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Ultrafast Ultrasound Imaging
Principle

Ultrafast Ultrasound imaging

I Emission of one single plane wave (PW) or few steered PWs
I Can reach more than thousands frames per second
I Lower image quality than classical method

State of the art approaches
I Spatial based approaches: [Montaldo et al., 2009]
I Fourier based approaches: [Lu et al., 1997] [Garcia et al.,

2013] [Bernard et al., 2014]
Ultrasound Fourier slice Beamforming (UFSB) - General scheme
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A sparse regularization approach to US imaging
The two pillars

UFSB poses an inverse problem

y = Φr + n, with Φ ill-posed
I y are the radial Fourier samples, r is the desired image, n is

the noise
I Measurement operator: Φ is the 2D Non-Uniform Fourier

Transform
US images are sparse in an appropriate model

I Several models already studied: Wavelet basis, Wave atoms
frame, Fourier basis

I Sparsity averaging model (SARA) Ψ used: [Carrillo et al., 2012]
I Concatenation of wavelet basis: Ψ = 1√q [Ψ1, ...,Ψq]
I In the study: q = 8, Daubechies wavelet as mother function
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A sparse regularization approach to US imaging
The image reconstruction

Reconstruction problem

I The image is recovered by solving the inverse problem:

min
r̄∈CN

‖ΨH r̄‖1 subject to ‖y − Φr̄‖2 ≤ ε

I Non-linear but Convex problem
Reconstruction algorithm

I ADMM algorithm [Boyd et al., 2010]
I Golden section search to find the best value of ε
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Experimental study
Protocol

Numerical simulations
I Based on Field II software [Jensen, 1991]
I Contrast to Noise ratio (CNR)

Experimental data
I UlaOp ultrasound scanner with linear probe
I Spatial resolution

Comparisons
I Fourier based approaches: Lu, Garcia and Bernard
I Spatial based approaches: Montaldo
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Experimental study
Contrast

Contrast to Noise Ratio
I Measured from numerical simulations

I 2 x 2 cm phantom with high density of scatterers
I 8mm-diameter anechoic lesion centered inside the phantom

Reconstruction results
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Experimental study
Spatial Resolution

Experimental data
I Using the UlaOp system with a linear probe (64 elements,

5MHz center frequency, 50MHz sampling frequency)
I Measured at different depths

Reconstruction results

(a) Classic reconstruction (b) Sparse reconstruction

(c) Spatial resolution from UlaOp scanner
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Conclusions and perspectives

New reconstruction method

I Exploits sparsity of US images to solve the inverse problem
I Yields better image quality
I High computational load at reconstruction

Perspectives
I Extension to all the Fourier methods (Garcia and Lu)
I Acceleration and optimization of the current algorithms (GPU

implementation)
I Extension of the framework to diverging waves
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ADMM algorithm

I The general problem we solve is the following one:

min
¯̄x∈CN

f (x̄) subject to h (y − Φx̄) = 0, (1)

I The ADMM algorithm is:

Input: k = 0, choose x0, z0, λ0, µ > 0, γ > 0
1: repeat
2: z(t+1) = proxγh(y − Φx(t) − λ(t))
3: x(t+1) = proxµγf

(
x(t) − µΦH

(
λ(t) + Φx(t) − y + z(t+1)

))
4: λ(t+1) = λ(t) + β

(
Φx(t+1) − y + z(t+1)

)
5: until A stopping criterion is met
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