound of the remaining-465

fatigue-life prediction. However, traffic uncertainty could be reduced by using more accurate WIM466

data during a longer period. Furthermore, this would allow for the consideration of traffic increase467

(weights and volume) over time, which is a parameter that is not taken into account in this study.468

The Aarwangen Bridge study also shows that the uncertainty associated with fatigue models is not469

significant when including the traffic and model-parameter uncertainty.470

DISCUSSION471

The study of the Aarwangen Bridge using the population-based prognosis methodology reveals472

satisfactory fatigue resistance of the four critical joints. Although a constant traffic scenario is473

assumed, a traffic increase could be taken into account in order to consider a heavy-vehicle loading474

increase. Since traffic evolution is unknown, this uncertainty could be taken into account in the475

methodology, and this would increase the uncertainty related to remaining-fatigue-life predictions.476

This uncertainty increase may also be reduced by investing further in the determination of real477

traffic on bridges for longer periods.478

The four joints under study would have a sufficient reserve capacity using design-model predic-479

tions. Considering the design service life of 70 years (based on SIA261 Code (2003)), predicting480

either 400 years or 1, 200 years has the same impact on decision making related to retrofitting481

these joints. In practice, the fatigue assessment of an existing bridge starts by using conserva-482

tive and simplified models prior to more advanced evaluations (see Figure 12). Population-based483

prognoses become beneficial when design-model predictions are below the required service lives484
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and imply intervention. In such situations, model-based data interpretation provide a more so-485

phisticated approach for refining fatigue assessment. First, data interpretation is combined with486

traffic-load model and S-N curve from codes as it was proposed for the Aarwangen Bridge in487

Pasquier et al. (2014). If performance evaluations lead to intervention necessity, traffic-load mod-488

els based on WIM data and advanced fatigue models are used to further increase the refinement of489

the fatigue assessment. If the performance is still not satisfactory, interventions are unavoidable.490

Based on this framework, improvements of 170% in the remaining-fatigue-life prediction, as this491

is determined for the Aarwangen Bridge, compared with design-model predictions that would be492

below the required service lives, would be economically and environmentally significant. Note493

that the process presented in Figure 12 is purposely compatible with AASHTO (2008) that recom-494

mends progressive levels of sophistication including advanced analysis, WIM study and variability495

of fatigue resistance.496

Sensitivity analysis shows that traffic uncertainty and model-parameter uncertainty are the most497

important. It should be noted that the extent of traffic uncertainty is not high enough to overwhelm498

the model-parameter uncertainty. Due to the reduction of uncertainty associated with the physical499

parameters using data interpretation, a significant reduction in remaining-fatigue-life predictions500

is observed. In addition, the uncertainty associated with structural components such as boundary501

conditions and connection stiffnesses is important when evaluating the fatigue reserve capacity.502

Special care is thus required when modeling such components. In addition, uncertainties asso-503

ciated with the hot-spot method, including the determination of SCF factors (Table 3) and the504

thickness correction (Eq. 12), are not explicitly included. If one has the possibility to estimate505

them, these uncertainties can be accommodated by the methodology. The approach recommended506

by Schumacher et al. (2003) was preferred over the original proposed by Gurney (1977). Note that507

the uncertainty related to Eq. (12) is included implicitly in Srhs-N curve definition.508

This methodology is not intended to be more accurate than direct field observations and specific509

modeling of the joints to determine the remaining fatigue life. However, the number of joints,510

especially the number of hot-spot locations, that can be monitored and modeled are limited in511
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practice. In this context, physics-based models are required to predict stresses and fatigue behavior512

at unmeasured locations. Populations of candidate models are less conservative than current design513

models and this paper demonstrates that such populations can be accommodated with advanced514

traffic-load and fatigue-damage models. Nevertheless, future work may include comparison of the515

predictions with field observations in order to evaluate the accuracy of the methodology.516

This methodology is adaptable for other hot-spot locations and other types of joints and also517

for studying fatigue-strength globally. Extraction of internal forces from the finite-element model518

at more locations for influence-line calculations would not lead to additional computing time.519

Conversely, traffic simulations would be more time consuming with the increase in the number520

of joints. However, since the algorithm has a linear computational complexity, this task may be521

computationally feasible using parallel computing. In addition, another development would be522

the inversion of this methodology into a measurement-system design approach that would deter-523

mine optimal measurement locations either maximizing the lower bound of remaining-fatigue-life524

predictions or minimizing uncertainty related to remaining-fatigue-life predictions.525

CONCLUSION526

This paper presents an enhanced methodology for improving remaining-fatigue-life evaluations527

of existing bridges using data interpretation, traffic simulations and hot-spot fatigue evaluations528

that extends work from Pasquier et al. (2014). A full-scale bridge study is carried out to illus-529

trate the benefits of this methodology and the relative influence of uncertainties associated with530

remaining-fatigue-life predictions. The following conclusions are made:531

• The population-based prognosis reduces uncertainty associated with the fatigue reserve532

capacity evaluation, and provides less conservative estimations of remaining-fatigue-life533

predictions than standard design procedures. Furthermore the methodology proposed in534

this paper is less conservative than that proposed by Pasquier et al. (2014).535

• This methodology allows for the propagation of uncertainty associated with remaining-536

fatigue-life prognosis (finite-element, traffic and fatigue damage) and thus provides support537
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for structural management decisions related to retrofit, repair and replacement.538

• Traffic models and structural model parameters are the most important sources of uncer-539

tainties for predicting the remaining fatigue life of K-joint tubular structures. While fatigue540

life might be influenced by other uncertainties, such as those associated with weld geome-541

try and residual stresses, these aspects are difficult to quantify and control. The use of the542

Srhs-N curve for hollow sections along with its thickness correction in Eq. 12 is assumed543

to provide a conservative bound for these effects.544
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Zhou, Y. (2006). “Assessment of bridge remaining fatigue life through field strain measurement.” Journal of Bridge640

Engineering, 11(6), 737–744.641

26



Table 1. Sources and probability density functions of modeling uncertainties in-
volved in influence-line prediction

Uncertainty source Unit PDF Mean/Min STD/Max

Model simplifications and FEM % Uniform 0 5
Additional uncertainty % Uniform -1 1

Mesh refinement % Uniform -2 0
Influence-line interpolation error % - -0.36a 1.6a

∆v Poisson’s ratio of concrete - Gaussian 0.19 0.025
∆t1 steel profile thickness % Uniform -10 10
∆t2 steel profile thickness % Uniform -12.5 12.5
∆D1 steel profile diameter % Uniform -1 1
∆D2 steel profile diameter % Uniform -1 1

∆t pavement thickness % Gaussian 0 2.5
aMinimum and maximum values of error from x1 to x193 for Nch,s1.
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Table 2. Probability density functions of vehicle speeds and vehicle inter-arrival
time included in the traffic model

VS [km/h] VIT [sec]

West lane ∼ N (50.15, 5.95) ∼ Burr(132.56, 1.10, 1.21)a

East lane ∼ N (50.47, 6.66) ∼ Burr(154.60, 1.12, 1.13)a

aBurr distribution are defined by three parameters: Burr(α, c, k).
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Table 3. Values for the stress concentration factors SCF obtained according to
Schumacher et al. 2003

SCF Value [-]

SCF i,ax−br 0.975
SCF i,ipb1−br 0.52
SCF i,ipb2−br 0.61
SCF i,ax−ch 1.435
SCF i,ipb−ch 1.51
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Figure 1. Illustration of the calculation leading to the hot-spot stresses with the
variables involved for a single joint j
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Figure 2. Hot-spot location 1 on the critical joint
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Figure 3. Methodology flowchart (Reference to equation numbers are given in
parenthesis)
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Figure 4. (a) Aarwangen Bridge model cross-section and (b) general overview
[Reprinted from Pasquier et al. 2014]
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Figure 5. Critical truss joint locations under study, focused on hot spot 1 [Adapted
from Pasquier et al. 2014]
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Figure 6. Uncertain model parameters [Adapted from Pasquier et al. 2014]
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Figure 7. Combined parameter and modeling uncertainty associated with
influence-line calculation of Nch,s1 and Mch,s1 for the initial model set (IMS) and the
candidate model set (CMS)
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Figure 8. Comparison of remaining-fatigue-life predictions with the initial model
set (IMS), the candidate model set (CMS) and the design model for four critical
joints using the population-based prognosis methodology
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Figure 9. Relative importance of uncertainty sources on the remaining-fatigue-life
predictions without data interpretation (IMS) for the four critical joints
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Figure 10. Relative importance of model parameters θ on the remaining-fatigue-life
predictions for the four critical joints
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Figure 11. Relative importance of uncertainty sources on the remaining-fatigue-life
predictions with data interpretation (CMS) for the four critical joints
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Figure 12. Framework for the fatigue assessment of existing bridges
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