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t

Backscattered echoes

o (P

@

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Ultrafast Ultrasound Imaging

Principle

Ultrafast Ultrasound imaging
» Emission of one single plane wave (PW) or few steered PWs
» Can reach more than thousands frames per second
» Lower image quality than classical method

State of the art approaches
» Spatial based approaches: [Montaldo et al., 2009]
> Fourier based approaches: [Lu et al., 1997] [Garcia et al.,
2013] [Bernard et al., 2014]
Ultrasound Fourier slice Beamforming (UFSB) - General scheme

t k

x $i

Backscattered echoes Radial Fourier samples

o (P

()

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Ultrafast Ultrasound Imaging

Principle

Ultrafast Ultrasound imaging
» Emission of one single plane wave (PW) or few steered PWs
» Can reach more than thousands frames per second
» Lower image quality than classical method

State of the art approaches
» Spatial based approaches: [Montaldo et al., 2009]
> Fourier based approaches: [Lu et al., 1997] [Garcia et al.,
2013] [Bernard et al., 2014]
Ultrasound Fourier slice Beamforming (UFSB) - General scheme

t k
z

lil-posed problem

X & x

Backscattered echoes Radial Fourier samples Finalimage

o (P

()

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



QOutline

A sparse regularization approach to US imaging
The two pillars
The image reconstruction

- (P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

o0 (P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = ®r + n, with ® ill-posed

o0 (P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = ®r + n, with ® ill-posed
» 1y are the radial Fourier samples, 7 is the desired image, n is
the noise

» Measurement operator: ® is the 2D Non-Uniform Fourier
Transform

oo (P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = ®r + n, with ® ill-posed
» 1y are the radial Fourier samples, 7 is the desired image, n is
the noise

» Measurement operator: ® is the 2D Non-Uniform Fourier
Transform

US images are sparse in an appropriate model

oo (P

@

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = ®r + n, with ® ill-posed
» 1y are the radial Fourier samples, 7 is the desired image, n is
the noise

» Measurement operator: ® is the 2D Non-Uniform Fourier
Transform

US images are sparse in an appropriate model

» Several models already studied: Wavelet basis, Wave atoms
frame, Fourier basis

oo (P

@

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = ®r + n, with ® ill-posed

» 1y are the radial Fourier samples, 7 is the desired image, n is
the noise

» Measurement operator: ® is the 2D Non-Uniform Fourier
Transform

US images are sparse in an appropriate model

» Several models already studied: Wavelet basis, Wave atoms
frame, Fourier basis

» Sparsity averaging model (SARA) ¥ used: [Carrillo et al., 2012]

» Concatenation of wavelet basis: ¥ = ﬁ[\l/l, o U]
> In the study: ¢ = 8, Daubechies wavelet as mother function
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A sparse regularization approach to US imaging
The image reconstruction

Reconstruction problem

» The image is recovered by solving the inverse problem:

min |77, subject to ||y — ®F||s < €
reCN

» Non-linear but Convex problem

Reconstruction algorithm
» ADMM algorithm [Boyd et al., 2010]

» Golden section search to find the best value of ¢
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Experimental study
Protocol

Numerical simulations
» Based on Field Il software [Jensen, 1991]
> Contrast to Noise ratio (CNR)

Experimental data
» UlaOp ultrasound scanner with linear probe
» Spatial resolution
Comparisons
» Fourier based approaches: Lu, Garcia and Bernard

» Spatial based approaches: Montaldo
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Experimental study
Contrast

Contrast to Noise Ratio
» Measured from numerical simulations
» 2 x 2 cm phantom with high density of scatterers
» 8mm-diameter anechoic lesion centered inside the phantom
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Depth [mm]
Depth [mm]
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Lateral position [mm] Lateral position [mm] Number of PWs
(a) Classic (b) Sparse (c) CNR comparison
reconstruction reconstruction with compounding
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Experimental study
Spatial Resolution

Experimental data
» Using the UlaOp system with a linear probe (64 elements,
5MHz center frequency, 50MHz sampling frequency)
» Measured at different depths
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Experimental study
Spatial Resolution

Experimental data
» Using the UlaOp system with a linear probe (64 elements,
5MHz center frequency, 50MHz sampling frequency)

» Measured at different depths

Reconstruction results

(a) Classic reconstruction (b) Sparse reconstruction
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Experimental study
Spatial Resolution

Experimental data
» Using the UlaOp system with a linear probe (64 elements,

5MHz center frequency, 50MHz sampling frequency)
» Measured at different depths
Reconstruction results

S-UPSE Bmode: ras. lat, = 0.6 mm e

UFSB Bmode: res. lat. = 0.7 mm

T n F— 3 0 s

F— 3 2 a0 1 N 1
Laterat position (mm] Latarat position [mem]

(a) Classic reconstruction (b) Sparse reconstruction
Depth Lu Garcia UFSB Montaldo SUFSB
Axial Lateral Axial Lateral Axial Lateral Axial Lateral Axial Lateral
0.4mm | 0.6 mm | 0.3 mm | 0.6 mm

25mm [ Odmm | 0.7mm | 04 mm | 0.6 mm | 0.4 mm | 0.7 mm
07mm | 0.7mm | 0.7 mm | 0.7 mm | 0.5 mm | 0.6 mm

0.6 mm 1 mm

Bmm | 0.7mm | 0.7mm | 0.7 mm | 0.7 mm
45 mm | 0.6 mm 1 mm 0.6 mm 1 mm 06mm | 0.9 mm | 0.6 mm 1 mm

(c) Spatial resolution from UlaOp scanner
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ADMM algorithm

» The general problem we solve is the following one:

min f(Z) subject to h(y — Pz) =0, (1)
zeCV

» The ADMM algorithm is:

Input: k = 0, choose 20, 20, \O, w>0,v>0
1: repeat
2 2D = prox., (y — @zl — AW)

3 gD = Prox,,. s (.’B(t) — udH ()\(t) + Pz — y + z(tH)))
4 )\(t-‘rl) — A(t) + ﬂ (q)m(t-i-l) —y+ Z(t—f—l))
5. until A stopping criterion is met
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