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Abstract—We have recently developed a conservative finite
volume particle method (FVPM) that can efficiently model 2-D
and 3-D fluid flow with free-surfaces and complex geometries.
Tn this paper we present an extension of the method to fluid-
structure interaction. A new boundary condition enforcement is
presented in which the hydrodynamic forces required in solid
equations are computed directly. For validation, we study the
2-D motion of fluid through an elastic gate and compare the
displacement of the gate with experimental and numerical data.
We observe a very good agreement between FVPM and other
numerical and experimental data.

I. INTRODUCTION

The Finite Volume Particle Method (FVPM) is a particle-
based method introduced by Hietel [1]. This method includes
many of the desirable features of mesh-based finite volume
methods. FVPM profits from particle interaction vectors to
weight conservative fluxes exchanged between particles. In
this methods, computational nodes are usually moving with
material velocity which is compatible with the Lagrangian
form of the motion equations. FVPM has some features of
SPH but unlike SPH, it is locally conservative regardless of
any variation in particle smoothing length. Quinlan and Nestor
[2] proposed a method to compute the interaction vectors for
2-D cases exactly. Following their work, Jahanbakhsh [3] de-
veloped an exact FVPM applicable for 3-D cases. This method
features the rectangular top-hat kernel and is implemented in
SPHEROS software [4].

In this work, we employ weakly compressible flow equa-
tions to study viscous free-surface flows. To capture shock
waves and discontinuities, AUSM™ [5] is used to discretize the
inviscid fluxes. Besides, the particles distribution is controlled
by using particle velocity correction [6]. We also use linear
elastic equation to compute solid material motion.

The volume-based formulation of FVPM intrinsically intro-
duces the boundary conditions in the equations. Nestor et al.
[6] enforce the boundary conditions by imposing appropriate
constraints on the boundary fluxes. Their method is efficient,
but can’t be used for particles which are exposed to multi-
ple boundary conditions e.g. free-surface and wall boundary.
Recently, Quinlan et al. [7] computed the surface integral of
the shape functions over the boundary. In that way, one can
compute the interaction vector corresponding to each boundary
condition individually. This method is precise and is applicable
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for complex boundaries. However, for 3-D cases, it induces
costly geometrical operations which impact the performance
of the method considerably. In this study, we introduce a
new method to enforce the no-slip boundary condition by
using fictitious boundary particles. In this method, a layer
of fictitious particles are overlaid on the wall to enforce the
boundary conditions. These fictitious boundary particles are
governed by the fluid or solid equations except that their
velocity is imposed. Using this approach, the interaction forces
between fluid and solid phases are directly computed.

This paper is organized as follows. Section 2 describes
the governing equations of weakly-compressible fluid flow
and linear elastic solid material. In section 3, the FVPM
formulation with rectangular top-hat kernel and exact compu-
tation of the interaction vector are summarized. The boundary
conditions enforcement is presented section 4. Section 5
describes the implementation of the method, including invis-
cid flux computation, stresses tensor, smoothing mass flux,
velocity correction. Finally, the validation of the new method
is presented in section 6. For this purpose, fluid flow through
an elastic gate is studied and the results are compared with
numerical and experimental data.

II. GOVERNING EQUATIONS

A. Elastic material

The elastic motion is governed by mass and linear momen-
tum conservation equations

dp

a - VC
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dC
PE:V‘UJthJFPQ 2
where % denotes substantial time derivative, p is the density,
C is the velocity vector, g is the gravitational acceleration,
o is the Cauchy’s stress tensor and f, is the hydrodynamic
forces exerted by fluid flow.
The rate of Cauchy’s stress tensor, o, is described by the
Jaumann rate of stress, oV
c6=0"4+0 - wH+w-o
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where w is the spin tensor defined as
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For isotropic linear elastic material, Hookes’s law reads

o’ = Kéyor + 2Gédev 4)

where K and G denote the bulk and shear modulus, respec-
tively and €,,; and €4, are defined as

1
évol = gtr (E) I,
E"-dev =€ — 5.7110l (6)
in which, the deformation rate tensor, €, reads
c+(ve)”

€= 7V +( ) 7

2

Substituting (5) into (3) yields
6 =2G¢+Kéypy+0-w+w-o. ®)

B. Fluid flow

Similar to the elastic material, the equations of motion for
isothermal and weakly compressible flows are derived from
the mass (1) and linear momentum conservation

ac

P (&)

where p is the static pressure and s is the deviatoric stress
tensor. For Newtonian fluids, s reads

s =2 (e - étr (é)I)

where p is the dynamic viscosity. To close the system of
equations (1) and (9), an equation of state is required. The
following equation of state is considered for water [8]

()

where a is the speed of sound, p, is the reference density
and 6 is a constant coefficient. Here, we set 6 7. In
weakly compressible flow simulations, the speed of sound a is
considered at least ten times greater than the maximum fluid
velocity to reduce the computational cost.

For convenience, we write the mass and momentum con-
servation equations in the form of a PDE arising from the
conservation law

=V-(s—pI)+pg
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where U = Z c represents the conserved variables

and F' represents the flux functions. For fluid and elas-
tic equations, the correspondinf flux functions are F

pC and F = PC

2CC — s+ pl oCC—o ) respectively.
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III. DISCRETIZATION
A. Finite Volume Particle Method

According to [3], the locally conservative form of FVPM
equations reads

d :

T (U:Vi) =32 Uijai; — Fij) - Ay

+ Uy, — Fy) - B;.

13)

where V; is the volume of i particle and U;; and F;; are
respectively the conserved variable and the flux at the interface
of two particles. Moreover,

A
@iy = (&5 Lij — @i - Tji) 0, (14)
J J J J Az] . Azj
Aj =Ty — Ty 15)
and
(16)

Bi:_ZAij
J

where &; is the velocity of i particle, which can be different
from C;, and I';; is the particles interaction integral which,
for an arbitrary kernel function W; = W(x — x;), reads

W, VW;
Ii;= / ~ 2
o (32 Wh)
For fluid flows, we use density to compute the pressure field
according to (11). To reach the particles density, as a part of
conserved variables U;, we have to find V;, the volume of i
particle. The volume equation is derived as a special case of
(13) using U =1 and F' = 0 and reads

dv;

dt

a7

ij - Ajj + @&, - B (18)
J

B. Rectangular top-hat kernel

For conventional bell-shaped kernels, the integral (17) is
difficult or impossible to exactly evaluate. The alternative
approach is to use quadrature rules which are approximate
and costly [1], [6]. The computational needs of this approach
have so far prevented the use of FVPM for 3-D applications.
Recently, Quinlan and Nestor [2] have used top-hat kernels
with circular supports for computing the integrals exactly
and efficiently in 2-D. However, their exact FVPM does not
readily generalize to 3-D and there is still no 3-D FVPM
implementation yet. In order to extend the method to 3-D,
Jahanbakhsh [3] used top-hat kernels with rectangular sup-
ports to compute the exact interaction vectors for 3-D case.
Each particle is represented as a rectangular parallelepiped
and any intersection results in a rectangular parallelepiped.
Using rectangular top-hat kernels induces simpler geometric
computations in comparison with spherical kernels and results
in an efficient and precise method for 3-D cases.

The rectangular top-hat kernel is defined as

W (&) = {1 @ — ;]| < b
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Fig. 1. Intersection volume of particles i and j is indicated by dashed line.
Q; M 88 is broken into 4 partitions. ¢, o~ and area vector S are shown
for a selected partition. The numbers inside the circles are the & value of each
zone.

Using (19), the supporting boundary of j™ particle, 99, is
split into m surfaces of constant kernel summation values and
we can write

where o and o~ denote the kernel summations outside and
inside of the 0f);, respectively and S denotes the surface
vector. Figure 1 depicts a representation of a 2-D system of
particles in which the intersection border for particles ¢ and j
is broken into 4 partitions and the values for o™ and o~ are
shown for a selected segment.

For the 3-D case, the intersection zone is a rectangular
parallelepiped whose facets are partitioned into rectangular
surfaces. Definitions and the formula for the interaction vector
do not differ from the 2-D case. However, special attention
has to be paid in the surface partitioning process due to the
complexity of 3-D geometries [3].
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IV. BOUNDARY CONDITIONS

To enforce the no-slip boundary condition for fluid flows,
we overlay a layer of boundary particles that fits to the solid
or elastic surfaces. These boundary particles artificially extend
the fluid flow domain and prevent the fluid particles from
crossing the boundaries. A schematic outline of the no-slip
wall boundary particles with rectangular support is shown in
Figure 2(a). Boundary particles are assumed like fluid. Their
density is initially set to the fluid density p,. These particles
move with the wall velocity and their mass and volume are
evolved according to the fluid governing equations (9) and (1).
Finally, knowing the boundary particles density, their pressure
is computed from the equation of state (11).

To enforce the displacement boundary condition for elastic
material, we can employ the same approach as used for fluid
flow no-slip wall boundary condition. In this case, elastic
boundary particles are governed by elastic equations (2) and
(1).

Both fluid and solid particles are exposed to the free-surface
boundary. For the free-surface, no boundary particles are used.
As shown in Figure 2(b), the free-surface is the union of
the particles surfaces which have no interaction with other
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Fig. 2. (a) Boundary particles are distributed over the no-slip wall, indicated

by dashed line. C; denotes the imposed velocity for particle 4. (b) Free surface
boundary is indicated by dashed line and B; denotes free-surface area vector
for particle .

particles. The boundary interaction vector, B;, represents the
area vector of the free-surface pointing outward. As discussed
by Quinlan and Nestor [2], since we compute the interaction
vectors exactly, B, vanishes for interior particles. Free-surface
is an impermeable boundary, meaning that the free-surface
particle ¢ obeys

(¢, —Cp)-B; =0 (21)

where index b denotes boundary values. Therefore, in (13),

the convection terms Z bgb c. ) appearing in F', are
b CpCp
canceled by Upx, = Z bg’ & . Finally, setting the
bCpTp

pressure and stresses to zero at the free-surface, the momentum
flux at the free-surface becomes zero

(Uyiy, — Fy) - B; = 0. (22)

To enforce the free-surface boundary condition in volume
equation (18), we define the free-surface velocity as that of
the particle. Therefore, we can write
av;
at

Zd}ij - A+ ;- By (23)
J

The fluid particles are exerting hydrodynamic forces to the
solid particles which are computed by

fi= Y (ol +si)- Ay

j€fluid

(24)

where p;; and s;; are found based on the proposed no-slip
wall boundary condition enforcement.

V. IMPLEMENTATION

In this study, we use the second-order explicit Runge-Kuta
scheme for time integration. For numerical stability, the time
step At is adapted as

With the FVPM, each particle interacts with its neighboring
particles. Thus, at the beginning of each time-step, all particles

i

25
a+|C;| (2

At = CFL x min(
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should identify their neighbors. Here, we employ incomplete-
octree neighbor search algorithm [3], which features both
efficiency and adaptivity.

To capture shocks and discontinuities in weakly-
compressible flows, Riemann solvers are widely used to
approximate the inviscid and pressure fluxes [9]. In this study,
we use AUSM™ to compute the inviscid and pressure fluxes
at the interface particles. This method is an approximate
Riemann solver, proposed by Liou [5], and can easily be
extended to different types of equations of states. Following
Nestor et al. [6], we employ the ALE-type extension of this
method, presented by Luo et al. [10].

For elastic material, the stress tensor o is stored at the
interface of particles and the Cauchy’s stress rate in (8) is
directly computed at this point. Therefore, we avoid double
summation gradient operators, which are prone to errors. To
compute the stress at the interface between ¢ and j, we need
the velocity gradients. Here, we use the weighted least squares
approach, i.e.

:| -1

i

where subscript k denotes the union of particles ¢ and j
neighbors, Vf is the weighted least squares gradient of an
arbitrary scalar field f at  and &; is the Gaussian function
defined as >

Therefore, the spin tensor (4) and deformation rate tensor (4)
are computed based on VC;.

In the fluid formulation, the pressure and velocity are
computed at the same computational node. In this case, the
coupling between velocity and pressure fields becomes weak
and checker-board oscillations are likely generated [11]. Fatehi
and Manzari [12] proposed a correction term for SPH method
which is added to the mass equation and filters out the
oscillations. We adapt this term to our formulation as

> Dy
k

E A:Ek(pk
k

%

Zk:qsk-,fk
%Aﬂ?kékfk

} (26)
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hi

& () = exp (

Vpi +Vp; =
in which, Vp; is computed according to
Di + Dj
> < 5 J) A;j+pB;
Vpi = Vi 29)

and Vp is computed at the interface of particles ¢ and j from
(26). Finally, R;; - A,;; is added to the right hand side of the
mass conservation equation (13).

The distribution of particles has a significant role in the
control of the discretization error. FVPM is an ALE method,
meaning that the particle velocity, &, can be prescribed arbi-
trarily. This feature, enables us to correct the particle velocity,
such that a more uniform particle distribution is obtained.
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Following [6], we set the fluid particle velocity equal to the
flow velocity C;, corrected with a correction vector :c;

= a3

where C°M" s the characteristic velocity of the problem, Q’Z—j
is the intersection of the bisected volumes of particles ¢ and
j, and X is the adjusting parameter which is set to 0.5 in this
study.

The correction vector, &, is responsible for making the
distribution of particles uniform and preventing the formation
of clusters. To ensure the impermeability condition for the
free-surface boundary, (21), the correction term is changed for
free-surface particles. Therefore, the particle velocity reads

|

where B; is given in (16) and n; is the outward pointing unit
vector at the free-surface

hi €
M 30
('char |AU | Tij (30)

C;+1

t— (&) -m;)m; for free-surface, |B;|# 0,
C;+1

€2V

otherwise

|Bi|’
VI. VALIDATION

(32)

n;

In order to validate the proposed FVPM, we present an
elastic gate test case to address key aspects of the method.
We quantify the convergence rate of the method and verify
the accuracy of the FVPM solution in 2-D computations by
comparing with experimental and other numerical studies.

The experiment for this test case was conducted by Antoci
et al. [13]. A schematic outline of the test case is depicted in
Figure 3. The fluid tank is filled with water which is initially
at rest. There is an elastic gate made of rubber on side of
the tank. The elastic gate is fixed to the tank wall at the
top and is free at the bottom. During the experiment, the
elastic gate becomes open due to the hydrodynamic forces
and the water flows through the gate. After a while, reducing
the head of the water in the tank causes the elastic gate to
return to the initial position. The displacement of the gate is a
function of water hydrodynamic forces and the rubber elastic
response. Therefore, the gate displacement time history can
be used to verify the accuracy of the numerical method for
fluid-structure interactions as well as the elastic behavior of
the elastic material.

This test case was numerically studied by Antoci et al. [13],
Lobovsky and Groenenboom [14] and Yang et al. [15]. The
first two studies were performed using SPH-SPH method while
the later one is done by a coupled SPH-FEM method.

The dimensions as well as the properties of the water and
the rubber, used in this case are summarized as:

The tank dimensions are B = 0.1 and H = 0.14 m.
Elastic gate thickness is S = 0.005 m and its height is

L =0.079 m.
o Water density and viscosity are p = 1000 kg m™—> and
w=0.001 Pas.

1

o Water sound speed is set to a = 10 m s~
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The rubber’s Poisson’s ratio and density are v = 0.4 and
ps = 1100 kg m™3.
The gravity acceleration is g = (0,—9.81) m s—2

Y

—
F o

X

Fig. 3. Schematic outline of the elastic gate test case.

The interaction between the water and the elastic gate is
enforced by the no-slip wall boundary condition. The no-slip
boundary condition is also assumed for the water and the
solid walls. The fluid, elastic and solid particles are uniformly
distributed in the X and Y directions with the particle spacing
of 4. The smoothing length of all particles is set to h = 0.75x 4
and the time step is adapted with respect to CFL = 0.5.

As reported by Antoci [16], the experimental stress-strain
curve for the rubber shows a nonlinear behavior (see Figure
4). However, due to the linear elastic hypothesis used in our
formulation, we perform two sets of linear elastic simulations
corresponding to two elastic modulus Ey and E,,4, shown
in Figure 4. The time histories of the X (solid line) and Y
(dashed line) displacement of the elastic gate are shown in
Figure 5 and 6 for £ = Ey and E = E,,,4, respectively. As it
is visible, the solutions are converged to the finest resolution
solution. Figure 7, depicts the Lo-norm of the X displacement
error as a function of particle spacing. The errors are computed
with respect to the finest solution.

The displacement time histories of the elastic gate for
E = 10 MPa and E = 4 MPa are shown in Figure 8 and
9, respectively. In Figure 8, the FVPM results are compared
with the experimental data of Antoci et al. [13] and the linear
elastic (£ = 10 MPa) 2-D SPH-FEM results, studied by Yang
et al. [15]. As it is visible, the FVPM results are in a very
good agreement with the SPH-FEM solutions.

In Figure 8, the FVPM results are compared with the
experiment [13] and the 2-D SPH-SPH results computed by
Antoci et al. [13] and Lobovsky and Groenenboom [14]. In
both [13] and [14], a linear elastic model with £ ~ 10 MPa
has been employed. For this case, a good agreement between
FVPM and experimental data is observed.
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Fig. 4. Experimental stress-strain curve from [16].
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m] | X,V — 0=15/9
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Fig. 5. Time history of the X (solid line) and Y (dashed line) displacement
for the elastic gate with & = 10 MPa.

In Figure 8 which £ = 10 MPa, despite the very good
agreement between SPH-FEM and FVPM results, a consider-
able differences between experimental data and the numerical
results are observed. The similar difference is reported for
SPH-FEM studies performed in [15] and [17]. This difference
is explained by the nonlinear behavior of the rubber in which
the stiffness decreases as the strain increases. Nevertheless,
using the average value for elastic modulus, E,,, = 4
MPa, results in a much better agreement between FVPM and
experimental data (Figure 9).

The snapshots of the experiment [13] and the FVPM solu-
tion (EF = 4 MPa) for different times are shown in Figure 10.
The fluid particles in FVPM solution is colored by the pressure
values. As we observe, the plate deformation and free surface
position are well predicted for the five different times.
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Fig. 6. Time history of the X (solid lone) and Y (dashed line) displacement
for the elastic gate with £ = 4 MPa.

10
[[] | Ly error
10
—6— F =10 MPa
—x— F =4 MPa
slope 2 §/8
107
10 [

Fig. 7. 'The convergence of the Lo norm of the X displacement error as a
function of particle spacing.

VII. CONCLUSION

In this study, we proposed a FVPM formulation for fluid-
structure interaction problems. In this formulation, the fluid
particles are governed by weakly-compressible flow equations
and the elastic rubber particles are governed by isotropic
linear elastic equations. The interaction between fluid and
solid is fulfilled by a new no-slip wall boundary condition
which directly gives the hydrodynamic forces, required in
solid equation. The particle interaction integrals are computed
exactly by using rectangular top-hat kernels. The method is
validated by an elastic gate test case. The convergence of the
method was studied for different particle spacing. The FVPM
results validated by a very good agreement with experimental
and other numerical data.
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0.01¢t O SPH-FEM (Yang et al.), £ =10 MPa
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Fig. 8. Time histories for (a) X displacement and (b) Y displacement of
the elastic gate. The FVPM results for £ = 10 MPa are compared with the
experimental data of Antoci et al. [13] and SPH-FEM solution of Yang et al.
[15].
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the elastic gate. The FVPM results for £ = 4 MPa are compared with the
experimental data of Antoci et al. [13] and SPH solution of Antoci et al. [13],
[13] and Lobovsky and Groenenboom [14].
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