A sparse regularization approach for ultrafast ultrasound imaging

Rafael Carrillo¹, **Adrien Besson**¹³, Miaomiao Zhang², Denis Friboulet², Yves Wiaux³, Jean-Philippe Thiran¹ and Olivier Bernard²

¹Signal Processing Laboratory (LTS5) École Polytechnique Fédérale de Lausanne, Switzerland

> ²CREATIS University of Lyon, France

³Institute of Sensors, Signals and Systems Heriot-Watt University, Scotland

IEEE International Ultrasonics Symposium, October 2015

Outline

Ultrafast Ultrasound Imaging

Principle

A sparse regularization approach to US imaging

The two pillars

The image reconstruction

Experimental study

Protocol

Contrast

Resolution

Conclusions and perspectives

Outline

Ultrafast Ultrasound Imaging Principle

A sparse regularization approach to US imaging

The two pillars

The image reconstruction

Experimental study

Protocol

Contrast

Resolution

Conclusions and perspectives

Ultrafast Ultrasound imaging

Ultrafast Ultrasound imaging

- ► Emission of one single plane wave (PW) or few steered PWs
 - ► Can reach more than thousands frames per second

Ultrafast Ultrasound imaging

- ► Emission of one single plane wave (PW) or few steered PWs
 - ► Can reach more than thousands frames per second
 - ▶ Lower image quality than classical method

Ultrafast Ultrasound imaging

- Emission of one single plane wave (PW) or few steered PWs
 - ▶ Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

Ultrafast Ultrasound imaging

- Emission of one single plane wave (PW) or few steered PWs
 - ► Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

► Spatial based approaches: [Montaldo et al., 2009]

Ultrafast Ultrasound imaging

- Emission of one single plane wave (PW) or few steered PWs
 - ► Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

- ► Spatial based approaches: [Montaldo et al., 2009]
- ► Fourier based approaches: [Lu et al., 1997] [Garcia et al., 2013] [Bernard et al., 2014]

Ultrafast Ultrasound imaging

- ► Emission of one single plane wave (PW) or few steered PWs
 - ▶ Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

- ► Spatial based approaches: [Montaldo et al., 2009]
- Fourier based approaches: [Lu et al., 1997] [Garcia et al., 2013] [Bernard et al., 2014]

Ultrasound Fourier slice Beamforming (UFSB) - General scheme

Backscattered echoes

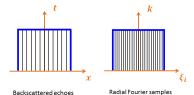
Ultrafast Ultrasound imaging

- ▶ Emission of one single plane wave (PW) or few steered PWs
 - Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

- ► Spatial based approaches: [Montaldo et al., 2009]
- Fourier based approaches: [Lu et al., 1997] [Garcia et al., 2013] [Bernard et al., 2014]

Ultrasound Fourier slice Beamforming (UFSB) - General scheme



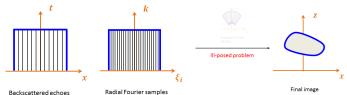
Ultrafast Ultrasound imaging

- ▶ Emission of one single plane wave (PW) or few steered PWs
 - Can reach more than thousands frames per second
 - Lower image quality than classical method

State of the art approaches

- ► Spatial based approaches: [Montaldo et al., 2009]
- Fourier based approaches: [Lu et al., 1997] [Garcia et al., 2013] [Bernard et al., 2014]

Ultrasound Fourier slice Beamforming (UFSB) - General scheme



Outline

Ultrafast Ultrasound Imaging
Principle

A sparse regularization approach to US imaging

The two pillars

The image reconstruction

Experimental study

Protoco

Contrast

Resolution

Conclusions and perspectives

UFSB poses an inverse problem

A sparse regularization approach to US imaging $_{\mbox{\scriptsize The two pillars}}$

UFSB poses an inverse problem

$$oldsymbol{y} = \Phi oldsymbol{r} + oldsymbol{n}, \ ext{with} \ \Phi \ ext{ill-posed}$$

UFSB poses an inverse problem

$$y = \Phi r + n$$
, with Φ ill-posed

- lack y are the radial Fourier samples, r is the desired image, n is the noise
- lacktriangle Measurement operator: Φ is the 2D Non-Uniform Fourier Transform

UFSB poses an inverse problem

$$oldsymbol{y} = \Phi oldsymbol{r} + oldsymbol{n}, ext{ with } \Phi ext{ ill-posed}$$

- $m{y}$ are the radial Fourier samples, $m{r}$ is the desired image, $m{n}$ is the noise
- lacktriangle Measurement operator: Φ is the 2D Non-Uniform Fourier Transform

US images are sparse in an appropriate model

UFSB poses an inverse problem

$$oldsymbol{y} = \Phi oldsymbol{r} + oldsymbol{n}, ext{ with } \Phi ext{ ill-posed}$$

- $m{y}$ are the radial Fourier samples, $m{r}$ is the desired image, $m{n}$ is the noise
- lacktriangle Measurement operator: Φ is the 2D Non-Uniform Fourier Transform

US images are sparse in an appropriate model

 Several models already studied: Wavelet basis, Wave atoms frame, Fourier basis

UFSB poses an inverse problem

$$oldsymbol{y} = \Phi oldsymbol{r} + oldsymbol{n}, ext{ with } \Phi ext{ ill-posed}$$

- $m{y}$ are the radial Fourier samples, $m{r}$ is the desired image, $m{n}$ is the noise
- lacktriangle Measurement operator: Φ is the 2D Non-Uniform Fourier Transform

US images are sparse in an appropriate model

- Several models already studied: Wavelet basis, Wave atoms frame, Fourier basis
- ▶ Sparsity averaging model (SARA) Ψ used: [Carrillo et al., 2012]
 - Concatenation of wavelet basis: $\Psi = \frac{1}{\sqrt{q}}[\Psi_1,...,\Psi_q]$
 - In the study: q = 8, Daubechies wavelet as mother function

Reconstruction problem

Reconstruction problem

▶ The image is recovered by solving the inverse problem:

$$\min_{ar{m{r}}\in\mathbb{C}^N}\|\Psi^Har{m{r}}\|_1$$
 subject to $\|m{y}-\Phiar{m{r}}\|_2\leq\epsilon$

Non-linear but Convex problem

Reconstruction problem

▶ The image is recovered by solving the inverse problem:

$$\min_{ar{m{r}}\in\mathbb{C}^N}\|\Psi^Har{m{r}}\|_1$$
 subject to $\|m{y}-\Phiar{m{r}}\|_2\leq\epsilon$

Non-linear but Convex problem

Reconstruction algorithm

Reconstruction problem

▶ The image is recovered by solving the inverse problem:

$$\min_{ar{m{r}} \in \mathbb{C}^N} \| \Psi^H ar{m{r}} \|_1$$
 subject to $\| m{y} - \Phi ar{m{r}} \|_2 \leq \epsilon$

► Non-linear but Convex problem

Reconstruction algorithm

- ► ADMM algorithm [Boyd et al., 2010]
- lacktriangle Golden section search to find the best value of ϵ

Outline

Ultrafast Ultrasound Imaging Principle

A sparse regularization approach to US imaging

The two pillars
The image reconstruction

Experimental study

Protocol

Contrast

Resolution

Conclusions and perspectives

Experimental study Protocol

Numerical simulations

- ▶ Based on Field II software [Jensen, 1991]
- Contrast to Noise ratio (CNR)

Experimental data

- UlaOp ultrasound scanner with linear probe
- Spatial resolution

Comparisons

- ► Fourier based approaches: Lu, Garcia and Bernard
- Spatial based approaches: Montaldo

Contrast

Contrast to Noise Ratio

- Measured from numerical simulations
 - ▶ 2 x 2 cm phantom with high density of scatterers
 - ▶ 8mm-diameter anechoic lesion centered inside the phantom

Contrast

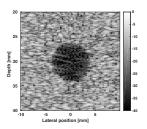
Contrast to Noise Ratio

- Measured from numerical simulations
 - ▶ 2 x 2 cm phantom with high density of scatterers
 - ▶ 8mm-diameter anechoic lesion centered inside the phantom

Contrast

Contrast to Noise Ratio

- Measured from numerical simulations
 - ▶ 2 x 2 cm phantom with high density of scatterers
 - ▶ 8mm-diameter anechoic lesion centered inside the phantom

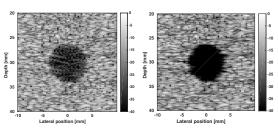


(a) Classic reconstruction

Contrast

Contrast to Noise Ratio

- Measured from numerical simulations
 - ▶ 2 x 2 cm phantom with high density of scatterers
 - ▶ 8mm-diameter anechoic lesion centered inside the phantom



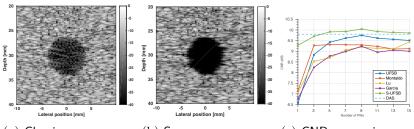
(a) Classic reconstruction

(b) Sparse reconstruction

Experimental study Contrast

Contrast to Noise Ratio

- Measured from numerical simulations
 - ▶ 2 x 2 cm phantom with high density of scatterers
 - ▶ 8mm-diameter anechoic lesion centered inside the phantom



(a) Classic reconstruction

(b) Sparse reconstruction

(c) CNR comparison with compounding

Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

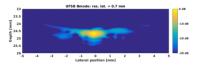
Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

Reconstruction results

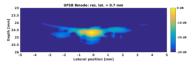


(a) Classic reconstruction

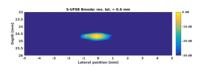
Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

Reconstruction results



(a) Classic reconstruction

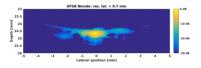


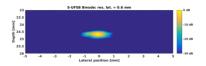
(b) Sparse reconstruction

Experimental data

- Using the UlaOp system with a linear probe (64 elements, 5MHz center frequency, 50MHz sampling frequency)
- Measured at different depths

Reconstruction results





(a) Classic reconstruction

(b) Sparse reconstruction

1	Depth			Garcia		UFSB		Montaldo		S-UFSB	
	•	Axial	Lateral	Axial	Lateral	Axial	Lateral	Axial	Lateral	Axial	Lateral
1	25 mm	0.4 mm	0.7 mm	0.4 mm	0.6 mm	0.4 mm	0.7 mm	0.4 mm	0.6 mm	0.3 mm	0.6 mm
	35 mm	0.7 mm	0.7 mm	0.7 mm	0.7 mm	0.7 mm	0.7 mm	0.7 mm	0.7 mm	0.5 mm	0.6 mm
	45 mm	0.6 mm	1 mm	0.6 mm	1 mm	0.6 mm	0.9 mm	0.6 mm	1 mm	0.6 mm	1 mm

(c) Spatial resolution from UlaOp scanner

Outline

Ultrafast Ultrasound Imaging

Principle

A sparse regularization approach to US imaging

The two pillars

The image reconstruction

Experimental study

Protocol

Contrast

Resolution

Conclusions and perspectives

New reconstruction method

New reconstruction method

► Exploits sparsity of US images to solve the inverse problem

New reconstruction method

- ► Exploits sparsity of US images to solve the inverse problem
- Yields better image quality

New reconstruction method

- ► Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

New reconstruction method

- ► Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

New reconstruction method

- ► Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

Perspectives

► Extension to all the Fourier methods (Garcia and Lu)

New reconstruction method

- ► Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

- Extension to all the Fourier methods (Garcia and Lu)
- Acceleration and optimization of the current algorithms (GPU implementation)

New reconstruction method

- Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

- ► Extension to all the Fourier methods (Garcia and Lu)
- Acceleration and optimization of the current algorithms (GPU implementation)
- Extension of the framework to diverging waves

New reconstruction method

- Exploits sparsity of US images to solve the inverse problem
- Yields better image quality
- ► High computational load at reconstruction

- Extension to all the Fourier methods (Garcia and Lu)
- Acceleration and optimization of the current algorithms (GPU implementation)
- Extension of the framework to diverging waves

THANK YOU FOR YOUR ATTENTION!

ADMM algorithm

▶ The general problem we solve is the following one:

$$\min_{\bar{\bar{x}} \in \mathbb{C}^{N}} f(\bar{x}) \text{ subject to } h(y - \Phi \bar{x}) = 0, \tag{1}$$

The ADMM algorithm is:

Input: k = 0, choose x^0 , z^0 , λ^0 , $\mu > 0$, $\gamma > 0$

1: repeat

2:
$$\mathbf{z}^{(t+1)} = \operatorname{prox}_{\gamma h} (\mathbf{y} - \Phi \mathbf{x}^{(t)} - \boldsymbol{\lambda}^{(t)})$$

3:
$$oldsymbol{x}^{(t+1)} = ext{prox}_{\mu\gamma f} \left(oldsymbol{x}^{(t)} - \mu \Phi^H \left(oldsymbol{\lambda}^{(t)} + \Phi oldsymbol{x}^{(t)} - oldsymbol{y} + oldsymbol{z}^{(t+1)}
ight)
ight)$$

4:
$$\boldsymbol{\lambda}^{(t+1)} = \boldsymbol{\lambda}^{(t)} + \beta \left(\Phi \boldsymbol{x}^{(t+1)} - \boldsymbol{y} + \boldsymbol{z}^{(t+1)} \right)$$

5: until A stopping criterion is met

